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ABSTRACT

Simulation estimators, such as indirect inference or simulated maxtmum Lkelihood, are
successfully employed for estiinating stochastic differential cquations. They adjust fur the
bias (inconsistency) caused by discretization of the underlying stochastic process, which
is in continuous time. The price to be paid is an increased variance of the estinaled
parameters. There is, in fact, an additional component of the vaciance, which depends
on the stochastic simulation involved in the estimation procedute. To reduce this un-
desirable eflect, ene should properly increase the number of simulations {or Lhe length
of each simulation) and thus the computation cost. Allernatively, this paper shows lmu
variance reduction can be achieved, at virtually no additionzl computation cost, by use
conirol variates. The Orpstein- Uhlenbeck equalion, used by Vasicek to model the short
lerm interest rate in continuous time, and the so called sguare roof equalion, used by
Cox, Ingersoll and Ross, are explicitly considered and experimented with. Monte Carlo
experiments show that, for some parameters al interest, a global efliciency gain about
35%-45% over the simplest indirect estimator is obtained at about the sanw computalion
cost,
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1 Introduction

Simulation estimators, such as indirect inference (Gourleroux, Monfort and Renault,
1993}, simulated maximum likelhood (Smith, 1993) or efficient method of moments (Gal-
lant and Tauchen, 1092) are successfully employed for estimating stochastic differential
cquations. They adjust for the bias {inconsistency) caused by Lhe discretization of the
underlying stochastic process, which is in continuous time.

The price to be paid is an in¢reased variance of the estimated parameters. On the one
hand, in [act, the variance i5 due to the intrinsic stochastic nature of the data and to the
medels adopted; on Lhe other hand, it also depends on the stochastic simulation involved
in the estimation procedure. This latter component is, in some sense, an undesirable ad-
ditional experimental variance, which ¢an be made arbitrarily small by properly enlarging
the number of simulations at the cost of a bigger computiation eflort. Therefore a trade-off
arises between variance reductioa and computation cost.

EfMicient Monte Carlo techniques may be helpful in reducing experimental variance, thus
providing a reduction of the global variance of the estimator and, therelore, an overall
improvement of the elficiency, without increasing the computation cosi. There is a wide
literature on efficient Monte Carle techniques, such as stratified sampiing, importance
sampling, antithetic variates, control variates, etc., that starled many years age (e.g.
Kahn, 1936, Moy, 1971, Siron, 1975), or Hendry (1984), and, more recently, Newton
(1994), Geweke {1594) and Richard (1996).

For instance, a simple method like antithelie variates proved to be elleclive in evalualing
the small sample hias of estimators for simultancous equations {e.g. IMendry and arrison,
1974, or Mikhail, 1975), or the simulation bias in nonlinear macroeconometric models (e.g.
Calzolari, 1979).

With slightly more complex implementation requirements, Lthe method of condrof wariedes
proved to be even more effective (Sterbenz and Calzolari, 1990). This method also is
suitable for evaluating variances, where antithetic variates fail (Calzolari and Sterbenz,
1986).

Thiz paper shows how conlrol variates can be profitably used to reduce Lhe variance of indi-
rect estimators when applicd to stochastic dsfferential equations. The Ornstein- Uhlenbeck
process, used in Vasicek (1977) to modcel the short lerm interest rate in continuons lime,
andl the so called sgnare roal process, used in Cox, Ingersoll and Ross {1985), are explicitly
considered and experimentad with.

Resulis of the Monte Carle experiments show Lhat, for some parameters of interest, the
variarice component due to sitnulation can he reduced 4-3 times at about the same cons-
putation cost. This implics a global eliciency gain of 35%-45% over the sirnplest ndireet

estimator (reduction of the global variance).

2 Intuitive introduction to control variates for indi-

rect estimators in the just-identified case

[or the models considered in this paper, introducing control variates turns out to be
particularly simple. We consider, in fact, the Vasicek {1977) and the Cox, Ingersall and
Ross (1983) madels for short Lerm interest rates in continuous time, cach of which is based
on a particular stochastic differential equation {the econemeiric modet). The lormer is
bascd on the Ornstein-Uhlenbeck process, the latier is based on the so called squarc real
process. Bach model is usually approximated by a discretized cquation whose parameters
maintain a close one-to-one correspondence with the parameters of the continucus Lime
cconemetric model. Dxamples can be found in Bianchi and Cleur (1996), Braze. Scaillet
and Zakoian (1994, 1993), Cleur (1995), Di lorio (1996), Pastorelle, Renault and Tours
(1994).

