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Abstract 

In this paper we examine the innovative performance of Greek firms in terms of the 

women participation in research and technological development. For this reason we 

rely on the final results of a research project on women in innovation, technology and 

science, based on 279 questionnaires selected on a two years time period (2004-2006). 

Concerning the female participation in innovations a number of variables are used, like 

the total number of women employees by age, by education level, by firm size and by 

sector, as well as women in product and in process innovations, their position in the 

firm (owner, manager) and finally equality in job enrichment, in salary, in education–

training and in promotion.  Apart of presenting the empirical results relying on the 

analysis of the data collected by the survey to the Greek enterprises, we use the 

collecting variables in an econometric formulation using logistic regression and 

extracting the associated probabilities for implementing innovations. For this reason, 

first the General Linear Model (GLIM) is introduced and statistical inference and 

estimation problems are discussed. Then the Logit Model is presented under the 

theoretical framework of the Generalized Linear Models (GLIM), while some 

theoretical inside is extended with a number of suggested propositions and theorems.    
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Introduction 
Innovation refers to a new or significantly improved product (good or service) 

introduced to the market. Innovations rely on the results of new technological 

developments, new combinations of existing technologies and production methods or 

the utilisation of other knowledge acquired by the firm during its operation. 

Specifically product innovation may take place with respect to its fundamental 

characteristics, its technical specifications, potential uses, or user friendliness. 

Innovation may also refer to the introduction within a firm of a new or significantly 

improved process. A process innovation includes new and substantially improved 

production technology, better and easier methods of supplying services and of 

delivering products. Innovations may be developed either by the innovating firm or by 

another firm. Innovations should be new to the firm under consideration. For product 

innovations they do not necessarily have to be new to the market and for process 

innovations the firm does not necessarily have to be the first to have introduced the 

process.   

The emphasis in the existing literature is mainly on an increasing relevance of 

knowledge and innovation as an input to production and innovative processes (OECD, 

2001). The OECD (1996) report on ‘The Knowledge-based Economy’ clarifies the 

terms used in describing the ‘New Economy’. The increasing contribution of high-tech 

sectors (computers, electronics and aerospace) to GNP and employment as well as the 

recognition of the role of knowledge and technology in economic growth has led to the 

establishment of the term ‘knowledge-based economy’ (OECD 1996, p. 9).  

In innovation management, the first explicit theory is the “technology push theory or 

engineering theory of innovation”, where basic research and industrial R&D are the 

sources of new or improved products and processes. The production and uptake of research 

follows a linear sequence from the research to the definition of a product and 

specifications of production. Alternatively and in the 1960s, the “market pull theory of 

innovation” gave a central role to research as a source of knowledge to develop or improve 

products and processes.  

The latter theory recognizes for the first time the organisational factors as 

contributors in innovation theory. Technical feasibility was still considered as necessary 

condition for innovation but no longer sufficient for successful innovation (Schmookler, 

1996; Myers and Marquis, 1969). Here is where a new generation called the “chain-link 

theories” of innovation emerged in order to explain that linkages between knowledge and 

market are not as automatic as assumed in the technology push and the market pull 

theories of innovation (Von Hippel, 1994).  

At the end of the 1980s and during the 1990s, a technological networks theory of 

innovation management was developed by a new group of experts as “systems of 

innovation”. According to Nelson (1993) and OECD (1999) this view emphasizes the 

significance of external to the firm information sources such as clients, suppliers, 

consultants, government laboratories and agencies etc. Finally, “the social network theory” 

of innovation management may be considered which states that knowledge is crucial in 

facilitating innovation. According to Foray (2000) the increasing and steadily growing 

significance of knowledge as a production factor and as a determinant of innovation is 

explained by the continuous accumulation of technical knowledge through time, as well 

as by the use of communications technologies that facilitates this knowledge making it 

available instantly worldwide.  

The target of this paper is to analyse the framework, the obstacles and the 

determinant factors and furthermore the role of female entrepreneurship in the Greek 

firms, under the Generalized Linear Models statistical framework. Specifically, we 
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provide the theoretical background of the adopted Generalized Lineal Model theory, so 

crucial in any Risk Analysis problem and we also extensively discuss the Greek case of 

female participation in innovation activities of firms. We are relying on the results of a 

research project on women in innovation, technology and science, based on 279 

questionnaires selected on a two years time period (2004-2006), when 2200 

questionnaires were delivered across the country, to firms with more than 20 

employees. In this paper cconcerning the female participation in innovations a number 

of variables are used. Specifically, the total number of women employees by age, by 

education level, by firm size and by sector, as well as women in product and in process 

innovations, their position in the firm (owner, manager) and finally equality in job 

enrichment, in salary, in education–training and in promotion.   

Apart of presenting the empirical results relying on the analysis of the data collected 

by the survey to the Greek enterprises, we use the collected variables in an econometric 

formulation using logistic regression and extracting the associated probabilities for 

implementing innovations. For this reason, first the General Linear Model (GLIM) is 

introduced and statistical inference and estimation problems are discussed. Then the 

Logit Model is presented under the theoretical framework of the Generalized Linear 

Models (GLIM), while some theoretical inside is extended.    

The structure of the paper is the following. Section 1 introduces the theoretical 

background of the GLIM while section 2 discusses the logistic model as a special 

case of GLIM. Section 3 presents an empirical application in the case of innovation 

activities in Greece. In particular this section discusses the data used, the basic 

descriptive empirical findings and the results derived using a logistic regression 

formulation. The final section concludes the paper. 

1. Generalized Linear Models (GLIM) 

1.1 Linear Models 

Models of the general form  

y eβ= +X      (1.1.1) 

 

where  y is a n x 1 vector of responses, β is a p x 1 vector of parameters, X is a n x p 

matrix with elements zeros or ones or values of the so-called “independent” or “input” 

or “explanatory” variables and e is an unobserved n x 1 vector of errors attracted 

interest  the 20
th

 century. There is an extended bibliography in English and in Greek, 

see Halkos (2006), Kitsos (2006) among others. All the theory of Linear Models (or 

General Linear Model – GLIM) is based on the hypothesis that the errors are 

independent and identically distributed with normal distribution N(0,σ²). 

But it has been noticed that the responses, y, might have distribution other than the 

Normal or might be categorical rather than continuous. And even more the “link” 

between the responses y and the explanatory variables, with form the matrix X, might 

not be linear of the form (1.1.1). Although these are disadvantages there are some 

advantages to keep the theoretical balance: 

1. Many of the properties of the Normal distribution can be faced to a wider class 

of distributions (see section 1.2) 
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2. There are numerical extensions from the estimation of the form Xb to the 

general form g(Xb) (see section 2) 

These two main points provided evidence for the development of the Generalized 

Linear Models theory, covering the General Linear Models. 

1.2 Exponential family of distributions 

Consider a single random variable Y whose probability function is either 

discrete or continuous. We shall say that it belongs to the exponential family if the 

probability function can be written as  

f(y;θ) = γ(y) t(θ) e
a(y)b(θ) 

   (1.2.1) 

where a(.), b(.), γ(.), t(.) are known functions, pθ ∈Θ⊆  is the vector of unknown 

parameter from the parameter space pΘ⊆  . In practice usually p=2, that is only two 

parameters have to be estimated. In most theoretical approaches Θ is assumed compact 

so that if there are any sequences assumed (as in sequential analysis problems) the 

sequences converge within Θ.  

The (1.2.1) form can be reduced to  

f(y;θ)=exp{a(y)b(θ)+C(θ)+d(y)}   (1.2.2) 

where γ(y)=
( )d y

e , t(θ)=exp[C(θ)]. 

If γ(y)=y the (1.2.2) is known as the canonical form. The term b(θ) is known also as the 

natural parameter of the distribution. If there are additional parameters, besides θ, they 

are acting as “nuisance parameters” forming part of a, b, c, d and they are assumed to 

be known (although might not be!) 

