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1. Introduction.  

 

The proof of the existence of the Standard commodity contained in Sraffa's book (section 37) has 

been debated recently. Lippi (2008) has argued that the algorithm in section 37 of Sraffa’s book is 

not precisely stated and does not need to converge to the desired eigenvalue and eigenvector. The 

first part of the proposition was known since the proof-reading stage of Sraffa’s book when it was 

sustained by Alister Watson (cf. Kurz and Salvadori, 2001, p. 272-3). But the second part has 

escaped the attention of all commentators before Lippi. Indeed examples can be found in which an 

algorithm corresponding to the description provided by Sraffa converges to a vector which is not an 

eigenvector and it is certainly Lippi’s credit to have uncovered the problem. In Appendix A I report 

the example I provided in a paper in which I investigated what are the properties that an algorithm 

needs to have in order to converge to the desired eigenvalue and eigenvector (cf. Salvadori, 2008). 

In an appendix of his paper Lippi provided a complete proof of the existence of the Standard 

commodity by using a very special algorithm from among all the algorithms corresponding to the 

description of section 37 and another special algorithm has been provided, without a proof, by Kurz 

and Salvadori (2001, p. 284). The fact that Sraffa has not chosen a particular algorithm makes us 

think that he was convinced that any algorithm would do the job. This is wrong, but, as I proved in 

the mentioned paper (Salvadori, 2008), any algorithm, based on a continuous function, which can 

start from any feasible point does actually do the job.  

 

In this paper I want to bring some more light on the issue from an historical perspective. A proof of 

the existence of the Standard commodity was provided to Sraffa by Besicovitch on 21 September, 

1944. This proof has not yet been discussed In the literature. In Appendix B there is a transcription 

of the file D3/12/39: 42 including it. In this paper I will show that also the proof by Besicovitch is 

incomplete, but it can easily be completed. Once completed, also this proof concerns a family of 

algorithms, but all the algorithms of the family converges to the desired eigenvalue and eigenvector. 

Sraffa thought that the exposition of the proof could be simplified. Alas, in carrying out such a 

simplification he failed. 
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2. Sraffa' Section 37  

Sraffa starts section 37 of his book with the following two paragraphs. 

That any actual economic system of the type we have been considering can always 

be transformed into a Standard system may be shown by an imaginary experiment. 

(The experiment involves two types of alternating steps. One type consists in 

changing the proportions of the industries; the other in reducing in the same ratio the 

quantities produced by all industries, while leaving unchanged the quantities used as 

means of production.) 

What Sraffa calls "imaginary experiment" is clearly what mathematicians call an algorithm: given 

an initial state, a definite list of well-defined instructions are given to proceed through a well-

defined sequence of successive states, eventually terminating in an end-state. In order to reconstruct 

formally Sraffa's argument, let us introduce the square nonnnegative matrix A = a
ij

!" #$  and the  

positive vector l = l
1
,l
2
,...,l

n[ ]
T

 as the material input matrix and the labour input vector, on the 

assumption that the output matrix is the identity matrix I. Matrix A is assumed to be also 

indecomposable, that is, all non basic commodities are explicitly not considered. Let us continue 

our reading of section 37. 

We start by adjusting the proportions of the industries of the system in such a way 

that of each basic commodity a larger quantity is produced than is strictly necessary 

for replacement. 

Let us next imagine gradually to reduce by means of successive small proportionate 

cuts the product of all the industries, without interfering with the quantities of labour 

and means of production that they employ. 

As soon as the cuts reduce the production of any one commodity to the minimum 

level required for replacement, we readjust the proportions of the industries so that 

there should again be a surplus of each product (while keeping constant the quantity 

of labour employed in the aggregate).  

The initial state of the algorithm is the "actual economic system". This is able to produce a surplus, 

but does not need to procuce a surplus consisting of all (basic) commodities, so the first step 

consists in determining x
0
! x > 0 x

T
l = ",xT I #A[ ] > 0

T{ }  and then building up two sequences: 

x
t{ }  and !

t{ } , where  

 !
t
= ! x

t"1( ) =
j

max

x
t"1

T
Ae

j

x
t"1

T
e
j
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so that x
t!1

T
"
t
I ! A[ ] # 0T  and x

t!1

T
"
t
I ! A[ ] /> 0T , and x

t
 (t > 0)  is a vector such that  x

t
> 0 , 

x
t

T
l = !  and x

t

T
!
t
I " A[ ] > 0T . Sraffa comments "This is always feasible so long as there is a 

surplus of some commodities and a deficit of none." However he does not provide a proof of this 

sentence. As we will see, this proof is an immediate consequence of the first three Theorems 

provided by Besicovitch. Then Sraffa proceeds to the end-state of the algorithm. 

