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Abstract

In many auctions, a good match between the bidder and seller raises the value of

the contract for both parties although information about the quality of the match may

be incomplete. This paper examines the case in which the bidder is better informed

about the quality of his match with the seller than the seller is. We derive the opti-

mal mechanism for this setting and investigate whether the seller requires commitment

power to implement it. It is shown that once the reserve price is set, it is optimal for

the seller to do away with any matching considerations and allocate the contract on

the basis of price alone. If matching is sufficiently important to the seller, the opti-

mal mechanism can be implemented without commitment. However, if matching is

not sufficiently important, the seller suffers a loss when he is unable to commit. The

magnitude of this loss increases as the importance of matching decreases.
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1 Introduction

The real value of a contract lies beyond its financial components: the degree to which the

parties are compatible also matters. According to a KPMG study, “83% of all mergers and

acquisitions (M&As) failed to produce any benefit for the shareholders and over half actually

destroyed value.” Interviews of over 100 senior executives revealed that the overwhelming

cause of failure “is the people and the cultural differences” (Gitelson et al., 2001).

Compatibility between a buyer and seller matters for more than just mergers and ac-

quisitions. It is an issue in publishing and team sports as well: a good match between an

author and his editor may generate a better book, and an athletic team is more likely to

win games if the players have compatible skills. Given the impact of matching on contract

value, it is not surprising that we observe sellers using matching as a factor in their choice of

buyer. During the 2002 auction for the rights to his second novel, Charles Frazier, author of

Cold Mountain, asserted that “money was not the only consideration and that he was keen

to choose the right editor to help him shape the book from the beginning” (Gumbel, 2002).

Venezuela’s state-owned oil company, Petróleos de Venezuela (PDVSA), accounted for tech-

nological compatibility when it selected private partners for the development of marginal

fields in the early 1990s (Chalot, 1996).

In this paper, we consider a setting in which a good match raises the value of the contract

for both the seller and bidder but information about the quality of the match is incomplete.

In particular, we assume each bidder is better informed about the quality of his match

with the seller than the seller is. The paper begins by examining whether it is in the seller’s
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interest to use matching as a factor in his allocation decision. It is shown that once the reserve

price is set, the seller need not account for matching in his allocation decision; that is, the

seller behaves optimally by doing away with any matching considerations and allocating the

contract on the basis of price alone.

We then turn our attention to the issue of commitment. A seller is said to have commit-

ment power if he can allocate the contract in accordance with the allocation rule announced

at the outset of the auction – even when he prefers a different allocation after observing

the bids. In contrast, a seller without commitment power cannot refrain from allocating

the contract to the bidder whose combination of bid payment and expected match is most

attractive. It is shown that if matching is sufficiently important to the seller, the optimal

mechanism can be implemented without commitment. However, if matching is not impor-

tant, the seller suffers a loss when he is unable to commit. The lesser the importance of

matching, the greater the magnitude of the loss.

A stylized model is developed in which a single seller seeks to contract with one of several

bidders. Each pairing of seller and bidder is characterized by a match. The better the match,

the more each party values the contract. Each bidder observes his match with the seller (but

not the matches of his opponents with the seller). In contrast, the seller does not observe

his matches with the bidders.1

1The reader will note that the notion of matching advanced here is different from the notion advanced in
the two-sided matching literature (e.g., Gale and Shapley, 1962). While the latter use the term to refer to
the pairing of agents in a two-sided market, our paper uses the term to refer to the compatibility between
a bidder and seller. Since this compatibility induces a positive correlation between the valuations of the
bidder and seller, our notion of matching is more closely related to the literatures on affiliated values (e.g.,
Milgrom and Weber, 1982) and interdependent valuations (e.g., Jehiel and Moldovanu, 2001), but while
these literatures are more concerned with linking the bidders’ valuations, our paper focuses on linking the
valuations of the bidder and seller.
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We solve for the optimal mechanism and find that it can be implemented via a standard

first-price auction with an appropriate choice of reserve price. Since a better match implies

a higher contract value, well matched bidders face a higher opportunity cost of not raising

their bids. As a result, bids increase in match. By awarding the contract to the highest

bidder, the seller finds himself automatically contracting with the best matched bidder.

To the extent that the seller allocates the contract to the bidder who submits the highest

price offer, the seller need not account for matching in his allocation decision. However,

matching does factor into the reserve price prescribed by the optimal mechanism. As is

generally the case, the optimal reserve price is artificially high: allocative efficiency is sacri-

ficed in favor of extracting informational rents. Introducing matching into the seller’s utility

function affects this trade-off, thereby inducing a corresponding adjustment in the optimal

reserve price relative to the standard independent private values framework. Hence, the

seller should account for matching in setting the reserve price, but once the reserve price is

set, the seller can do away with any matching considerations and allocate the contract on

the basis of price alone.

The question naturally arises: can the optimal mechanism be implemented without com-

mitment? In order to answer this question, we examine the equilibria of a first-score auction.

In a first-score auction, each bidder submits a price offer. After observing these offers, the

seller updates his beliefs about the quality of his match with each of the bidders and iden-

tifies the bidder whose combination of price and expected match is most attractive. If the

seller expects that contracting with that bidder will yield as much utility as not contracting
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at all, the contract is awarded to that bidder.2 Since this allocation rule reflects the seller’s

true preferences, there should be no incentive for the seller to deviate from the rule ex post.

We find that the equilibrium bidding strategies in the first-score auction are identical

to those in the first-price auction. In a first-score auction, well matched bidders have an

incentive to convey their information to the seller in order to raise their probability of

winning. Since well matched bidders have a higher value for the contract, they can credibly

signal their favorable matches by raising their bids beyond the point at which it is profitable

for poorly matched bidders to mimic them.3 Given that higher bids signal better matches,

the contract goes to the bidder submitting the highest bid – which is precisely the allocation

rule in a first-price auction.

