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Abstract

We study nonparametric estimation of the volatility function of
a diffusion process from discrete data, when the data are blurred by
additional noise. This noise can be white or correlated, and serves as
a model for microstructure effects in financial modeling, when the
data are given on an intra-day scale. By developing pre-averaging
techniques combined with wavelet thresholding, we construct adap-
tive estimators that achieve a nearly optimal rate within a large
scale of smoothness constraints of Besov type. Since the underly-
ing signal (the volatility) is genuinely random, we propose a new
criterion to assess the quality of estimation; we retrieve the usual
minimax theory when this approach is restricted to deterministic
volatility.
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1 Introduction

1.1 Motivation

Microstructure noise

Diffusion processes and more generally continuous-time semimartingales
have long served as a representative model for financial assets in order
to hedge and replicate risk of derivatives (see for instance the books of
Musiela [36] or Bouchaud and Potters [9] and the references therein).
When mathematical modeling narrows down to parameter estimation or
calibration based on historical prices, the time scale at which the models
are displayed becomes a key factor. Whereas relative consensus holds
about a general semimartingale model for prices at coarse scales (when
the data are sampled on a daily or monthly basis) this is no longer true
at fine scales, when intra-day or high-frequency data are concerned.

Over the last years, financial econometrics have covered a giant leap
since the naive models of discretized diffusions that were used before
the 2000’s. The seminal paper of Ait-Sahalia et al. [2] led the way: by
considering high-frequency data as the result of a latent or unobservable
efficient price corrupted by microstructure effects, they obtained a more
realistic model accounting for stylized facts in the intraday scale usually
attributed to bid-ask spread manipulation by market makers. This ap-
proach was grounded on empirical findings in the financial econometrics
literature of the early years 2000 (among many others, Andersen et al.
[4], Engl [17], Mykland and Zhang [37]) and even before (Roll [40] and
Hasbrouck [27]).

In this setting and for 1-dimensional models, observable quantities
(e.g. the log-returns of an asset) are assumed to take the form

Zj,n = Xj∆n
+ ǫj,n, j = 0, 1, . . . , n (1.1)

where ∆n > 0 is the sampling time, (ǫj,n) is the microstructure noise pro-
cess (always taken with 0 expectation for obvious identifiability purposes).
The process X = (Xt)t≥0 is the latent price and has representation

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σs dWs, (1.2)

on an appropriate probability space. In other words, X is an Itô contin-
uous semimartingale driven by a Brownian motion W = (Wt)t≥0 with
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drift b = (bt) and diffusion coefficient or volatility process σ = (σt). This
is the so-called additive microstructure noise model (later abbreviated by
AMN).

Admittedly, there is no general consensus for the quality of modeling
provided by AMN, and indeed, representation (1.1) overlooks some ob-
vious stylized facts such as the discreteness of prices when scrutinizing
data at the level of the order book. However, AMN should be viewed as
a simplified but still instructive model for addressing statistical inference
in the context of high-frequency data in finance. The relatively weak as-
sumptions we have on X and the microstructure noise (ǫj,n) further on
will be sufficient for the level of generalization intended in this paper.

Statistical inference under microstructure noise

The parameter of interest is the unobserved path of the volatility process
t σt, and unless specified otherwise, it is random. From a semiparamet-
ric statistical perspective, a commonly admitted purpose is to estimate
from data (Zj,n) integrated quantities such as the integrated volatility∫ t
0 σ

2
sds and the integrated quarticity

∫ t
0 σ

4
sds. The high frequency data

framework dictates to take asymptotics as the time step ∆n between ob-
servations goes to 0.

From a nonparametric angle, one can try to recover the whole path
t σ2

t from data (Zj,n) solely. Whereas nonparametric estimation of the
diffusion coefficient from direct observation Xj∆n

is a fairly well known
topic when σ is assumed to be deterministic ([19], [28] and the review
paper of Fan [18]), nonparametric estimation in the presence of the noise
(ǫj,n) substantially increases the difficulty of the statistical problem. This
is the topic of the present paper.

1.2 Statistical inference under microstructure noise: some

history

Parametric and semiparametric inference

The first results about statistical inference of a diffusion with error mea-
surement go back to Gloter and Jacod [23, 24] in 2001. They showed that
if σt = σ(t, ϑ) is a deterministic function known up to a 1-dimensional pa-
rameter ϑ, and if moreover the εj,n are Gaussian and independent, then,
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for ∆n = n−1, the LAN condition holds (Local Asymptotic Normality),
with the rate n−1/4. This shows that, even in the simplest Gaussian dif-
fusion case, there is a substantial loss of information compared to the
case without noise, where the standard n−1/2 accuracy of estimation is
achievable.

At about the same time, the microstructure noise model for finan-
cial data was introduced by Ait-Sahalia, Mykland and Zhang in a series
of papers [2, 44, 43]. Analogous approaches in various similar contexts
progressively emerged in the financial econometrics literature: Podolskij
and Vetter [38], Bandi and Russell [6, 5], Barndorff-Nielsen et al. [7] and
the references therein. These studies tackled estimation problems in a
sound mathematical framework, and incrementally gained in generality
and elegance.

A paradigmatic problem in this context is the estimation of the in-
tegrated volatility

∫ t
0 σ

2
sds. Convergent estimators were first obtained by

Ait-Sahalia et al. [2] with a suboptimal rate n−1/6. Then the two-scale
approach of Zhang [43] achieved the rate n−1/4. The Gloter-Jacod LAN
property of [23] for deterministic submodels shows that this cannot be
improved. Further generalizations took the way of extending the nature
of the latent price model X (for instance [3, 42, 14]) and the nature of
the microstructure noise (ǫj,n).