We continue with such an alternation of proportionate cuts with the re-establishment 

of a surplus for each product until we reach the point where the products have been 

reduced to such an extent that all-round replacement is just possible without leaving 

anything as surplus product. 

The "imaginary experiment" concludes, in Sraffa's opinion, when x
!
> 0 , x!

T
l = "  and 

x
!

T
"
!
I #A[ ] = 0

T . Sraffa never states that the algorithm may need an infinite number of steps, but 

we know indeed that this is so. Finally, we have the last paragraph of section 37. 

Since to reach this position the products of all the industries have been cut in the 

same proportion we are now able to restore the original conditions of production by 

increasing the quantity produced in each industry by a uniform rate; we do not, on 

the other hand, disturb the proportions to which the industries have been brought. 

The uniform rate which restores the original conditions of production is R and the 

proportions attained by the industries are the proportions of the Standard system. 

Hence we arrive at the equation 

x!
T
I " 1+ R( )A#$ %&= 0

T
 

where, obviously, 1+ R =1 !
"

. As Alister Watson, Kurz and Salvadori (2001) and Lippi (2008), 

among others, have remarked, the algorithm is not well defined since there are infinitely many ways 

to define x
t
. Completing the definition of the algorithm means to define a function ! q( )  such that 

x
t
= ! x

t"1( ) , each t. In order to be more precise, we introduce the sets 

 
 
R = q !"n

 q # 0,  qT l = $,  q
T
I % A[ ]  # 0

T{ }  

 
 
R* = q !"n

 #$ % 0 :  q % 0,  q
T
l = &,  q

T $I ' A[ ] = 0T{ }  

  S = R !R*  

and the set of functions 

 
 
Z S

0( ) = !  :  S
0
"R  #q $ S

0
 :  ! q( ) $ S

0
%R*,& q( )! q( ) 'AT! q( ) > 0{ } , 
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where 
 
S

0
 is any subset of  S . Each function of the set 

  
Z S

0( )
S
0
!S

!  defines a different algorithm 

which corresponds to Sraffa’s description. 

If function ! q( )  has a fixed point in  S , then sequence x
t{ }  may converge on the fixed point of 

function ! q( ) . As a consequence, sequence !
t{ }  may converge to a number which does not even 

need to be close to the eigenvalue of matrix A. This fact cannot hold if function ! q( )  has the 

mentioned inequality properties in the whole  S  and, therefore, the set of functions to be considered 

  
Z S

0( )
S
0
!S

! equals 

 
 
Z = Z S( ) = !  :  S "R  #q $ S :  ! q( ) % 0,  & q( )! q( ) 'AT! q( ) > 0,  lT! q( ) = ({ }  

This is the extra assumption found by Salvadori (2008). The interpretation is close at hand: the 

function ! q( )  is such that ! q( ) " 0,  # q( )! q( ) $AT! q( ) > 0,  l
T! q( ) = % , whatever is point 

 
q ! R  

and not just in the support of sequence x
t{ } , as Sraffa's description may be interpreted. In the 

following section I will show that Besicovitch proposed a better defined algorithm and proved that 

the algorithm converges to the desired solution (apart for a small point to be completed). 

 

3. Towards Besicovitch proof  

Besicovitch's proof is devided in four "Theorems". Only the last one is the required proof. The first 

three prepare the field. In this section we discuss the first three theorems. Besicovitch does not 

follow the matricial notation we have used above in order to have a more compact presentation.  

The first Theorem of file D3/12/39: 42 reads in plain English: With positive prices any distribution 

of the net outputs can be attained. This Theorem starts from the assumption that there is a system 

with no profits and positive prices and a positive wage rate. The aim is to prove that industries can 

be operated in such a way that any proportion in which the surplus is distributed among industries is 

feasible. The no profit assumption is not necessary, but probably follows the exercise that Sraffa is 

performing. Obviously the rate of profit must be lower than the maximum one since the wage rate 

must be positive and this is really what is needed. On the other side, if the wage rate is nought, then 

the rate of profits equals R and the existence of the Standard commodity is immediately obtained. In 

modern notation the first Theorem states: 