For the well-known distributions Poisson, P0(λ), the normal N(μ, σ²) and the binomial 

B(n; y, p) which belong to the exponential family. Table 1 below summarizes the 

mentioned terminology. 

Table 1: Poisson (λ), Normal N(μ, σ²), Binomial(n; y, P) from the exponential family 

Distribution Natural parameter C d 

P0(λ) Logλ -λ -logy! 

N(μ, σ²) 
2

μ
σ

 
2

2

2

1
log 2

2

μ πσ
σ
⎡ ⎤

− +⎢ ⎥
⎣ ⎦

2

2

1

2

y

σ
−  

B(n; y, P) 
log

1

P

P−
 ( )log 1n P−  

log
n

y

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Notice that from (1.2.2) the likelihood function L (the joint distribution function for the 

independent Y1,Y2,...,Yn from (1.2.2)) is  
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1 11

( ; ) exp ( ) ( ) ( ) ( )
n n n

i i i

i ii

L f y b a y nG d yθ θ θ
= ==

⎧ ⎫= = + +⎨ ⎬
⎩ ⎭

∑ ∑∏   (1.2.3) 

The statistic ( )iT a y=∑  is called sufficient statistic for b(θ). Practically this means that 

the statistic T, the summation, summarizes all the information about θ. 

Now, the target is to find “closed”, if possible, expressions for the expected value and 

variance, so that inference to be feasible for a(y). The main implication is the so called 

Granger-Rao theorem (see Kitsos and Edler, 1997) and for a theoretical framework 

Scherrish (1995). Let us now discuss how this can be useful in practical problems. 

Consider the log-likelihood l and 
l

U
θ
∂

=
∂

, 
2

'

2

l
U

θ
∂

=
∂

.  Then it can be proved that 

( ) 0,E U =  2( ) ( ) ( ')Var U E U E U= − −    (1.2.4) 

Function U is known as “score function” and the variance of U is a case of what is 

called in Statistics (Fisher's) information. There are different measures of information, 

like Fisher's, Shannon's etc. and there are some relations among them, but this is 

beyond the task of this paper. Moreover we would like to emphasize that the closed 

forms we are looking for, do not provide solutions and therefore an old (and secure) 

iterative scheme is adopted: Newton-Raphson. 

Here we comment that these methods are rich in theoretical background and 

mathematical application. So the experimentalists, and not only, were wondering how 

useful are really. Now with the statistical packages the results are easy to be obtained, 

but to interpret them, the theoretical insight is necessary. That is what we provide, in a 

compact form, in this section. 

Consider the exponential family as in (1.2.2). The log-likelihood is  

l = log f(y;θ)=a(y)b(θ)+c(θ)+d(y)   (1.2.5) 

Therefore we easily evaluate the score function and its derivative: 

U= a(y)b'( )+c'( ), θ θ  U’= a(y)b’’(θ)+c’’(θ)  (1.2.6) 

As E(U)=0 then 

0 = E[a(y)]b’(θ)+c’(θ) ⇒  E[a(y)]=
'( )

'( )

c

b

θ
θ

−    (1.2.7) 

Thus a closed form for E[α(y)] has been evaluated. Moreover, consider (1.2.4), it is 

Var(U)=[b’(θ)] ²  Var [a(y)] 

Ε(-U’) = -b’’(θ) E [a(y)] - c’’(θ) 
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 Thus 

[ ] [ ]2

2

1
( ) ''( ) '( ) ''( ) '( )

[ '( )]

'( ) '( )1

''( ) ''( )[ '( )]

Var a y b c c b
b

c b

c bb

θ θ θ θ
θ

θ θ
θ θθ

= −

=
 (1.2.8) 

Therefore with (1.2.7) and (1.2.8) closed forms for the expected value and variance of 

a(y), from the exponential family of models, have been evaluated.   

1.3 Definition of GLIM 

Nedler and Wedderburn (1972) in their pioneering paper noticed the unity a 

class of statistical methods, involving linear combinations of parameters. The idea of a 

generalized linear model came into light. We briefly follow it. 

Consider Y1,Y2,...Yn independent random variables, each with a distribution form the 

(1.2.1) exponential family. Moreover: 

i. Each of the observations Yi, i=1,2,...n has distribution of the canonical form i.e. 

a(y)=y. Depending on a single θi (1.2.2) is reduced to 

 f(yi;θi)=exp{yib(θi)+C(θi)+d(yi)}    (1.3.1) 

 

Notice that not all θi's have to be the same 

ii. The joint probability density function of Y1,Y2,...Yn is then evaluated as  

1 2 1 2

1

( , ,..., ; , ,..., ) exp [ ( ) ( ) ( )]
n

n n i i i i i

i

f y y y y b C d yθ θ θ θ θ
=

⎧ ⎫= + +⎨ ⎬
⎩ ⎭
∑  (1.3.2) 

iii. We consider a “small” set of parameters 1 2, ,...,
p

β β β say p<n and a (monotone 

differentiable) function g, known as link function which relates the expected 

value of  ( ),
i i L

Y E Y μ= , with a linear combination of β's, i.e. 

( ) T

L L
g μ β= X     (1.3.3) 

with ( )1 2, ,..., ,
T

p iβ β β β= X  and a p x 1 vector of explanatory variables. 

Example 1: The general linear model of the form (1.1.1) y β= +X e  is, trivially, a 

GLIM model with link function ( ) T

i i ig μ μ β= = X , i.e. the identity and ( )2,
i L

Y N μ σ . 

Example 2: For the binary responses Y1,Y2,...Yn, with ( 1) 1 ( 0)
i i i

P Y P P Y= = = − = . 

The probability function of Yi is 1
(1 ) ,L Ly y

i L ip p y
−− =  0 or 1. This distribution function 



 7

belongs to (1.2.1) family, and the link function ( ) ( )log ,
1

i
i i i

i

P
g P P E Y

P
= =

−
 is known 

as logit function. See Section 2 for a further development. If we assume   

   ( ) ( )
( )

exp

1 exp

T

T

T
g p p

β
β

β
= ⇒ =

+

x
x

x
 

The logit model is discussed in Section 2. 

1.4 Estimation and inference for GLIM 

Recall (1.2.2) and the likelihood (1.2.3). For the GLIM discussed above the log-

likelihood, from (1.2.3) is reduced to  

1

( ; ) ( ) ( ) ( )
n

i i i

i

l y y b i C d yθ θ θ
=

= + +∑ ∑ ∑    (1.4.1) 

and from (1.2.7)   
'( )

( )
'( )

l
l l

l

c
E y

b

θμ
θ

= = −    (1.4.2) 

The link function is    ( ) T

l l l
g nμ β= =x

   
(1.4.3) 

The solution of the equation 0
l

θ
∂

=
∂

 is equivalent to the solution of  0
l

β
∂

=
∂

 (see Cox 

and Hinkely 1974, chapter 9 for details).  

Therefore, under the regularity conditions, assumed for the evaluation of MLE, 

the evaluation of MLE seems to be an easy story. This is not the case. The MLE can be 

evaluated only adopting numerical methods, the most well known being the Newton-

Raphson. The theoretical insight of such a choice is beyond the target of this paper. 

However other choices have theoretical implementation. Following Kitsos and Edler 

(1997) we choose a “large” set where the solution possibly lies, adopting bisection 

method for 2 or 3 steps and getting an initial guess in the neighbourhood of the 

solution. The Newton-Raphson method can be applied and convergence is “fast” with 

no theoretical implementations. 

For (1.4.1) the following can be proved.  