We then address the feasibility of adhering to the prescribed reserve price. We find that

in order to sustain an elevated reserve price, the seller must (1) associate bids that fall short

of the reserve with a poor match and (2) find contracting with a poorly matched bidder to be

sufficiently unfavorable. When these two conditions are met, the seller prefers retaining the

contract to contracting with a bidder whose bid does not meet the reserve. It follows that if

2Che (1993), Branco (1997), Zheng (2000), and Asker and Cantillon (2008) analyze a similar auction
format in which the winning bidder is selected on the basis of price and quality. But while the bidders in
these papers bid directly on both factors, the bidders in our paper bid only on price, leaving the seller to
estimate the quality of the matches on his own. The mechanism in our paper is more closely linked to the
biased procurement problem studied by Rezende (forthcoming), in which each bidder submits a price offer
and the seller selects the winner on the basis of both price and some pre-existing bias. But while the bias
in Rezende’s paper is determined by the seller’s private information, the bias in our paper is determined by
the bidders’ private information.

3Bikhchandani and Huang (1989), Katzman and Rhodes-Kropf (2002), Das Varma (2003), Goeree (2003),
Haile (2003), and Molnár and Virág (2008) examine signaling in auctions, but these papers are concerned
with bidders signaling their private information to other bidders so as to affect future strategic interactions.
In contrast, the signaling behavior in our paper is motivated by the structure of the auction game itself:
bidders are interested in signaling their private information to the seller in order to influence the seller’s
choice of winner. In this sense, our paper is more similar to Avery (1998), which addresses the use of jump
bids to signal a high valuation and encourage competing bidders to withdraw.
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matching is sufficiently important to the seller, the optimal mechanism can be implemented

without commitment.

If matching is not sufficiently important, a lack of commitment causes the seller to suffer

a loss. As the importance of matching decreases, the impact of associating low bids with a

poor match is diminished. Consequently, the maximum reserve price the seller can credibly

adhere to falls. As the gap between the prescribed reserve and the actual reserve widens,

the seller’s expected utility decreases. Hence, reducing the importance of matching raises

the seller’s value for commitment.

In sum, we find that once the reserve price has been set, the seller need not account for

matching in his allocation decision since the optimal outcome can be achieved via a first-

price auction. If matching is sufficiently important to the seller, the optimal mechanism can

be implemented without commitment. However, if matching is not sufficiently important,

commitment power is needed in order to adhere to the prescribed reserve price. As the

importance of matching decreases, the power to commit becomes more valuable.

The remainder of this paper is organized as follows. Section 2 introduces the model.

In Section 3, we solve for the optimal mechanism and show that it can be implemented by

a first-price auction. In Section 4, we derive a set of conditions under which the optimal

outcome can be achieved without commitment. Section 5 characterizes the relationship

between the importance of matching and the value of commitment. Concluding remarks are

offered in Section 6. All proofs are relegated to the appendices.
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2 The Model

A seller offers a contract n risk-neutral bidders (n ≥ 2). Every potential pairing of seller and

bidder has an associated match. We denote the match between the seller and bidder i by

θi ∈
[
θ, θ

]
⊂ R, where θi > θj indicates that bidder i has a better match than bidder j does.

We assume the θi’s are independently and identically distributed according to a commonly

known cumulative distribution function (cdf) F with F (θ) = 0 and F
(
θ
)

= 1.

Assumption 1 F has positive density f at every θ ∈
[
θ, θ

]
.

Bidder i’s utility from contracting with the seller is

θi − bi,

where θi is bidder i’s value for the contract and bi ∈ R is the bid submitted by bidder i.

Bidder i’s utility is zero if he does not win the contract.

The seller derives utility from both the bid payment and his match with the winning

bidder. We assume the seller’s utility from contracting with bidder i is

V (θi) + bi,

where V (θi) represents the seller’s value for his match with bidder i. The following assump-

tion captures the notion that a good match raises the value of the contract for both the seller

and the bidder:

Assumption 2 V :
[
θ, θ

]
→ R is continuous and strictly increasing over

[
θ, θ

]
.
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The seller’s utility is zero if he does not contract with any bidder.4

The following assumption is imposed so as not to rule out the possibility of a mutually

beneficial trade:

Assumption 3 (participation condition) V
(
θ
)

+ θ is positive.

Additionally, we impose the following regularity condition:

Assumption 4 (regularity condition) The function

V (θi) + θi −
1 − F (θi)

f (θi)

is strictly increasing over
[
θ, θ

]
.5

We assume bidder i is better informed about his match than the seller is. Bidder i

observes his match θi but not the matches of his opponents.6 The seller does not observe the

matches directly, and therefore, his beliefs about the matches are determined by the prior,

F , and the observed bids.

3 The Optimal Mechanism

Intuition suggests that if matching affects the seller’s expected utility, the seller should

account for matching in his allocation decision. In fact, we observe this behavior in a number

4When V (θi) = vθi, where v is a positive constant, our model can be mapped to the interdependent
valuations framework outlined in Section 5 of Jehiel and Moldovanu (2001): simply let the agents be indexed
by i ∈ {0, 1, 2, ..., n}, where agent i is the seller if i = 0 and bidder i otherwise; let pi

k be the probability the

contract is awarded to agent i in alternative k; and let s0 = 0, si = θi, ai
k0

= vpi
k, ai

ki = pi
k, and a

j
ki = 0 for

all j 6= i.
5Note that Assumption 4 is less restrictive than the monotone hazard rate condition.
6Bidder i’s beliefs about θj , j 6= i, are determined by the prior, F .
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of environments. For example, PDVSA accounted for technological complementarities in its

selection of partners for the development of marginal oil fields while novelist Charles Frazier

accounted for his compatibility with the editor in his choice of a publisher. In this section, we

ask whether the seller should account for matching in allocating the contract. Our approach

will be to solve for the optimal mechanism and then identify which allocation rules implement

it.

By appealing to the revelation principle (Myerson, 1981), we restrict attention to direct

revelation mechanisms {p(·), t(·)}, where pi :
[
θ, θ

]n
→ [0, 1] is the probability that bidder

i is awarded the contract and ti :
[
θ, θ

]n
→ R is the expected transfer from bidder i to the

seller.