For simplicity, we omit from our notation exogenous variables (which are not included in
the particular models considered), initial values (which are supposed to be asymptotically
not influent}, and the distribution of Lhe error terms (which is supposed to be knowsn. Tor
example i.i.d. standard normal).

Let the ecoromelric model (or model of interest) be represented as

y = f(2.¢) (2.1)
and assume that this model can be simulated; that is we can produce values ol y con-
ditienal on the parameters & by entering random values of e Tlowever, this mwodel mav
not be estimaled, or estimation can be so complex and discouraging that econometricians
replace iL with an approximation, like

v = 9(8,¢) (.
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e

which ean be easily estitnated (for exampie, by maximum likelihoad).

We assume that, for any 0¢®, and a given probability distribution for e, values ol 5 can
be generated from (2.1) and that the estimation of (2.2) with these values of y leads to an
estimator of 8, say F(8.e) (that is a lunction of § and of the random errors). We asoune
Lhat some Tairly standard regularity conditions ensure that this estimator converges, (o
T — o0, W awell defined and regular binding function b(8), for any 0B, as in Courieranx.
Monlorl and Renault (1993). In finite samples, obviously the estimator will differ lram ity
inmit value, the difference being Lhe finite sample estimation error of parameters. Uhus, in
the finte sample case, for any 8@ ao estimator of Lhe parancters in (2.2} will be equal to
the binding nction K{7) plus the parameter estimation crror (PEER), which is a random

vertor due Lo Lthe particular finile sample of error terms e, These error terms iwee assineld



to have a known distribution, i.i.d. standard normal in our experiments, variance being
already included in Lhe parameter vector 0

B(0,€) = 6(0) + PERR(D,e) (2.3)

The parameter estimalion error PEER(D, e} is 2 random vector asymptlotically vanishing
and we may assume that regularity conditions ensure for v PEER(D, e} an asymptolic
zero mean normal distribution with variance-covariance matrix that will be denoted' T

VT pEER(D, ) — N{D,E) (2.4)

Since Lhe covarance matrix is obtained {rom the misspecified model in (2.2}, it 15 well
known from White (1982) that an expression for £ (as well as its estimate) would involve
holh the ITessian and the matrix of outer products of the first derivatives of the likelihoods.

By entering the hustorically observed values of ¥, we estimate from equation (2.2) a vector
of parameters, say 2. If the model of intecest (2.1) veally is the data generating process,
the historically observed ¥ are a [unction of the true veclor of parameters, say 9y, as well
as of the unohservable error terms, say e. Thereflore, 3 turns out to be a function of such
parameters Oy and of the uncbservable error terms ¢

B = B0y, ) = b0o) + PEER(Dy, €) (2.5)

By entering a tentative vectar ol parameters 4 and pseudo-randormn error terms & into {2.1),
we generate by simulation pseudo-random values § that are introduced into (2.2}, Model
(2.2) is estimated and a veclor of parameters, say f}, is preduced. The sample period
can be, of course, of any length, being data produced by simulation, bul we keep for the
moment the same sample length as for the historically observed data, say T. Nolice Lhat
& are gencrated rom “the same” distribution as the unobservable historical error terms
e Thus, §is a lunction {the same [unction as belore) of the tentative parameters {0 and
ol the pseude-random ercor terms, say

"Aa exaumple where indirect inference is completely unnecessary might be helpfol o fix ideas  Leu
us suppose one 1s dealing with a hmear regression model with nonrandom exogenous regrassors, under
standard texthook conditions

y=X0+e

with Lhe additional condition Lhat Lhe vaniance of the Lid. ¢'s s known = 1 (not Lelpful Tor estimation
ol 0, as well krown).
The eeanennotne and anxiliacy models wre coincident, so using OLS we pget

B = (XX XXy =0+ (XX) X e

thus 5(8) = ¢ (the hinding function is the Wdentity function), PEER(D,e) = (X'X) ' X' (nob a function
of 8, and asymptotically vanishiag), and asymptotically V' piEu(f, ) — MOt NN

£ =8{06,¢)=6{0)+ reen(d,e) {2.6)

In this case of exact identification, indirect inference procedures can take advantage of the
one-lo-one correspondence between § and £ parameters. We calibrate the 0 patameters
(keeping & Rxed) til} we find £ = &. In other words we look for the values of 0 that solve
the system of equations

50,6 = & (2.7)
The calibralion procedure Lhus aims at solving the system of equations (2.7). These
equations are only implicitly defined, and cannot be expressed in closed form.