Proposition 1.4.1. For the log-likelihood (1.4.1) the score function can be evaluated as 

   
1

( )

( )

n
i i iji i

i

ij i i

y xl
U

Var Y n

μ μ
β =

− ⎛ ⎞∂ ∂
= = ⎜ ⎟∂ ∂⎝ ⎠

∑    (1.4.4) 
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2

2

1

( ) ( )

( )

T

jk

j k

n
ij ik i

jk

i i i

l
E E

x x

Var Y n

β β

μ
=

⎛ ⎞∂
= = = − ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠
∑

I UU I

I

Proposition 1.4.2. The Fisher's information matrix equals 

  

   

(1.4.5) 

Notice that Fisher's information is written as  

T=I X WX     (1.4.6) 

With    

2

1

( )

i

i i

diag
Var Y n

μ⎧ ⎫⎛ ⎞∂⎪ ⎪= ⎨ ⎬⎜ ⎟∂⎝ ⎠⎪ ⎪⎩ ⎭
W    (1.4.6a) 

To solve the equation    0
l

U
β
∂

= =
∂     

(1.4.7) 

the Newton-Ramphson iterative scheme of the following form is adopted 

1

1

U
U

ν

ν ν ν
β β

β β
β

−

+
=

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

   (1.4.8) 

But, considering the following steps with E being the “expectation” 

2 2

lk

l k l k l k l k

U l l l l l l
E E

β β β β β β β β β
⎧ ⎫ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂

= = = −⎨ ⎬ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎣ ⎦
I  (Fisher’s Information) 

Therefore (1.4.8) is reduced to  1

1 Uν ν ν νβ β −
+ = + I    (1.4.9) 

The Fisher's information matrix is evaluated at β=βν and actually is replaced by its 

estimate. Multiplying both sides of (1.4.9) by Iv we get 

1 Uν ν ν ν νβ β+ = +I I     (1.4.10) 

Recall (1.4.6) and notation (1.4.6a) and introduce the notation 

( )i lk k i i

i

n
Z x yβ μ

μ
∂

= + −
∂∑    (1.4.11) 

with βκ at ν-iteration then (1.4.10) is reduced to  

T T

v Z
b =X WX X W     (1.4.12) 

Relation (1.4.12) is equivalent to iterative weighted least square (WLS), i.e. 
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Proposition 1.4.3 The MLE for GLIM is obtained by WLS.  

As it is known in GLIM the MLE and OLS coincide. Therefore Proposition 1.4.3 is the 

equivalent of this result. 

As far as statistical inference is concerned we note that the score function U has 

the multivariate normal N(0,I), therefore 

1 2T

p
χ−U I U       (1.4.13) 

with I being Fisher's information matrix. The chi-square distribution plays a central role 

to the GLIM theory (see expressions (1.4.18), (1.4.19) below).  

Now, if we expand the score function for the parameter β around b, by Taylor 

expansion then 

( ) ( ) ( )( )U U b H b bβ β= + −     (1.4.14) 

with H(b) being the Hessian matrix, i.e. the matrix of second derivatives of log-

likelihood at β=b. Then it can be proved that 

( ) ( )T
E UU E H= = −I     (1.4.15) 

The following statistic (actually the “Euclidean” distance of b from β, that is how “far” 

is the estimate from the true parameter) 

2( ) ( )T

p
b I bβ β χ− −       (1.4.16) 

is known as the Wald statistic. In practice is used to make statistical inference about β. 

The adequacy of the model is assessed by the likelihood ratio statistic λ which equals to  

    
( ; )

( ; )

MLE
L b y

L b y
λ =     (1.4.17) 

where bMLE the MLE of β, ( )L   the likelihood function. Therefore λ offers a measure 

of goodness of fit as the ratio of the maximal model and the model of interest. Moreover 

log ( ; ) ( ; )
MLE

b y b yλ = −l l      (1.4.17a) 

Nedler and Wedderburn (1972) defined the deviance D as  

[ ] 22log 2 ( ; ) ( ; )
MLE n p

D b y b yλ χ −= = −l l    (1.4.18) 

As theoretically the chi-square is a measure of distance by (1.4.18) we measure the 

distance of the log-likelihood.  
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[ ] [ ]
[ ]
0 1 0 1

2

1 0

2 ( ; ) ( ; ) 2 ( ; ) ( ; )

2 ( ; ) ( ; )

MLE MLE

p q

D D D b y b y b y b y

b y b y χ −

= − = − − −

= −

l l l l

l l 

If the model is poor D will be larger predicted by 2

n p
χ − . Theoretical D follows a 

non-central 2χ , but this is beyond this paper. Thus if a model –with p parameters– 

provides a good description of the collected n observation so that 2

n p
D χ − , we expect 

D N P−       (1.4.18a) 

The deviance D can be a helpful tool for a hypothesis testing. Indeed if we are 

interesting in testing   0 0:H β β=  vs. 1 1:H β β≠  

with ( )0 1,...,
T

qβ β β= , ( )1 1,...,
T

ppβ β= , 2<p<n 

Proposition 1.4.4. We can test 0H  versus 1H  by adopting the difference of deviances 

under 0H  and 1 0 1, ,H sayD D  respectively. 

 Indeed: 

    

          (1.4.19) 

Thus if D has been evaluated greater than the upper tail 100% point of the 2

p q
χ −   we 

reject H0 in favour of 1H  – i.e. even though β1 has too many parameters does not fit the 

collected data set satisfactory. Notice that F distribution can be used only for model 

involving normal distribution. In such a case  

0 1 1
,p q n p

D D D
F F

p q n p
− −

−
=

− −
    (1.4.20) 

If 0H  is not correct the calculated value of F will be larger than the value of the 

corresponding 
,p q n p

F − −  distribution, at the predefined level. 

 

2. Logistic Regression 

The logistic regression is a particular case of a GLIM. We are going to discuss 

the simple logistic model next. 

 

2.1 Introduction 

There are real life problems were interest is focused on the number of 

“successes” or “failures” within a (sub) group of observations. The idea was extended 

to various other problems, number of employment/unemployment, to prefer or not a 

product (or procedure or course or candidate etc). This is the typical situation were for 

years the ordinary least square method (OLS) was adopted, since Gauss in problems of 

geodesy and latter, since Kendall adopted it to social sciences, economy etc. 
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Let us formulate the problem. We are working with generalized linear models 

(GLIM), were the response is a binary variable declaring “success” or “failure” as was 

above discuss. Let W be such a variable: 

1 if the outcome is success  

0 if the outcome is failure   (2.1.1) 

With   ( ) ( )1 1 0P W P Wπ= = = − =     (2.1.2) 

Certainly any number could declare success or failure say -1 and 1, 5 and 15 BUT we 

are using 1 and 0 (and the statistical packagers only these values realize) as we are 

NOT interested in W eventually, but on the summation of values W. 

Actually if they are observed in such independent random variables with 

assessing probability then the joint probability is evaluated as. 

( )1

1 11

(1 ) exp log log 1
1

i i

n n n
w w i
i i i

i ii i

w
ππ π π
π

−

= ==

⎧ ⎫⎛ ⎞⎪ ⎪− = + −⎨ ⎬⎜ ⎟−⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑∏  (2.1.3) 

Notice that (2.1.3) belongs to the exponential family of models discussed in section 

(1.2) assuming that πi’s are equal, i.e. 

   1,  success with probability π 

   0,  failure with probability 1-π   (2.1.4) 

In such a case if we define the random variable as 

1

n

i

i

Y w
=

= =∑ number of successes   (2.1.5) 

it is a binomial distribution with probability density function defined as 

( ) (1 )y n y
n

P Y y
y
π π −⎛ ⎞

= = −⎜ ⎟
⎝ ⎠

 y = 0, 1, …, n  (2.1.6) 

So we can classify the data as in Table 2 if N independent random variables Y1,Y2,...YN 

corresponding to the number of successes/failures are assumed. 