If bidder i observes his type θi but announces that his type is x, his expected utility from

the mechanism {p(·), t(·)} is

Ui (x, θi) ≡ Eθ−i
[θipi (x, θ−i) − ti (x, θ−i)] . (3.1)

Similarly, the seller’s expected utility from the mechanism is

U0 ≡ Eθ

[
n∑

i=1

V (θi) pi(θ) +
n∑

i=1

ti(θ)

]
. (3.2)

The mechanism is optimal if it maximizes U0 subject to

Incentive compatibility (IC): Ui (θi, θi) ≥ Ui (x, θi) ∀i, ∀θi,∀x;

Individual rationality (IR): Ui (θi, θi) ≥ 0 ∀i, ∀θi;

and

pi(θ) ≥ 0 and
∑n

i=1 pi(θ) ≤ 1 ∀i,∀θ.
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Proposition 1 The optimal mechanism satisfies

pi(θ) =

{
1 if θi ≥ θj ∀j and θi ≥ θ∗

0 otherwise

and

Eθ−i
[ti (θi, θ−i)] =

{
θi F

n−1(θi) −
∫ θi

θ∗
F n−1(x) dx if θi ≥ θ∗

0 otherwise

where

θ∗ =





{
x ∈ (θ, θ ) : V (x) + x =

1 − F (x)

f(x)

}
if V (θ) + θ <

1

f(θ)

θ otherwise

Proof See Appendix A.

The proof follows Myerson (1981). It develops a relaxed optimization program by reducing

the number of choice variables from two to one. The unique solution of the relaxed program

is identified and shown to satisfy the constraints of the original program. The regularity

condition plays a key role.

As in Myerson, the optimal mechanism can be implemented via a standard first-price

sealed-bid auction with an appropriate choice of reserve price. Since a bidder with a higher

match has a higher value for the contract, well matched bidders can afford to bid more than

poorly matched bidders. Hence, a rule that allocates the contract to the highest bidder also

allocates the contract to the bidder with the best match.

To the extent that the seller allocates the contract to the bidder who submits the highest

price offer, matching does not figure into the allocation decision. Note that this result holds

no matter how important matching may be to the seller.
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However, matching does factor into the reserve price prescribed by the optimal mecha-

nism, and this is where our result differs from Myerson’s. There are two reasons why in-

troducing matching into the seller’s utility function affects the optimal reserve price. First,

matching may affect the minimum type for which a mutually beneficial trade exists. In

Myerson’s framework, that type is simply θ = 0, but in our framework, that type is given

by V (θ) + θ = 0. If V (0) > 0, the minimum type is lower in our framework, and hence, the

optimal reserve price is lower as well. The converse is true if V (0) < 0.

Second, matching may affect the trade-off between allocative efficiency and extraction of

informational rents. Suppose the minimum type for which there exists a mutually beneficial

trade is the same in our framework as it is in Myerson’s framework; that is, suppose V (0) = 0.

Since V is strictly increasing, V (θ) + θ > θ for all θ > 0. In other words, the surplus lost by

failing to contract when a mutually beneficial trade exists is greater in our framework than

in Myerson’s. It follows that the optimal reserve price is lower in our framework. Moreover,

the more the seller cares about matching (i.e., the higher V ′), the greater the surplus lost

and the lower the optimal reserve price.

In sum, the seller should account for matching in allocating the contract but only with

respect to the choice of reserve price. Once the reserve price is set, the seller can do away

with any matching considerations and allocate the contract on the basis of price alone.

4 Implementation under No Commitment

We now turn our attention to the case in which the seller lacks commitment power. Our

objective is to determine whether the optimal mechanism can be implemented under such
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conditions. In the previous section, we showed that a first-price auction with an elevated

reserve price is optimal. However, there are several reasons to believe that commitment is

needed to carry out this auction. First, it is not apparent that the elevated reserve can be

sustained: the seller may prefer contracting with a well-matched bidder whose offer falls

short of the reserve to not contracting at all.

The second reason is more subtle. In the previous section, we saw that awarding the

contract to the highest bidder automatically delivers the bidder with the best match. Con-

sequently, the seller has no incentive to contract with anyone other than the highest bidder.

However, this result is predicated on the bidders believing the seller is committed to car-

rying out the rules of the first-price auction. If the seller’s inability to commit is common

knowledge, the bidders may alter their bidding strategies accordingly. Once this adjustment

takes place, the highest bidder may no longer be the one with the best match. In this case,

the seller may find that he prefers to contract with another bidder whose bid is lower but

expected match is higher. In other words, the seller may find himself reneging on the rules

of the first-price auction.

The important point is that if it is known that the seller lacks commitment power, bidders

ignore the announced allocation rule and assume the seller will award the contract to the

bidder who offers the most attractive combination of price and expected match, provided

that offer exceeds the seller’s reservation utility. That is, bidders select their strategies as if

they are playing the following game:

1. Each bidder submits a price offer independently and simultaneously.
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2. The seller contracts with the bidder whose combination of price and expected match

maximizes the seller’s expected utility provided that the combined value is not less

than the seller’s reservation utility of zero. That is, bidder i wins the contract if

E [V (θi) | bi] + bi ≥ 0

and

E [V (θi) | bi] + bi > E [V (θj) | bj] + bj ∀j 6= i,

where bi denotes the price offer (bid) submitted by bidder i. Ties are resolved by a

random draw with equal probability.

3. If the contract is allocated to bidder i, θi is revealed. The seller’s utility is V (θi) + bi,

bidder i’s utility is θi − bi, and all other bidders get zero utility. If the contract is not

allocated, every agent gets zero utility.

We call this game a first-score auction, where the term “score” refers to the combination

of price and expected match. For instance, bidder i’s score is given by E [V (θi) | bi] + bi.

As indicated in the timeline above, the contract is allocated to the bidder with the highest

score provided that the score is nonnegative. The winning bidder pays the price he offered

bi, thereby delivering his true score V (θi) + bi.

