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Abstract

The paper analyzes econometric models of altruistic giving in dictator and public

goods games. Using existing data sets, I evaluate internal and external validity of

“atheoretic” regression models as well as structural models of random behavior,

random coefficients, and random utility, controlling for subject heterogeneity by

finite mixture modeling. In dictator games, atheoretic regression lacks external

validity, while random coefficient models and random utility models offer high

degrees of both internal and external validity. In public goods games, regression

works comparably well, being bettered only by random utility models. Overall,

the ordered GEV model of random utility is most appropriate to describe choices

in the considered games.
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1 Introduction

Numerous studies have investigated how the actions of experimental subjects relate to

game theoretic predictions. It was found that experimental subjects generally deviate

from Nash equilibrium, which raised the questions whether the deviations are sys-

tematic and how they could be explained. Several strands of literature emerged (for a

more complete survey of this research, see Camerer, 2003). One of them investigated

whether deviations from the predictions can be the result of social preferences (e.g.

Rabin, 1993, and Levine, 1998), another one additionally allowed that subjects play

noisy responses in relation to some utility function (e.g. Rosenthal, 1989, and McK-

elvey and Palfrey, 1995), a third strand investigated how choice patterns depended

on circumstances (Forsythe et al., 1994; Hoffman et al., 1994; Andreoni, 1995b), and

another one investigated the consistency of individual choices (e.g. Andreoni, 1995a).

It was found that both social preferences and noisy responses seem to explain the ob-

served deviations from equilibrium predictions, in response to which Andreoni and

Miller (2002) and Goeree et al. (2002) conducted experiments to separate these po-

tential explanations. They systematically varied exchange rates in dictator games and

public goods games (respectively) to get a complete overview of individual choice

patterns. The conclusions were that social preferences and noisiness of responses

individually interact.

This, in turn, led researches to estimate structural models of altruistic giving that

contain both social preferences and a source of randomness inducing noisy responses.

Fisman et al. (2007) assumed that subjects deviate stochastically from their individ-

ual best response (random behavior), Cox et al. (2007) assumed that the altruism

coefficient in the individual utility function is fluctuating randomly (random coeffi-

cient), and Cappelen et al. (2007) considered a multinomial logit model of choice

(random utility). This multitude of approaches has an obvious flaw, as Conte and

Moffatt (2009) showed that the estimated motive of giving depends on the model

chosen (they do so by fitting a random behavior model to Cappelen et al.’s data).1

In relation to this literature, the present paper answers two questions: Which of

1Conte and Moffatt also criticize the random utility model chosen by Cappelen et al. for neglecting

the orderedness of the choice set in dictator games.
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the three approaches toward structural modeling of altruistic giving is most valid?

And, do the internal or external validity gained justify or even necessitate the move

from atheoretic regression toward structural modeling? To this end, I revisit the ex-

perimental data of Andreoni and Miller (2002) and Goeree et al. (2002), estimate the

models to be discussed, and compare measures of internal validity (BIC in-sample)

and external validity (LL out-of-sample). The main results are that random utility

modeling is in general most valid, random coefficient models may fit well (as they do

in Andreoni and Miller’s dictator games) but they may also fail drastically (in Goeree

et al.’s public goods games), and in general the move toward structural modeling is

justified and may be necessary (the validity increases drastically in dictator games).

The approach that emerges as most valid in our analysis is the ordered GEV model of

random utility (Small, 1987), which has been overlooked by previous game-theoretic

analyses, but poses a direct response to the critique that random utility as in multino-

mial logit ignores orderedness of choice sets (e.g. Conte and Moffatt, 2009).

From a more general point of view, the present paper contributes to the discus-

sion of the comparative advantages of structural modeling and regression—recently

revamped by e.g. Keane (2010) and Rust (2010)—by presenting quantitative evidence

based on experimental data. As indicated, the evidence underlines the general idea

that structural models have higher external validity than (linear) regression, but sur-

prisingly they also have higher internal validity. That is, structural models (and in

particular random utility models) are better in describing the basic characteristics of

individual choice in the considered games, and hence they are preferable even if only

internal validity is of interest.