   !p > 0, w > 0 : Ap + wl = p "!x # 0 : x
T
= x

T
A + q

T
 $q # 0 , 

where w is assumed to be a positive scalar. Obviously the semipositive vector 
 q

 is the vector of 

what Besicovitch calls "the Surplus outputs" (net outputs in the ebove). In order to obtain this result 

it is enough to prove that matrix  I ! A  is invertible and its inverse is positive and we know that this 
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is the case when matrix A is indecomposable and there is a positive vector 
 p

 such that 

 
I ! A"# $%p & 0 , because of the Perron-Frobenius Theorem. However, Besicovitch does not refer to 

the Perron-Frobenius Theorem.1  

 

The proof provided by Besicovitch is very ingenious, but may need some explanation. Like the 

Gauss-Jordan elimination way to solve a linear system of equations it is based on consecutive 

applications of two elementary steps: (i) multiplication of an equation by a non-zero scalar, and (ii) 

addition to an equation of non-zero scalar multiples of other equations. Besicovitch proves that 

since prices are positive the non-zero scalar multiplications involved in both steps are indeed 

positive scalar multiplications. Let us follow step by step this recursive proof. In the first step only 

the last industry, n,  is considered. Since 

an1p1 + ...+ ann pn + lnw = pn  

and since an1p1 + ...+ ann!1pn!1 + lnw > 0 , we have that 1! a
nn
> 0 . Hence it is possible to find a 

positive !
n
 such that !

n
1" a

nn( )  can take any positive value.  

 

In the second step the last two industries are considered. Taking account of the equations 

an!1,1p1 + ...+ an!1,n!1pn!1 + an!1,n pn + ln!1w = pn!1

an1p1 + ...+ ann!1pn!1 + ann pn + lnw = pn
 

and using the first step, we can multiply the latter by a !n  such that !
n
1" a

nn( ) = an"1,n  in such a 

way as to obtain that the surplus of industry n equals the input of commodity n into industry n !1 : 

an!1,1p1 + ...+ an!1,n!1pn!1 + an!1,n pn + ln!1w = pn!1

an!1,n

1! ann
an1p1 + ...+

an!1,n

1! ann
ann!1pn!1 +

an!1,n

1! ann
ann pn +

an!1,n

1! ann
lnw =

an!1,n

1! ann
pn

 

As a consequence, by summing up the two equations we obtain 

an!1,1 +
an!1,n

1! ann
an1

"
#$

%
&'
p
1
+ ...+ an!1,n!1 +

an!1,n

1! ann
ann!1

"
#$

%
&'
pn!1 + ln!1 +

an!1,n

1! ann
ln

"
#$

%
&'
w = pn!1  

since  

a
n!1,n

+
a
n!1,n

1! a
nn

a
nn
=
a
n!1,n

1! a
nn

. 

Once again, since 

                                                

1  The proof of the existence of the Standard commodity can be interpreted as a proof of the 

Perron-Frobenius Theorem (see Kurz and Salvadori, 1993). 
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an!1,1 +
an!1,n

1! ann
an1

"
#$

%
&'
p
1
+ ...+ an!1,n!2 +

an!1,n

1! ann
ann!2

"
#$

%
&'
pn!2 + ln!1 +

an!1,n

1! ann
ln

"
#$

%
&'
w > 0  

we have that  

1! a
n!1,n!1 +

a
n!1,n

1! a
nn

a
n,n!1

"

#$
%

&'
=

det
1! a

n!1,n!1 !a
n!1,n

!a
n,n!1 1! a

nn

(

)
*

+

,
-

1! a
nn

> 0  

Hence we can find two positive scalars !
n
 and !

n"1
 such that !

n"1
" !

n
a
n,n"1

" !
n"1
a
n"1,n"1

 can take 

any positive value and !
n
" !

n
a
nn
" !

n"1
a
n"1,n

= 0 , that is, we can proportion the two equations in 

such a way that the output of commodity n equals the sum of the inputs of commodity n in the last 

two industries and the output of commodity n !1  is as desired. In a similar way we can proportion 

the two equations in such a way that the output of commodity n !1  equals the sum of the inputs of 

commodity n !1  in the last two industries and the output of commodity n is as desired. Thus we 

can proportion the two equations in such a way that there is the desired surplus of the last two 

commodities. 