A first-score auction is similar to a first-price auction in that bidders make price offers

and the winning bidder pays his bid. However, while the winner in a first-price auction is the

bidder who submits the highest price offer, the winner in a first-score auction is the bidder

who submits the most attractive combination of price and expected match. This allocation
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rule allows the seller to reject an offer made by the highest bidder and allocate the contract to

another bidder whose pairing of bid and expected match is more attractive than the pairing

offered by the highest bidder. Moreover, the first-score auction does not feature an elevated

reserve price: the seller retains the contract only when every offer falls short of the seller’s

reservation utility. Since the allocation rule of the first-score auction reflects the seller’s true

preferences, there is no incentive for the seller to deviate from it after observing the bids.

Our use of a first-score auction to represent the seller’s lack of commitment is consistent

with the literature. Che (1993) states that in the absence of commitment “the only feasible

scoring rule is one that reflects the seller’s [true] preference ordering,” and Rezende (forth-

coming) allows a seller without commitment power to renege on the announced allocation

rule and select the auction winner arbitrarily. Our representation is also consistent with the

principal-agent model in Bester and Strausz (2000): they define imperfect commitment in

terms of a two-stage game, in which agents select messages in the first stage and the principal

updates his beliefs and selects an allocation in the second stage.

Our approach will be to investigate the perfect Bayesian equilibria of the first-score

auction to see whether the optimal mechanism outlined in Proposition 1 can be implemented

in the absence of commitment. Recall that the optimal mechanism allocates the contract

to the bidder with the best match. Hence, if the first-score auction implements the optimal

mechanism, the equilibrium bidding strategies must be such that the seller can distinguish

between bidders of different types. For this reason, we elect to focus on separating equilibria.
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The following lemma characterizes the symmetric separating equilibria of the first-score

auction game.

Lemma 1 In any symmetric separating equilibrium of the first-score auction game, there

exists a t∗ ∈ [ θ, θ ] such that

(1) any bidder with type θ ∈ (t∗, θ ] bids according to the function

b(θ) = θ −

∫ θ

t∗
F n−1(x) dx

F n−1(θ)

and wins with positive probability.

(2) any bidder with type θ ∈ [ θ, t∗) wins with zero probability.

Proof See Lamping (2008).

Lemma 1 indicates that equilibrium bids increase with the quality of the match over the

range [t∗, θ ]. Since a better match implies a higher value for the contract, well matched

bidders can credibly signal their favored status by offering higher bids. The contract is thus

awarded to the bidder with the highest type – as prescribed by the optimal mechanism.

Moreover, the bidding function specified by Lemma 1 is identical to the equilibrium bid-

ding function in a first-price auction with a reserve price of t∗. The equivalency follows

from the fact that when higher bids signal higher types, the allocation rule for the first-score

auction coincides with the allocation rule for the first-price auction. Since the optimal mech-

anism can be implemented by a first-price auction, it appears that the optimal mechanism

may be implementable by a first-score auction as well.
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The issue is that the absence of commitment power may affect the feasibility of adhering

to the threshold prescribed by the optimal mechanism:

θ∗ =





{
x ∈ (θ, θ ) : V (x) + x =

1 − F (x)

f(x)

}
if V (θ) + θ <

1

f(θ)

θ otherwise

(4.1)

Suppose V (θ)+ θ <
1

f(θ)
. It follows from Assumptions 3 and 4 that V (θ∗)+ θ∗ > 0. Hence,

we encounter the usual problem associated with an elevated threshold: if a bidder with type

θ∗− ǫ has the highest type and bids his valuation, the seller will prefer to award the contract

and earn V (θ∗ − ǫ) + θ∗ − ǫ than to retain the contract and earn zero.

Note that the preceding argument hinges on the seller knowing the bidder’s type. Sup-

pose, once again, that a bidder with type θ∗ − ǫ has the highest type and bids his valuation

but imagine that the seller believes (incorrectly) that this bidder has type θ. In this case,

the seller expects that contracting with this bidder will yield V (θ) + θ∗ − ǫ. If V (θ) ≤ −θ∗,

the seller will prefer to retain the contract and earn zero than to award the contract and earn

V (θ) + θ∗ − ǫ < 0. This suggests that an elevated threshold can be sustained if the seller (1)

associates bids that fall short of the threshold with a poor match and (2) finds contracting

with a poorly matched bidder to be sufficiently unfavorable. We formalize this notion in the

following proposition.

Proposition 2 Let θ∗ be defined as in Proposition 1.

(1) If either V (θ)+θ ≥
1

f(θ)
or V (θ)+θ∗ ≤ 0, there is a symmetric separating equilibrium

of the first-score auction game that implements the optimal mechanism.
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(2) If V (θ) + θ <
1

f(θ)
and V (θ) + θ∗ > 0, there is no symmetric separating equilib-

rium of the first-score auction game that implements the optimal mechanism. The

symmetric separating equilibrium that maximizes the seller’s expected utility has t∗ =

max{θ,−V (θ)}.

Proof See Appendix B.

If V (θ)+θ ≥
1

f(θ)
, the surplus generated by contracting with the lowest type θ is so large

that it is optimal for the seller to allow every bidder to participate. Since there is no elevated

threshold to be sustained, the optimal mechanism can be implemented without commitment.

If V (θ) + θ <
1

f(θ)
, the optimal mechanism does prescribe an elevated threshold. Suppose

V (θ) + θ∗ ≤ 0 and note that this condition can be rewritten as

V (θ∗) − V (θ) ≥
1 − F (θ∗)

f(θ∗)
. (4.2)

Proposition 2 establishes that if matching is sufficiently important to the seller (i.e., if the

range of V is sufficiently large), the impact of punishing off-equilibrium-path beliefs is sub-

stantial enough to sustain the prescribed threshold. Hence, the optimal mechanism can be

implemented without commitment.