It took some more time and contributions before Jacod and collabo-
rators [30] took over the topic in 2007 with their simple and powerful pre-
averaging technique, introduced earlier in a simplified context by Podol-
skij and Vetter [38]. The approach of Jacod et al. is a nice balance be-
tween simplicity of modeling and generality, and it substantially improves
on previous results in AMN. In essence, it consists in first, smoothing the
data as in signal denoising and then, apply a standard realized volatility
estimator up to appropriate bias correction. Stable convergence in law is
displayed for a wide class of pre-averaged estimators in a fairly general
setting, closing somehow the issue of estimating the integrated volatility
in a semiparametric setting.

Nonparametric inference

In the nonparametric case, the problem is a little unclear. By nonpara-
metric, one thinks of estimating the whole path t  σ2

t of the volatility
of the latent price, under microstructure noise. This is a problem of ma-

4



jor importance in high-frequency trading: a key issue is the recovery of a
volatility profile (possibly in an on-line fashion) over which various trading
indicators are constructed. However, since σ2 = (σ2

t )t≥0 is usually itself
genuinely random, there is no “true parameter” to be estimated! However,
when the diffusion coefficient is deterministic, the usual setting of statis-
tical experiments is recovered. In that latter case, under the restriction
that the microstructure noise process consists of i.i.d. noises, Munk and
Schmidt-Hieber [34, 35] proposed a Fourier estimator and showed its min-
imax rate optimality, extending a previous approach for the parametric
setting ([10]). This approach relies on a formal analogy with inverse ill-
posed problems. When the microstructure noises (ǫj,n) are Gaussian i.i.d.
with variance τ2, Reiß [39] showed very recently the asymptotic equiva-
lence in the Le Cam sense with the observation of the random measure
Yn given by

Yn =
√

2σ + τ n−1/4Ḃ

where Ḃ is a Gaussian white noise. This is a beautiful and deep result,
and again the semiparametric rate n−1/4 is illuminating when compared
with the optimality results obtained by previous authors.

1.3 Our results

The asymptotic equivalence proved by Reiß [39] provides us with a bench-
mark for the complexity of the statistical problem and is inspiring: we
target in this paper to put the problem of estimating nonparametrically
the random parameter t  σ2

t to the level of classical denoising in the
adaptive minimax theory. In spirit, we follow the classical route of non-
linear estimation in de-noising, but we need to introduce new tools. Our
procedure is twofold:

1. We approximate the random signal t  σ2
t by an atomic represen-

tation
σ2

t ≈
∑

ν∈V(σ2)

〈σ2, ψν〉ψν(t) (1.3)

where 〈•, •〉 denotes the usual L2-inner product and
(
ψν , ν ∈ V(σ)

)

is a collection of wavelet functions that are localized in time and
frequency, indexed by the set V(σ2) that depends on the path t σ2

t

itself. As for the precise meaning of the symbol ≈ we do no specify
yet.
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2. We then estimate the linear coefficients 〈σ2, ψν〉 and specify a se-
lection rule for V(σ) (with the dependence in σ somehow replaced
by an estimator). The rule is dictated by hard thresholding over
the estimations of the coefficients 〈σ2, ψν〉 that are kept only if they
exceed some noise level, tuned with the data, as in standard wavelet
nonlinear approximation (among many others, the work of Donoho,
Johnstone, Kerkyacharian, Picard and collaborators [15, 16, 26]).

The key issue is therefore the estimation of integrated quantities of the
form

〈σ2, ψν〉 =

∫

R

σ2
tψν(t)dt. (1.4)

An important fact is that the functions ψν are well located but oscillate,
making the approximation of (1.4) delicate, in contrast to the global
estimation of the integrated volatility in the semiparametric approach. If
we could observe the latent process X itself at times j∆n, then standard
quadratic variation based estimators like

∑

j

ψν(j∆n)(Xj∆n
−X(j−1)∆n

)2 (1.5)

would give rate-optimal estimators of (1.4), as follows from standard
results on nonparametric estimation in diffusion processes [19, 28, 29].
However, we only have a blurred version of X via (Zj,n) and further “in-
termediate” de-noising is required.

At this stage, we consider “local averages” of the data Zj,n at an
“intermediate scale” m so that ∆n ≪ 1/m but m → ∞. Let us denote
loosely (and temporarily) by Ave(Z)i,m an averaging of the data (Zj,n)
around the point i/m. We have

Ave(Z)i,m ≈ Xi/m + small noise (1.6)

and thus we have a “de-blurred” version of X, except that we must now
handle the small noise term of (1.6) and the loss of information due to
the fact that we dispose of (approximate) Xi/m on a coarser scale since
m≪ ∆−1

n . We subsequently estimate (1.4) replacing the naive guess (1.5)
by

∑

i

ψν(i∆n)
[(

Ave(Z)i,m − Ave(Z)i−1,m

)2
+ bias correction

]
(1.7)

up to a further “bias correction” term that comes from the fact that we
take square approximation of X via (1.6). In Section 3.1, we generalize

6



(1.7) to arbitrary kernels within a certain class of pre-averaging functions,
in the very same spirit as in Jacod et al. [30]. (See also Gloter [20] and
Gloter and Hoffmann [21] or Rosenbaum [41] where this technique is used
for denoising stochastic volatility models corrupted by noise.)