Table 2. Frequencies of N binomial distributions  

                                                Subgroup  

1 2 … N 

Successes Y1 Y2 … YN 

Failures n1 –Y 1 n2 –Y 2 … nN – YN 

Totals n1 n2 … nN 

 

W =

W =
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The most typical case in practice is to consider two subgroups. Examples are 

employment/unemployment for men/women, getting or not a characteristic for patient 

/not patient, etc. 

 

2.2 Generalized Linear Models 

The target is to ”describe”, to “analyze” the proportion of successes i
i

i

Y
P

n
= , in 

each subgroup (see Table 2.1) in terms of e.g. factor levels, sex age etc acting as 

explanatory variables Xi which “describe” the subgroup. That is we are interested in 

assuming that there is a link function which is modelling the probabilities πi as 

( ) T

i i
g π β= X      (2.2.1) 

with β being a vector of parameters. 

Trivially if ( ) T

i i
g π β= X  then ( )1 T

gπ β−= X and as π needs to be within [0,1] we 

assume the existence of a cumulative distribution function (cdf) F such that 

( ) ( )1 ( )
t

Tg F t f w dwπ β−

−∞
= = = ∫x   (2.2.2) 

as by the definition of the cdf a distribution function f exists such that (2.2.2) to be true. 

This probability density function f(w) is called tolerance distribution. As there are 

various tolerance distributions we shall focus our attention on 

( )
[ ]

1 0 1

2

0 1

exp( )

1 exp( )

w
f w

w

β β β
β β

+
=

+ +
     (2.2.3) 

known as logit or logistic model. 

From (2.2.3) and (2.2.2) we have  

( ) 0 1

0 1

exp( )

1 exp( )

x x
f w dw

x

β βπ
β β−∞

+
= =

+ +∫     (2.2.4) 

Therefore the link function (see (2.2.1)) is 

( ) 0 1log
1

g x
ππ β β
π

= = +
−

     (2.2.4α) 

This link function, log
1

π
π−

,is known as logit function or logit transformation. 

2.3 MLE for the Logit 

We are fitting the logistic model of the form 
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0 1 1

0 1 1

exp( )

1 exp( )
i

x

x

β βπ
β β
+

=
+ +

 

So ( ) ( )0 1 0 1log log 1 log 1 exp
1

i
i i i

i

x x
π β β π β β
π

⎡ ⎤= + ⇒ − = − + +⎣ ⎦−
 (2.3.1) 

From (2.1.3) and (2.3.1) we get the log-likelihood function equal to 

( ) ( )0 1 0 1

1

log 1 exp log
n

i

i i i i

i i

n
y x n x

y
β β β β

=

⎧ ⎫⎛ ⎞⎪ ⎪= + − + + +⎡ ⎤⎨ ⎬⎜ ⎟⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭
∑l  (2.3.2) 

Therefore the score functions with respect to β0 and β1 are evaluated as 

( )

( )

0

10

1

11

n

i i i

i

n

i i i i

i

U y n

U x y n

π
β

π
β

=

=

∂
= = −
∂

∂
= = −
∂

∑

∑

l

l
   (2.3.3) 

Therefore Fisher's 2x2 information matrix I is evaluated equal to 

( ) ( )
( ) ( )2

1 1

1 1

i i i i i i

i i i i i i i i

n n x

n x n x

π π π
π π π π

⎛ ⎞− −
= ⎜ ⎟⎜ ⎟− −⎝ ⎠

∑ ∑
∑ ∑

I   (2.3.4) 

Recall that MLE are obtained through the iterative scheme 

1 1 1 1Uν ν ν ν νβ β− − − −= +I I     (2.3.5) 

see (1.4.10). Therefore an initial guess should be provided. To “feed” (2.3.5) initial 

guesses might be used - take 
0,0 0,β = 1,0 0.β =  The estimated variance-covariance 

matrix is ( ) 1

νβ
−

⎡ ⎤⎣ ⎦I , the fitted values then are ˆ ˆ
i i i

y nπ=  and  

• the log-likelihood ratio statistic is 

( )
1

log log log
ˆ ˆ

n
i i

i i i

i i i

y n y
y n y

y n y
λ

=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
= + −⎢ ⎥⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎣ ⎦
∑    (2.3.6) 

As 2 logD λ=  see (1.4.18) and ˆ ˆ
i i i

y nπ=   we get from (2.3.6) that the deviance D is 

( )
1

2 log log
ˆ ˆ

n
i i

i i i

i i i i

y n y
D y n y

n n nπ π=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
= + −⎢ ⎥⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎣ ⎦
∑   (2.3.7) 
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Notice that (2.3.6a) does not involve any nuisance parameters and recall that 2

n p
D χ − , 

see (1.4.18a). 

2.4 Goodness of fit 

Recall that Pearson's 2χ  statistic is defined as 

( )2

2
O E

E
χ

−
=∑     (2.4.1) 

That is (2.4.1) offers a measure of distance between the observed (O) and the expected 

values (E). For the cells of Table 2.1 this is clear. 

 For the model under investigation  

( )i i i
E Y nπ=  and ( ) ( )1

i i i i
Var Y nπ π= −  

• so the weighed sum of squares     

 
( )

( )

2

2
1 1

n
i i

i i i i

y n
WSS

n

π

π π=

−
=

−
∑    (2.4.2) 

has a meaning to attract interest.  

Proposition 2.4.1 The WSS is equivalent to 2χ . Indeed, if we consider (2.4.1): 

 

          (2.4.3) 

 

Therefore when is calculated at the estimated values is 

( )
( )

2

2

1

ˆ

ˆ ˆ1

n
i i i

cal

i i i i

y n

n

π
χ

π π=

−
=

−∑     (2.4.4) 

A very nice result for the 2χ , measure of distance between observed and expected 

values is that 

Proposition 2.4.2  Relation (2.3.6) is equivalent to (2.4.4). Therefore the evaluated 

deviance for the logit model coincided with the calculated 2

cal
χ  values. 

 Indeed: 

( ) ( ) ( )
( )

( )
( ) ( )

22

2

1 1

2

1

1

1

1
1

n n
i i i ii i i

i ii i i i

n
i i i

i i

i i i i

n y ny n

n n

y n
WSS

n

ππ
χ

π π

π
π π

π π

= =

=

− − −⎡ ⎤− ⎣ ⎦= +
−

−
= − + =

−

∑ ∑

∑
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( )

( ) ( )

( ) ( )
( ) ( )

( )

1

2

1

2
2

1

2

2 log log
ˆ ˆ

ˆ1
ˆ2 ...

ˆ2

ˆ1
ˆ2 ...

ˆ2

ˆ

ˆ

n
i ii

i i i

i i i i i i

n
i i i

i i i

i i i

n
i i i i i

i i i i i

i i i i

i i i

i

n yy
D y n y

n n n

y n
y n

n

n y n n
n y n n

n n

y n

n

π π

π
π

π

π
π

π

π
π

=

=

=

⎡ ⎤⎛ ⎞⎛ ⎞ +
= + −⎢ ⎥⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤−
− + + +⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤⎧ ⎫⎡ ⎤− − −⎢ ⎥⎪ ⎪⎣ ⎦+ − − − + +⎡ ⎤⎨ ⎬⎣ ⎦⎢ ⎥−⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

−

∑

∑

∑

l




( )

2

1 ˆ1

n

cal

i i i

χ
π=

=
−∑

We shall apply the Taylor series expansion of log
K

K
L

 about K=L, of the form 

( ) ( )2

1
log ...