 

The third step analyzes the last three industries. By using the second step we can proportion the last 

two equations in such a way that the outputs of the last two commodities equal the sum of their 

inputs in the last three industries.  

an!2,1p1 + ...+ an!2,n!1pn!1 + an!2,n pn + ln!2w = pn!2

"
1

"
an!1,1p1 + ...+

"
1

"
an!1,n!1pn!1 +

"
1

"
an!1,n pn +

"
1

"
ln!1w =

"
1

"
pn!1

"
2

"
an1p1 + ...+

"
2

"
ann!1pn!1 +

"
2

"
ann pn +

"
2

"
lnw =

"
2

"
pn

 

where  

! = det
1" a

n"1,n"1 "a
n"1,n

"a
n,n"1 1" a

nn

#

$
%

&

'
(,!1 = det

a
n"2,n"1 "a

n"1,n

a
n"2,n 1" a

nn

#

$
%

&

'
(,!1 = det

1" a
n"1,n"1 a

n"2,n"1

"a
n,n"1 a

n"2,n

#

$
%

&

'
( . 

By adding up, we obtain 

an!2,1 +
"
1

"
an!1,1 +

"
2

"
an1

#
$%

&
'( p1 + ...+ an!2,n!2 +

"
1

"
an!1,n!2 +

"
2

"
an,n!2

#
$%

&
'( pn!2 + ln!2w = pn!2  

since 

a
n!2,n!1

+
"

1

"
a
n!1,n!1

+
"

2

"
a
n,n!1

=
"

1

"
,   a

n!2,n
+
"

1

"
a
n!1,n

+
"

2

"
a
n,n

=
"

2

"
 

 

Once again, since prices are positive, we obtain that there is a surplus of commodity n ! 2 , that is 
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1! a
n!2,n!2 +

"
1

"
a
n!1,n!2 +

"
2

"
a
n,n!2

#
$%

&
'(
=

det

1! a
n!2,n!2 !a

n!2,n!1 !a
n!2,n

!a
n!1,n!2 1! a

n!1,n!1 !a
n!1,n

!a
n,n!2 !a

n,n!1 1! a
nn

)

*

+
+
+

,

-

.

.

.

"
> 0 . 

and that multipliers can be found such that the surplus of commodity n ! 2  can take any positive 

value, whereas the outputs of the last two commodities equal the sum of their inputs in the last three 

industries. This is enough to find multipliers such that there is the desired surplus of commodity 

n ! 2 , the desired surplus of commodity n !1 , and the desired surplus of commodity n . And so 

on. 

 

The second Theorem reads in plain English: If the wage is posive and prices are positive, then net 

outputs cannot be all nought and, therefore, there is a surplus of at least one commodity. In modern 

notation the second Theorem states: 

   !p > 0, w > 0 : Ap + wl = p " x
T
# x

T
A $x % 0  

If not, we obtain 
  x

T
Ap + wx

T
l = x

T
p = x

T
Ap , and therefore    wx

T
l = 0 , which is not possible. The 

proof by Besicovitch does not need a reductio ad absurdum. If 
  
x

T
Ae

i
= x

T
e

i
 each  i ! j , where 

  
e

i
 

is the i-th unit vector, then  

  
x

T
Ap + wx

T
l = x

T
Ae

j
e

j

T
p( ) + wx

T
l + M = e

j

T
p + M  

where 
  
M = x

T
Ae

i
e

i

T
p( )

i! j" = e
i

T
p

i! j"  and since    wx
T
l > 0,  we have 

   
x

T
Ae

j
< 1  as required. 

 

The third Theorem reads in plain English: If the surplus of a commodity is positive and that of the 

others is nought then the prices are positive. Note that it is always implicit that the wage rate is 

positive. The aim is to prove that if there is a positive surplus of at least one commodity (and a 

negative surplus of none), then the wage is posive and prices are positive. Also in this case it is 

enough to prove that matrix  I ! A  is invertible and its inverse is positive. In modern notation the 

third Theorem states: 

   !x " 0 : x
T
" x

T
A #!p > 0 : Ap + wl = p  

However in the document D3/12/39: 42 of 21 September 1944 this Theorem is not proven. What is 

proven is that if there is a surplus in one commodity and no surplus in all the others, then the 

equations can be proportioned in such a way that a surplus is obtained in every commodity (even 

this proof is not complete; in particular it would be false, if the input matrix were decomposable; 

further it does not show why it works when the input matrix is indecomposable). However in the 
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document D3/12/39: 42 there is a note by Sraffa saying: "Refer to blue page 1". The reference is no 

doubt to D3/12/39: 7, which is written on a blue piece of paper and contains a proof by Besicovitch 

of the fact that if there is a surplus in every commodity, then prices are positive.2 The transcriptions 

of this document is reported here as Appendix C. 