Tuning appropriately all the parameters within this class of estima-
tors, we prove in Theorems 3.4 and 2.9 that over fixed time horizon, the
rate (n−1/4)2s(π⋆)/(4s(π⋆)+2) is achievable by our procedure in Lp-loss er-
ror, when the signal t σ2

t has smoothness s measured in Lπ-norm over
Besov classes Bs

π,∞. The smoothness parameter s(π⋆) = s in most cases,
except if the loss Lp is too strong in face of the Lπ-smoothness measure-
ment, in which case we have an inflation of the convergence rate governed
by s, p and π (see the definition of s(π⋆) in (2.9) in Theorem 2.9). This
is the classical case of minimax estimation of sparse signals [16, 32] and
we retrieve the expected results of wavelet thresholding up to the noise
rate n−1/4 instead of the usual n−1/2 in white Gaussian noise or density
estimation, but that is inherent to the problem of microstructure noise,
as already established in [23]. A major difficulty is that in order to em-
ploy the wavelet theory in this context, we must assess precise deviation
bounds for quantities of the form (1.7), which require delicate martingale
techniques.

We prove in Theorem 2.11 that this result is sharp, even if the signal
t  σ2

t is random and that we do not have a statistical model in the
strict sense. In order to encompass this level of generality, we propose
a modification of the notion of upper and lower rate of estimation of a
random parameter in Definition 2.3 and 2.6. This approach is presented
in details in the methodology Section 2.2. The proof of our lower bound
heavily relies on the result of Reiß [39] already mentioned in Section 1.2,
which we take advantage of thanks to the asymptotic equivalence theory
of Le Cam [33].

The paper is organized as follows. In Section 2 we introduce notation
and formulate the key results. An explicit construction of the estimator
can be found in Section 3. Finally, the proofs of the main results and
some (unavoidable) technicalities are deferred to Section 4.
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2 Main results

2.1 The data generating model

The setting

In the following, we consider a filtered probability space (Ω,F , (Ft)t≥0,P),
on which is defined a continuous adapted 1-dimensional process X of
the form (1.2), with X0 is a random variable and W a Wiener process.
Without loss of generality, we will assume further that X0 = 0.

The following basic assumption on b and σ is in force throughout the
paper.

Assumption 2.1. The processes σ and b are càdlàg (right continuous
with left limits), Ft-adapted, and a weak solution of (1.2) is unique and
well defined.

Moreover, a weak solution to Yt =
∫ t
0 σsdWs is also unique and well

defined, the laws of X and Y are equivalent on F1 and we have, for some
ρ > 1

E
[
exp

(
ρ

∫ 1

0

bs
σ2

s

dYs

)]
<∞.

We mention, that the second part of Assumption 2.1 will prove tech-
nically useful, since it allows to assume that b = 0 in many estimates
due to Girsanov’s theorem. With some more technical effort it could be
relaxed further.

The data generating process

For j = 0, . . . , n, we assume that we can observe a blurred version of X a
times ∆nj over the time horizon [0, T ]. We consider a fixed time horizon
T = n∆n, and with no loss of generality, we take T = 1 hence ∆n = n−1.

The blurring accounts for microstructure noise at fine scales and then
takes the form

Zj,n := Xj/n + ǫj,n, j = 0, 1, . . . , n (2.1)

where the microstructure noise process (ǫj,n) is implicitly defined on the
same probability space as X and is allowed to be price dependent and
correlated. More precisely
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Assumption 2.2. We have

ǫj,n = a(j/n,Xj/n)ηj,n, (2.2)

where the function (t, x) a(t, x) is continuous and bounded. Moreover,
the noise array (ηj,n) is independent of X and for every 1 ≤ j ≤ n and
n ≥ 1, we have

E
[
ηj,n

]
= 0, E

[
η2

j,n

]
= 1, E

[
|ηj,n|p

]
<∞, p > 0.

The estimation program

Given data Z• = {Zj,n, j = 0, . . . , n} following (1.1), we estimate non-
parametrically the random function t  σ2

t over the time interval [0, 1].
Asymptotics are taken as the observation frequency n→ ∞.

2.2 Statistical methodology

Strictly speaking, since the target parameter σ2 = (σ2
t )t∈[0,1] is random

itself (as an F-adapted process), we cannot assess the performance of an
“estimator of σ2” in the usual way. We need to modify the usual notion
of convergence rate over a function class.

We are interested in recovering σ2 over various smoothness classes,
that shall account for the underlying complexity of the volatility process
t σ2

t . Theses smoothness class include the case where σ2 is deterministic
and has as many derivatives as one wishes, but also the case of genuinely
random processes that oscillate like diffusions, or fractional diffusions and
so on. We shall describe smoothness classes in terms of Besov balls

Bs
π,∞(c) :=

{
f : [0, 1] → R, ‖f‖Bs

π,∞([0,1]) ≤ c
}
, c > 0. (2.3)

that measure smoothness of degree s > 1/π in Lπ over the interval [0, 1],
for π ∈ (0,∞). A thorough account of Besov spaces Bs

p,∞ and their con-
nection to wavelet bases in a statistical setting are discussed in details in
the classical papers of Donoho et al. [16] and Kerkyacharian and Picard
[32]. See also the textbook of Cohen [12]. The restriction s > 1/π en-
sures that the functions in Bs

π,∞ are continuously embedded into Hölder
continuous functions with index s− 1/π.

Definition 2.3. An estimator of σ2 = (σ2
t )t∈[0,1] is a random function

t σ̂2
n(t), t ∈ [0, 1],
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measurable with respect to the observation (Zj,n) defined in (1.1).

