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Abstract

Fosgerau and Karlström [The value of reliability. Transportation Research Part B, Vol. 43 (8–9),

pp. 813–820, 2010] presented a derivation of the value of travel time variability (VTTV) with

a number of desirable properties. This definition of the VTTV depends on certain properties of

the distribution of random travel times that require empirical verification. This paper therefore

provides a detailed empirical investigation of the distribution of travel times on an urban road.

Applying a range of nonparametric statistical techniques to data giving minute-by-minute travel

times for a congested urban road over a period of five months, we show that the standardized

travel time is roughly independent of the time of day as required by the theory. Except for the

extreme right tail, a stable distribution seems to fit the data well. The travel time distributions on

consecutive links seem to share a common stability parameter such that the travel time distribution

for a sequence of links is also a stable distribution. The parameters of the travel time distribution

for a sequence of links can then be derived analytically from the link level distributions.

Key words: value of travel time variability, travel time distribution, nonparametrics, stable

distributions

1. Introduction1

Travel time variability (TTV) is increasingly recognized as an important issue in the economic2

appraisal of transport infrastructure investment as well as transport policies such as road pricing.3

The importance of reducing TTV on urban and interurban roads is considered a major objective4
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of transport policy. The traveler’s marginal value of TTV, often called the value of travel time5

variability (VTTV), should therefore play a significant role in project evaluation. This paper6

contributes to this aim by investigating the empirical validity of assumptions underlying a recent7

theoretical derivation of the VTTV based on scheduling costs.8

There are two broad modeling approaches to the travelers’ valuation of TTV. The first is9

commonly referred to as the mean–variance approach. This approach incorporates the effects of10

TTV into utility or cost functions of travelers simply by taking the standard deviation or some11

other measure of the scale of travel time variability as an argument, jointly with mean travel time.12

Because of its simplicity, the mean–variance approach has been widely used (Small et al. 2005;13

Brownstone and Small 2005; Lam and Small 2001, among others). The mean–variance approach14

has however been criticized on various grounds. A main criticism is that it does not take that shape15

of the travel time distribution into account. Another important criticism is that the standard16

deviation of travel time is not an outcome of a trip. Economic theory generally defines utility17

directly over outcomes.18

The main alternative is the scheduling approach, originally proposed by Small (1982) and19

extended to random travel times by Noland and Small (1995), Noland (1997) and Noland et al.20

(1998). The scheduling approach defines travel cost directly over outcomes, which is an advantage21

relative to the mean–variance approach. The scheduling approach assumes that the travelers’ cost22

function depends in a certain way on travel time and on the arrival time relative to a preferred23

arrival time. Given knowledge of departure time, the distribution of travel times and the preferred24

arrival time, it is possible to evaluate a measure of expected travel cost that includes scheduling25

considerations. However, direct application of the scheduling cost function requires knowledge of26

the departure time and the preferred arrival time, which may be unavailable.27

The assumption that travelers choose departure time optimally may replace the information28

on departure time and preferred arrival time. The resulting measure of expected travel cost was29

derived for a few special travel time distributions by Bates et al. (2001) and Noland and Polak30

(2002) when the travel time distribution does not depend on the departure time. It turns out that31

the scheduling model becomes equivalent to the mean–variance approach in these cases. These32

results depend, however, on specific and unrealistic assumptions concerning the distribution of33

random travel time.34
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Recently, Fosgerau and Karlström (2010) generalized these earlier results to the case where the35

distribution of travel times is arbitrary. Fosgerau and Karlström (2010) proved that the minimized36

expected cost of commuters is linear in the mean travel time and a scale measure of the travel time37

distribution, irrespective of the shape of the travel time distribution, provided that the travel38

time distribution does not depend on the departure time. Under the assumptions of their model39

(henceforth the FK model), the VTTV is given in terms of travelers’ marginal cost of schedule delay40

and the average time late under the optimal departure time. The average time late is determined41

by the travelers’ preferences and the distribution of travel times. The FK measure of VTTV may42

remain a good approximation when the mean and the scale of the travel time distribution depends43

on the time of day. Starting with observations of travel time, subtracting the mean and dividing44

by the scale of the travel time distribution at each time of day leaves the standardized travel time45

distribution. FK extended their result as an approximation when the standardized travel time46

distribution does not depend on the departure time.47

This background motivates the present paper, which aims to carry out a check of the empirical48

validity of the FK assumptions regarding the distribution of travel times. It should be noted49

that Fosgerau and Engelson (forthcoming) have developed an alternative approach to modeling50

the VTTV. This approach is based on another specification of scheduling preferences, derived from51

Vickrey (1973). The Fosgerau–Engelson measure of VTTV is not sensitive to the shape of the travel52

time distribution, but like FK it does require that the travel time distribution is independent of53

the time of day. Furthermore, the choice between the FK model and the Fosgerau–Engelson model54

should be based on which formulation of scheduling preferences is thought to be the best description55

of the scheduling preferences of travelers. Hence the investigation of this paper remains relevant56

in the light of the Fosgerau–Engelson result.57

The first empirical question investigated in this paper is the validity of the FK assumption that58

the standardized travel time can be considered to be independent of the travelers’ departure time.59

Independence of the standardized travel time of the time of day is also a great simplification since60

it becomes unnecessary to account for different travel time distributions at different times of day.61

In this case, all the variation in the travel time distribution over the day is captured by the mean62

and the scale of the travel time distribution. If independence does not hold then neither FK nor63

the Fosgerau – Engelson result is applicable.64

3



The next empirical question regards the distribution of standardized travel times. It is use-65

ful to be able to assume that the travel time distribution belongs to a known parametric family.66

Fosgerau and Karlström (2010) found in their empirical work on a single road link that the empir-67

ical distribution of the standardized travel times is asymmetric and fat right-tailed, and far from68

normal. Furthermore, knowledge of the travel time distribution may facilitate the aggregation of69

the VTTV from the link level to a sequence of links. A detailed investigation of the distributional70

properties of standardized travel times has not been carried out. Such an investigation is a further71

contribution of this paper.72

We investigate these empirical questions using a large data set comprising observations of travel73

times on an urban road. We use minute-by-minute observations of average travel times on four74

consecutive links of a major radial road in Copenhagen, collected over a period of five months.75