Before arguing on the proof of the third theorem I will discuss the proof in D3/12/39: 7. The 

statement in modern notation is: 

   
e

T
> 1+ r( )eT

A,  1+ r( )Ap + wl = p,  w > 0 ! p > 0  

Note that the mentioned equation admits always a solution since it is homogeneous in 
   
p,  w( ) , 

however, we are assuming here something more, i.e., that a solution with a positive w exists.3 

Suppose that in this solution some price (at least one) is negative or nought, and all the others 

(possibly none) are positive. With no loss of generality assume that the first h are negative or 

nought,   1! h ! n , and the last  n ! h  are positive. Then, with obvious meanings of symbols, 

   
1+ r( )A

12
p

2
+ wl

1
= I ! 1+ r( )A

11
"
#

$
%p

1
 

which is impossible since 
   
e

h

T
I ! 1+ r( )A

11
"
#

$
%p

1
& 0  whereas 

   
1+ r( )e

h

T
A

12
p

2
+ we

h

T
l
1
> 0 , where 

  
e

h
 

is the sum h-vector, that is, an h-vercor of 1's. Note that this proof holds even if matrix A is 

decomposable, and therefore some commodities are non-basic, provided that labour enters directly 

into the production of all commodities and, therefore, 
  
l
1
> 0  (it still holds if labour enters directly or 

indirectly into the production of all commodities, but I will not deal with this issue here). 

Now we can discuss the proof of the third theorem in the document D3/12/39: 42. With no loss of 

generality assume that the first h commodities have a positive surplus,   1! h ! n , whereas the last 

 n ! h  have no surplus (and no loss). Therefore 
   
e

h

T
> e

h

T
A

11
+ e

n!h

T
A

12
 and 

   
e

n!h

T
= e

h

T
A

12
+ e

n!h

T
A

22
. 

Therefore, Besicovitch mantains, if u is a real number lower than 1, but so close to 1 that it is still 

true that 
   
ue

h

T
> ue

h

T
A

11
+ e

n!h

T
A

12
, we must have that 

   
e

n!h

T
> ue

h

T
A

12
+ e

n!h

T
A

22
. However, this is not 

necessarily true. Indeed if matrix A is decomponible and 
  
A

12
= 0 , this is certainly false. It is 

                                                

2  D3/12/39: 8 is also written on a blue piece of paper and contains a proof by Besicovitch, but 

on a different issue.  

3  As a matter of fact, a known theorem allows to state that if the mentioned strong inequality 

holds, then w is nought if and only if all prices are nought too (see Kurz and Salvadori, 1995, 

p. 510, Theorem A.3.1). The same theorem, however, proves also the theorem that 

Besicovitch wants to prove. 
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reasonable to assume that Besicovitch assumed that all commodities are basic and, therefore, matrix 

A is indecomponible. Even in this case, however, the proof is incomplete (
   
e

h

T
A

12
 is semi-positive, 

but does not need to be positive) since we may need to iterate the process to bring home the result. 

In fact, if matrix A is indecomponible, we are sure that 
   
e

n!h

T
" ue

h

T
A

12
+ e

n!h

T
A

22
 and therefore the 

number of commodities with a positive surplus is increased and still no commodity has a negative 

surplus. Further, since at any iteration of the process the number of products with a positive surplus 

increases, the number of iterations needed to obtain a surplus in all commodities is certainly finite 

since it is lower than  n ! h . 

 

The first three theorems of file D3/12/39: 42 have the role to mantain two facts. First, if there is a 

surplus of any type, industries may be proportioned in such a way as to get the surplus everywhere 

the observer wants. Second, there is a surplus if and only if prices are positive and the wage rate is 

positive. The relationship with section 37 of the book by Sraffa (1960) is obvious. One of the two 

steps of the algorithm introduced there consists exactly in "adjusting the proportions of the 

industries of the system in such a way that of each basic commodity a larger quantity is produced 

than is strictly necessary for replacement". The fourth theorem concerns the existence of the 

Standard commodity and will be analyzed in the next section. 

