Bugs in the proofs of revelation principle

Haoyang Wu

Wan-Dou-Miao Research Lab, Suite 1002, 790 WuYi Road, Shanghai, China.

19 August 2010
In the field of mechanism design, the revelation principle has been known for decades. Myerson, Mas-Colell, Whinston and Green gave formal proofs of the revelation principle. However, in this paper, we argue that there are serious bugs hidden in their proofs.

Keywords: Revelation principle; Mechanism design; Implementation theory.

1. Introduction

The revelation principle is well-known in the economic literature. It has several versions of representations [1-3]. In Ref. [2], Myerson said: “...the revelation principle tells us that, for any general coordination mechanism, any equilibrium of rational communication strategies for the economic agents can be simulated by an equivalent incentive-compatible direct-revelation mechanism, where a trustworthy mediator maximally centralizes communication and makes honesty and obedience rational equilibrium strategies for the agents”.

Although the revelation principle is fundamental and essential to the field of mechanism design, in this paper we will argue that there are serious bugs in two versions of proofs. The rest of the paper are organized as follows: In Section 2, we will analyse the bug in Myerson’s proof [1]. Then, we will point out the bug in the proof given by Mas-Colell, Whinston and Green [3].

2. The bug in Myerson’s proof

In this section, the notation is referred to Ref. [1]. The bug will be showed by the following three claims. We use the capital form to emphasize key words.

Claim 1: For each agent i, t_i and d_i are his private information.

Proof: See Page 69, Line 26 [1], “...each type t_i in T_i represents a complete description of all the private information i might have about his environment, his abilities and his preferences. Each private decision-option d_i in D_i may represent, for example, a level of effort which agent i might exert in working for the principal, and which the principal cannot observe or control”. Obviously, Claim 1 holds.

Claim 2: For each agent i, the two mappings $\rho_i : T_i \rightarrow R_i$ and $\delta_i : M_i \times T_i \rightarrow D_i$ are his private information.

Proof: See Page 71, Line 19 [1], “In the context of this coordination mechanism $((R_i, M_i)_{i=1}^n, \pi)$, each agent i controls his choice of reporting strategy in R_i as a
function of his type, and controls his choice of a decision in D_i as a function of his type and his message received. That is, agent i SELECTS a pair of functions $\rho_i : T_i \rightarrow R_i$ and $\delta_i : M_i \times T_i \rightarrow D_i$, such that $\rho_i(t_i)$ would be agent i’s reporting strategy if i were of type t_i, and $\delta_i(m_i, t_i)$ would be i’s final decision in D_i after he received message m_i if his type were t_i.”

In a general system, each agent i acts independently and self-interestedly when he selects his participation strategy (ρ_i, δ_i). Any agent has incentives to report dishonestly and act disobediently whenever doing so is better for him. Therefore, the two mappings $\rho_i : T_i \rightarrow R_i$ and $\delta_i : M_i \times T_i \rightarrow D_i$ must be agent i’s private information.

Claim 3: There is a bug in Myerson’s proof.

Proof: See Page 74, Line 1 [1], “...Let $\delta^{-1}(d, t)$ be the set of all messages to the agents such that each agent i would respond by choosing decision d_i if his type were t_i. That is,

$$
\delta^{-1}(d, t) = \{m | \delta_i(m_i, t_i) = d_i, \text{ for all } i\}.
$$

It is implicit WHO IS ABLE to calculate $\delta^{-1}(d, t)$ for any arbitrarily given d and t. We emphasize the ability to do the calculation because anybody who wants to calculate $\delta^{-1}(d, t)$ must be able to get all necessary data. As discussed in Claim 2, the mapping δ_i is private information of agent i and unknown to the principal. It is impossible for the principal to calculate $\delta^{-1}(d, t)$ when he is given some arbitrary $t \in T_1 \times \cdots \times T_n$ and $d \in D_1 \times \cdots \times D_n$.

See Page 74, Line 5 [1], “Then, define $\pi^* : D \times T \rightarrow R$ so that

$$
\pi^*(d|t) = \sum_{m \in \delta^{-1}(d, t)} \pi(d_0, m|\rho_1(t_1), \cdots, \rho_n(t_n)).
$$

π^* is the direct coordination mechanism which simulates the overall effect of the original mechanism with the given participation strategies”.

It is also implicit WHO IS ABLE to calculate $\rho_1(t_1), \cdots, \rho_n(t_n)$ for any arbitrarily given t_1, \cdots, t_n. Although in Bayesian Nash equilibrium, each agent i has incentives to truthfully report $\rho_i(t_i)$ to the principal if t_i is his true type, it is unreasonable to assume that each agent i has incentives to TRUTHFULLY report $\rho_i(t_i)$ to the principal for all possible $\hat{t}_i \in T_i$. Hence, it is impossible for the principal to calculate $\rho_1(t_1), \cdots, \rho_n(t_n)$ for any arbitrarily given t_1, \cdots, t_n.

To sum up, the principal cannot calculate $\delta^{-1}(d, t)$ or $\rho_1(t_1), \cdots, \rho_n(t_n)$. Consequently, the principal cannot calculate π^*. In Page 6, Line 24 [2], Myerson assumed a virtual person (named mediator) to calculate π^*: “The assumption that perfectly trustworthy mediators are available is essential to the mathematical simplicity of the incentive-compatible set”. Therefore, π^* can only be calculated by the assumed mediator, NOT BY THE PRINCIPAL. However, in Page 73, Proposition 2 [1], Myerson said: “...there exists an incentive-compatible direct mechanism π^* in which the PRINCIPAL gets the same expected utility...”.

That’s the bug!
3. The bug in the proof by Mas-Colell, Whinston and Green

In this section, the notation follows from Ref. [3]. In the derivation of formula (23.D.3), the authors substitute $s_i^*(\hat{\theta}_i)$ for \hat{s}_i appeared in the formula (23.D.2). Since (23.D.2) holds for all $\hat{s}_i \in S_i$, it looks reasonable to do so at the first sight.

As we have pointed out in Section II, for each agent i, the strategy s_i^* is his private information. Although in Bayesian Nash equilibrium, each agent i has incentives to truthfully report $s_i^*(\theta_i)$ to the principal if agent i’s type is θ_i, it is unreasonable to assume that each agent i has incentives to TRUTHFULLY report $s_i^*(\hat{\theta}_i)$ (for all $\hat{\theta}_i \in \Theta_i$) to the principal. Hence, the item $s_i^*(\hat{\theta}_i)$ (for all $\hat{\theta}_i \in \Theta_i$) is indeed NOT AVAILABLE to the principal. Consequently, the formula (23.D.3) doesn’t hold.

That’s the bug!

Acknowledgments

The author is very grateful to Ms. Fang Chen, Hanyue Wu (Apple), Hanxing Wu (Lily) and Hanchen Wu (Cindy) for their great support.

References