The remainder is organized as follows. Section 2 introduces the dictator game

data of Andreoni and Miller (2002) and discusses tobit regression models. Section 3

analyzes the standard structural models discussed in the literature, and Section 4 ex-

tends the analysis to random utility models relaxing the assumption of independence

from irrelevant alternatives (i.e. ordered GEV and nested logit). Section 5 verifies the

robustness of the dictator game results by analyzing the public goods game data of

Goeree et al. (2002). Section 6 concludes. There is extensive supplementary material

that lists (amongst others) all parameter estimates.
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2 The data and initial analysis

In a dictator game, only player 1 has to choose a strategy. His choice affects the payoff

of 2, however, and this payoff interdependence seems utility relevant for laboratory

subjects. Let 1’s strategy set be denoted as S1 = {0,1, . . . ,B}, with B as endowment,

and let τ1,τ2 denote (positive) exchange rates. The two players’ payoffs are

π1(s) = τ1(B− s) π2(s1) = τ2s ∀s ∈ S1. (1)

We analyze the dictator game experiment conducted by Andreoni and Miller (2002),

who explicitly designed their experiment to evaluate the consistency of dictator de-

cisions with utility maximization. There are eight decisions per subject, based on

systematic variations of (B,τ1,τ2). This allows us to econometrically disentangle

randomization and distributive preferences at the individual level.

Figure 1 provides an overview of the treatment parameters and the data. The

data exhibits typical characteristics of dictator games. For example, the donations are

fairly moderate overall, they are decreasing in τ1, and they are increasing in τ2. The

standard analytical approach to show this is to estimate a (tobit) regression model of

donations on (B,τ1,τ2). In our context, the result is

s1 =−8.172
(8.86)

+0.254
(0.066)

·B−4.348
(1.871)

· τ1 +4.878
(1.838)

· τ2 + ε (2)

where ε is normal with standard deviation σ̂ = 27.645. Regression analyses of this

kind are common in experimental studies, arguably because they are pure—by avoid-

ing complex specification—which seems to imply that the data speaks for itself. In

our case, the analysis suggests that the aforementioned effects are significant (s1 is

decreasing in τ1 and increasing in τ2), and that the donations fall by 4.3 on average

per unit increase of τ1 and they increase by 4.9 on average per unit increase of τ2.

The validity of such conclusions is questionable, however, as tobit models ignore the

structure of dictator games. Hence, their results are susceptible to what originally

became known as the Lucas critique. This issue is the topic of the following.

Throughout, we distinguish external validity and internal validity. Results have

internal validity if they accurately reflect the observed interaction, and they have ex-

ternal validity if they continue to hold in related circumstances. Arguably, regression
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Figure 1: Treatment parameters and data of Andreoni and Miller (2002)
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models have higher internal validity than structural models, whereas structural mod-

els have higher external validity. The former may result, since regression models are

estimated without restrictive structural assumptions to be obeyed, while the latter fol-

lows precisely from the structural restrictions, which reduce the risk of overfitting and

improve one’s chances of capturing the structure of decision making. This depends,

of course, on how well one’s model structure approximates the problem structure.

In the present context, it seems reasonable not to ignore subject heterogeneity.

For example, Andreoni and Miller’s analysis isolated seven types of subjects (as will

be discussed in more detail below). In order to represent (latent) heterogeneity, we

resort to finite mixture modeling (see e.g. Peel and MacLahlan, 2000).2 That is,

subject heterogeneity is described non-parametrically by distinguishing up to seven

discrete types, rather than parametrically by assuming a continuous distribution of

types. This approach is adopted, as Andreoni and Miller identified seven distinctive

types rather than a continuum of types.

Formally, let K denote the set of subject types in the population, e.g. K = {1,2,3}

in a three-type population, let (µk)k∈K denote the type shares, and for all k ∈ K, let

Pk denote the parameter profile characterizing type k. Now, if o j,t denotes the tth

observation of subject j ∈ J in the data set and if σ(o j,t |Pk) is the probability that i

chooses o j,t conditional on being of type k, the log-likelihood of o = (o j,t) is

LL(o|P) = ∑
j∈J

ln ∑
k∈K

µk ∏
t

σ(o j,t |Pk). (3)

Using the finite mixture approach, I have estimated models of subject hetero-

geneity where each type is described by the linear (tobit) model defined in Eq. (2).