The distribution of travel times on the urban road is analyzed using a range of nonparametric76

techniques, including mean regression, quantile regression and kernel based estimation of con-77

ditional distributions. Nonparametric mean regression and quantile regression are employed for78

computing standardized travel times. The conditional distribution of standardized travel time is79

estimated to check whether it is independent of time of day.80

We anticipate that stable distributions (see Zolotarev (1986) and Nolan (in press) for example)81

describe the distribution of travel times well. The family of stable distributions includes the normal82

as a special case. In general, this family allows distributions with skewness and heavy tails, as83

observed in empirical travel time distributions. Stable distributions have two important features.84

First, they arise as limits in the generalized central limit theorem. Second, the sum of independent85

stable random variables with a common stability parameter is again stable with the same stability86

parameter. As explained below, these two features are very attractive in relation to the FK model.87

In the paper we fit a stable distribution to standardized travel times and estimate the parameters88

that characterize the stable distribution. The goodness-of-fit for the estimated stable distribution89

is assessed in various ways and we examine whether the estimated stable distributions for different90

road links share a common stability parameter.91

The paper proceeds as follows. Section 2 provides a brief description of the FK model. Section 392

explains the methodology used to investigate the statistical properties of travel time distributions.93

Section 4 presents our data. The empirical analysis is presented in Section 5, while Section 694
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discusses the empirical results. Finally, Section 7 concludes.95

2. Overview of the scheduling model96

This section describes the Fosgerau and Karlström (2010) result concerning travelers’ departure97

time choice under travel time uncertainty and the corresponding measure of VTTV. Consider a98

traveler about to undertake a certain trip. Without loss of generality, his preferred arrival time at99

the destination is taken to be zero. The traveler’s scheduling cost is defined in terms of random100

travel time T and head start D. The head start is the duration from the departure time to the101

preferred arrival time and so the traveler departs at time −D.102

The traveler is assumed consider a cost function, which depends on travel time, the head start

and the lateness of arrival. A monetary travel cost is omitted for simplicity. The cost function is

C(D,T ) = ηD + λ(T −D)+ + ωT,

where η, λ and ω are parameters, all expected to be positive, and (T −D)+ = max(T −D, 0) is103

the amount of time the traveler arrives late. The first term is the cost associated with departing104

earlier. The second term is the cost of being late and the third time is the cost of travel time per105

se. 1 The traveler is assumed to choose head start D to minimize the expected cost.106

Express the travel time T in the convenient form T = µ(t) + σ(t)X, where µ(t) and σ(t) are107

smooth functions of the departure time t, describing the location and scale of the travel time108

distribution at this time. We take the location variable µ as the mean travel time. We use the109

interquartile range as the scale variable σ since this does not require the variance of travel time110

to exist. We will be considering stable distributions, which generally do not have variance. Define111

X as standardized travel time with probability density function ϕ and corresponding cumulative112

distribution function Φ. The standardized travel time distribution ϕ is assumed to be independent113

of D.114

Fosgerau and Karlström (2010) first analyzed the case of constant µ and σ, and then extended115

to the case where they are variable. In the simple case, the expected cost becomes linear in µ and116

1The present formulation is equivalent to the often used α, β, γ formulation, see Fosgerau and Karlström (2010),

but is arguably more intuitive in that it has a cost of departing early rather than a cost of arriving early at the

destination.
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σ when travelers choose departure time to minimize expected cost. Thus, the scheduling model117

is equivalent to the mean–variance model. In the more general case where both µ and σ depend118

linearly on D, the expected cost is more complicated. Even so, the result of the first simple case119

can still be used as an approximation of the second case. This is briefly described in the next two120

subsections.121

2.1. Constant mean and scale of travel times122

First, we consider the case where µ and σ are constant. The traveler selects D to minimize123

expected cost.124

EC∗ = min
D

EC(D,T ) = min
D

[

ηD + λ

∫

∞

D−µ

σ

(µ+ σx−D)ϕ(x)dx+ ωµ

]

. (1)

Because the expected cost function is globally concave, the optimization problem (1) has a unique125

minimum and the optimal head start is given by126

D = µ+ σΦ−1
(

1− η

λ

)

. (2)

Thus the optimal head start is linear in the location µ and the scale σ of the travel time distribution.

The minimal expected cost is found by substituting (2) into (1) as

EC∗ = (η + ω)m+ λσ

∫ 1

1−
η

λ

Φ−1(ν)dν.

Now, define the functional H as:127

H
(

Φ,
η

λ

)

=

∫ 1

1−
η

λ

Φ−1(ν)dν. (3)

Note that σH is the mean lateness, such that H is the mean lateness in standardized travel time.128

We can rewrite the minimal expected cost as129

EC∗ = (η + ω)µ+ λH
(

Φ,
η

λ

)

σ. (4)

The minimal expected cost is also linear in µ and σ for a given H(·). The H can be computed for130

a given standardized travel time distribution Φ and a traveler’s scheduling preference η/λ.131

The first term in (4) represents the cost of the mean travel time and the coefficient (η + ω) is132

the value of travel time. The second term represents the cost caused by the TTV and the VTTV133

is λH
(

Φ, ηλ
)

. The VTTV depends on the scheduling preference parameters (η and λ) and on the134

6



standardized distribution of travel time Φ. The expected cost is linear in the mean and scale of135

travel time for any fixed standardized travel time distribution Φ. This is a highly desirable property136

for empirical application of the FK model as it makes it very easy to compute the expected cost137

of trips subject to travel time risk.138

2.2. Time-varying mean and scale of travel times139

The assumption that the mean and the scale of the travel time distribution are constant over140

the time of day is not true in general. There is often pronounced systematic variation in travel141

times over the day caused by systematic variation in traffic demand. This means that both µ and142