 

4. Besicovitch's proof  

 

The fourth theorem is quite cryptic and requires some explanation. In plain English it reads: If 

prices are positive, then there exist positive multipliers 
  
q

a
,  ... ,q

k
 such that the net output is 

proportional to the total of every kind of raw material. The proof is similar to that provided by 

Sraffa, but is more detailed and closer to the description of an algorithm. It starts by assuming that 

there is a surplus with regard to all commodities. If there were a surplus only in some industries, 

then we can find a starting point with a surplus in all industries, 

x
0
! x > 0 x

T
l = ",xT I #A[ ] > 0

T{ } , since the condition of Theorem 1 holds. Then the second step 

used by Sraffa is applied. That is, it is found 

!
1
= ! x

0( ) =
j

max

x
0

T
Ae

j

x
0

T
e
j

 

so that x
0

T
!
1
I " A[ ] # 0T  and x

0

T
!
1
I " A[ ] /> 0T . Then all the equations of commodities for which 

there is a surplus are multiplied for a common scalar lower than 1. Besicovitch thinks this is enough 
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to get that all commodities are in surplus, but this does not need to be true since input coefficients 

are not all positive. However, since all commodities are assumed to be basic, the input matrix A is 

indecomposable and therefore we can get the desired result by iterating the same procedure, as seen 

above, in the analysis of the third theorem by Besicovitch. Let us consider the point in a more 

formal way. 

 

Let µ ! "  and  x ! S  be such that µxT ! x
T
A  and define the set of indices 

 

Iµx = i ! 1,  2,  ... ,  n{ }  µx
i
> x

j
a
ji

j=1

n

"
#
$
%

&%

'
(
%

)%

Îµx = i ! 1,  2,  ... ,  n{ }  µx
i
= x

j
a
ji

j=1

n

"
#
$
%

&%

'
(
%

)%

 

The aim of this step consists in finding an intensity vector ! x( )  such that 
 
I
µ! x( )

= 1,  2,  ... ,  n{ }  and, 

as a consequence, 
 
Î
µ! x( )

=" . Besicovitch considers that this can be obtained if ! x( )  is the function 

g µ,x( ) , where 

 

g
i
µ,x( ) =

x
i

if i ! Îµx

"x
i

if i ! Iµx

#
$
%

&%
 

where !  is a scalar lower than 1, but so close to 1 that 

 
 

µ !x
i( ) > x

j
a
jij"Îµx

# +! x
j
a
jij"Iµx

#  each 
 
i ! Iµx  

That is, 

 

max
i!Iµx

 

x
j
a
ji

j! Îµx

"
µx

i
# x

j
a
ji

j!Iµx

"
<$ <1 . 

As mentioned above, this is not enough to obtain that 
 
I
µg µ ,x( )

= 1,  2,  ... ,  n{ }  because some a ji  may 

be nought. However, by construction, 
 
i ! Iµx  implies that 

 
i ! I

µg µ ,x( )
 and therefore 

 
I
µg µ ,x( )

! Iµx . On 

the other side, 
 
I
µg µ ,x( )

= Iµx  if and only if a ji = 0  each 
 
i ! Iµx  and each 

 
j ! Îµx . But then matrix A 

would be decomposable. This being impossible, we get that 
 
I
µg µ ,x( )

! Iµx . This is enough to say that 

the procedure can be iterated for a number of times lower to the (finite) number of commodities 

(also because if  
 
Iµx = 1,  2,  ... ,  n{ } , then g µ,x( )  is proportional to x). Hence we can define: 

h
1
x( ) = g ! x( ),x( )  

h j x( ) = g ! x( ),h j"1 x( )( )         j = 2,  ... ,n !1  



 11 

! x( ) = hn"1 x( )  

There is one further aspect considered by Besicovitch. In a remark he argued that ‘we may keep one 

of our industries intact’ in order to avoid that all multipliers become nought. With no loss of 

generality, assume that such industry is industry 1. Therefore function g µ,x( )  must be redefined as 

 

g
i
µ,x( ) =

x
i

if i ! Îµx  and 1! Îµx

"x
i

if i ! Iµx  and 1! Îµx

1

"
x
i

if i ! Îµx  and 1# Îµx

x
i

if i ! Iµx  and 1# Îµx

$

%

&
&
&

'

&
&
&

 

This function has also the property that if  
 
Iµx = 1,  2,  ... ,  n{ } , then g µ,x( ) = x . As seen in section 

1, Sraffa followed a different, but equivalent strategy to avoid that all multipliers become nought. 

He kept fixed the amount of labour. If we follow this strategy we have that function g µ,x( )  must 

be redefined as 

 

g
i
µ,x( ) =

!x
i

if i " Îµx

!#x
i

if i " Iµx

$
%
&

'&
 

where 

 

! =
"

x jl j
j# Îµx

$ +% x jl j
j#Iµx

$
 

Also this function has the property that if  
 
Iµx = 1,  2,  ... ,  n{ } , then g µ,x( ) = x . 