The solution vector will be called ; this is the indirecl estimalor of the econeinelric
model's parameter vecior 6. Conditions thal ensure consistency and asymptotic normal-
ity of this estimator can be found in Gourleroux, Monfort and Renaull (1993} in & mare
general context. In our context, il estimation of the auxibary model (2.2) is performed by
quasi-maximum-likelihood, the estimator turns out to be identical to Lhe simulated Qut
(Smith, 1993).

We can write

B = 5(6o) + PEER{fy,€) (2.8)

8= b0y + prER(D, ) {2.9)

The left hand sides will be equal upon convergence of the indirect estimation procedure.
thus cqualing the right hand sides and multiplying by VT

VTH(0y) + VT PEER(0, ) = VTHD) + VT peen(d, ?) (2.10)
and therefore
VT [8(0) = bi0s)] = VT PEER(Gg, ) = VT PEER(D,E) (21

As canverges to 0o (for T — o0), regularity conditions ensure that, asymptoticallv, the
randem vector v/ PEER({V, &) is the same as /T PEER(fp, &). Thus, asymptohically

VT (0) ~ H0s)| = VI PREER(Gy, ) = VT PEER(0,7) (212

The vadam errar terms ¢ and & are obviously independent, as the forner are the un-

ohservable ercors in Lhe historical process, while the latter arc generated by sitnulation.
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Thus variances must be summed. As the distribution of e and & is the same by assumption
(i.id. N(0,1), in our experiments), the variance turns out to be simply double. Thus the
right hand side of (2.12) will be (0, 2L), asymptotically.

Applying the “4-method” (e.g. Rao, 1973, p.388) the lell hand side of (2.11) has asymp-
totically the same distribution as

96(0)

VT [6(0) - (05)] ~ RovT(d - 80) RF{W

Y

We take advantage of the one-to-one corcespondence between the ¢ and B parameters;
thus, the Jacobian fj is a square matrix. Assuming thal il is nonsingular in some neigh-
baurhood of g, we inverl the Jacobian gbtaining, asymptatically

VT8~ 85) ~ Ro™VT PEER(fo,e) — Ro™'VT PEEN(6y, E) (2.14)

Thus, Lhe indirect estimator has the asymptotic variance covariance matrix Ry 7 25770
The fact that £ is doubled is clearly due to the independence between e and ¢ in equation
(2.14).2

2.1 Reducing variance by means of replicated simulations, with
larger computation cost

Tt is well known that this variance can be reduced, with a larger computation cost.

In fact, let us replace the single simulatien-calibration of § with the average of ff replicated
simulations-calibrations, say fx, & = 1,..., /7. Bach &, is the value of & that solves the
system

BlO.&) = 2 {2.15)

with 7, independently drawn across different ceplications. Repeating the procedure above,
we have

B =50, + rerr{ly,e) (2.16)

?In the sinple example given in Lhe previous foctnote, the Jacobian is the umit matrix. Thus, asymp-

totically
VI = 82) ~ VTIXX)T X — VT X)X

The two compunents are indepeadent random vectors, each of which has varianco-covarianer matrix
(X'X/T)™" So the asymplolie variance-cavaniance matrix of the indireet astimator will snnply be the
double of that of the OLS estimatar, that is Hin(X ' X/T)71.

—~1

(2.13)

Bn = W) + PEER(DA, &) =124 (2.

(=
-1

where each §; is calibrated till ,{_i',e. = ,ff, ang finally all éh are averaged Lo produce

| =

8=
1'.

=

H -~
20 (218)
h=1

Instead of equation (2.14), we have in this case, asymptotically

H
VT —8) =~ R \/]'_"PEEn[ﬂo,e)—}—{Zv/'J_“PEER{Dg,éh) (2.19)
h=1

where the asymptotic variance-covariance matrix ol the term in square brackels is now
{1 + 1T, being the &, independent of each other and of e.