σ will depend on the time of day. This does not exclude the possibility that the standardized travel143

time distribution is independent of the time of day. Fosgerau and Karlström (2010) extended the144

constant mean and scale model to the case where the mean travel time µ and the scale σ vary145

linearly with the time of day D. The distribution of the standardized travel time is still required146

to be independent of the time of day. In this case they found that the value of travel time is147

exactly the same as in the simple case but the expression for the VTTV is more complicated.148

They also showed that the VTTV for the case of a linearly varying mean and scale of travel time149

distribution can be approximated well using the VTTV for the case of constant mean and scale.150

They demonstrated in their empirical example, using the same data set as in the present paper,151

that the approximation error of the VTTV is relatively small. This result implies that it is still152

possible to use the result based on the constant mean and the scale of travel time to measure153

approximately the VTTV for time-varying mean and scale of travel times.154

2.3. Remarks on the use of the theoretical model in empirical applications155

The FK model is useful to define and compute the VTTV because it applies for any standardized156

travel time distribution. It is, however, important to note that the FK model requires that the157

standardized travel time distribution is constant over the time of day. 2 With this assumption,158

the VTTV for the time-varying mean and scale of travel times can be approximated. Hence, it is159

important to check empirically whether this independence assumption holds for actual travel time160

distributions.161

2It is not ruled out that it is possible to establish a similar result that relaxes this condition but it has not been

done.
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Trips generally cover a sequence of links whereas travel time data are often recorded at the162

link level. So another issue in the application of the FK model in practice arises from the need for163

aggregating the VTTV from link to route level. This can be achieved in a simple way, if additional164

distributional assumptions on standardized travel times are satisfied. First, independence of travel165

times across links is very convenient. Second, we conjecture that standardized travel times can be166

described by stable distributions as explained in the next section. If this distributional assumption167

is plausible and if one parameter for a stable distribution is common across different road links,168

then addition of TTV across links becomes simple. We examine these issues empirically in the169

following sections.170

3. Analytical framework171

In this section, we explain the use of some nonparametric techniques to check whether the172

standardized travel time is independent of the time of day. We also examine the goodness of fit of173

the computed standardized travel time to the stable distributions. Express random travel time as174

a function of the time of day by175

Tt = µ(t) + σ(t)Xt, (5)

where E(Xt) = 0 and σ(t) is the interquartile range of travel time at time t. This is always possible.

More precisely, the two functions are defined as follows:

µ(t) = E[T |t] and

σ(t) = F−1
T (0.75|t)− F−1

T (0.25|t),

where F−1
T denotes the inverse of the distribution function of travel times conditional on the time176

of day.177

In the following subsections, we outline nonparametric techniques to estimate µ(t) and σ(t),178

which are associated with standardized travel time Xt. We estimate nonparametrically the loca-179

tion function µ(t) using conditional mean regression, and the scale function σ(t) using conditional180

quantile regression. Nonparametric regression models, including mean, variance and quantile re-181

gressions, employ minimal constraints on the functional form of the relationship between relevant182

variables. Introductions to nonparametric econometrics and statistics are provided by, e.g., Härdle183

(1990), Pagan and Ullah (1999) and Li and Racine (2007).184
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3.1. Nonparametric conditional mean regression185

To compute the standardized travel time conditional on the time of day, we first have to estimate186

the conditional mean travel time as a measure of the location of the travel time distribution. Let187

(Ti, ti) be a bivariate random sample of n observations (i = 1, . . . , n). Suppose that observations188

are distributed over time of day with density p(t). Assume that the sample realizations are i.i.d.189

The i.i.d. assumption for the sample realizations means that we disregard serial dependence among190

travel times for consecutive times of day. This is justified by noting that travelers are assumed to191

consider the travel time distributions over all time periods. Our analysis aims not at travel time192

prediction, but at estimating the travel time distribution conditional on a given time of day.193

We begin by considering the regression model:

Ti = µ(ti) + ϵi i = 1, . . . , n

where µ(·) is a smooth function of unknown form, and ϵi is an i.i.d. error term. We estimate194

µ(·) nonparametrically using local constant kernel estimation. The function µ(t) is estimated by195

forming a weighted average of Ti around t as196

µ̂(t) =

∑n
i=1 TiK

(

ti−t
ht

)

p̂(t)
, (6)

where ht is the bandwidth corresponding to the time of day,K(·) is a kernel, and p̂(t) = n−1
∑n

i=1K
(

ti−t
ht

)

is the kernel density estimator of p(t). The bandwidth ht determines the size of the neighborhood

over which an average is taken. The selection of ht is explained later. We use a standard normal

kernel throughout the paper.

K(u) =
1√
2π

exp

(

−u2

2

)

, −∞ < u < +∞.

The asymptotic normality of the estimated µ̂(t) is generally guaranteed (Li and Racine 2007,

p. 63) and we can compute the confidence intervals of the mean regression using the following

relationship :

(nht)
1/2 [µ̂(t)− µ(t)] ∼ N

(

0, σ2(t)p̂−1(t)

∫

∞

−∞

K2(u)du

)

,

where σ2(t) is the variance of travel times conditional on a given time of day t. 3 This is estimated197

3See Pagan and Ullah (1999) for the derivation. The empirical travel time distribution has variance since travel

times are bounded. Later, we shall use approximate the travel time distribution by a stable distribution for which

the variance does not exist.