We have the following notion of upper bound:

Definition 2.4. We say that the rate 0 < vn → 0 (as n→ ∞) is achiev-
able for estimating σ2 in Lp-norm over Bs

π,∞(c) if there exists an estima-
tor σ̂2

n such that

lim sup
n→∞

v−1
n E

[
‖σ̂2

n − σ2‖Lp([0,1])I
{

σ2∈Bs
π,∞(c)

}
]
<∞. (2.4)

Remark 2.5. When (σt) is deterministic, we can make a priori assump-
tions so that the condition σ2 ∈ Bs

π,∞(c) is satisfied, in which case we
simply ignore the indicator in (2.4). In other cases, this condition will
be satisfied with some probability for some indices (s, π) and c > 0. For
instance, is (σt) is an Itô continuous semimartingale itself with regular

coefficients, we have P
[
σ2 ∈ B

1/2
π,∞(c)

]
> 0 for every 0 < π < ∞, see

[11]. But it may also well happen that for some choices of (s, π) we have
P
[
σ2 ∈ Bs

π,∞(c)
]

= 0 for every c > 0 in which case, the upper bound
(2.4) becomes trivial and noninformative.

In this context, a sound notion of optimality is a little unclear. We
introduce the following type of lower bound.

Definition 2.6. The rate vn is a lower rate of convergence over Bs
π,∞(c)

in Lp norm if there exists a filtered probability space (Ω̃, F̃ , (F̃t)t≥0, P̃),

a process X̃ defined on (Ω̃, F̃) with the same distribution as X under
Assumptions 2.1 together with a process (ǫ̃j,n) satisfying (2.2) with X̃ in
place of X, such that Assumption 2.2 holds, and moreover:

P̃
[
σ2 ∈ Bs

π,∞(c)
]
> 0 (2.5)

and
lim inf
n→∞

v−1
n inf

bσ2
n

Ẽ

[
‖σ̂2

n − σ2‖Lp([0,1])I
{

σ2∈Bs
π,∞(c)

}
]
> 0, (2.6)

where the infimum is taken over all estimators.

Let us elaborate on Definition 2.6. As already mentioned in this sec-
tion, the quantity of interest σ2 is “genuinely” random, and we cannot
say that our data {Zj,n} generate a statistical experiment as a family
of probability measures indexed by some parameter of interest, and over
which standard information criteria such as Fisher information or min-
imax lower bound of estimation could be computed. Rather, we have a
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fixed probability measure P, but this measure is only “loosely” specified
by very weak conditions, namely Assumptions 2.1 and 2.2. A lower bound
as in Definition 2.6 says that, given model P, there exists a probability
measure P̃, possibly defined on another space so that Assumptions 2.1
and 2.2 hold under P̃ together with (2.6).

Without further specification on our model, there is no sensible way to
discriminate between P and P̃ since both measures (and the accompanying
processes) satisfy Assumptions 2.1 and 2.2; moreover, under P̃, we have
a lower bound.

Remark 2.7. This setting may enable to retrieve the standard minimax
framework when σ2 is deterministic and belongs to a Besov ball Bs

π,∞(c).

In that case, it suffices to construct a probability measure P̃ such that
under P̃, the random variable σ2 has distribution µ(dσ2) with support in
Bs

π,∞(c), and chosen to be a least favourable prior as in standard lower
bound nonparametric techniques. It remains to check that Assumptions
2.1 and 2.2 are satisfied µ-almost surely. We elaborate on this approach
in the proof of Theorem 2.11 below.

2.3 Achievable estimation error bounds

An important fact for practical purposes is that we shall require only
relatively weak prior knowledge on the smoothness of the volatility pro-
cess. A (technical) restriction is that we assume some minimal Hölder
smoothness on the paths of t  σ2

t . This is guaranteed by the condition
s > 1/π.

For prescribed smoothness class Bs
π,∞(c) and Lp-loss functions, the

rate of convergence vn depends on the index s, π and p. As usual in
this setting ([15], [16] and [32]), we have an “elbow” phenomenon that
separates sparse and dense regime, according to the classical terminology.
We describe the rate of convergence in a condensed way, by introducing an
“effective smoothness function” as in [22] (among other possible references
for that topic).

Definition 2.8. For π ∈ (0,+∞) and s > 1/π, the effective smoothness
function relative to Bs

π,∞(c) is

s(t) := s+
(
t− 1/π

)
I{0≤t≤1/π} (2.7)
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Theorem 2.9. Work under Assumptions 2.1 and 2.2. Then, for every
c > 0, the rate

vn :=

(
(logn)3/2

n

)s(π⋆)/(4s(π⋆)+2)

(2.8)

where π⋆ is the unique number that satisfies

s(π⋆) =
1

2

( p
π⋆

− 1
)
, (2.9)

is achievable over the class Bs
π,∞(c) in Lp norm with p ∈ [1,∞), provided

s > 1/π and π ∈ (0,∞). Moreover, the estimator explicitly constructed
in Section 3.3 below attains this bound in the sense of (2.4).

Remark 2.10. The rate of convergence of σ2 over the class Bs
π,∞(c)

under Lp-loss has the form

(n−1/4)2s(π⋆)/(2s(π⋆)+1)

up to some logarithmic (inessential) corrections in some cases. It is to be
compared with the usual minimax rate

(
n−1/2

)2s/(2s+1)

for recovering a function of Hölder smoothness s from n data in density
estimation or nonparametric regression.

First, the “effective smoothness” s(π⋆) ≤ s instead of s comes from
the fact that we measure smoothness in a weaker Lπ sense, and if the loss
Lp we pick is such that p is substantially larger than π, we may loose a
smoothness factor. This is precisely quantified by s(π⋆), where π⋆ is de-
fined in (2.9). It is a well known phenomenon in nonlinear nonparametric
estimation [16, 32] (or [22] for a systematic use of the “effective smooth-
ness” function s(•)), and microstructure noise model are no exception of
it.