 

Also in Besicovitch's proof there is a family of potential algorithms involved. In order to have a 

proper algorithm we must have a way to define how !  is chosen. For example if we chose !  in the 

middle of the range in which it can vary we would have 

 

! =
1

2
+

1

2
max
i"Iµx

 

x
j
a
ji

j" Îµx

#
µx

i
$ x

j
a
ji

j"Iµx

#
 

and in general any possible choice could be defined as a choice of 0 <! < 1  in the expression 

 

! = " + (1#" )max
i$Iµx

 

x
j
a
jij$Îµx

%
µx

i
# x

j
a
jij$Iµx

%
 

For each sequence !
i{ } , 0 <!

i
< 1 , we have a different algorithm; but whatever sequence !

i{ }  is 

chosen, it is easily proved that the conditions stated by Salvadori (2008) hold and therefore all the 
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potential algorithms considered by Besicovitch converge to the desired result. In fact, function 

! x( )  is continuous and can start from any point in  S . 

 

Sraffa found it too laborious to use the function ! x( )  used by Besicovitch. He recognised that what 

is relevant is the "adjusting [of] the proportions of the industries of the system in such a way that of 

each basic commodity a larger quantity is produced than is strictly necessary for replacement" and 

that at each step the desired result is closer, but he did not consider the fact that the "imaginary 

experiment" may go over an infinite number of steps without approaching the Standard commodity. 

 

5. Conclusion 

In this paper I have investigated the relationship between the proof of the existence of the Srandard 

commodity contained in section 37 of Sraffa’s (1960) book and the proof supplied to Sraffa by 

Besicovitch on 21 September 1944 and I have investigated the completeness and consistence of 

such a proof. 

 

 

Appendix A. An example 

 

Let 

 A =
0 h

k 0

!

"
#

$

%
&      l =

1

2

1

2

!

"
#
$

%
&      ! =1  0 < h < k <1  

It is easily calculated that the eigenvalue of maximum modulus of matrix A  is hk  and that the 

left eigenvector associated with this eigenvalue normalized by the condition 
  
x

T
l = !  is 

 
2 k ! hk( )

k ! h

2 hk ! h( )
k ! h

"

#

$
$

%

&

'
'
 

It is easily recognised that 

 

 

R = q ! "2
 

2k

1+ k
# q

1
#

2

1+ h
,  q

2
= 2 $ q

1

%
&
'

(
)
*

. 

Finally, let us consider the function 

 ! q( ) =
1

1" 2#

$

%
&

'

(
)+#q  (6) 

with 
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 0 < ! <
1

2
"
1

2

h

k
 (7) 

From inequalities (7) we obtain the inequality 

 
1

1! "
<
2 k ! hk( )

k ! h
 

from which we obtain4 that ! q( )" q( ) #AT" q( ) > 0  for each
 
q ! S

1
, whereas this property does not 

hold for
 
q ! S

2
, where 

 

 

S
1
= q ! S  q

1
<

1

1"#

$
%
&

'
(
)

 

 

 

S
2
= q ! S  

1

1"#
$ q

1
<

2 k " hk( )
k " h

%

&
'

('

)

*
'

+'
 

Further, it is easily verified that 
 
q ! S

1
" # q( ) ! S

1
. Therefore each element of any sequence 

defined by the conditions 

 
 
q
0
! S

1
,             q

t+1
=

q
t

if ! q
t( )qt " A

T
q
t
= 0

# q
t( ) if ! q

t( )qt " A
T
q
t
$ 0

%
&
'

('  

satisfies the conditions stated by Sraffa, but 

 

lim
i!"

# q
i( ) = 1$ 2%( )k > hk  

lim
i!"
q
i
=

1

1#$
1# 2$

1#$

%

&

'
'
'
'

(

)

*
*
*
*

+

2 k # hk( )
k # h

2 hk # h( )
k # h

%

&

'
'
'
'
'

(

)

*
*
*
*
*  

The last limit is the unique fixed point of funtion (6).  

 

Appendix B. D3/12/39: 42 

 

Besic.: – 21.9.44: (42) 1-4: 

                                                

4  If q
1
! 2 k " hk( ) k " h( )

"1

, then ! q( ) = k 2 " q
1( )q1

"1 . Further ! q( )e
1

T" q( ) # e
1

T
A

T" q( ) > 0  

if and only if q
1
< 1! "( )

!1

 whereas ! q( )e
2

T" q( ) # e
2

T
A

T" q( ) > 0  for 

q
1
! 2 k " hk( ) k " h( )

"1

, provided that inequalities (7) hold. 
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'Th 1 If prices are +ve, any distribution of the Surplus outputs can be attained'  

 

Proof  

(i) Ak pa + ...+ Kk pk + lkw = Kpk  

obviously any desirable surplus of K can be produced since K > K
k
 ( ! of +ve prices). 