Table 1 lists the goodness-of-fit of the various models, distinguishing internal and ex-

ternal validity. The measure of internal validity is Bayes’ information criterion (BIC,

see Schwarz, 1978) of the model fitted to the whole data set. The measure of exter-

nal validity is the log-likelihood (LL) of the respective model fit to a subset of the

2In experimental economics, finite mixture models are best known from analyses of strategic rea-

soning, starting with Stahl and Wilson (1995), but have recently been extended to choice under risk

(Conte et al., 2008; Harrison and Rutström, 2009; Bruhin et al., 2010), giving in dictator games (Cap-

pelen et al., 2007, 2010), and donations to public goods (Bardsley and Moffatt, 2007).
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Table 1: Validity of the linear behavioral model Eq. (2) in dictator games

Benchmarks Number of types of the linear behavioral model

Lower Upper One Two Three Four Five Six Seven

Internal 5814 2449 4276 3783 3672 3491 3439 3409 3392

External 1574 643 1198 1091 1149 1252 1171 1215 1277

Note: Internal validity is BIC = −LL+(#Pars)/2 · ln(#Obs) of the model fitted to the whole data

set, external validity is −LL in treatments 6,8 of the model fitted to the restricted sample (1–5,7).

data (treatments 1–5 and 7) and evaluated in the other two treatments (6 and 8).3 In

addition, Table 1 reports two benchmark measures that will be referred to frequently.

These benchmarks are defined as follows.

Definition 2.1 (Benchmarks). The upper benchmark is the absolute value of the log-

likelihood obtained by a model that predicts the actually observed relative frequencies

of all actions in all treatments. The lower benchmark is the absolute value of the log-

likelihood of predicting uniform randomization in all treatments.

Note that the upper benchmark reported is the strict upper benchmark of models

assuming independence of choices between treatments. If latent subject heterogeneity

as reported by Andreoni and Miller (2002) exists indeed, such independence assump-

tions are invalid and the upper bound is not strict. It is intended as an indication of

what to expect from a “good” model. The following result summarizes Table 1 (the

respective parameter estimates are provided as supplementary material).

Result 2.2. Tobit models lack validity. Finite mixtures of tobit models induce negative

correlation between internal and external validity (ρ̂ =−0.36), and in relation to the

benchmarks, the internally best model attains 72.0% internal validity4 and 31.9%

external validity.

Note the particularly low external validity of all estimated tobit models. Dictator

game results derived from tobit (or related linear) regression models do not continue

3The treatments chosen for the out-of-sample tests are intermediate in the sense that the donation

in relation to endowment is intermediate. We thus investigate external validity with respect to related,

non-extreme circumstances.
40.72 = (5814−3392)/(5814−2449)
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to hold even in closely related dictator games. Structural models of behavior may

allow us to avoid this pitfall.

3 Randomness of behavior, coefficients, and utility

Andreoni and Miller distinguished six specific subject types and one residual type.

The six specific types have Cobb-Douglas, Leontief, or linear utility functions and

either high or medium consistency (i.e. accuracy) in maximizing utilities. On the one

hand, the three utility functions are special cases of CES utilities,

ui(πi,π j) =
(

(1−α) · (1+πi)
β +α · (1+π j)

β
)1/β

, (4)

if (πi,π j) denotes the payoff profile in question and using ui =−(abs(. . .))1/β in case

the base is negative. CES utilities have also been assumed in the existing structural

models discussed soon. The varying degrees of accuracy, on the other hand, will be

represented by varying the scale of noise in models based on these utility functions.

Depending on where the noise is assumed to enter decision making, one may

distinguish three classes of structural models for dictator games: random behavior,

random coefficients, and random utility. In analyses of dictator games, random be-

havior has been studied by Fisman et al. (2007) and Conte and Moffatt (2009), random

coefficients have been studied by Cox et al. (2007), and random utility by Cappelen

et al. (2007). The comparative advantages of these models have not yet been ana-

lyzed, however. In this section we analyze the validity of the models as they have

been discussed by these authors. Alternative models are considered below.

To provide formal definitions, let u(s|α,β) denote i’s utility from donating s∈ S1,

and define BR(α,β) ∈ argmaxs∈S1
u(s|α,β) as the (generically unique) utility maxi-

mizing donation of a subject with parameters (α,β).

Definition 3.1 (Random behavior). The choice of i is a random variable Si =BR(α,β)+

ε, censored at 0 and B, where ε is normal with mean zero and standard deviation σ.