Second, the parametric rate n−1/2 has to be replaced by n−1/4. This
effect is due to microstructure noise, and was already identified in earlier
parametric models as in Gloter and Jacod [23] and subsequent works,
both in parametric, semiparametric and nonparametric estimation (see
[23, 24, 10, 34, 43, 30]).

Our next result shows that this rate is nearly optimal in some (most)
cases.
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Theorem 2.11. In the same setting as in Theorem 2.9, assume moreover

that s− 1/π > 1+
√

5
4 . Then the rate

ṽn := n−s(π⋆)/(4s(π⋆)+2)

is a lower rate of convergence over Bs
π,∞(c) in Lp in the sense of Definition

2.6.

Since vn and ṽn agree up to some (inessential) logarithmic terms, our
result is nearly optimal in the sense of Definitions 2.4 and 2.6

Remark 2.12. This setting may also enable to retrieve the standard
minimax framework when σ2 is deterministic and belongs to a Besov ball
Bs

π,∞(c). In that case, it suffices to construct a probability measure P̃ such

that under P̃, the random variable σ2 has distribution µ(dσ2) with support
in Bs

π,∞(c), and chosen to be a least favourable prior as in standard lower
bound nonparametric techniques. It remains to check that Assumptions
2.1 and 2.2 are satisfied µ-almost surely. We elaborate on this approach
in the proof of Theorem 2.11 below.

The proof of the lower bound is an application of a recent result of
Reiß [39] about asymptotic equivalence between the statistical model ob-
tained by letting σ2 be deterministic and the microstructure noise white
Gaussian with an appropriate infinite dimensional Gaussian shift exper-

iment. In particular, the restriction s − 1/π > 1+
√

5
4 stems from the re-

sult of Reiß and could presumably be improved. Our proof relies on the
strategy described in Remark 2.12 :we transfer the lower bound into a
Bayesian estimation problem by constructing P̃ adequately. We then use
the asymptotic equivalence result of Reiß in order to approximate the
conditional law of the data given σ under P̃ by a classical Gaussian shift
experiment, thanks to a Markov kernel. In the special case p = π = 2, we
could also derive the result by using the lower bound in [34].

3 Wavelet estimation and pre-averaging

3.1 Estimating linear functionals

We estimate the (square of the) volatility process, σ2, via linear function-
als of the form

〈σ2, hℓk〉L2 :=

∫ 1

0
2ℓ/2h(2ℓt− k)d〈X〉t,
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where 〈•, •〉L2 denotes the inner product of L2([0, 1]) and t 〈X〉t is the
predictable compensator of the continuous semimartingale X.

Here the integers ℓ ∈ [0, n] and k ∈ [0, 2ℓ] are respectively a resolution
level and a location parameter. The test function h : R → R is smooth and
throughout the paper we will assume that h is compactly supported on
[0, 1]. Thus, hℓk = 2ℓ/2h(2ℓ•− k) is essentially located around (k+ 1

2)/2ℓ.

Definition 3.1. We say that λ : [0, 2) → R is a pre-averaging function
if it is piecewise Lipschitz continuous and satisfies λ(t) = −λ(2 − t). To
each pre-averaging function λ we associate the quantity

λ :=
(
2

∫ 1

0

( ∫ s

0
λ(u)du

)2
ds
)1/2

and define the (normalized) pre-averaging function λ̃ := λ/λ.

For 1 ≤ m < n and a sequence (Yj,n, j = 1, . . . , n), we define the
pre-averaging of Y at scale m relative to λ by setting for i = 1, . . . ,m

Y i,m(λ) :=
m

n

∑

j
n∈
(

i−2
m ,

i
m

]
λ̃
(
m j

n − (i− 2)
)
Yj,n, (3.1)

the summation being taken w.r.t. the index j. If Yj,m has the form Yj/m

for some underlying continuous time process t  Yt, the pre-averaging
of Y at scale m is a kind of local average that mimics the behaviour of
Yi/m − Y(i−2)/m. Indeed, using λ(t) = −λ(2 − t),

Y i,m(λ) ≈ −m
n

∑

j
n∈
(
0,

1
m

]
λ̃
(
m j

n

)
(Yi/m−j/n − Y(i−2)/m+j/n).

Thus, Y i,m(λ) might be interpreted as a sum of differences in the interval

[(i− 2)/m, i/m], weighted by λ̃.

From (1.5), a first guess for estimating 〈σ2, hℓk〉L2 is to consider the
quantity

m∑

i=2

hℓk

(
i−1
m

)
Z

2
i,m

for some intermediate scale m that needs to be tuned with n and that
reduces the effect of the noise (εj,n) in the representation (1.1). However,
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such a procedure is biased and a further correction is needed. To that
end, we introduce

b(λ, Z•)i,m :=
m2

2n2

∑

j
n∈
(

i−2
m ,

i
m

]
λ̃2
(
m j

n − (i− 2)
)(
Zj,n − Zj−1,n

)2
(3.2)

The form of b(λ, Z•)i,m given in (3.2) is not self-evident, and results from
a series of stochastic approximations that are detailed in the proof Section
4. It appears as a natural choice in the transparent (yet technical) Section
4.1.

Finally, our estimator of 〈σ2, hℓk〉L2 is

Em(hℓk) :=

m∑

i=2

hℓk

(
i−1
m

)[
Z

2
i,m − b(λ, Z•)i,m

]
. (3.3)

3.2 The wavelet threshold estimator

We are now ready to construct an fully nonparametric estimator of the
volatility process (σ2

t )t∈[0,1]. Let (ϕ,ψ) denote a pair of scaling function
and mother wavelet that generates a multiresolution of L2([0, 1]), ap-
pended with boundary conditions, see e.g. [12, 13].