9



by performing a nonparametric mean regression of squared residuals (Ti − µ̂(ti))
2 against time of198

day using the bandwidth from the mean regression. Note that
∫

∞

−∞
K2(u)du = 1

2π2 for the standard199

normal kernel.200

3.2. Estimating the scale of the travel time distribution201

It is common to use the standard deviation (the square root of the variance) as a measure of202

the scale when standardizing stochastic variables. However, stable distributions, which we will203

consider, do not have a second moment in general. Thus, the standard deviation (or variance) may204

not exist. Therefore we use the interquartile range (denoted as IQR) as measure of the scale. This205

leads us to compute quantiles of the travel time distribution conditional on the time of day.206

We first present the estimation of a conditional cumulative distribution function (“conditional207

distribution” hereafter) because the quantile function is obtained by inverting the conditional208

distribution. 4
209

3.2.1. Nonparametric conditional distribution210

The nonparametric kernel estimator of a conditional distribution is analogous to the local con-211

stant estimator of the conditional mean regression outlined in Section 3.1. We denote a conditional212

distribution function of T given t as F (T |t). It is estimated without imposing any restrictive213

functional forms. The estimated conditional distribution is given by214

F̂ (T |t) =
n−1

∑n
i=1 L

(

T−Ti

hT

)

K
(

ti−t
ht

)

p̂(t)
, (7)

where L(·) is a kernel distribution function defined as L(v) =
∫ v
−∞

K(u)du and hT denotes the215

smoothing bandwidth associated with travel times. The estimated conditional distribution is in-216

creasing by construction. We use the standard normal distribution for the kernel function L(·).217

3.2.2. Nonparametric quantile regression218

Once a conditional distribution function is estimated, it is straightforward to derive a condi-219

tional quantile function. The conditional ρ-quantile, qρ(·) with ρ ∈ (0, 1)is defined using the inverse220

4We estimate the conditional distribution of travel time against the time of day. Another use for the nonparametric

conditional distribution is to check the independence of the standardized travel time over the time of day. This is

described later.
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of the conditional distribution221

qρ(t) = inf {T : F (T |t) ≥ ρ} = F−1(ρ|t). (8)

The estimate q̂ρ(t) of qρ(t) is computed using

q̂ρ(t) = argmin
q

|ρ− F̂ (q|t)|,

where F̂ (q|t) is taken from (7).222

Finally, the interquartile range of the travel time T conditional on the time of day t is estimated,223

using the estimated quantile functions, by ˆIQR(t) = q̂0.75(t) − q̂0.25(t). We use this expression to224

estimate the scale function σ(t).225

3.3. Conditional distribution of the standardized travel time226

Once the location and the scale functions in (5) are estimated, standardized travel times are227

computed simply by Xi = (Ti − µ̂(ti))/σ̂(ti) for each observation. For the purpose of checking the228

independence of the standardized travel times over the time of day, we have to examine the overall229

shape of the standardized travel time distribution conditional on time of day. As in Section 3.2.1230

for the case of the conditional travel time distribution, the conditional standardized travel time231

distribution G(x|t) is estimated by232

Ĝ(x|t) =
n−1

∑n
i=1 L

(

x−xi

hX

)

K
(

ti−t
ht

)

p̂(t)
, (9)

where hX is the bandwidth associated with standardized travel times.233

Given values of hX and ht, it is easy to compute the conditional distribution with (9). Fur-234

thermore, it is possible to inspect the overall shape of the conditional probability density or the235

conditional distribution by drawing graphs such as contours or iso-quantiles of the probabilities.236

Recall that the FK model requires that the standardized travel time distribution is independent of237

the time of day. In this case, the contours of the distribution would be completely horizontal. We238

use this fact as an informal check of the independence. 5
239

5It is also possible to use cross-validation for the conditional distribution/density to detect whether the time of

day is relevant to the standardized travel times, though the computation of cross-validation is generally very time

consuming for large data sets. See Hall et al. (2004) and Li and Racine (2007) for details. Ichimura and Fukuda

(2010) have developed a faster method for computing least-squares cross-validations for nonparametric conditional

kernel density functions.
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3.4. Bandwidth selection240

While nonparametric kernel estimation is relatively insensitive to the choice of kernel, the241

choice of bandwidths does have significant effect on results. The time of day is binned by minute242

in our data, which means that observations do not become dense on the time axis as the number243

of observations increases. This violates the assumption of cross-validation methods. We therefore244

determine the bandwidths for the mean and interquartile range regressions using the plug-in method245

(Pagan and Ullah, 1999; Li and Racine, 2007). This method seeks relatively larger bandwidths246

than cross-validation methods for our large data set and this smoothes out some less credible247

fluctuations of the estimated travel time curves. 6
248

The plug-in bandwidths with respect to the time of day in nonparametric mean regressions are249

given by250

hplug,mt = 1.06σtn
−1/5, (10)

where σt, the standard deviation of travel times in the population, is replaced by the sample251

standard deviation.252

The plug-in bandwidths in the nonparametric conditional distribution, which are used for

estimating the interquartile curves, are computed as

hplug,cdt = 1.06σtn
−1/6 and

hplug,cdT = 1.06σTn
−1/6,

(11)

where σT is the standard deviation of travel times, and also estimated by the sample standard253

deviation.254

6We did attempt to use the bandwidths selected by cross-validation. (See Li and Racine (2007) for cross-validation

of bandwidths: their chapter 2 for the mean regression and chapter 6 for the conditional distribution and quantile

regression.) However, the bandwidths for the time of day (ht) in the mean regressions from the least squares cross-

validation turned out to be less than three minutes for our all data sets. Furthermore, we found that the bandwidths

of travel times in the quantile regressions (hT ), which were computed using log-likelihood cross validation for the

conditional distribution, were around 0.1 minutes, which is less than the bin-width of 1 minute. These very small

bandwidths lead to unlikely patterns of the estimated mean and interquartile range of travel times. For example,

we observed many large bumps in the mean or interquartile range of travel time, which might be caused by a small

number of incidents that occurred during the observation period. Hence, we find that the cross-validation method

tends to select unreasonably small bandwidths for our large data sets. For this reason we do not use cross-validation

to compute an exact test of independence.
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3.5. Fitting stable distributions to standardized travel times255

Consider now the case where we accept the independence of the standardized travel times of the256

time of day. We next investigate whether a stable distribution fits the data. This section presents257

some basic properties of stable distributions.258

Stable distributions allow asymmetry (skewness) of the probability density and heavy fat tails259

that would be caused by rare events with extreme values. The class of stable distributions en-260

compasses the Gaussian normal, Lévy and Cauchy distributions as special cases (Zolotarev, 1986;261

Nolan, in press). A univariate random variable X with a stable distribution is described by four262

parameters as X ∼ S(α, β, γ, δ). The parameters are a stability parameter α ∈ (0, 2], a skewness263

parameter β ∈ [−1, 1], a scale parameter γ > 0 and a location parameter δ ∈ R. The stability264

parameter α governs the tail behavior of the distribution; the tail becomes heavier as α decreases.265