However, if neither V (θ)+θ ≥
1

f(θ)
nor V (θ)+θ∗ ≤ 0, the optimal mechanism cannot be

implemented by a first-score auction. In this case, the prescribed threshold is elevated, but

matching is not important enough for even the most punishing off-equilibrium-path beliefs

to sustain it. The highest threshold that can be sustained is t∗ = max{θ,−V (θ)}.
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In sum, if matching is sufficiently important to the seller, the optimal mechanism can

be implemented without commitment.7 This may explain why we observe agents, such as

PDVSA and Charles Frazier, who are able to commit to a different allocation mechanism,

simply implementing a first-score auction. If matching is not sufficiently important, the seller

may be unable to implement the optimal mechanism without commitment.

5 The Value of Commitment

In this section, we seek to more explicitly characterize the relationship between the impor-

tance of matching and the value of commitment. In order to do so, we introduce some

additional notation. Let V A : [θ, θ] → R and V B : [θ, θ] → R be two functions satisfying

Assumptions 2, 3, and 4. Let θA
∗ and θB

∗ be the optimal thresholds associated with V A and

V B respectively. In addition, let

tk∗ =





θk
∗ if V k(θ) + θ ≥

1

f(θ)
or V k(θ) + θ∗ ≤ 0

max
{
θ ,−V k(θ)

}
otherwise

(5.1)

and

tk =

{ {
x ∈ (θ, θ ) : V k(x) + x = 0

}
if V k(θ) + θ < 0

θ otherwise
(5.2)

7This result is predicated on the game having a single period. In an intertemporal model, the Coase
conjecture would apply (Coase, 1972). If every bid were to fall short of the reserve price, the seller would
retain the contract and update his beliefs about the distribution of types. In the following period, he would
offer the contract again but set a lower reserve price. If the bidders were sufficiently patient, they would
simply wait for the reserve to fall to a suitable level. Thus, in an intertemporal model, the seller does suffer
a loss due to his inability to commit. Note that the issue is the reserve price and not the scoring system.
Even in an intertemporal model, a higher bid signals a better match. Therefore, there is no loss associated
with selecting the winner on the basis of both price and match instead of price alone. For a more formal
treatment of the Coase conjecture, see Stokey (1981), Bulow (1982), Gul, Sonnenschein, and Wilson (1986),
and Hart and Tirole (1988). McAfee and Vincent (1997), Skreta (2007), and Vartiainen (2007) specifically
address the application of the Coase conjecture to auctions.
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where k ∈ {A,B}. Note that tk∗ represents the optimal sustainable threshold and that tk

represents the lowest type for which there exists a mutually beneficial trade. A straight-

forward application of the methodology in Riley and Samuelson (1981) yields the following

expression for the seller’s expected utility when the lowest participating type is tk∗:

n

∫ θ

tk
∗

[
V k(x) + x −

1 − F (x)

f(x)

]
F n−1(x) f(x) dx , k ∈ {A,B}. (5.3)

The loss associated with the seller’s lack of commitment power can then be written as

Ck ≡ −n

∫ θk
∗

tk
∗

[
V k(x) + x −

1 − F (x)

f(x)

]
F n−1(x) f(x) dx , k ∈ {A,B}. (5.4)

We are now ready to specify the relationship between the importance of matching and the

value of commitment.

Proposition 3 Suppose V A and V B satisfy the following three conditions:

(1) V A(tA) = V B(tB),

(2)
dV A(θ)

dθ
<

dV B(θ)

dθ
for all θ ∈

[
θ, θ

]
, and

(3) V A(θ) + θ <
1

f(θ)
and V A(θ) + θA

∗ > 0 .

Then CA > CB.

Proof See Appendix C.

Proposition 3 establishes that if we (1) hold fixed the range of types for which there exists

a mutually beneficial trade and (2) increase the importance of matching, the seller’s value

for commitment decreases. Increasing the importance of matching has several effects. First,
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it magnifies the impact of associating low bids with a poor match. As a result, the optimal

sustainable threshold increases (tA∗ < tB∗ ). Second, it magnifies the loss associated with

retaining the contract when a mutually beneficial trade exists. This reduces the threshold

prescribed by the optimal mechanism (θA
∗ > θB

∗ ). Finally, it raises the seller’s value for any

particular match provided that a mutually beneficial trade with that match exists (V A(θ) <

V B(θ) for all θ > t ). Every one of these three effects serves to reduce the loss associated

with the seller’s lack of commitment power.

6 Concluding Remarks

For a wide range of commercial arrangements, a good match between the buyer and seller

raises the value of the contract for both parties. However, at the time the terms of the

contract are set, the parties may not be fully informed about the degree to which they

match. In this paper, we have addressed the case in which the quality of the match is the

private information of the bidder.

The paper opened by asking whether the seller should account for matching in his allo-

cation decision. It is shown that once the reserve price is set, the seller can do away with

any matching considerations and allocate the contract on the basis of price alone. Since

the bidder’s value for the contract increases with the quality of his match with the seller,

allocating the contract to the highest bidder is equivalent to selecting the bidder with the

best match.

We then ask whether commitment is required to implement the optimal mechanism. We

argue that a seller who lacks commitment power simply awards the contract to the bidder
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who offers the most attractive combination of price and expected match. Since well matched

bidders have a higher value for the contract, higher bids signal higher matches. As a result,

the seller has no incentive to contract with anyone other than the highest bidder.

The issue is that commitment may be necessary to sustain the elevated threshold pre-

scribed by the optimal mechanism. We show that if matching is sufficiently important to

the seller, the prescribed threshold can be sustained by associating bids that fall below the

threshold with a poor match. However, if matching is not sufficiently important, the seller

cannot adhere to the prescribed threshold and suffers a loss. As the importance of matching

decreases, the magnitude of the loss increases, and commitment becomes more valuable.

We conclude with a few remarks on potential avenues for further research. Given the

attention paid to commitment, one logical extension would be to allow for multiple periods.