Definition 3.2 (Random coefficient). The choice of i is a random variable Si =BR(α,β),

where α is such that α′ :=α/(1−α) has density f (α′)= ρ exp
{

(|α−m|/s)ρ
}

/2sΓ(1/ρ).
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Table 2: Internal and external validity of basic structural models

Number of types

One Two Three Four Five Six Seven

Random be-

havior

4349 3889 3817 3824 3248 3261 3214

1238 1119 1096 1091 1102 1088 1049

Random co-

efficient

4353 3861 3757 2964 2730 2668 2687

1235 1100 1075 904 815 811 813

Random

utility

4724 3917 3253 3238 3030 3021 2973

1316 1112 971 973 937 924 919

Note: As in Table 1, the top row (per model) contains the BIC = −LL+ (#Pars)/2 · ln(#Obs)

measure of internal validity and the bottom row contains the −LL measure of external validity.

The assumption that α′ := α/(1−α) has exponential power distribution with

mean m, scale s, shape ρ (i.i.d. for each decision) follows Cox et al. (2007). The

implied probability that i chooses an action s′i ≤ si is F(α∗) where F is the cdf and α∗

is chosen such that ui(si|α
∗) = ui(si + 1|α∗). See Cox et al. (2007, Appendix B) for

further illustrations on the computational procedure.

Definition 3.3 (Random utility). Player i maximizes the utility ũ = λu(s|α,β) + ε

where λ ≥ 0 and ε has extreme value distribution (i.i.d. for all options s ∈ S1).

The assumption that ε be extreme value distributed implies the multinomial logit

choice probabilities.

∀s ∈ S1 : Pr(s) = eλu(s|α,β)/ ∑
s′∈S1

eλu(s′|α,β). (5)

Table 2 summarizes internal and external validity for these three classes of mod-

els. The full list of parameter estimates is provided as supplementary material. Before

the results are summarized, let me briefly comment on the optimization procedure.

The main issues to be resolved are the non-concavity of the likelihood function in fi-

nite mixture models, which follows from the interchangeability of types, and the high

degree of non-linearity of the log-likelihood in many structural models. I adopted a

variety of maximization methods, including Nelder-Mead and gradient based ones,
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and many different starting values to ensure global convergence. Furthermore, nu-

merical accuracy tends to be an issue in the summation underlying Eq. (5), as the

numbers to be summed up can become large. This issue had been resolved by ap-

propriately adapting the internal representation of numbers (further details are avail-

able upon request). Finally, the well-known issues with two-step estimators (see e.g.

Amemiya, 1978, and Arcidiacono and Jones, 2003) were avoided by maximizing the

full-information likelihood jointly over all parameters.

Result 3.4. All three structural models induce positive correlation between inter-

nal and external validity, and overall the most valid model is the random coefficient

model. In relation to the benchmarks (Def. 2.1), it attains (up to) 93.5% internal

validity and 82.0% external validity.

Recall that the random coefficient model is based on four parameters per subject

type, whereas the other two (structural) models are based on three parameters per

type. Hence, the improved goodness-of-fit measures of the random coefficient models

may be due to their higher flexibility in fitting behavioral patterns. To address this

possibility, we will next investigate slightly more flexible random utility models.

4 Generalized random utility models

Random utility models as they are applied in experimental analyses generally assume

i.i.d. random components ε (as in Def. 3.3). This induces independence from irrel-

evant alternatives (IIA) in the choice probabilities, and as such it is an implication

that is not generally realistic. The established choice theoretic approaches toward

modeling deviations from IIA assume that subjects group choices with similar char-

acteristics and that they first pick a group (“nest”) and second pick a choice from that

nest. Depending on whether the assumed nests overlap, we distinguish nested logit

models and cross-nested logit models, which both are special cases of the case that the

random components ε in Def. 3.3 have generalized extreme value (GEV) distribution

(McFadden, 1978).

For some reason, GEV models of (strategic) choice have not yet been adopted

in experimental economics. To my knowledge, all random utility analyses of exper-
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imental data that followed McKelvey and Palfrey (1995) and Anderson et al. (1998)

assume multinomial strategy sets. One reason may be that GEV models are compu-

tationally more intensive that multinomial logit (see e.g. Small, 1994), and a second

reason may be that the additional flexibility attained in GEV models is feared to fa-

cilitate overfitting. The latter loosely relates to the result of Haile et al. (2008) who

showed that random utility models may fit any data set if the distributional assump-

tions on ε are sufficiently weak. To be sure, the assumptions in standard GEV models

are far more restrictive than the technical requirements of Haile et al., but empirical

analyses similar to the one reported next seem necessary to convince practitioners.