The parameter β describes the degree of skewness. In the case of β = −1, the distribution is266

maximally skewed to the left and vice versa for the case of β = 1. The distribution is symmetric267

when β = 0. The parameter γ determines the scale of the distribution, but it is not equivalent to268

the standard deviation. The location parameter δ is not generally the mean.269

Stability property. A favorable characteristic of stable distributions for our analysis is the stability270

property. This property implies that the sum of independent stable random variables also follows271

a stable distribution if (and only if) they share a common stability parameter α. The convo-272

luted distribution shares the same stability parameter and expressions exist to compute the other273

parameters.274

Let T j ∼ S(α, βj , γj , δj), j = 1, ..., J be J mutually independent random variables that follow

stable distributions with common stability parameter α. In our analysis, these random variables

would correspond to the travel times for a set of consecutive road links. The average of the

independent stable random variables T̄ = (1/J)
∑J

j=1 T
j also follows a stable distribution (Nolan,

in press). The distribution of the average of these random variables is

T̄ ∼ S(α, β̄, γ̄, δ̄),
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where

β̄ =

∑J
j=1 β

j
∣

∣γj/J
∣

∣

α

∑m
j=J |γj/J |

α ,

γ̄ =





J
∑

j=1

∣

∣γj/J
∣

∣

α





1/α

,

δ̄ =







∑J
j=1 δ

j/J +
(

tan πα
2

)

[

β̄γ̄ −∑J
j=1 β

jγj/J
]

(α ̸= 1)
∑J

j=1 δ
j/J + 2

π

[

β̄γ̄ log γ̄ −∑J
j=1 β

jγj/J log
∣

∣γj/J
∣

∣

]

(α = 1)
.

(12)

It is useful for our purposes to note that linear combinations of stable random variables with275

the same stability parameter α is also stable with the same α. In particular, if σ ̸= 0 and276

X ∼ S(α, β, γ, δ), then σX ∼ S(α, sign(σ)β, |σ|γ, σδ). We check the equivalence of the stabil-277

ity parameters among different road links in the empirical analysis. If their estimates are not278

significantly different, we could convolute standardized travel time distributions for a set of road279

links. For example, if two travel times are distributed as µ1 + σ1X1 and µ2 + σ2X2, where X1 and280

X2 are stable with the same α, then the distribution of the sum is readily computed.281

Generalized central limit theorem. Another important property of stable distributions is the role282

they play in the generalized central limit theorem (GCLT). The classical central limit theorem states283

that the normalized sum of independent random variables with finite variances weakly converges to284

a standard normal distribution as the number of variables increases. Gnedenko and Kolmogorov285

(1954) generalized this idea to the case where random variables have infinite variances. Roughly286

speaking, the GCLT implies that the only possible limiting distribution of the normalized sum of287

any independent random variables is stable (Zolotarev, 1986; Nolan, in press).288

Now, it is not difficult to imagine an urban road network with a large number of links where289

the associated standardized travel times might have heavy right tails because of a very few, but290

serious incidents. The distributions of standardized travel times might be obviously different from291

normal because they seem to be skewed to the right and fat tailed. The GCLT assures that as the292

sums of standardized travel times for these links accumulate over a long-range period, they might293

converge to a stable distribution. This would enable estimation of the standardized travel time294

distributions corresponding to some routes and further improve the measurement of the VTTV at295

the route level.296
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There exist closed-form expressions of stable distributions only for some special cases with some297

specific parameterizations (e.g., Gaussian normal [α = 2], Cauchy [α = 1 and β = 0] and Lévy298

[α = 0.5 and β = 1]). In general, there are no explicit forms for stable densities or distributions. On299

the other hand, it is possible to express explicitly the characteristic function ϕ(τ) = E(exp(iτX))300

for any stable distribution.301

Zolotarev’s (M) parameterization (Zolotarev, 1986) is preferable for numerical purposes because302

the characteristic functions, densities and distribution function are jointly continuous in all four303

parameters (Nolan, in press). With this parameterization, the characteristic function is expressed304

as:305

ϕ(τ) =







exp
{

−γα |τ |α
[

1 + iβ (signτ)
(

tanπα

2

)

(

(γ |τ |)1−α − 1
)]

+ iδτ
}

(α ̸= 1)

exp
{

−γ |τ |
[

1 + iβ (signτ) tan 2

π
(ln |τ |+ ln γ)

]

+ iδτ
}

(α = 1)
. (13)

The function ϕ(τ) characterizes the stable distribution of X. Based on (13), Nolan (1997) gave306

a computational formula for spline approximation to stable densities and also developed program307

code to compute numerically the density function of a general one-dimensional stable distribution.308

Nolan (2001) outlined a procedure of maximum likelihood for estimating stable parameters by309

approximation with a numerical quadrature. 7
310

4. Data311

This section describes the traffic data used for the analysis. All data are provided by the312

TRIM system of the Danish Road Directorate. 8 They measure the speed and traffic flows on313

some consecutive congested links of the Danish road network using cameras and automatic vehicle314

identification (number plate matching).315

The Frederikssundsvej data are recorded on four consecutive links with a total length of 11.263316

km. It is a main radial road in Greater Copenhagen connecting the city center and the north-west317

region. Figure 1 shows the location of the targeted road.318

The data comprise minute-by-minute observations of average travel time on each link over319

about five months. We use data from weekdays between 6 a.m. and 10 p.m. during the period320

16th January to 8th May, 2007, in the direction toward Copenhagen.321

7The program package has already been implemented as “STABLE” (Robust Analysis, Inc., 2006). We use this

package for our empirical analysis.
8“TRIM” is the Danish acronym for “Traffic Management on the Motorways around Copenhagen”.
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The road consists of four links: (1) Måløv Byvej; (2) Ballerup Byvej; (3) Herlev Hovedgade;322

and (4) Frederikssundsvej. We also analyze data concerning traffic that passes through all four323

consecutive links (5). Table 1 reports summary statistics of travel time data together with the com-324

puted plug-in bandwidths that were explained in the previous section. We also present summary325

statistics of travel time for each link in Table 2.326

5. Empirical results and discussion327

This section describes our empirical analysis for travel time distribution. All computations328

are carried out using Ox (Doornik, 2001), R (R Development Core Team, 2007) and STABLE329