The volatility (random) function t  σ2
t taken path-by-path as an

element of L2([0, 1]) has almost-sure representation

σ2
• =

∑

k∈Λℓ0

cℓ0k ϕℓ0k(•) +
∑

ℓ>ℓ0

∑

k∈Λℓ

dℓk ψℓk(•), (3.4)

with

cℓ0k = 〈σ2, ϕℓ0k〉L2 =

∫ 1

0
ϕℓ0k(t)d〈X〉t,

dℓk = 〈σ2, ψℓk〉L2 =

∫ 1

0
ψℓk(t)d〈X〉t.

For every ℓ ≥ 0, the index set Λℓ has cardinality 2ℓ (and also incorporates
boundary terms in the first part of the expansion that we choose not to
distinguish in the notation from ϕℓ0k for simplicity.)

Following the classical wavelet threshold algorithm (see for instance
[16] and in its more condensed form [32]), we approximate Formula (3.4)
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by

σ̂2
n(•) :=

∑

k∈Λℓ0

E(ϕℓ0k)ϕℓ0k(•) +

ℓ1∑

ℓ=ℓ0+1

∑

k∈Λℓ

Tτ

[
E(ψℓk)

]
ψℓk(•) (3.5)

where the wavelet coefficient estimates E(ϕℓ0k) and E(ψℓk) are given by
(3.3) and

Tτ [x] = x1{|x|≥τ}, τ ≥ 0, x ∈ R

is the standard hard-threshold operator.

Thus our estimator t  σ̂2
n(t) is specified by the resolution levels ℓ0,

ℓ1, the threshold κ and the estimators E(ϕℓ0k) and E(ψℓk) which in turn
are entirely determined by the choice of the pre-averaging function λ and
the pre-averaging resolution level m. (And of course, the choice of the
basis generated by (ϕ,ψ) on L2([0, 1]).)

3.3 Convergence rates

We first give two results on the properties of Em(hℓk) for estimating
〈σ2, hℓk〉L2 .

Theorem 3.2 (Moment bounds). Work under Assumptions 2.1 and 2.2.
Let us assume that h has piecewise Lipschitz derivative and that 2ℓ ≤
m ≤ n1/2.

If s > 1/π, for any c > 0, for every p ≥ 1, we have

E
[∣∣Em(hℓk) − 〈σ2, hℓk〉L2

∣∣pI{σ2∈Bs
π,∞(c)}

]
. ‖h‖L∞m−p/2+

+m−min{s−1/π,1}p|hℓk|p1,m,

where

|hℓk|1,m := m−1
m∑

i=1

|hℓk(i/m)|.

The symbol . means up to a constant that does not depend on m,n and
h.

Theorem 3.3 (Deviation bounds). Work under Assumptions 2.1 and
2.2. Let us assume that h has piecewise Lipschitz derivative and that
2l ≤ m ≤ n1/2. If moreover

m2−ℓ ≥ mq, for some q > 0,

16



then, if s > 1/π, for any c > 0, for every p ≥ 1, we have

P

[∣∣Em(hℓk) − 〈σ2, hℓk〉L2

∣∣ ≥ κ
(p log m

m

)1/2
and σ2 ∈ Bs

π,∞(c)
]
. m−p

provided

κ > 4c+ 4
√

2 c ‖a‖L∞‖λ‖L2λ
−1

+ 4‖a‖2
L∞‖λ‖2

L2λ
−2

and
m−(s−1/π)|hℓk|1,m . m

−1/2,

where c := supσ2∈Bs
π,∞(c) ‖σ2‖L∞ .

Thanks to Theorems 3.2 and 3.3, the performance of the wavelet esti-
mator constructed in Section 3.2 readily follows, as stems from the clas-
sical nonlinear and adaptive estimation theory by wavelet thresholding,
see [15], [16] and [32].

Let us be given a wavelet pair (ϕ,ψ) that generates a r-regular mul-
tiresolution analysis of L2([0, 1]), for some r ≥ 1.

Theorem 3.4. Work under Assumptions 2.1 and 2.2. Let σ̂2
n denote the

wavelet estimator defined in (3.5), constructed from (ϕ,ψ) and a pre-
averaging function λ, such that

m ∼ n1/2, 2ℓ0 ∼ m1−2α0 for some 0 < α0 < 1/2, 2ℓ1 ∼ m1/2

and τ := κ
√

log m
m for sufficiently large κ > 0. Then, for

α0 ≤ s− 1/π ≤ max{α0/(1 − 2α0), r},

the estimator σ̂2
n achieves (2.4) with vn :=

(
n−1(logn)3/2

)s(π⋆)/(4s(π⋆)+2)
,

where s(π⋆) is defined in (2.7) and (2.9).

Corollary 3.5. We have Theorem 2.9.

Remark 3.6. By taking α0 < 1/2, Theorem 3.4 shows that in this case
the estimator can at most adapt to the correct smoothness within the range
0 < α0 ≤ s− 1/π ≤ α0/(1 − 2α0) <∞.

Remark 3.7. In order to achieve adaptation, i.e. an estimator that
does not depend on the pre-set smoothness parameter of the problem, the
threshold κ needs to be taken large enough, and depends on λ. More pre-

cisely, it can be taken as κ̃
(
1 + λ

−2‖λ‖2
L2

)
, with κ̃ = κ̃(s, π, c, p, ‖a‖∞),
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where ‖a‖∞ is the level of the microstructure noise function a, defined in
(2.2). It can be explicitly computed from the proof of Proposition 3.3 com-
bined with the material indicated in the proof of Proposition 3.4. However,
although an explicit bound derived from the computations is feasible, for
practical purposes it is expected as too conservative in practice, as is well
known in the signal detection case (e.g., Donoho and Johnstone [15]) or
the classical inverse problem case (Abramovich and Silverman [1]). We
will not persue this issue further in this paper and postpone a practical
feasible thresholding to further work.