The main issue in defining suitable GEV models is to identify characteristics

based on which subjects group choices. Small (1987) argues that subjects nest choices

based on proximity under the ordering of the choice set (if such an ordering exists)

and defines the ordered GEV model to capture this possibility. Ordered GEV is a spe-

cial case of cross-nested logit (see e.g. Vovsha, 1997) and of “elimination by aspect”

(Tversky, 1972, see also McFadden, 1981, p. 225f). Alternatively, we also consider

two disjointly nested models. The first one is a “control model” to verify whether

seemingly arbitrary nesting based on numeral digits induces a good fit. Here, two

choice options belong to the same nest if their first digits coincide.

s and s′ are in the same nest ⇔ ⌊s/10⌋= ⌊s′/10⌋ (numeral nested)

with ⌊x⌋ as the largest integer not greater than x. That is, “numeral nested” assumes

that subjects pick the first digit (of the number of tokens to donate) first and the

second digit last. The other nested logit model is based on the ratio of payoffs πi and

π j between dictator and recipient, respectively. Andreoni and Miller (2002) found

that this ratio would be of significant relevance for a fair share of the subjects.

s and s′ are in the same nest ⇔ ⌊πi(s)/π j(s)⌋= ⌊πi(s
′)/π j(s

′)⌋

(ratio nested)

The formal specification of nested logit models is standard, see e.g. McFadden (1984).

Definition 4.1 (Nested logit). If (Br)r∈R denotes a partition of S1 into nests, then the

probability of choosing s ∈ Br ⊂ B is

σ(s) =
exp

{

λu(s|α,β)/ρ
}

exp{Ir}
·

exp{ρIr}

∑t∈R exp{ρIt}
(6)

11



with inclusive values Ir = ln∑s′∈Br
exp

{

λu(s′|α,β)/ρ
}

for all r ∈ R.

In relation to nested logit, the nests Br in ordered GEV models are overlapping,

but aside from this, the definition is fairly similar.

Definition 4.2 (Ordered GEV). Using bandwidth M ∈ N0, ρ ∈ [0,1], and weights

wm ≥ 0 for all m = 0, . . . ,M such that ∑M
m=0 wm = 1, the choice probabilities are

σ(s) =
s+M

∑
r=s

wr−s exp
{

λu(s|α,β)/ρ
}

exp{Ir}
·

exp{ρIr}

∑B+M
t=0 exp{ρIt}

(7)

with inclusive value Ir = ln∑s′∈Br
wr−s′ exp

{

λu(s′|α,β)/ρ
}

for all r ∈ {0, . . . ,B+M}

and nests Br =
{

s ∈ {0,1, . . . ,B} | r−M ≤ s ≤ r
}

.

Intuitively, player i first picks a neighborhood Br, r ∈ {0, . . . ,B+M}, and sec-

ond picks a strategy s ∈ Br in this neighborhood. Every strategy belongs to M + 1

neighborhoods. The probability of choosing s conditional on having chosen Br is the

first factor above, and the probability of choosing nest Br is the second factor above.

These probabilities are aggregated over all neighborhoods containing s.

Small (1987, Prop. 1) shows that ordered GEV is a GEV model indeed, which

implies that it is consistent with random utility maximization and a special case of the

quantal response framework defined by McKelvey and Palfrey (1995). In addition,

ordered GEV reduces to multinomial logit if ρ = 1 or M = 0, and Small (1987, Prop.

2) shows that the random utility components εs and εs′ are stochastically independent

if | j− k| > M. We use the bandwidth M = B/2 rounded up to the nearest even (but

any M that is sufficiently large would do similarly), and Gaussian weights

wm = fN (M/2,σ2)(m)/
M

∑
m=0

fN (M/2,σ2)(m), (8)

where fN (µ,σ2) denotes the density of the normal distribution with mean M/2 and

variance σ2 (the latter is estimated from the data). Finally, to improve comparability

with the other models, which require four parameters per type, we assume that ρ is

constant across types.

The whole set of parameter estimates can be found in the supplementary material

again. Table 3 summarizes their respective measures of validity. The observations can

be summarized as follows.
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Table 3: Internal and external validity of the GEV models

Number of types

One Two Three Four Five Six Seven

Numeral

nested logit

3932 3877 3028 2923 2854 2833 2800

1337 1097 1207 1236 1192 1191 938

Ratio

nested logit

4294 3801 3206 3031 3106 2957 2927

1156 1083 950 899 966 942 916

Ordered

GEV

4300 3087 3034 2857 2805 2708 2655

1195 843 891 872 858 818 807

Note: As in Table 1, the top row (per model) contains the BIC = −LL+ (#Pars)/2 · ln(#Obs)

measure of internal validity and the bottom row contains the −LL measure of external validity.