(Robust Analysis, Inc., 2006).330

Figure 1: Targeted link of the urban road in Copenhagen (Frederikssundsvej)
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Table 1: Outline of the urban road, observations and the computed plug-in bandwidths

Link ID Direction Length (km) Obs. hplug,mT hplug,cdT hplug,cdt

1 A → B 2.725 60669 32.9 47.5 0.162

2 B → C 3.279 59950 32 46.1 0.406

3 C → D 2.508 57759 32.1 46.2 0.183

4 D → E 2.751 54462 32.6 46.9 0.339

5 A → E 11.263 24271 37.9 53.1 0.895

Note: The unit for plug-in bandwidths is minute.

Table 2: Summary statistics of travel times (in minutes)

Link ID Mean S.D. Min. L.Q. Median U.Q. Max.

1 2.967 0.957 0.98 2.49 2.69 3.14 24.6

2 4.854 2.395 1.55 3.45 3.94 5.22 27.4

3 3.037 1.074 0.1 2.38 2.66 3.3 19.5

4 4.442 1.967 1.4 3.16 3.84 5.05 28.59

5 15.399 4.543 8.76 12.15 13.83 17.67 47.5

5.1. Mean and scale regressions331

Figure 2 shows the nonparametric kernel regression of mean travel time together with 95%332

confidence bands (upper panels) and the estimated interquartile range of travel times (lower panels)333

over the time of day. Both curves are smoothed using the plug-in bandwidths defined by (10) for334

mean and (11) for the interquartile range. In the two road links further from downtown (Figure 2335

(a) and (b)), we see that there are distinct travel time peaks in the morning period. In contrast,336

the remaining links closer to the city center (Figure 2 (c) and (d)) show a peak in the mean travel337

time around 5 p.m. that would be caused by daily traffic congestion around the city center in338

the evening hours. As for the traffic data that ran the whole links (Figure 2 (e)), we only see the339

morning peak of the mean travel time. The narrow confidence bands for the mean travel time340

curves indicate that µ is quite precisely estimated because of our large data set.341
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Figure 2: Mean regression (upper) and interquartile range regression (lower) of travel time over time of day
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Figure 3: Scatter plot of mean and interquartile of travel times
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In Figure 2, we see clear variation in IQR(t) over the time of day. We also confirm the clear342

correlation between µ and IQR as it is evident from the scatter plot of IQR against µ in Figure343

3. There are significant positive correlations between µ and IQR meaning that the larger the344

mean travel time, the larger the variation in travel time. In many cases, we also find that: (1) the345

variation in travel time measured as the interquartile range increases more slowly than the mean346

travel time; (2) they almost simultaneously reach their maximum in the peak period; and (3) the347

mean travel time decreases faster than the scale of it after the peak period. 9
348

5.2. Checking the standardized travel times conditional on time of day349

Next, we standardize the travel times following the procedure described in Section 3.3. Figure 4350

presents the contours of the conditional CDFs of standardized travel time over the time of day.351

Each horizontal curve corresponds to a computed quantile (10% to 90%) of the standardized travel352

time on a given time of day. If standardized travel time is strictly independent of the time of day,353

all contour lines would be completely horizontal. We find that most of the estimated contour lines354

in every road link seem to be roughly horizontal across the day. In some road links, there exist355

infrequent but very big incidents such as serious traffic accidents, which result in extremely large356

travel times. The corresponding standardized travel time is large and this creates bumps of the357

contour lines of the larger quantiles in Figure 4, particularly during the morning or evening periods358

of traffic congestion. Although we see some unevenness in the contour lines for the larger (e.g.,359

90%) quantile, most of the contour lines seem to be about parallel. Hence, the essential assumption360

in the FK model that the standardized travel time is independent of the time of day would not be361

inappropriate to make as a rough approximation.362

5.3. Density estimation of standardized travel times363

Now we are able to estimate the unconditional standardized travel time distribution. We364

estimate the four parameters characterizing stable distributions using the numerical maximum365

likelihood estimation method (Nolan, 1997). The estimation procedure is carried out separately366

for each road link.367

Table 3 outlines the estimation results. We also show the maximum likelihood estimates of the368

stable parameters for the data for the whole link (link 5) in the table. In every link, the estimates369

9Fosgerau (2010) shows how this pattern arises due to the dynamics of congestion.

20



(a) Link 1 (b) Link 2

(c) Link 3 (d) Link 4

(e) Link 5

Figure 4: Conditional distribution of standardized travel times
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Table 3: Estimated stable parameters

Link α β γ δ LLmax LLα

max
−2(LLα

max
− LLmax) p-value Obs.

1 1.1585 0.8824 0.3265 -0.528 -67600.5 -67605.2 9.43 0.002 60669

2 1.113 0.9089 0.2825 -0.5181 -59883.1 -59890.2 14.2 0.0002 59950

3 1.1385 0.9172 0.3153 -0.484 -61490.8 -61491.2 0.823 0.360 57759

4 1.118 0.99 0.3043 -0.4762 -55424.1 -55428.3 8.4 0.004 54462

5 1.3 1 0.3049 -0.3785 -21940.4 – – – 24271

of the four stable parameters are statistically significant. All estimated stability parameters (α̂)370

are significantly less than two (normal distribution), showing leptokurtosis in standardized travel371

times. If 0 < α < 1, the first moment of the stable distribution diverges to infinity. On the372

contrary, all of our estimates of the αs are significantly greater than one.373

All estimates of the skewness parameter (β) are close to one: the upper bounds of the skewness374

parameter in stable distributions. This means that the estimated stable distributions are very375

skewed to the right. The estimates of the location parameter (δ) take similar negative values and376

the estimated scale parameter (γ) are also close to each other. The fitted stable distributions for377

these four consecutive links are shown in Figure 5 together with the data histogram. The bin width378

of each histogram is given by 3.5σX/n1/3 which is known as “Scott’s choice rule” (Scott, 1979).379