The variance reduction corresponding to a mulliplying factor (1 + &) instead of 2 13
obtained at the cost of A calibration procedures instead of just one® Notice thal the
same result would be obtained, at the same computational cost, if the I/ procedures with
T data were replaced by one procedure with H7T simulated data (Gourieroux, Mouloil
and Renault, 1993, section 2.3).

Equations like (2.14) or (2.19) quite clearlv evidence the two components that contribute
lo Lhe variance of the indirect estimator. The first component on the right hand side of
Loth equations depends en e and Ry, Thus, it is irreducible, given the data, the estimation
method, and the models used. The sceond component on the right hand sides of (2,11}
and (2.19) depends entirely on stnulation, and can be made arbitvarity sinall, ac ihe cox
of a large simulation cfferl.

2.2 Reducing variance by means of control variates, without
additional computation cost

We now push Nirther ahead the strict one-lo-one correspondence belween the @ and the
A paramelers, by considering that, for the inedels al hand, they are the same paramceters.
plugged inte two dillerent models.

Suppose Lhat we generate values of the ¥'s {rom simulation of the approximated model
{2.2) instead of the cconemetric model of interest {2.1). Then model (2.2) will no longer
be misspecified lor these new simulated valucs of . If we estimate model (2.2) using Lhese
new simulated values of y, the estimator will be consistent and asymptotically notimal,

Sl ysing the example found in Lhe previcus fontnotes, the asymplotic variance-covarianer nains
of the indirect estiznator will be (14 £) tnes that of the OLS estimater. (1 + ﬁ)“m[.'\”.\'['t")' h



withoul need ef further assumptions. There is no need here of introducing a binding
functien, as it is simply Lhe identity {unction,

We may alse use different auxiliary madels, instead of just the approximated model (2.2},
all sharing the feature of being at the same time simulable and estimable, as well as being
approximations 1o the ccanomelric model of interest (2.1). We shall call them the conirol
variete models. To avoid introduction of pew symbols, we wrile onc of these control
variate models directly using the 0 parameters

y = p(f, <) (2.20)

This model will be simulated as well as estimated with simulated data (if the control
variate meodel is the model (2.2), the function p will be the function g in {2.2), but re-
written with & instead ol 5).

The necessary features of any control variale model (2.20) are the following.
1) The parameters must be the same as those of the economeiric model, 0.

2) Tt must be possible to plug into the model the same pseudo-random errors € already
introduced into model [2.1}.

3) It must be possible 1o simulate and estimate the model.

[or any 0¢8 and any error terms € generated from the usual distribution, il we simulate
model (2.20} and re-estimate ils paramelers, the estimated parameters will dilfer from 0
by a new estimation error

d=0+ nreEn(d,é) (2.21)

Under suitable regularity conditions, the new parameter estimation error XPEER will be
asymptotically vanishing and VT NPEER((, %) will be asymptotically zere mean nornial.
Or course it will not be equal to the parameter estimation error PEER{D, €) of equalion
(2.6), as simulations ol the ¥’s are made in different ways, [lowever, suppose thal the
conkrol variate model (2.20) is a close approximation of the econsmetric model, and that
the & pseudo-random errors are the same used in the calibration proceduce; it is quile
reasonable to expect that 7 PERR(G, &) and /T NPEER(0,£) are random vectors with
variance-covariance matrices sufficiently close Lo cach ather and wilth a sirong positive
correlation for any JeB.

I'his additional simulation-estimation is perflormed just once, at the end of the calibration
procedure vhat has produced Lhe indirect estimator f: no further parameter ealihration
is required. Therefore, the additional cost of Lhe computation is quite small and alinost
iu:g{igii)h:‘ when comparad with ihe cost of computing the indirecl estimator. As a valoe
for 1, we adopl the converged value d; as pscudo-random crrars &, we use Lhie same already
nsed in the calibration procedure.

The estimaled veclor will be called 8. 1L is used Lo campute, by dilference

NPEER(Y, &) = b0 (2.