2

K LK
K K L

L L

−
= − + +  

We apply this Taylor expansion for the two terms of D with 
i

K Y= , ˆ
i

L nπ=  and 

( )
i i

K n y= − and ˆ
i i i

L n nπ= −  as follows 

 

 

 

 

 

 

(2.4.5) 

2.5 Extensions 

Let us now discuss another very important index in Logistic analysis, the odds 

ratio. First we define the distributional properties of the dependent variable
1
, which 

is a dichotomous variable Y taking the value of 1 with probability Θ and the value of 

0 with probability 1-Θ. Such a random variable has a simple discrete probability 

distribution given as 

 

   Pr (Yi , Θi ) = ii Y

i

Y

i

−Θ−Θ 1
)1(     (2.5.1) 

        

Given the mutually independent Y1, Y2,…,Yn, the likelihood function of (2.5.1) is the 

product of the marginal distributions for the Yi ’s. Specifically 

 

L(Y;Θ)= ( )( )Pr( ; )Yi i i

Y

i

Y

i

n

i

n

i iΘ Θ Θ= − −

==
∏∏ 1

1

11

 (2.5.2) 

 

where Θ=(Θ1 , Θ2, …, Θn). 

 In our sample the first n1 out of n observations have the characteristic under 

investigation (employment – unemployment, having information – not having 

                                                 

1 For more details on the properties and applications of logistic regression see Halkos (2006), 

Kleinbaum (1994), Hosmer and Lemeshow (1989), Kleinbaum et al. (1999), Hair et al. (1998), Sharma 

(1996). 
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information etc) and so Y1=Y2=…=
1n

Y =1 while the rest of the observations do not and 

so 
1 1n

Y + =
1 2n

Y + =…=Yn=0. This means that expression (2.5.2) becomes 

   

   L(Y;Θ)=
1

11 1

(1 )
n n

i i

i i n= = +

⎡ ⎤⎛ ⎞
Θ −Θ⎢ ⎥⎜ ⎟

⎝ ⎠ ⎣ ⎦
∏ ∏    (2.5.3) 

If Xi =(Xi1, Xi2, …,Xik) the set of values of the k independent variables X1, X2, …, Xk 

specific to individual i then the logistic model assumes that between Θi and Xij’s a 

specific form exists which is given by 

    

0

1

1

1 exp

k

j ij

j

i

Xβ β
=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟− +
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Θ =
∑

+

 i=1,2, …, n  (2.5.4) 

 

Obviously βj are unknown coefficients to be estimated by regression. Replacing Θi in 

(3) we derive the likelihood function as 

 

  L(Y;β) = 

1 0

1

0

1

( )

1

1

exp

1 exp

k

ij

j

k

j ij

j

n X

i

Xn

i

β

β β

=

=

+

=
⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

=

∑

⎡ ⎤∑⎢ ⎥+⎢ ⎥
⎢ ⎥⎣ ⎦

∏

∏

   (2.5.5) 

 

Although we assume an unconditional maximum likelihood function that could lead to 

biased estimates of β’s as our data size is large this potential problem is not so serious.  

 

 The regression coefficients β’s of the proposed logistic model quantifies the 

relationship of the independent variables to the dependent variable involving the 

parameter called the Odds Ratio (OR).  

 

Definition 2.5.1.  As odds we define the ratio of the probability that implementation 

will take place divided by the probability that implementation will not take place. 

 

That is     Odds (E⏐X1, X2, …, Xn) = 
Pr( )

Pr( )

E

E1−
  (2.5.6) 

 

Instead of minimizing the squared deviations as in a multiple regression, logistic 

regression maximizes the likelihood that an event will take place.  

 

0 1 1 2 2

Pr( )
ln ...

1 Pr( )
k k

E
X X X

E
β β β β= + + + +

−
  (2.5.7) 

 

or     Pr(E)
0

1

( )

1

1 exp

k

i ij

i

Xβ β
=

− +
=

∑
+

   (2.5.8) 
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where P is the probability of having the characteristic under investigation given the 

independent variables X1, X2,…, Xk. Equation (2.5.8) models the log of the odds as a 

linear function of the independent variables and it is equivalent to a multiple regression 

equation with log of the odds as the dependent variable.  

 

The logit form of the model is a transformation of the probability Pr(Y=1) that 

is defined as the natural log odds of the event E(Y=1). That is 

logit [Pr(Y=1)]=ln[odds (Y=1)]=ln 
Pr( )

Pr( )

Y

Y

=
− =

⎡

⎣
⎢

⎤

⎦
⎥

1

1 1
   (2.5.9) 

 

 Let us consider the general case, where the dichotomous response variable Y, 

denotes whether (Y=1) or not (Y=0) the characteristic under investigation (employment 

– unemployment, having information – not having information etc) is linked with the k 

regression variables X=(X1, X2, …., Xk) via the logit equation  

 

   

0

1

0

1

exp

( 1)

1 exp

K

k k

k

K

k k

k

X

P Y

X

β β

β β

=

=

⎧ ⎫
+⎨ ⎬

⎩ ⎭= =
⎧ ⎫+ +⎨ ⎬
⎩ ⎭

∑

∑
   (2.5.10) 

This is equivalent to 

 

                                     logit Pr(Y=1⎜X)= 0

1

K

k k

k

Xβ β
=

+∑    

  

With this formulation we have the benefit that the relative risk (RR) for individuals 

having two different sets X′ and X of risk variables is  

 

   
[ ]

1

( ) 1 ( )
exp ( )

( )[1 ( )]

K

i i i

i

P X P X
RR X X

P X P X
β

=

′ − ⎧ ⎫′= = −⎨ ⎬′− ⎩ ⎭
∑  (2.5.11)

  

It is essential that the RR of the k regressors (RRk) influences the RR of the k+1 

regressors, RRk+1 as in relation (2.512) below, due to the following Theorem 2.5.1.  
  

Theorem 2.5.1 

 Let the relative risk of as above in (2.5.11) is 

 

    
1

K

K i i

i

RR β δ
=

=∑   with 
i i i

X Xδ ′= −  

 

Then if a variable is added the relative risk of the k+1 variable equals the k-variables 

relative risk times the new variable relative risk, ie. 

 

    RRk+1 = RRk rk+1    (2.5.12) 

Proof 

 

Indeed  
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1

1

1

exp
K

K i i

i

RR β δ
+

+
=

⎧ ⎫= =⎨ ⎬
⎩ ⎭
∑ 1 1

1

exp
K

i i K K

i

β δ β δ+ +
=

⎧ ⎫+ =⎨ ⎬
⎩ ⎭
∑ { }1 1 1

1

exp exp
K

i i K K K K

i

RR rβ δ β δ+ + +
=

⎧ ⎫ = ⋅⎨ ⎬
⎩ ⎭
∑  

Where the definition of rK+1 is obvious. So the relative risk of the incoming K+1 

variable is     

    1
1

K
K

K

RR
r

RR

+
+ =  .     

 

Now suppose that v is an indicator variable denoting whether or not (v=1 or v=0) 

someone is sampled. If we denote by  

 

    μ1 = P(v=1⏐Y=1)   

    μ0 = P(v=1⏐Y=0)     (2.5.13) 

 

the probability that the one with the characteristic is included in the study (μ0) and the 

probability that the one without the characteristic participates as a control then the 

conditional relative risk influences only the constant term β0, while the rest part of RRK 

remains “invariant”, due to the following Theorem 2.5.2.  