Result 4.3. The best random utility model relaxing IIA is ordered GEV. Its validity

overall is similar to that of random coefficient modeling, and it is better for small

numbers of types. The “control model” numeral nested logit has fairly high internal

validity but lacks external validity (as anticipated).

5 Analysis of public goods contributions

To verify the robustness of the above results, we repeat the procedure in an analysis

of contributions to linear public goods. The net transfers induced by contributions

to public goods are comparable to donations in dictator games, and if players have

linear utilities, these games are essentially equivalent in that both games induce best

responses that are independent of the opponents’ choices. A difference between dic-

tator games and public goods games persists even in this case, however. In relation

to dictator games, public goods games have it that small increases of altruism tend

to induce comparably large increases of contributions. The reason is that in typical

public goods games, there are several recipients of one’s contribution and the implicit

exchange rates tend to be more favorable.

An experiment analyzing the relevance of exchange rates and the consistency of

decisions in this context has been reported by Goeree et al. (2002). In particular, their
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experimental treatments vary the group size n as well as external returns τE and in-

ternal returns τI of individual contributions, while the costs τK = .05 of contributions

were held constant. Using N to denote the set of players and Si = {0, . . . ,25} as the

strategy set for all i ∈ N, the payoff function of i in their experiment was

πi(s) = τK · (25− si)+ τIsi + τE ∑
j 6=i

s j. (9)

Figure 2 provides an overview of the treatment parameters and the results of

the experimental results. Goeree et al. (2002) estimated multinomial logit models of

random utility, using linear and Cobb-Douglas functions utility functions. We will

consider more general n-player CES aggregators similar to above.5

ui =
(

(1−α)π
β
i +

α
|N|−1 ∑ j 6=i π

β
j

)1/β
(10)

Random utility modeling (i.e. multinomial logit) was also applied by Anderson et al.

(1998) to standard public goods games, by Offerman et al. (1998), Myatt and Wallace

(2008), and Choi et al. (2008) to threshold public goods games, and by Willinger and

Ziegelmeyer (2001) and Yi (2003) to nonlinear games. A model of random behavior

was estimated by Bardsley and Moffatt (2007). Only the latter control for subject

heterogeneity through finite mixture modeling. An analysis of the validity of these

alternative approaches has not been reported yet, and to my knowledge, random co-

efficient models or GEV models have not been considered at all. Recall that these

neglected models proved most valid in our analysis of dictator games.

Our analysis of public goods games mimics the above analysis of dictator games

in virtually all aspects. The only notable difference is that we need to consider mu-

tual (quantal) responses following for example McKelvey and Palfrey (1995). Using

the computational simplification described by Goeree et al. (2002, Footnotes 20,21),

equilibria can be computed straightforwardly.6 This applies equally to equilibria in

5The CES utility is appropriate also in the case of public goods, as it contains “conditional co-

operators” (Leontief preferences) and “free riders” (egoists) as special cases. These types have been

identified repeatedly in the literature (Keser and van Winden, 2000; Fischbacher et al., 2001).
6That is, we assume that players choose best/quantal responses to the expected contributions of the

opponents, and in equilibrium, they have rational expectations.
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Figure 2: Treatment parameters and data of Goeree et al. (2002)
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responses based on random behavior and random coefficients. As for the linear (to-

bit) baseline model, the independent variables are the treatment parameters again, i.e.

group size, external return, and internal return.

Table 4 summarizes the measures of validity, and the supplementary material

contains the whole set of parameter estimates. The main results are somewhat sur-

prising and can be summarized as follows.

Result 5.1. Only random utility models improve upon tobit regression in terms of

internal validity, and only ordered GEV does so also in terms of external validity.

The random coefficient model performs worst, as it does not even meet the lower

benchmark.