1
I
e

and we use this to compuie Lhe control variate indirect estimator as

Oey = 0 + Ry nreen(d,e) (2.23)

As § converges to fg {for T — oo), regularity conditions may ensure that the random
veclor V7' NPEER({, &) is asymptotically the same as /T NPRER(0, €). Thus, from (2.11)
and (2.23) we get, asymptotically

VTl — 86) = VT [(be, = 8) + (0~ 05)] (2.2:4)

Ry 'VT PEER(G,, ¢) + Rp™! [\/T NPEER(Dg, &) — VT PEER(fy, &) (2.25)

Given the independence between ¢ and &, Lhe asymplotic variance-covariance matrix of
the control variate estimator will be the sum of the covariance matrices of the two comn-
penents. The first component is exactly the same as the irreducible part in the simple
indirect estimator, as in equation (2.14). The second component, in square brackets. is
the difference between twe random vectors quile close 1o each olher (similar variauce-
covariance matrix and strong positive correlation). Therefore, it is quite reasonable Lo
expect a strong variance reduclion in this sccond component, when compared with the
second term on the right hand side of (2.14).%

"In the footnote example, we have

f=da (XX x%

NPERR(D &) = (X' XY XE
Thas 1s exactly equal Lo }'!’.1-‘.!1(@,15)‘

By =0+ wresn(f,7) =0 4+ (X' X)X
VTBey = 00) = VT [(Bes — 6} + (5 = 00)]
= VI X X e+ VT X - VLX)

The et in square brackets 15 zero. Theeelore, the control varintes inditect estimateor tirns ont 1o
lave the sae varianee as Lhe QLS estimator; that is, ball the variance of the simple nelinces estimator



2.3 Remark

It is dificult to predict the efficiency gain produced by the control variates. Intuitively, if
Lhe econometric model (2.1) and the two approzimations (2.2) and (2.20) are quite close
1o cach other, the last component in square brackets on the right hand side of equalion
(2.23) should give very little contribution Lo the variance of the estimator. In the extreme
case of the three models being coincident, such & compenent disappears and the variance
of ihe estimator would be exactly the same as the variance of the direct estimator; lor Lhe
simple indirect estimatar the variance would be double. Of course, this extreme case is an
example where indirect inlecence is completely useless, like the example in the [oolnotes.

For cases of practical intcrest, the efficiency gain can be evalvated by means of Monte
Carlo experiments. This will be undertaken later in this paper.

3 The econometrics of continuous time interest rate
models

Generally, the behaviour of short-term interest rates is assumed to be explained by a
stochastic differential equation defined by

dry = g(re, 0)dt + q{r,, 0)dW, (3.26)

where r, is the spot interest rale, W, ys a Wiener process, and 0 1s a vector of parameters.
The lunctions u(-} and ¢(-) are denominated “drilt” and “dilfusion” respectively, and
satisfy the unigueness and existence conditions of the solution. These conditions are of
the Lipschitz type and are given, lor example, in Arnold (1975} and Jkeda and Watanabe
(1989).

Recently, the interest of Mnancial analysts and researchers in the empirical anatysis of
continuous time interest rale models has increased considerably. The main problems with
the analysis of an equation of the Lype defined above are that the Markov process, solu.
Lion of Lhe equation, is known exactly only for some particular cases, and Lhat internst
rates are actually observed at discrele time intervals. [n gencral, it is possible to ohtain
a {computationally tractable] approximate selution based on some discretization scheme,
Particularly simple is the so-called Euler scheme. Other types ol approximations are those
proposed by Mihlstein and by Talay (sce Kloeden and Platen, 1992). However, il estima-
tion is conducted through a discrete time econometric medel, these approximations induce
a {discretization) bias (or inconsistency) in the resulting estimators of the parameters of

mterest. Indirect inference adjusts for the diseretization bias (inconsistency).

I an allemptl Lo compare different inodels, Chan, Karolyi, Longstall and Sehwariz (1992)

first recognize that, regardless ef the approach (arbitrage or equilibrinm), most term

structure models imply dynamics for the shoit-term riskless rate that can be cmbedded
in the Jollowing expression

dry = kla — r)dt + o] dW, (3.27)

This process bears several important economic [eatures. The specification for the drift
implies a mean reverting effect toward the long-run equilibrium level a; the value of &
gives the importance of this effect (the speed of adjusiment). The diffusion allows the
volatility of interest rate changes Lo be sensitive to the level of the short-term rate. The
variance elasticity parameter + gives a measure of this sensitivily. Finally, o 15 a scale
parameter.