Clearly, our results would be unaffected for the case in which the seller can commit. However,

our results for the case in which the seller lacks commitment power would change. In Section

4, we found that the optimal mechanism could be implemented without commitment if (1)

the seller associated bids that fell short of the prescribed threshold with a poor match and

(2) matching was sufficiently important to the seller. However, with multiple periods, the

seller has an opportunity to update his beliefs about the matches over time. In the absence

of commitment, the Coase conjecture applies making it impossible to sustain the prescribed

threshold in the long run. Hence, if bidders are sufficiently patient, the optimal mechanism

cannot be implemented.8

8For a more detailed discussion of this issue, see Footnote 7.
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Another desirable extension would be to allow both the bidder and seller to observe a

signal about the quality of their match. In the commitment case, we would have an informed

principal problem with common values along the lines of Maskin and Tirole (1992) but with

multiple heterogeneous agents. Solving the mechanism design problem would be particularly

challenging because one would have to contend with both an informed principal problem

and an asymmetric auctions problem. For the non-commitment case, this paper provides a

starting point in that it offers a characterization of non-commitment (the first-score auction)

and shows that in this setting, bidders have an incentive to reveal favorable information via

higher bids. Developing these ideas further would be an interesting area for future research.

A Proof of Proposition 1

The proof follows Myerson (1981). We first show that if the mechanism {p(·), t(·)} is optimal,

then Ui(θ, θ) = 0. We then develop a relaxed optimization program and find its solution.

After noting that the solution of the relaxed program coincides with the mechanism outlined

in Proposition 1, we demonstrate that the mechanism satisfies the constraints of the original

program.
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Suppose the mechanism {p(·), t(·)} satisfies the IC and IR constraints for all θi ∈
[
θ, θ

]
but

that Ui(θ, θ) = ǫ > 0. Now consider a different mechanism
{
p(·), t̂(·)

}
, where t̂i(·) ≡ ti(·)+ ǫ.

The mechanism
{
p(·), t̂(·)

}
satisfies the IR constraint for all θi ∈

[
θ, θ

]
since

Ûi (θi, θi) = Eθ−i

[
θipi (θi, θ−i) − t̂i (θi, θ−i)

]

= Eθ−i
[θipi (θi, θ−i) − ti (θi, θ−i)] − ǫ

≥ Eθ−i
[θipi (θ, θ−i) − ti (θ, θ−i)] − ǫ

≥ Eθ−i
[θpi (θ, θ−i) − ti (θ, θ−i)] − ǫ

= 0.

(A.1)

The first inequality holds because {p(·), t(·)} satisfies the IC constraint; the second inequality

holds because pi ∈ [0, 1]. The mechanism
{
p(·), t̂(·)

}
also satisfies the IC constraint for all

θi ∈
[
θ, θ

]
since

Ûi (θi, θi) = Eθ−i
[θipi (θi, θ−i) − ti (θi, θ−i)] − ǫ

≥ Eθ−i
[θipi (x, θ−i) − ti (x, θ−i)] − ǫ

= Ûi (x, θi)

(A.2)

for all x ∈
[
θ, θ

]
. The inequality follows from the fact that {p(·), t(·)} satisfies the IC

constraint. Since ǫ > 0 and t̂i(·) ≡ ti(·) + ǫ, the seller’s expected utility is strictly greater

under
{
p(·), t̂(·)

}
than it is under {p(·), t(·)}. Therefore, the original mechanism {p(·), t(·)}

cannot be optimal – a contradiction.

Having established that Ui(θ, θ) = 0, we turn our attention to developing a relaxed

optimization program. Our approach is to modify the original program so as to reduce the

number of choice variables from two, p(·) and t(·), to one, p(·). From equation (3.1), we have

Eθ−i
[ti (θi, θ−i)] = Eθ−i

[θipi (θi, θ−i)] − Ui (θi, θi) , (A.3)
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and after substituting for Eθ−i
[ti (θi, θ−i)] in equation (3.2), we obtain

U0 = Eθ

[
n∑

i=1

(V (θi) + θi) pi(θ)

]
−

n∑

i=1

Eθi
[Ui (θi, θi)] . (A.4)

It remains to develop an expression for Eθi
[Ui (θi, θi)] in terms of pi(θ).

Incentive compatibility requires that Ui (θi, θi) ≥ Ui (x, θi) for all θi ∈
[
θ, θ

]
and all

x ∈
[
θ, θ

]
. Subtracting Ui(x, x) from both sides and applying equation (3.1) yields

Ui (θi, θi) − Ui (x, x) ≥ (θi − x) Eθ−i
[pi (x, θ−i)] . (A.5)

Since this inequality holds for all θi ∈
[
θ, θ

]
and all x ∈

[
θ, θ

]
, it must be the case that

(θi − x) Ri(x) ≤ Ũi (θi) − Ũi (x) ≤ (θi − x) Ri(θi), (A.6)

where Ri(x) ≡ Eθ−i
[pi (x, θ−i)] and Ũi(x) ≡ Ui (x, x).

Suppose θi > x and let δ ≡ θi − x. Then inequality (A.6) can be rewritten as follows:

Ri(x) ≤
Ũi (x + δ) − Ũi (x)

δ
≤ Ri(x + δ). (A.7)

Since Ri(·) is nondecreasing, it is Riemann integrable. Hence,

∫ θi

θ

Ri (x) dx = Ũi (θi) − Ũi (θ) . (A.8)

After substituting for Ri(x), Ũi (θi), and Ũi (θ) and applying our earlier result, Ui(θ, θ) = 0,

we obtain

Ui (θi, θi) =

∫ θi

θ

Eθ−i
[pi (x, θ−i)] dx. (A.9)

Taking the expectation of Ui (θi, θi) and integrating by parts yields the expression we seek:

Eθi
[Ui (θi, θi)] = Eθ

[
1 − F (θi)

f (θi)
pi(θ)

]
. (A.10)
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Using equation (A.10), we substitute for Eθi
[Ui (θi, θi)] in equation (A.4) and obtain an

expression for U0 in terms of p(·). The resulting relaxed program is as follows:

max
{p(·)}

Eθ

[
n∑

i=1

(
V (θi) + θi −

1 − F (θi)

f (θi)

)
pi(θ)

]

subject to

pi(θ) ≥ 0 and
n∑

i=1

pi(θ) ≤ 1 ∀i,∀θ.