4 Proofs

4.1 Proof of Theorem 3.2

We shall first introduce several auxiliary estimates which rely on classical
techniques of discretization of random processes. Some are new.

In the sequel we shall repeatedly use the notation . which means up
to a constant that does not depend on n (or m which is later tuned with
n). The other dependencies shall be obvious from the context.

Unless otherwise specified, L2 abbreviates L2([0, 1]).

If g : [0, 1] → R is continuously differentiable, we define for n ≥ 1

Rn(g) :=
( n∑

j=1

∫ j/n

(j−1)/n

(
1
n

n∑

l=j

g′( l
n) −

∫ 1

s
g′(u)du

)2
ds
)1/2

,

and

|g|p,m :=
(

1
m

m∑

i=1

|g( i−1
m )|p

)1/p
.

In the following, if D is a function class, we will sometimes write ED[•]
for E[• Iσ2∈D]. Clearly, if D1 ⊂ D2, we have ED1

[•] ≤ ED2
[•]. For c > 0,

let
D∞(c) := {f : [0, 1] → R, ‖f‖L∞ ≤ c}.

Preliminaries : some estimates for the latent price X

We start with a standard approximation result for discretized stochastic
integrals.
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Lemma 4.1 (Discretization effect). Let g : [0, 1] → R, be a deterministic
function with piecewise continuous derivative, such that g(1) = 0.

Work under Assumption 2.1. For every p ≥ 1 and c > 0, we have

ED∞(c)

[∣∣∣
(

1
n

n∑

i=1

g′( i
n)Xi/n

)2 −
( ∫ 1

0
g(s)dXs

)2∣∣∣
p]
. ‖g‖p

L2 R
p
n(g) + R

2p
n (g).

Proof. First, by a change of measure and Assumption 2.1, we may assume
that X is a local martingale. Next, by Cauchy-Schwarz, we split the error
term into a constant times I × II + III × II, with

I := ED∞(c)

[∣∣∣
∫ 1

0
g′(s)Xsds

∣∣∣
2p]1/2

,

II := ED∞(c)

[∣∣∣ 1n
n∑

j=1

g′
( j

n

)
Xj/n −

∫ 1

0
g′(s)Xsds

∣∣∣
2p]1/2

,

III := ED∞(c)

[∣∣∣ 1n
n∑

j=1

g′
( j

n

)
Xj/n

∣∣∣
2p]1/2

. I + II.

Set
Tc := inf{s ≥ 0, σ2

s > c} ∧ 1.

On {σ2 ∈ D∞(c)}, we have Tc = 1, thus

ED∞(c)

[∣∣∣
∫ 1

0
g′(s)Xsds

∣∣∣
2p]

= E

[∣∣∣
∫ Tc

0
g′(s)Xsds

∣∣∣
2p

Iσ2∈D∞(c)

]

≤ E

[∣∣∣
∫ Tc

0
g′(s)Xsds

∣∣∣
2p]
.

Integrating by part and using the Burkholder-Davis-Gundy inequality
(later abbreviated by BDG, for a reference see [31], p. 166), we have

I ≤ E

[∣∣∣
∫ Tc

0
g(s)dXs

∣∣2p
]1/2
. E

[∣∣∣
∫ Tc

0
g2(s)σ2

sds
∣∣∣
p]1/2

. ‖g‖p
L2 ,

where we used that σ2
s ≤ c for s ≤ Tc. For the term II, note first that if

g̃(s) :=

n∑

j=1

(
1
n

n∑

l=j

g′
(

l
n

))
I[(j−1)/n,j/n)(s), s ∈ [0, 1],
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the process St =
∫ t∧Tc

0

(
g̃(s) + g(s)

)
dXs, t ∈ [0, 1] is a martingale and

〈S〉1 =

n∑

j=1

∫ j/n

(j−1)/n

(
1
n

n∑

l=j

g′
(

l
n

)
−
∫ 1

s
g′(u)du

)2
I{s≤Tc}d〈X〉s.

By summation by parts, we derive

II = ED∞(c)

[
|S1|2p

]1/2
. E

[
〈S〉pTc

]1/2
. R

p
n(g).

We further need some analytical properties of pre-averaging functions.
In the following λ, and λ̃ always denote a pre-averaging function and its
normalized version (in the sense of Definition 3.1). We set

Λ(s) :=

∫ 2

s
λ̃(u)du I[0,2] (s) (4.1)

and

Λ(s) :=
(( ∫ s

0
λ̃(u)du

)2
+
( ∫ 1−s

0
λ̃(u)du

)2)1/2
I[0,1] (s) . (4.2)

Note that for i = 2, . . . ,m

‖Λ
(
m • − (i− 2)

)
‖L2[0,1] = m−1/2‖Λ‖L2[0,2]

and
‖Λ
(
m • − (i− 1)

)
‖L2[0,1] = m−1/2.

Lemma 4.2. For m ≤ n, we have

Rn

[
Λ
(
m • − (i− 2)

)]
. n−1

and for i = 2, . . . ,m

‖Λ
(
m • − (i− 2)

)
‖L2 = m−1/2.