When v = 0, we obtain the Ornstein-Uhlenbeck omoskedaslic process employed by Va-
sicek {1977)

dr, = k(a — r)dt + cdW, (3.28)

For v = 1/2, we obtain the square root process of the Cox, Ingersoll and Ross (1955}
model

dry = k(a — r)dl + o /redW, {3.29)

When + = 1, we oblain the Brennan and Schwartz {1979} model {that, however, will not
be considered in our experiments).

With the notation of the previous section, the vector of parawmeters ol nlerest s & =
(a, ko).

Empirical eslimation is usually perlosmed on a discretized version ol the model. Dis-
cretization in most available applications is based on the {ollowing Euler scheme

reo—t = ka — kr_ + g (:1.30)

where £, {e,) = 0 and £,.,(c?) = o (Ornstein-Uhlenbeck) or B () = (0 /70)°
(square rool process). The parameters of the discretized model are the same as for the
continuous time model: § = {n,k,0%) (slrict corrcspondence between the # and the &
parameters).

A natye estimator of the discretized model (3.30) is immediately available, since maxinuum
ltkelthood = Yeast squares for Lhis model. For the square root process, data musi be fivs

divided by /.
The viain drawback ol this cconemetric approach is Lhal the discrele Line approxinualion

can have a non negligible cost i terms of statistical properties of the extinatars. The



so-called convexity eflect leads, in fact, to a biased (inconsistent) estimation of some
pacameters of interest.

To apply indirect estimation, the econometric model(s) must be simulable. Equations
(3.28) and (3.29) are not immediately suitable {or this purpose, so also lor simulation they
are replaced by a discretized version. This, however, does not raise the same problems as
discretization for the estimable model. Simulation in fact can be made with arbitrarily
small lime intervals &, and regularity conditions can ensure that the discretized model,
with a convenienlly small &, exhibits negligible differences lromn the corresponding con-
tinuous time model. For our purposes, a value § < 0.1 proved to be sufliciently accurate.
Of course, the approximation can be made even more accurate with the implementation
of higher order discretization schemes. An example is the explicit erder 2 weak scheme of
Gallant and Tauchen (1995). However, our experiments and findings [rom previous stud-
ics {see Bianchi, Cesari and Panattoni, 1995, Broze, Scaillet and Zaketan, 1993, and Cleur,
1993) suggest that, for the models considered here, the first order scheme is acceptable,
provided that &, is at mosl equal to 1/10 (we have assumed §, = 0.05).

The discretized models used for simulation insiead of (3.28) and (3.20) are, respectively

r, —r_s = kab, — kr_s b, + /8,07 ¢ {3.31)

=g, = kabe — kg b+ /T, 07 ¢ {3.32)

A time unit correspands to the frequency of historical data. Thus if <ata are daily, ¢
and £ = | refer Lo consecutive days, and & = 0.05 (ov 1/§ = 20) means thal 20 data
are generated to preduce one daily simulated value. So ¢ and t — & refer 1o consecutive
generaled data, while conseculive days wili be £ and ¢ — 206,

4 The indirect inference procedure

The indirect inference procedure lor the stochastic differential equations considered here
takns advantage of the one-to-ang correspondence between the § and the £ parameters.
As already stated, il is a case of exact identification, where the resulls are nnaffected by
the choice of the malrix of weights usually involved in this type aof estimitor. Morcover,
it is identical to the simulated Qumi (Smith, 1993).

We have implemented our precedure in the lollowing steps.

1) The available series of abservations lor the dependent variable v, ¢ = 12,1 is
assumed o have been generaled as in equalion (3317 {or 3.32). In applied wark, this
is Lhe series of historical data. In Monte Carlo studies, this will be one replication of

psendo- historical data.

2) Naive estimation of the parameters 8= (&J},r}:'z)' is obtained, for the ausihary model
(3.30).

3) A tentative value for the true model parameters § = [a,k, ") is chosen. It is uscd as
a stariing poini for the ileraiive calibration procedure.

1) A saraple of pseudo-random error terms & iid. N(0,1) is generaled. In all ou
experiments we have adopted a sample length T, equal to the length of the observable
time series. Since we use § = 0.05, T/§, = 20T values must be gencrated to produce a
simulated series of T values. Possible lengths multiple of T {Lhat is HT') can be adopted

5) The value of § = (e, k, 0%} is plugged into equation (3.31] {or 3.32). The equalion is
solved recursively, then one value of r out of 20 (= 1/§,) values is chosen. This produces
the pseudo-random series 7.