 

Theorem 2.5.2 

The relative risk defined as the conditional probability that a person has the 

characteristic, given that has risk variables X and also was sampled from the case-

control studies is of the form (2.5.10) with constant term β0′ equal to: 

    
0

1
00 log

μ
μ

ββ +=′     (2.5.14) 

Proof: 

From Bayes′ theorem   

P(Y=1⏐v=1,X)= =
==+===

===
)/1(),1/1()/0(),0/1(

)/1(),1/1(

XYPXYvPXyPXYvP

XvPXYvP
 

1 0

1

0 1 0

1

exp

exp

k

i i

i

k

i i

i

X

X

μ β β

μ μ β β

=

=

⎧ ⎫+⎨ ⎬
⎩ ⎭=
⎧ ⎫+ +⎨ ⎬
⎩ ⎭

∑

∑
=

⎭
⎬
⎫

⎩
⎨
⎧

++

⎭
⎬
⎫

⎩
⎨
⎧

+
=

∑

∑

=

=

k

i

ii

k

i

ii

X

X

1

0

0

1

1

0

0

1

exp1

exp

ββ
μ
μ

ββ
μ
μ

0

1

0

1

exp

1 exp

k

i i

i

k

i i

i

X

X

β β

β β

=

=

⎧ ⎫′ +⎨ ⎬
⎩ ⎭
⎧ ⎫′+ +⎨ ⎬
⎩ ⎭

∑

∑
 

With 0β ′ as in (2.5.14). 

 

 Let us now estimate the marginal influence of extra regressors. It is known that 

the percentile point Lp, for the cumulative distribution function F(x) is defined as 

F(Lp)=p. Therefore for the logistic Λ(⋅), say, we have 

 

  ( ) { }10 1: 1 exp ( )
p p

L L pθ θ θ
−

⎡ ⎤Λ = + − + =⎣ ⎦    (2.5.15) 

 

Solving equation (2.5.15) for Lp it can be evaluated that    

  ( )[ ]1ln 1

0

1

1 −+−= −− pLp θθ      (2.5.16) 

 

From (2.5.16) with p=0.5, i.e. for the median M=L0.5 it is obtained equal to 
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1

0

θ
θ

−=M      (2.5.17) 

 

In economical analysis the median M, although a biased estimator, is sometimes, more 

useful than the unbiased mean, as it offers a better measure of the location of the data. 

Median, even under the minimax criterion, is not selected compared to the mean. But as 

it remains invariant if the “end-points” change drastically it is a better location measure 

in many cases of the economical data analysis. Consider that the value of Lp in (2.5.16) 

is a function of the parameter, i.e. Lp=Lp(θ), with θ=(θ0, θ1). With the above discussion 

in mind, we state and prove the following proposition.  

 

Proposition 2.5.1: 

The minimization of the variance of the percentile point Lp, Var(Lp), is (approximately) 

equivalent to minimize the  

     ( )CIC F

T θ1−     (2.5.18) 

With C=(1,Lp) and 1
*

−
F

I the (average per observation) Fisher’s information and θ=(θ0, 

θ1). 

 

Proof: 

It is known, in principle for the exponential family of models, with response η it is  

 

    TT

F vvI =∇∇= − ))(()( 2 ηησθ    (2.5.19) 

 

where the definition of the vector v is obvious, and v
T
 is the transpose of v, and ∇ is the 

“grand” vector asn usually. Moreover in many of the nonlinear problems the covariate 

u and the parameter θ appears “together” linearly, i.e. )( u
Tθηη = . In such a case  

  ( )[ ] uuw
T 2/1

θη =∇   with  

2

)( ⎥⎦
⎤

⎢⎣
⎡
∂
∂

=
z

zw
η

,    uz
Tθ= . 

 That is Fisher’s information matrix is  

 

    TT

F uuuwI )()( 2 θσθ −=    (2.5.20) 

 

With σ2 
the involved variance, practically a function of the unknown parameters we are 

asked to estimate. Obviously the Logistic model obeys on the “intrinsic” linearity 

described above. Then for the MLE of θ, ),( 10 θθθ
)))

= and for ni the number of 

observation at ui i=1, 2 and Σni=n large, then from (2.5.20), we have 

 

  [ ]{ } 1

10 )(1)(),()(
−∑ Λ−Λ== i

T

iiii nuuuuVarVar θθθ
)))

  (2.5.21) 

 

Based on the fact that )()(1 θθ VarI F =− and u2 =(1, u2), i=1,2. From (2.5.21) the 

evaluation of )( pLVar
)

equals  

   =∇∇= ))(()()( p

T

pp LVarLLVar θ
)

( )*

1T

F
C I Cθ−  (2.5.22) 
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Where )()( 11 θθ ∑−− = InI F , with I(θ) Fisher’s information and *

1( )
F

I θ−  the average per 

observation information matrix. 

 

2.6 Discussion on the Odds Ratio 

 

 Consider the typical scheme in logit problems 

 

 Risk Group   Case   Control 

 Characteristic XX  P1  P0 

 Non – XX   1-P1  1-P0 

 

The probability P1 represents the probability that a “sample case member” (e.g. patient 

exposed to the risk factor, unemployed attended certain seminar, company adapted an 

innovation process, etc) exposed to the risk factor. The probability P0 is the probability 

that a simple “control member” is exposed to the risk factor. 

 

 The odds ratio (OR) or relative risk (RR) is defined as  

 

   RR or 1 01 1

0 0 0 1

(1 )/(1 )

/(1 ) (1 )

P PP P
OR

P P P P

−−
= =

− −
   (2.6.1) 

 

A χ2
 test of the null hypothesis H0: OR=1 vs H1: OR≠1 is identical to a test of equality 

of the two proportions, i.e.  

 

    H0: P0 =P1 vs H1: P0≠P1   (2.6.2)  

 

The crude odds ratio can be biased due to population heterogeneity caused by 

confounding factors, associated with the response. Significance tests and confidence 

intervals for the crude OR were introduced by Mantel and Haenszel (1959) in their 

pioneer paper. 

 In the typical case where 

0 1

0 1

( / )
1 exp( )

x
P case x

x

β β
β β
+

=
+ +

  (2.6.3) 

With the dichotomous variable X=1 for the high risk (characteristic – XX) and X=0 for 

the low-Risk (non - XX), the odds ratio is given by   

                      OR=exp(β1)=RR 1
ˆexp( )β≅   

underlying that the above notation was adopted.  

• That is the Relative Risk (RR) or (OR) testing hypothesis H0: RR=1 is 

equivalent to H0: β1=0.  

When interest is focused on the trichotomous factor XX versus XY versus YY 

we introduce two dummy variables X1, X2 defined as  
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   X1=1  if  XX holds 

       =0   otherwise 

 

   X2=1  if  XY holds 

       =0  otherwise 

 

Therefore YY is the reference class. The equation of the model is 

 

Logit P(case ⏐x1, x2;z)=β0+β1 X1 +β2X2 +γZ 

 

In such a case there are two different relative risks or odds ratios of the form 

 

OR1=RR1=exp(β1) 1
ˆexp( )β≈  

OR2=RR2=exp(β2) 2
ˆexp( )β≈    (2.6.4) 

 

The OR1 provides a measure of the relative risk or odds ratio of XX versus YY, while 

OR2 is a measure of OR or RR of XY versus YY, adjusted for the confounders of Z. 

When the variable Z is included in the logit model with one variable still the 

OR=exp(β1). 

 

3. The Greek Innovation activities  
In the following the Greek innovation activities are discussed through the logit 

model and an empirical application, due a survey we performed to the Greek firms. We 

explain this analysis below. 

 
3.1 DATA 

 
The data used in this study rely on our survey to the Greek enterprises through 

‘ARCHIMEDES’ program, mentioned above. The target population of the survey is the 

total population of 63.000 firms, included in the database of ICAP SA (the largest 

Business Information and Consulting firm in Greece). The constructed questionnaire is 

based on Community Innovation Survey (CIS) while the methodological basis of this 

survey is provided by the “Oslo manual”, a joint publication of Eurostat and OECD. 

The selection of the sample is based on proportional stratified random sampling. The 

analysis focuses mainly on the small and medium-sized manufacturing enterprises    

and on services enterprises employing 20 or more employees. To avoid any bias 

resulting from response behaviour, a non-response analysis followed up.  