Since V (θi) + θi −
1 − F (θi)

f (θi)
is strictly increasing by Assumption 4, the unique solution of

the relaxed program is

pi(θ) =





1 if θi ≥ θj ∀j and V (θi) + θi −
1 − F (θi)

f(θi)
≥ 0

0 otherwise

Note that the expression above coincides with the pi(θ) outlined in Proposition 1. We

proceed by deriving the associated t(·) and verifying that it too coincides with Proposition

1. From equation (A.3) we have

Eθ−i
[ti (θi, θ−i)] = θiEθ−i

[pi (θi, θ−i)] − Ui (θi, θi) . (A.11)

After substituting for Ui (θi, θi) using equation (A.9) and replacing pi (θi, θ−i) with the solu-

tion of the relaxed program, we obtain

Eθ−i
[ti (θi, θ−i)] =





θi F
n−1 (θi) −

∫ θi

θ∗
F n−1(x) dx if V (θi) + θi ≥

1 − F (θi)

f (θi)

0 otherwise

which clearly coincides with the corresponding expression in Proposition 1.
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It remains to show that the mechanism {p(·), t(·)} satisfies the constraints of the original

program. The IR constraint, pi(θ) ≥ 0, and
∑n

i=1 pi(θ) ≤ 1 are satisfied trivially. To verify

that the IC constraint holds, we must show that

Ui (θi, θi) ≥ Ui (x, θi) (A.12)

for all θi ∈
[
θ, θ

]
and all x ∈

[
θ, θ

]
. Subtracting Ui(x, x) from both sides and applying

equation (3.1) yields

Ui (θi, θi) − Ui (x, x) ≥ (θi − x) Eθ−i
[pi (x, θ−i)] . (A.13)

If θi and x are less than θ∗, the inequality is trivially satisfied. If θi < θ∗ and x ≥ θ∗, the

left-hand side is

Ui (θi, θi) − Ui (x, x) = −
∫ x

θ∗
F n−1(y) dy

≥ − (x − θ∗) F n−1(x)

≥ − (x − θi) F n−1(x)

= (θi − x) Eθ−i
[pi (x, θ−i)]

(A.14)

and the inequality is again satisfied. If θi ≥ θ∗ and x < θ∗, the inequality reduces to

∫ θi

θ∗
F n−1(y) dy ≥ 0, which is trivially satisfied. If θi ≥ x ≥ θ∗,

Ui (θi, θi) − Ui(x, x) =
∫ θi

x
F n−1(y) dy

≥ (θi − x) F n−1(x)

= (θi − x) Eθ−i
[pi (x, θ−i)]

(A.15)

An analogous argument can be used to verify that the inequality holds if x ≥ θi ≥ θ∗. ¥

B Proof of Proposition 2

The proof exploits the following result from Lamping (2008):
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Lemma 2 A symmetric separating equilibrium exists for every t∗ ∈ [ t, t ], where

t =

{ {
x ∈ (θ, θ ) : V (x) + x = 0

}
if V (θ) + θ < 0

θ otherwise

and

t = min
{
t + [V (t) − V (θ)] , θ

}
.

Moreover, there are no symmetric separating equilibria such that t∗ /∈ [ t, t ].

To verify part (1) of Proposition 2, we will show that θ∗ ∈ [ t, t ] whenever V (θ)+θ ≥
1

f(θ)

or V (θ) + θ∗ ≤ 0. Suppose first that V (θ) + θ ≥
1

f(θ)
. By Assumption 1,

1

f(θ)
> 0. It

follows that t = t = θ and that θ∗ = θ . Clearly, θ∗ ∈ [ t, t ]. Now suppose that V (θ)+θ∗ ≤ 0.

V (θ) + θ∗ ≤ 0 implies V (θ) + θ ≤ 0 . It follows that t satisfies V (t) + t = 0 . Similarly,

V (θ) + θ ≤ 0 implies V (θ) + θ <
1

f(θ)
. It follows that θ∗ satisfies

V (θ∗) + θ∗ =
1 − F (θ∗)

f(θ∗)
. (B.1)

By Assumption 1,
1 − F (θ∗)

f(θ∗)
> 0 . Since V (t) + t = 0 , V (θ∗) + θ∗ > 0 , and V (x) + x is

increasing in x (by Assumption 2), it must be the case that θ∗ > t . In addition, V (t)+ t = 0

implies that t = min{−V (θ), θ }. If t = θ , θ∗ must be less than or equal to t. If t = −V (θ),

it is still the case that θ∗ ≤ t since V (θ) + θ∗ ≤ 0. Having shown that θ∗ > t and θ∗ ≤ t , we

assert that θ∗ ∈ [ t, t ].

We will now verify part (2) of Proposition 2. We begin by showing that θ∗ > t whenever

V (θ) + θ <
1

f(θ)
and V (θ) + θ∗ > 0. Suppose first that V (θ) + θ ≤ 0 so that t satisfies

V (t) + t = 0. In this case, t = min{−V (θ), θ }. Since V (θ) + θ∗ > 0, it must be the case
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that V (θ) + θ > 0. It follows that t = −V (θ). Since V (θ) + θ∗ > 0, θ∗ > t . Now suppose

that V (θ) + θ > 0 so that t = θ . In this case, t = θ . Since V (θ) + θ <
1

f(θ)
, θ∗ > θ = t .

Having shown that θ∗ > t , we will now show that the seller’s expected utility increases

in t∗ over the range [ t, t ]. By applying the methodology in Riley and Samuelson (1981) to

Lemma 1, we obtain the following expression for the seller’s expected utility:

n

∫ θ

t∗

[
V (x) + x −

1 − F (x)

f(x)

]
F n−1(x) f(x) dx . (B.2)

Taking the derivative with respect to t∗ yields

−n

[
V (t∗) + t∗ −

1 − F (t∗)

f(t∗)

]
F n−1(t∗) f(t∗) . (B.3)

Since θ∗ > t, the expression V (t∗) + t∗ −
1 − F (t∗)

f(t∗)
is negative for all t∗ ∈ [ t, t ]. Hence,

expression (B.3) is positive if t∗ ∈ ( t, t ] or t∗ = t > θ and zero if t∗ = t = θ . It follows

that the symmetric separating equilibrium that maximizes the seller’s expected utility has

t∗ = t .