6) Naive estimation ol equation {3.30) is performed on the secies of pseudo-candom 7,
obtaining a vector ol parameters J.

7) The two vectors of parameters ﬁ and & are compared. If they are equal (or very ¢lose to
each olher) the estimation procedurc has come 10 its end, olherwise the tentative values
of the parameters § = (a,k, o) are modified (calibrated) and a new iteration of the
procedure starts again [rom step 3. Nolice that the pseudo-random errors ¢, generateid at
step 4 must not be re-generated, they must remain fixed in all iterations until convergence
of the procedure. The values of the series F, change across iterations only as an clTect of
changing 0.

3) When convergence is achieved, the last value of the tentative paramcters is Lhe simple
indireel estunale of 1he parameters of interest. This vector will be called ¢ = (& L, &%),

4.1 The control variates

Various control variates could be introduced; with different choices of the control variate
model (2.20). In this paper we use only one control variate model for the Ornstein-
Uhlenbrck process {model 3.31)

), and only one control variate model for 1the square rool

process (model 3.32).

Both models obviously share ali Lthe features required for control variaie models, as thes
were listed just aller cquation (2.20).

Alter Lhe simple indirect estimator § has been camputed [step § of Lhe previous section).
the last simulated series produced by equation (3.21) (or 3.32} is used Lo re-estimate the

sarne equation (Lhus nsing the entire simulaicd series whose length is T/6, = 207). 11
P is the cslimate, then § — 8 35 Lhe new parameter estimation error, M’Iil:u((;'.(‘). thin
praduces Lhe cantral variates, Thos, the induecet estimator with control viartales will be

few = 0+ RS NPRER(D,E) = 0 4 Ry (6 — 0) (183)



4.2 Some computational aspects

Concerning the solution of the implicit system of equations {which are not writlen in
closed form) that yields the indirect estimator, little is reported in the literature. Since
an analytic solution docs not exist, the problem must be solved numerically. We have
adopted the [ollowing updating equation

Oy = Oy + NAGL oy — B)

where L_'m is the value of the calibrated parameters after j iterations, Ag;_qy is a matrix
that determines the direction of the jth step, and X is a real number {scalar) which
determines the stepsize in the given direction. In our applications we [irst perform a few
“simaple” iterations (typically four to five) taking A equal to the identity matrix, and
then we swilch to one “complicated” iteration taking A equal lo the Jacoblan matrix
of derivatives of the auxiliary parameters with respect to the parameters of interest (an
approximation of matrix g of equation (2.13)}. Thus we alternate iterations of a Jacobi
solution method with iterations of a Newton soluiion method of the system (2.7).

This heuristic switching rule is maintained until convergence is reached. A reasonable
starting point for the procedure can be 0y = §.

5 The Monte Carlo experiment

The design of the Monte Carlo is as follows. The econemetric structural medels and their
trae paramelers are kept fixed i all experiments. Specifically, they are, respectively

dry = 0.3 (0.0 —r )di + 0.1 dW, (5.34)

dry = 05(0.0—r )dt+ 0.1 J/r dW, (5.35)

These model specifications imply a moderate mean reversion eflcet (the mean-lag and
the haif-life are belh equal to 1) toward an average leve) of 10% lor the annaualized spot
interest rate.

While a more complete and detailed set of experiments is still in progress, the results
presented in this paper are related to a sample period length T = 4000. Thix also is the
lcngth of the simulated series ([ = 1, HT = T); this allows us Lo appreciate thc benelits
due to ihe use of the control variates. The simulation step is kept fixed (8, = 0.05, this
T/, = 80000).

Table 1 3s related to the Orpsticin-Uhlenbeck progess (0-U), used in Vasicek (1977) 1o
madel the short term interest rale. Table 2 is related Lo the square cool proecess, adopted
in the Cox, Ingersoll and Ross [1983) model.

Table 1: Q-1 ~ mean estim. param. and {var.}, [Monte-Carlo var ]

Least.Sqr. Ind. Inf Ind. tal |
Par. True H=1 CnL. Var.
a 1001 1001 2000 |
(10I0=Y (1171077 (2071077 [204t07°)  [11F10Y)

k D 3978 53012 019
(I6*1073) (1471073 (811073 [84*10°%)  [53*1073)

g .01 0064 0100 0100
(1941077 [.26*1077)  (15*107%) [15*107%]  [14*107F)
T=4000 Replications= 10000

fzach row contains the following values:

1) The true value of a parameter (used in all Monte Carlo replications 1o generate the
pseudo-historical data}.