The fact that ordered GEV performs best confirms our observations from the

dictator game. It scores about 50% internal as well as external validity in relation to

the benchmarks, which is less than it did in the dictator game. This is a consequence

of the comparably small sample size in the experiment of Goeree et al. (2002), which

makes the upper benchmark particular tough to reach. Aside from this, the most

interesting observation seems to be the dismal performance of the random coefficient

model. It implies that the random coefficient model is not generally valid, and that its

validity in dictator games may be coincidental. The underlying issue can be explained

as follows. In the dictator game experiment the donation efficiencies ranged from

1/3 to 3 (i.e. up to $3 transfer resulted from a donation of $1). In the public goods

experiment, the donation efficiencies ranged from 1 to 18, i.e. donations were more

efficient overall and much more efficient at the upper bound. When donations are

that efficient, then small increases in α imply comparably large increases in the utility

maximizing donation. In turn, the optimal donation is fairly sensitive with respect

to α in the public goods experiment, and in this sense it poses a tougher test for

constance of the altruism parameter α than the dictator game experiment.

To illustrate this, I computed the α′ = α/(1−α) (see Def. 3.2) that explain the

mean observation in all treatments (using the estimated β). One might expect these

α′ to be fairly constant. In the dictator game experiment, the ratio of the highest α′ to

the lowest α′ in all treatments is 3.08, and in the public goods experiment it is 9.05.7

7The respective α′ = α/(1−α) are (3.141,1.019,2.711,1.245,2.802,1.309,1.911,2.144) for the
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Table 4: Internal and external validity of the models in public good games

(a) The linear behavioral model Eq. (2)

Benchmarks Number of types

Lower Upper One Two Three Four

Internal 1043 787 1002 915 921 935

External 313 234 304 280 283 283

Note: Internal validity is BIC = −LL + (#Pars)/2 · ln(#Obs) of the

model fitted to the whole data set, external validity is −LL in treatments

8-10 of the model fitted to the restricted sample (1–7).

(b) The basic structural models

Number of types

One Two Three Four

Random be-

havior

1123 988 999 1000

350 327 323 313

Random co-

efficient

1179 1181 1115 1129

480 480 393 393

Random

utility

1018 936 939 915

311 294 296 288

(c) The GEV models

Number of types

One Two Three Four

Numeral

nested logit

1020 957 917 922

310 293 287 285

Ratio

nested logit

1006 957 916 922

308 293 287 288

Ordered

GEV

1008 932 931 908

306 288 285 275
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Thus, to explain the public goods data, highly variable α are required in random

coefficient models, and in turn the actual structure cannot be described in terms of α.

As we can see in Table 4, random behavior and in particular random utility models

are much more suitable to capture the structure of behavior in public goods games,

and thus also overall.

6 Conclusion

The paper compared the validity of econometric models to explain observations from

two of the most widely researched experimental games. Our analysis utilized data

sets from experiments designed to understand structure and consistency of individual

decisions in dictator games (Andreoni and Miller, 2002) and public goods games (Go-

eree et al., 2002). The analysis covered atheoretic regression and various structural

models, including the largely overlooked ordered GEV model (Small, 1987) and a

“control model” relaxing IIA based on seemingly arbitrary nesting (based on numeral

digits).

It was found that random utility modeling tends to be more robust than random

coefficient and random behavior modeling, and of the random utility models consid-

ered, ordered GEV is most appropriate to explain the data, while the “control model”

numeral nested logit indeed has low external validity as expected (in particular in

dictator games). This shows that choosing the appropriate model structure has to be

discussed in more detail than it is done in the current literature, where the various

modeling approaches simply coexist. As for altruistic giving in dictator and public

goods games, ordered GEV seems to be an appropriate model, but to my knowledge,

no such results exist in alternative contexts.

In addition, our analysis confirmed the general suspicion that regression analyses

may lack external validity. Regression analyses misrepresent the underlying patterns

in dictator games and therefore postulate results that do not continue to hold in related

dictator game treatments and (0.475,0.49,0.24,0.161,0.078,0.483,0.163,0.164,0.082,0.054) for the

public goods game treatments. These are the lower bounds for α′ to explain the mean contribution

rounded to the nearest integer.
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dictator games. In this sense we can say that regression analysis does not let the data

speak for itself, but that it squeezes the data into a linear (or non-linear) form that

would fit only coincidentally. To be sure, structural models do not lead to easily di-

gestible conclusions, as their estimates are utility functions and noise parameters, but

that it is exactly the key: easily digestible linear effects are not robust and structurally

wrong. In turn, structurally wrong structural models are not robust either, but as our

results show for dictator and public goods game, such models do usually not have

internal validity to begin with, and random utility models fit robustly in both cases.
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