 

The main statistical unit for the survey is the enterprise. In general, innovation 

activities and decisions usually take place at the enterprise level, which leads to the 

enterprise being used as the statistical unit. The following industries are included in the 

target population of the survey:  

- manufacturing (NACE 15-37),  

- electricity, gas and water supply (NACE 40-41),  

- wholesale trade (NACE 51),  

- transport, storage and communication (NACE 60-64),  

- financial intermediation (NACE 65-67),  

- computer and related activities (NACE 72),  
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- architectural and engineering activities (NACE 74.2),  

- technical testing and analysis (NACE 74.3),  

- research and development (NACE 73),  

- construction (NACE 45),  

- motor trade (NACE 50),  

- retail trade (NACE 52),  
- legal, accounting, market research, consultancy and management services (NACE 74.1),  

- advertising (NACE 74.4),  

- labour recruitment and provision of personnel (NACE 74.5),  

- investigation hotels and restaurants (NACE 55),  

- renting of machinery and equipment without an operator (NACE 71).  

 

The time period covered by the survey was 2000-2003 inclusive. The reference period 

of the survey is the year 2003. Following the European classification, the size-classes 

used are 20-49 employees, 50-249 employees, 250 + employees.  

 

3.2. Empirical findings 

 

In collecting primary data, we have used a questionnaire to several sectors in 

Greek enterprises. The data-set was collected from 279 Greek enterprises from various 

sectors and several areas-prefectures of the country. From the data collected it can be 

seen that the R&D activities are mainly related to big firms. Also Figure 1 presents the 

turnover of the sampled firms and for the years 2000-2003.  In the vertical axis we have 

the percentages while in the horizontal axis we have the turnovers in billion €.  

 

  Figure 1: Turnover of sampled firms for the years 2000-2003 
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The share of innovative enterprises with 10 or more employees in the service 

industry increased significantly from 11,1% in 2001 to 15,5% in 2002 and the 31,9% in 

2003.  The analysis of data from Greece and other European countries reveals that the 

development of innovations does not require the development of R&D activities within 

the enterprise. In Greece, 59.7% in 2001, 62.3% in 2002 and 64,7% in 2003 of the 

innovative manufacturing enterprises carry out R&D. In the service sector, the 

percentage is much lower. Specifically, 8.3% in 2001, 13% in 2002 and 16.1% in 2003 

of the innovative enterprises with 10 or more employees carry out R&D.  
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They are directed towards to obtain the machinery and equipments accounting 

around to 58%. Education is the main source for innovation activities in Greek 

enterprises accounting approximately to 48% while the introduction of innovation in 

the market accounts to approximately 27% and the planning for production-distribution 

and other activities to 25 % respectively.  

 

The following findings are based on the analysis of the collected 279 

questionnaires of our sample survey (Kitsos et al., 2006). We are now at the final stage 

of checking our full data set. We are proceeding our calculations on the double checked 

279 responses, and we shall extent this discussion to the final data set.  Our empirical 

results concern the total number of women employees by age intervals (namely 20-30, 

31-40, 41-50, 51-60 and more than 60), women in product innovation, women in 

process innovation, position in firm and equality in job enrichment, in salary, in 

education–training and in promotion. Specifically,  

 

- A small increase in the percentage of women in the workplace has occurred from 

32% in 2000 to almost 37,5% in 2003. 

-  A small increase in the percentage of women graduates in the workplace has 

occurred from almost 33% in 2000 to almost 37% in 2003.  

- Women employees between 20-30 ages (compared to 31-50 ages) are the majority 

of the women workforce and a small increase in the percentage has occurred from 

59% in 2000 to 61% in 2003.  

-  The percentage of women employees is decreased as long as the age is increased 

to 62% for 20-30, 23% for 31-40, 10% for 41-50, 3% for 51-60 and 2% for over 

60 in 2003.  

-  The percentage of women as Top Managers remains almost unchanged, from 21% 

in 2000 to 20% in 2003 while the percentage of women as Managers is increased 

from 33% in 2000 to 38% in 2003.  

-  The percentage of women employees in product innovation development is bigger 

(40%) than the percentage in process innovation development (33%) and the  

percentage of women as Top Management in product innovation development is 

bigger (20 %)  than the  percentage in  process  innovation development  (16%).  

-  The percentage of women as Managers in product innovation development is far 

smaller (29%) than the percentage in process innovation development   (45%).  

-  The percentage of the firms with innovation activities, concerning all the four 

variables of gender equality in the workplace (job enrichment, salary, training and 

promotion), appears to be smaller than the percentage in the total of the firms of 

the sample. For example, job enrichment appears to be around 37% in product 

innovation and 26% in process innovation comparing to 71% of the total of firms 

(with and without innovation activities).  

 

The main implications for both small and medium firms for the products 

innovations is related to increase the range of commodities and less to improve the 

quality of commodities. Regarding the finance of innovations, a small part of Greek 

firms has been financed either from local-regional authorities or from the central 

government and the European Union. Specifically, around 18% of the Greek sampled 

firms have been financed for innovations from the EU while the other sources of 

finance, like the central government and the local-regional authorities correspond to 

very low levels of 6% and 3% respectively. 
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According to the collected data, the main obstacles in the development of 

innovations are related to the lack of appropriate financial sources for innovation 

activities which accounts to 70% for small firms and only 10% for big firms, while 

the high risk activities account to about 74% for small firms and only 5% for big 

firms respectively. Another serious obstacle is related to the lack of information of 

new technologies and for the markets accounting 75% for small firms and 25% for 

medium firms. At the same time the lack of specialized staff accounts to 60 % for 

small firms and 40% for medium firms and the managerial inflexibilities account to 

40 % for the small firms and 40% for the medium firms respectively.  

 

3.3  Logit formulations and associated empirical results 

As our main interest is in terms of the main effects we have ignored interactions. 

Only 3 and 4 out of the 12 explanatory variables were found to be statistically 

significant in influencing the implementation of product and process innovations 

respectively. Working with the most statistical significant variables we derive the logit 

form of the fitted model, which may be represented as    

 

 logit [Pr(Y=1)]=β0+β1Turnover+β2  PAL + β3 PFW + β4 Exp + εt 

 

where Y denotes the dependent variable as 1 for innovations and 0 for no innovations, 

the beta terms are the unknown linear coefficients needed to be estimated, and εt is the 

error term, assumed  from the normal distribution with mean 0 and variance 1.  

  Specifically the dependent variable is the answer to the question of the influence 

of innovations to the products with answers ranging from high influence to no 

influence. The high and average influences were coded as 1 and the low and no 

influence as 0. The explanatory variables are Turnover taking the value of 1 for a 

higher than 10% increase in the turnover for the period 2000-2003 and 0 in any other 

case, the PAL that is the Product Average Life which is the average life of the most 

important product of the firm before it is substituted or modified. It takes the values of 

1 in case of less than a year, 2 in case of 1-3 years, 3 for 4-6 years, 4 for 7-9 years, 5  in 

case of more than 9 years and 0 if no answer). The last significant explanatory variables 

are the PFW that is the percentage of female workers and Exports. The results of the 

fitted models are presented in Table 3. 

Based on the fitted model and the information provided, it can be seen that the 

estimated odds ratio equals to 3,219 and 1.897 for implementing product and process 

innovations respectively for firms which have a higher than 10% increase in turnover, 

with no control for the other explanatory variables. This adjusted odds ratios of 3.219 

and 1.897 mean that the odds of implementing product and process innovations is about 

3.219 and 1.897 times higher respectively for a firm which has an increase of more than 

10% of its turnover than for a firm which has not. The Wald statistic is statistically 

significant, which indicates that there is statistical evidence in these data that for firms 

with turnover higher than 10% the probability of implementing innovation increases. 