2) The Mante Carla mean of the naive estimates of the parameter in the discretized madel,
computed across 10000 replications.

3) The Monte Carlo mean of the simple indirect estimales of the parameter.
4) The Monte Carlo inean of Lhe control variate indirecl estimates.

Under each mean, in square brackets, we display the Monte Carlo variance of the param-
eter, computed across the 10000 replications. In parentheses, we display the mean of the
estimated variance of the parameter, computed across the same replications,

The varianee of the naive estimator is compuled in a straightforward way

The estimated vanance ol the simple indirect estimator s computed as i Courierous,
Monfort and Renault {1993, section 3).

For the indirect estimator with control variates, only the Monte Carlo variance s displayed
in square brackets, as an estimator of the variance is nol available.

Table 2: Sq.RL- mean estim. param. and (var.), [Monte-Carla var.|

Least.Sqr. Indl. Inf Ind. Il
Par. True =1 Cnl. Vag.
& 4 | 1000 11000 1000
(LO0*1073Y [10%10=3)  (L19%10=%) [20%107%)  [11*1077)
BB 3979 3015 5021
(15%1073) [T 1079 (84%1079) [.89m1077)  LaTrieY)
et 01 0066 0100 0100
| (2410-7) [24%00°7)  C16m107%) [165007°] (1571077
| L'=1000 Replications= 10000

il




For the simple indirect estimator, the mean of the estimated variances is remarkably close
ta the Monte Carlo variance.

For the naive estimaiar, the bias (inconsistency) is quite evident for the parameters k and
U’l_

Indirect inference {with or without control variates) adjusts for the bias (iuconsisiency):
the mean estimated parameter is practically equal io the frue value.

Control variates produce a remarkable reduction of the variance ol some parameter es-
timates, with respect to simple indirect estimates. For the parameter a, the variance is
nearly the same as for the naive estimator, while for the simple indirect estimator it is
much larger. This, however, is of no interest given that this naive direcl estimator is
practically unbiased {consistent) for parameter a.

For the parameter o?, the reduction of variance over the simple indirect estimator is
negligible. Use of these control variates is therefore not interesting for the estimation
of parameter o?. Other control variates should be searched for, but this will not be
atternpted in this paper.

The great benefit produced by the use of conlrol variates is evident [or the parameter
k. We see in fact for Lhe Ornstein-Uhlenbeck process (Table 1) that the Monte Carlo
variance of the simple indirect estimate of this parameter is 0.84 x 107%; that reduces to
0.33 x L0~7 if control variates are used. Thus, there is a reduction of almost 40% in the
global variance of the estimator; that means an efficiency gain of 40% over the simple
indirect estimator, at about the same computation cost.

Wi inay think of the variance 0.84 x 107% as buing composad of two eqnal parts (as i1
comes {rom equation 2.14): 0.42 x 1072 (the irreducible component of the variance) and
0.42 x 1077 (the component of the variance due 1o simulation). The variance with control
variates is 0.53 x 107% that we may attribute to the irreducible component (the same as
before, therefore, 0.42 x 107} and to the component due Lo simulation (thus 011 107,
Therelore, the compenent of the variance due to simulation is about 4 times sinaller than
for the simple indirect estimator. The same variance would be obtained hy the simple
indirect estimator nsing ff = 4, thus at a considerably higher computational cost.

The results for the square root models (Table 2) are quite similar, and the saine comments
apply.

6 Conclusion

We have shown in this paper why and liow contre! variates can help in improving the
eflicieney of indireet estimators. The paper has shown in some detail how Lhe control
variales can acl on Lthal part of the vanance that depends on the sinmlation. At about

Lhe same compntalion cost (that is, computation time), an indircct estimator with control

variates can be as efficient as a simple indirect estimator which is based on much longer
simulated series and, therelore, involves a much higher cost.

Dilferent control variates could be introduced and adepted. Some simple control variates
have been applied to a couple of well known models of the short Lerm interest cate in
continuous time, and proved to be effective for some parameters of interest. We will newd
study other types of control variates, and a more complete and detailed set of oxperimental
results should be available in the near future.
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