The representation of data sets as histograms shows heavy tails on the right.380

In Table 3, we observe that the estimated α̂ for the four consecutive links (1–4) take similar381

values with an average average of ᾱ = 1/4
∑4

j=1 α̂j = 1.1320. We conduct a likelihood ratio test382

to check the equality of the stable parameter α across the four road links. To do this, we compute383

the maximal log likelihood of stable distributions (LLα
max) under the restriction that α = ᾱ and384

compute the test statistic −2(LLα
max−LLmax) as shown in Table 3. Because of the very large sample385

size, the statistical power in our empirical analysis is quite strong. Hence, the null hypothesis that386

the stable parameter is equal to ᾱ is rejected even at the 0.1% significance level (< χ2
d.f.=1 = 10.83),387

except for link 2. We conclude that difference is statistically significant but not large.388

We sketch the overall shapes of the estimated density curves in Figure 5. It seems that the389

estimated densities plots provide us with a stable distribution. Although the plotting results are390

likely to indicate the stability of the standardized travel time, it is less informative on the behavior391

22



−2 −1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Standardized travel time

D
en

si
ty

(a) Link 1

−2 −1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Standardized travel time

D
en

si
ty

(b) Link 2

−2 −1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Standardized travel time

D
en

si
ty

(c) Link 3

−2 −1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Standardized travel time

D
en

si
ty

(d) Link 4

Figure 5: Fitting standardized travel times to stable distributions
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of the tail probabilities. Figures 6 and 7 show variance stabilized P–P (probability–probability)392

plots (Michael, 1983) and Q–Q (quantile–quantile) plots of each data set respectively. Because too393

many data points add little to the plots, we show thinned P–P and Q–Q plots with 1,000 values.394

Nolan (2001) recommended using the variance stabilized P–P plots instead of standard P–P plots395

arguing that the use of the variance stabilized P–P plot is better than the standard P–P plot396

because it detects a poor fit near the extremes of the data.397

The variance stabilized P–P plots show a reasonable fit around the modes for all data. However,398

we see in Figure 6 that there is a slight discrepancy between the data and the fitted distributions399

around the tail probabilities (i.e., 0 or 1) in all road links. This is more distinctive in the Q–Q400

plots in Figure 7. It can be seen that there is too much mass in the stable tails compared to the401

empirical distribution.402

5.4. Computing H403

We further compute the value of the functional H, defined by (3) for various values of η/λ under404

different distributional assumptions on standardized travel times. We consider three distributions:405

(1) normal; (2) empirical; and (3) stable. We compute H for the normal distributions using406

the sample mean and standard deviation for each road link. The H for stable distributions are407

computed on the basis of the maximum likelihood estimates of stable parameters shown in Figure408

3. 10 The result of the computation is illustrated in Figure 8. Figure 8 also contains the results of409

some modified Hs corresponding to truncations of the fitted stable distributions (see Section 6.2410

later).411

Figure 8 summarizes the result of computing H. There are differences in H by distributional412

assumptions as well as across different road segments. The changes in H for different η/λ under413

normality are more distinctive than the other two distributional assumptions. For example, the414

normal H for η/λ = 0.5 in the road link 1 is 0.538. This is nearly 1.54 times larger than the415

empirical H for η/λ = 0.5. On the contrary, the normal H for η/λ = 0.05 in the road link 1 is416

0.140 and smaller than the empirical H for η/λ = 0.05. Similar tendencies can be seen in other417

road links. On the other hand, H for the empirical and the stable distribution do not change so418

much with η/λ.419

10The numerical integral in (3) for normality and stability is computed using the trapezoidal rule.
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Figure 6: Variance stabilized P–P plot of stable distributions
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The computed H for the stable distributions in any road links are larger than for normal and420

empirical. We find that the computedH are notably larger than that for the empirical. There exists421

a significant difference in the right tail probabilities between the stable and empirical distributions422

as shown in Figures 6 and 7. These difference in the tails between the empirical and stable would423

be influential when Hs are computed.424

6. Discussion425

The main purpose of the present paper is to investigate to which degree the empirical charac-426

teristics of travel time distributions conform to the requirements of the FK model in applications427

of valuing travel time variability.428

6.1. Independence of standard travel time distributions and the time of day429

The first fundamental hypothesis of the FK model is that the distribution of standardized430

travel time, after removing changes in the mean and scale of travel time across the time of day, is431

independent of the time of day. To investigate this hypothesis, we analyzed traffic data that were432

collected on an urban road over a long period using nonparametric techniques.433

The nonparametric regression results for the mean and the interquartile range of travel times434

given a time of day (Figures 2 and 3) indicate that the mean and the scale of travel time are not435

constant over the time of day in every road link. This is expected since traffic varies with the time436

of day and such variation leads to variation in the mean and scale of travel times.437

To check the independence assumption of standardized travel times against the time of day,438

we studied the nonparametric distribution of standardized travel times conditional on the time of439

day. Strict independence would require all contours of the probability distribution being completely440

horizontal. Figure 4 shows that in every road link the contour lines for the probability distributions441

of standardized travel times are not very different from horizontal. The fluctuations are largest at442

the highest quantiles and may be due to a small number of incidents. So we would feel justified in443

accepting that standardized travel time is roughly independent of the time of day.444

6.2. Fitting standard travel times to stable distributions445

The second hypothesis we investigate is that the standardized travel time follows a stable446

distribution. If this hypothesis is supported, practical applications are facilitated by the favorable447
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Figure 8: Computed H at various values of η/λ
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properties of stable distributions. To check stability, we estimate stable parameters for each road448

link using maximum likelihood and evaluated some diagnostics.449

The parameter estimates (Table 3) and the plotted stable densities (Figurs 5) show that the450

data sets of the standardized travel times for any road links are far from normal. All skewness451

parameters are estimated to be close to the upper bounds (β̂ = 0.8824 ∼ 1.0000) indicating that452

the distributions are very skewed to the right. With this skewness, the estimated stable densities fit453

the data around the modes of the distributions as shown in Figure 5. Furthermore, the estimated454

stability parameters are scattered around 1.1320 as explained in Section 5.3. The estimates are455

closer to the stability parameter of a Cauchy distribution (α = 1) than to a normal distribution456