To complete the proof, we derive an expression for t given that V (θ) + θ <
1

f(θ)
and

V (θ)+ θ∗ > 0. It was shown earlier that t = −V (θ) when V (θ)+ θ ≤ 0 and that t = θ when

V (θ) + θ > 0 . These observations can be summarized as follows: t = max{θ,−V (θ)} . ¥

C Proof of Proposition 3

The proof proceeds in three parts. We first show that V A(tA) = V B(tB) implies tA = tB. It

follows that V A(θ) < V B(θ) for all θ ∈ (tA, θ ]. We then show that θA
∗ > θB

∗ and that either

tB∗ ≥ tA∗ or tB∗ = θB
∗ . The final part combines these results to demonstrate that CA > CB.
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Suppose that V k(θ) + θ ≤ 0 for all k ∈ {A,B}. In this case, V A(tA) + tA = 0 and

V B(tB) + tB = 0. Since V A(tA) = V B(tB), it must be the case that tA = tB. Now suppose

that V k(θ) + θ < 0 for all k ∈ {A,B}. In this case, tA = θ and tB = θ . Hence, tA = tB.

Finally, suppose that V k(θ) + θ ≤ 0 for some k ∈ {A,B} but that V ℓ(θ) + θ > 0 for ℓ 6= k.

In this case, tℓ = θ while tk satisfies V k(tk) + tk = 0. Since V k(tk) = V ℓ(tℓ) and tk ≥ tℓ,

we have V k(tk) + tk ≥ V ℓ(tℓ) + tℓ. However, since V k(tk) + tk = 0, it must be the case

that V ℓ(tℓ) + tℓ ≤ 0, which contradicts our initial assumption that V ℓ(θ) + θ > 0. The

contradiction allows us to rule out this final case. Having shown that tA = tB, we drop

the superscript and let t denote both tA and tB. The combination of V A(t) = V B(t) and

dV A(θ)

dθ
<

dV B(θ)

dθ
imply that V A(θ) < V B(θ) for all θ ∈ (t, θ ].

We will now show that θA
∗ > θB

∗ . Since V A(θ) + θ <
1

f(θ)
, θA

∗ exceeds θ and satisfies

V A(θA
∗ ) + θA

∗ −
1 − F (θA

∗ )

f(θA
∗ )

= 0. (C.1)

By applying Assumption 1, we obtain θA
∗ > t . Suppose V B(θ) + θ <

1

f(θ)
. It follows that

θB
∗ exceeds θ and satisfies

V B(θB
∗ ) + θB

∗ −
1 − F (θB

∗ )

f(θB
∗ )

= 0. (C.2)

By applying Assumption 1, we obtain θB
∗ > t . Since V A(θ) < V B(θ) for all θ ∈ (t, θ ] and

since both V A and V B satisfy Assumption 4, we have θA
∗ > θB

∗ . Now suppose V B(θ) + θ ≥

1

f(θ)
. In this case, θB

∗ = θ . Since θA
∗ > θ , we have θA

∗ > θB
∗ .

Having established that θA
∗ > θB

∗ , we show that either tB∗ ≥ tA∗ or tB∗ = θB
∗ . Since

V A(θ) + θ <
1

f(θ)
and V A(θ) + θA

∗ > 0, we have tA∗ = max{θ,−V A(θ)}. If tA∗ = θ , tB∗ ≥ tA∗ .
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Now suppose tA∗ = −V A(θ). Note that this implies V A(θ) + θ ≤ 0. If tB∗ 6= θB
∗ , we have

tB∗ = max{θ,−V B(θ)}. Since V A(t) = V B(t) and
dV A(θ)

dθ
<

dV B(θ)

dθ
for all θ ∈ [θ, θ ], it

must be the case that V A(θ) ≥ V B(θ). V A(θ) + θ ≤ 0 then implies V B(θ) + θ ≤ 0, which

implies tB∗ = −V B(θ). Since −V B(θ) ≥ −V A(θ), tB∗ ≥ tA∗ .

We have established that (1) V B(θ) > V A(θ) for all θ ∈ (t, θ ], (2) θB
∗ < θA

∗ , and (3)

either tB∗ ≥ tA∗ or tB∗ = θB
∗ . We will now exploit these results to demonstrate that CA > CB.

Recall that

Ck ≡ −n

∫ θk
∗

tk
∗

[
V k(x) + x −

1 − F (x)

f(x)

]
F n−1(x) f(x) dx , k ∈ {A,B}. (C.3)

Since V A(θ) + θ <
1

f(θ)
and V A(θ) + θA

∗ > 0, we have tA∗ = max{θ,−V A(θ)}. In addition,

V A(θ) + θ <
1

f(θ)
implies θA

∗ > θ , and V A(θ) + θA
∗ > 0 implies θA

∗ > −V A(θ). It follows

that θA
∗ > tA∗ . Since V A(x) + x −

1 − F (x)

f(x)
is negative for all x ∈ [tA∗ , θA

∗ ), CA > 0.

Suppose tB∗ 6= θB
∗ . In this case, tB∗ ≥ tA∗ , which allows us to write [tB∗ , θB

∗ ] ⊂ [tA∗ , θA
∗ ].

Recall that tA∗ = max{θ,−V A(θ)}. If V A(θ) + θ ≥ 0, tA∗ = θ and t = θ . If V A(θ) + θ < 0,

tA∗ = −V A(θ) and t = −V A(t). In either case, tA∗ ≥ t . It follows from Condition (1) that

V B(θ) > V A(θ) for all θ ∈ (tA∗ , θA
∗ ]. Since [tB∗ , θB

∗ ] ⊂ [tA∗ , θA
∗ ] and V B(θ) > V A(θ) for all

θ ∈ (tA∗ , θA
∗ ], we have CA > CB. Now suppose tB∗ = θB

∗ . In this case, CB = 0. Since CA > 0,

we have CA > CB. ¥
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