We may compute the difference e i
$β − 1which estimates the percentage change 

(increase or decrease) in the odds π =
=
=

Pr( )

Pr( )

Y

Y

1

0
for every 1 unit in Xi holding all the 

other X’s fixed. The coefficient of average life of the product is 2β
)

=0.413, which 

implies that the Relative Risk of this particular variable is 2β
)

e =1.511 and the 

corresponding percentage change is e
$β1 -1=0.511. This means that in relation to the 
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average life of product the odds of implementing innovations increase by 51.1% ceteris 

paribus. In the case of process innovation the result is 1.271 implying a 27.1% increase. 

In relation to turnover the odds of implanting innovations increase by 221.9% and 

89.7% for product and process innovations respectively keeping constant all the rest. 

Similarly, the coefficient of percentage of female workers is 3β
)

  =-0.027 and -0.014 for 

product and process innovations respectively, which implies that the Relative Risk of 

this particular variable is 3β
)

e =0.9733 and 0.986 and the corresponding percentage 

change is e
$β2 -1= -0.0267 and -0.014 respectively. This means that in relation to the 

percentage female workers the odds of implementing innovations decreases by almost 

0.03% and 0.015 all other remaining fixed.  
 

       Table 3: Logistic Regression results 
Dependent: Product Innovations  Dependent: Process Innovations 

Variables Estimates Odds Ratio  Estimates Odds Ratio 

 Constant 0.483 

(0.734) 

[0.391] 

1.621 

 

   

Turnover 1.169 

(6.071) 

[0.014] 

3.219 

 

 0.64 

(2.895) 

[0.089] 

1.897 

PAL 0.413 

(8.700) 

[0.003] 

1.511  0.240 

(4.403) 

[0.036] 

1.271 

PFW -0.027 

(6.510) 

[0.011] 

0.973  -0.014 

(3.028) 

[0.082] 

0.986 

Exports    1.139 

(5.252) 

[0.022] 

3.123 

Hosmer 

Lemeshow 

8.145 

[0.37] 

  11.135 

[0.47] 

 

Likelihood 

Ratio 

18.121 

[0.000] 

  28.016 

[0.000] 

 

          Wald statistics in parentheses and P-values in brackets. 

 

The negative sign in the coefficient for the percentage of female workers variable 

requires some further thoughts. It could be explained as a higher percentage of female 

workers corresponding to a lower implementation of innovations. This can be 

considered in relation to other Departments in the firm like R&D as well as to the 

markets that the firm operates.  

The individual statistical significance of the β estimates is presented in the column 

Wald (Chi-square). The significance levels of the individual statistical tests (i.e. the P-

values) are presented in the column P-value and correspond to Pr>Chi-square. Note that 

the variable average value of product is significant in all the usual statistical levels 

(0.01, 0.05 or 0.1) while the variables turnover and percentage of female workers are 

statistically significant at α =0.05 and α=0.1 while the constant term is not statistical 

significant. The model certainly fits the data well and provides evidence that the 

economical interpretation of the logit model, as the one we tried in this paper, is one of 

the most useful methods, when a qualitative approach is need to interpretate economical 

data sets, involving proportions. Similar are the comments in the case of the process 
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innovations where however the variable Exports seems to have a significant influence 

both in magnitude as well as in statistical terms.  

To assess the model fit we compare the log likelihood statistic (-2 log $L ) for the 

fitted model with the explanatory variables with this value that corresponds to the 

reduced model (the one only with intercept). The likelihood ratio statistic for comparing 

the two models is given by the difference  

 

LR = -2 log $LR -(-2 log $LF )=18.121 

 

where the subscripts R and F correspond to the Reduced and Full model respectively. 

The corresponding value of the test in the case of the process innovations is 28.016. 

That is, in our case the overall significance of the model is X
2
=18,121 and 28.016 with 

a significance level of P=0.000 and 3 and 4 degrees of freedom for the cases of product 

and process innovations respectively. Based on this value we can reject H0 (where H0: 

β0= β1= β2=β3=β4=0) and conclude that at least one of the β coefficients is different 

from zero. These values must be compared with Χ2
0.05,3=7.815 and Χ2

0.05,4=9.488, 

which implies again a rejection of H0.  

Finally, the Hosmer and Lemeshow values equal to 8.145 and 11.135 (with 

significance equal to 0.37 and 0.45) for the cases of product and process innovations 

respectively. The non-significant X
2 

value indicates a good model fit in the 

correspondence of the actual and predicted values of the dependent variable.  

 

Tables 4a and 4b present the estimated odds ratios in the addition of extra 

variables in the logit formulation and for the cases of product and process innovations 

respectively. Specifically, the first column presents the variables and the second the 

odds ratios when running a logit formulation for each variable. That is if we run a logit 

for the case of turnover the odds ratio equals to 3.833 while if we run a logit only for 

exports then the odds ratio is 4.778. The other columns refer to the case of running logit 

models with more than one explanatory variable. 
 

Table 4a: Odds ratio estimated in the case of product innovations 

  

Q2 3.833 2.216 3.219 2.62 3.460 2.963   

Q3 1.434 1.346 1.511    1.176 1.349 

Q4 1.148      1.282  

Q6 4.778   3.292    2.201 

PFW 1.018  0.973  1.003    

PFU 1.015     1.004   

 

Table 4b: Odds ratio estimated in the case of process innovations 

  

Q2 2.625 1.932 1.897 2.62 1.936  1.738  

Q3 1.290 1.234 1.271  1.162 1.186  2.696 

Q4 1.350     1.331   

Q6 4.444 0.979 3.123 3.292   3.400 1.188 

PFW 1.012  0.986 2.62  0.988 1.738  

PFU 1.012       2.696 

3.  
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4. Conclusions and policy implications  

In this paper we discuss the Greek case of female participation in innovation 

activities of firms using the first results of a research project on women in innovation, 

technology and science. Based on the fitted logistic model the estimated odds ratio 

equals to  

- 3.219 and 1.897 for implementing product and process innovations 

respectively for firms, which have a higher than 10% increase in turnover. This 

means that the odds of implementing product and process innovations are about 

3.219 and 1.897 times higher respectively for a firm which has an increase of 

more than 10% of its turnover than for a firm which has not. 

- 1.511 and 1.271 for implementing product and process innovations for firms 

having a higher average life of product. This means that the odds of implementing 

innovation is about 1.511 and 1.271 times higher for a firm which higher average 

product life compared with those with low and in the cases of product and process 

innovations respectively.  

- 0.973 and 0.986 for implementing product and process innovations for firms 

with a high percentage of female workers. 

- 3.123 for implementing process innovation for firms, which have 

exportations. 

Similarly, in relation to turnover the odds of implanting innovations increase by 

221.9% and 89.7% for product and process innovations respectively ceteris paribus. We 

can say that in relation to the average life of product the odds of implementing 

innovations increase by 51.1% and 27.1% ceteris paribus. In relation to percentage of 

female workers the odds of implementing product and process innovations decreases by 

0.03% and 0.015% respectively, all the other remaining fixed in each case. This 

certainly has as a result the fact that the percentage of the participating acting women 

does not influence the implementation of the innovation, in the Greek Entrepreneurship. 

 Finally, the relationships were positive except in the case of the percentage of 

female workers where we have a negative relationship between implementation of 

innovations and female workers. This could be explained as a higher percentage of 

female workers corresponding to a lower implementation of innovations. This can be 

considered in relation to other Departments in the firm like R&D as well as to the 

markets that the firm operates. 

 Greece, in order to develop future capabilities and make the necessary choice for 

technological priorities, needs a more comprehensive cooperative innovative effort. The 

most important factors influencing the incidence of innovation and the speed of its 

diffusion are:  

(a) Technical applicability; 

 (b) Profitability;  

(c) Finance,  

(d) Size, structure and organisation and  

(e) Management attitudes.  

Additionally, some other important factors may be needed like R&D, easy access to 

available information and the labour market availability of certain skills.  
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