(α = 2).457

These results might be caused by the typical characteristics of travel times on urban roads: (1)458

there would exist a lower bound of travel time because of physical and environmental constraints;459

and (2) the maximal standardized travel times, on the other hand, would be very large because460

there would be a small but significant possibility that severe incidents might occur.461

As for the behavior of the tails on the other hand, there seem to be significant differences462

between the data and the estimated stable distributions. The Q–Q plots in Figure 7 show that the463

extreme tails of the standardized travel time data are thinner than the stable densities. Thus the464

fitted stable distributions tend to overestimate the tail probabilities. This fact significantly affects465

the computational results of the functional H. As shown in Figure 8, the value of H obtained for466

the stable distributions is larger than for the empirical distribution on each road link.467

This difference is related to the fact that stable but non-normal distributions have infinite468

variances. In our empirical results, the estimated stability parameters are all near 1.1320, and469

hence the distributions are far from normal. In contrast, empirical travel times are bounded and so470

have finite variance. This would provide much larger tail probabilities in the fitted stable densities471

than in the empirical distributions. In other words, the fitted stable distribution will predict too472

high probability of outrageously high travel times.473

6.3. Assumption of the maximum travel time in the distributions474

A possibility for circumventing the above-mentioned problem in the use of stable distributions475

is to reconsider the scheduling model by imposing a “maximum” travel time when the traveler476

evaluates the expected cost. We assume that the traveler only considers travel times below this477
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maximum. This assumption corresponds to replacing the upper integral limit in (1) by a finite478

positive number.479

Denote the maximum of standardized travel times asXmax. Furthermore, denote the probability

that a standardized travel time is equal to or less than Xmax as pXmax
= Prob(x ≤ Xmax) =

Φ(Xmax). The scheduling model (1) is rewritten as:

EC∗ = min
D

EC(D,T ) = min
D

[

ηD + λ

∫ Xmax

D−µ

σ

(µ+ σx−D)ϕ(x)dx+ ωµ

]

.

The first order condition of the scheduling model (2) is replaced by the following similar formula:

D′ = µ+ σΦ−1
(

pXmax
− η

λ

)

.

Furthermore, the new functional H ′ becomes:480

H ′

(

Φ,
η

λ
, pXmax

)

=

∫ pXmax

pXmax
−

η

λ

Φ−1(ν)dν. (14)

Notice that H ′
(

Φ, ηλ , 1
)

tends to H
(

Φ, ηλ
)

as limXmax→∞ pXmax
= 1.481

The choice of pXmax
is somewhat arbitrary. We can however check the resulting H ′ for stable482

distributions to empirical ones. We can also find appropriate values of pXmax
by checking the483

goodness-of-fit of stable H ′s with respect to the empirical Hs.484

Figure 8 presents the computed H ′s with three different values of pXmax
for the fitted stable485

distributions. If pXmax
= 99.99%, for example, the probability that the standardized travel time486

becomes greater than Xmax is 0.01% and travelers are assumed to disregard such a large travel487

time in their scheduling choice. This result shows that the restriction on the upper limit integral488

in (14) would significantly reduce the deviations from the empirical Hs. In our applications, we489

expect that the appropriate pXmax
would be between 99.0% and 99.9%.490

6.4. Equality of stability parameters491

As shown in Table 3, the estimated α̂s do not differ much from each other. Thus, it may492

not be inappropriate to assume that the standardized travel time distributions share a common493

stability parameter across the different road links. From the comparison of the stable parameters494

for the links 1–4 and the one for the link 5, we see that these difference are not so large but495

significant bacause of large samples. For this result, we speculate that some correlation might496

exist among standardized travel times across different road links. Because the traffic congestion497
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upstream propagates to downstream, it is likely that the travel times for the consecutive roads are498

positively correlated.499

Recall that the standardized travel times should be independent in the convolutions of stable500

distributions. To check this informally, we have plotted the pair of standardized travel times for501

the consecutive two links and have drawn a bivariate joint density in Figure 9. The pairs are502

identified based on the date and the time of day for each link. We find that there does not seem503

to be significant conditional dependence between the two standardized travel times and so the504

independence assumption of standardized travel times could be reasonable.11505

7. Concluding remarks506

This paper has analyzed some empirical characteristics of the travel time distribution on an507

urban road with the purpose of checking the degree to which the travel time distribution conforms508

to the assumption in the Fosgerau and Karlström (2010) model. A number of nonparametric509

techniques were employed to estimate the distribution of standardized travel time conditional on510

the time of day.511

First, we found that the FK assumption that the standardized travel time is independent of512

the time of day seems reasonable as an approximation. This is crucial for the application of the513

FK model.514

Second, the standardized travel time distribution is far from normal but close to a stable515

distribution. Like the normal distribution, the stable distribution arises in a central limit theorem,516

but requires weaker assumptions on the variances of the random variables of which it is a limit.517

The stable distribution is able to reproduce the high skewness and fat tails of empirical travel time518

distributions.519

Third, the extreme right tails of the stable distribution are fatter than in the empirical distri-520

butions. This suggests that the stable distribution is not appropriate as a description of extreme521

delays. In reality, these are bounded from above; this is not true of the stable distribution. This522

suggests using some truncation of the stable distribution. Truncating the stable distribution yields523

values of the standardized mean lateness factor H that are close to the empirical values.524

11Some statistical tests (e.g. Su and White (2007)) would be applicable to check this formally.
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(a) Links 1 and 2 (54,310 points) (b) Links 2 and 3 (50,499 points)

(c) Links 3 and 4 (52,649 points)

Figure 9: Scatter plot and joint density of two standardized travel times
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Fourth, the stability parameter α seems to be roughly constant across road links. Furthermore,525

standardized travel times seem to be about independent across links. Therefore, computing the526

travel time distribution for a route as the convolution of travel times on individual links may be527

considered reasonable for practical purposes.528
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