(ii) 
Aj pa + ...+ J j p j + K j pk + l jw = Jp j

Ak pa + .             .            .        = Kpk

!
"
#

 

Let the surplus of the K-industry be K j . Then J industry produces some Surplus. Multiply{in}g 

both =ions {equations} by the Same factor the J surplus may take any assigned value. S{imilar}ly  

we can make J not to have any Surplus & K to have any assigned surplus. Then add{in}g the two 

firs{t} =ions {equations} & the two second ones we get an assigned Surplus of J & f{o}r K , a. s.o., 

q.e.d. 

 

'Th 2 If the prices are +ve {positive} and the surplus of B, ..., K is 0 then the surplus of A is +ive 

{positive}. 

 

Proof For take the surplus of B, ..., K (wrt {with respect to} B ... K) to be B
a
, ... , K

a
. Then the 

surplus f{o}r B, ... K wrt {with respect to} A, ... , K is 0. Write 

Aa pa + ...+ law = Apa

______

Ak pa + ...+ lkw = Kpk

 

& add them & drop B, ... , K terms from both sides as they are = {equal}. The result is 

Aa + ...+ Ak( ) pa + la + ...+ lk( )w = Apa . 

i.e. A
a
+ ...+ A

k
< A , q.e.d. 

 

'Th 3 If the Surplus of A is +ve {positive} & of B, ..., K is 0 then the prices are +ve {positive}. 

 

For multiplying A=ion {equation A} by u (< 1) sufficiently near 1 we shall still have the surplus of 

A +ve {positive} & we shall make surplus of B, ... , K +ve {positive}. 

 

{Addition by Sraffa on bottom of page: (Refer to blue page 1)} 
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'Th 4 If prices are +ve {positive} there exist +ve {positive} multipliers qa, ...,qk  such that the 

Surplus output is proportional to the total of every kind of raw materials. 

 

Proof. 

 (1)           

Aa pa + ...+ law = Apa

............

Ak pa + ............= Kpk

 

assuming the surplus for each to be +ve {positive}, i.e. 

 (2)           

A
a

+ ...+ A
k

< A

............

K
a

+ ...+ K
k

< K

 

Consider 

 (3)           

A
a

+ ...+ A
k

< Au

............

K
a

+ ...+ K
k

< Ku

 

The ≠ties {inequalities} remain true as u decreases from 1 until it reaches a certain value u
0

> 0  for 

which some of the ≠ties {inequalities} become =ties {equalities}, f.i {for instance} the first two. 

Then we multiply the C, ... , K =ions {equations} by k <1 but near 1, so that the surplus of C, ... , K 

still remain positive. This will release a surplus of A & B. Then (3) will be true wrt {with respect 

to} the reformed system for u = u
0
. Now we decrease u beyond u

0
 a.s.o. In this way we shall reach 

as System 

qa Ak pa + ............( ) = qaApa

..............

qk ........................( ) = qkKpk

 

for which 

qaAa + ... qkAk < qaAu 

............... 

qaKa + ........... < qkKu 

for u
1

< u !1, & when u = u
1
 all the ≠ies {inequalities} become =ies {equalities}. 

 

Remark. All qa, ...,qk  cannot become 0 since in all our adjustments we may keep one of our 

industries intact, f. i A, & from this it follows that u1 ≥  Aa/A (! 1st =ion {first equation} of (3)) 

 

Appendix C. D3/12/39: 7 
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Aapa + ...+ Kapk( ) 1+ r( ) + Law = Apa

...........

Ak pa + ...+ Kk pk( ) 1+ r( ) + Lkw = Apk

 

If r is such that 

A
a
+ ...+ A

k( ) 1+ r( ) < A

K
a
+ ...+ K

k( ) 1+ r( ) < K
 

then all prices are positive, assuming w > 0 

Proof. Suppose not. Let pa < 0 , pb < 0 , the rest > 0. Then adding the first two equations and taking 

to the right A and B terms we shall have 

Ca + Cb( )pc + ...+ Ka + Kb( )pk{ } 1+ r( ) + La + Lb( )w

= A! Aa + Ab( ) 1+ r( ){ }pa + B! Ba + Bb( ) 1+ r( ){ }pb
 

which is impossible, since the expression on the left hand side is > 0, and on r. h. side < 0. 

  ASB 
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