Proof. Let ji := min{j, im−1 ≤ jn−1}. We have

max
j
n∈
(

i−2
m ,

i
m

] sup

s∈
[ j−1

n ,
j
n

]
∣∣∣ 1n

ji∑

l=j

λ̃
(
m l

n − (i− 2)
)
−
∫ 1

s
λ̃
(
mu− (i− 2)

)
du
∣∣∣

≤ max
j
n∈
(

i−2
m ,

i
m

] sup

s∈
[ j−1

n ,
j
n

]
∣∣∣
∫ (j−1)/n

s
λ̃
(
mu− (i− 2)

)
du
∣∣∣+

max
j
n∈
(

i−2
m ,

i
m

]
ji∑

l=j

∣∣∣
1

n
λ̃
(
m
l

n
− (i− 2)

)
−
∫ l/n

(l−1)/n
λ̃
(
mu− (i− 2)

)
du
∣∣∣ . n−1,
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whence the first part of the lemma. For the second part, we have to prove
that

‖Λ‖L2[0,2] = 1.

This readily follows from

‖Λ‖2
L2[0,2] =

∫ 1

0

( ∫ 2

s
λ̃ (u) du

)2
ds+

∫ 2

1

( ∫ 2

s
λ̃ (u) du

)2
ds

=

∫ 1

0

( ∫ s

0
λ̃ (u) du

)2
ds+

∫ 1

0

( ∫ 2

1+s
λ̃ (u) du

)2
ds

=

∫ 1

0

( ∫ s

0
λ̃ (u) du

)2
ds+

∫ 1

0

( ∫ 2

1−s
λ̃ (u) du

)2
ds = ‖Λ‖2

L2[0,1].

Lemma 4.3. Work under Assumption 2.1 and let Λ as in (4.1) with λ
as in Definition 3.1. Then for m ≤ n, every p ≥ 1 and c > 0, we have

ED∞(c)

[∣∣∣
m∑

i=2

g
(

i−1
m

)( ∫ 1

0
Λ
(
ms− (i− 2)

)
dXs

)2

−
∫ 1

0

m∑

i=2

g
(

i−1
m

)
Λ2(ms− (i− 2))d〈X〉s

∣∣∣
p]
. ‖g‖p

L∞ |supp(g)|p/2m−p/2,

where |supp(g)| denotes the support length of g.

Proof. In the same way as for Lemma 4.1, we may (and will) assume that
X is a local martingale. For i = 2, . . . ,m and t ∈ [0, 1], set

Ht,i := g
(

i−1
m

)
Λ
(
mt− (i− 2)

) ∫ t

(i−2)/m
Λ
(
ms− (i− 2)

)
dXs I( i−2

m ,
i
m

](t).

(4.3)

By integration by parts, we have

m∑

i=2

g
(

i−1
m

)[( ∫ 1

0
Λ
(
ms− (i− 2)

)
dXs

)2

−
∫ 1

0
Λ2
(
ms− (i− 2)

)
d〈X〉s

]

= 2

m∑

i=2

∫ i/m

(i−2)/m
Ht,i dXt. (4.4)
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For t ∈ [0, 1], the process
∑m

i=1Ht,i is continuous (because of Λ(0) =

Λ(2) = 0) and adapted, hence
∫ t
0

∑m
i=2Hs,i dXs is a continuous local

martingale. Applying BDG and the localization argument of Lemma 4.1,
we obtain

ED∞(c)

[∣∣
∫ Tc

0

m∑

i=2

Ht,i dXs

∣∣p]

. E
[∣∣
∫ Tc

0

( m∑

i=2

Ht,i dt
)2∣∣p/2]

. E
[∣∣
∫ Tc

0

m∑

i=2

H2
t,i dt

∣∣p/2]

. E
[∣∣m−1

m∑

i=2

(H⋆
i )2
∣∣p/2]

. |supp(g)|p/2−1m−1
m∑

i=2

E
[
(H⋆

i )p
]
,

where H⋆
i := supt≤Tc

|Ht,i| and where we used that t Ht,i has compact
support with length of order m−1. The last estimate followed by Hölder
inequality. By BDG again, we derive

E
[
(H⋆

i )p
]
.
∣∣g
(

i−1
m

)∣∣p E

[
sup

t≤2/m

∣∣∣
∫ ((i−2)/m+t)∧Tc

(i−2)/m∧Tc

Λ
(
ms− (i− 2)

)
dXs

∣∣∣
p]

.
∣∣g
(

i−1
m

)∣∣p E

[( ∫ Tc

(i−2)/m∧Tc

Λ2
(
ms− (i− 2)

)
σ2

sds
)p/2]

.
∣∣g
(

i−1
m

)∣∣pm−p/2. (4.5)

The result follows.

Lemma 4.4. Work under Assumption 2.1. Let Bs
π,∞(c) denote a Besov

ball with s > 1/π and c > 0.

In the same setting as in Lemma 4.3, for every p ≥ 1, we have

EBs
π,∞(c)

[∣∣∣
m∑

i=2

g
(

i−1
m

)
X

2
i,m −

∫ 1

0
g(s)σ2

sds
∣∣∣
p]
. ‖g‖p

L∞m
−p/2|supp(g)|p/2

+ |g|p1,mm
−min{s−1/π,1}p + |g|pvar,mm−p,

where

|g|var,m := |g(0) + g(1)| +
m∑

i=1

sup
s,t∈[(i−1)/m,i/m]

|g(t) − g(s)|.

Proof. Recall from Section 3.1 that

Xi,m(λ) :=
m

n

∑

j
n∈
(

i−2
m ,

i
m

]
λ̃
(
m j

n − (i− 2)
)
Xj/n.
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Since s > 1/π, the class Bs
π,∞(c) ⊂ D∞(c′) for some c′ = c′(s, π, c).

Therefore, by Lemma 4.1, we have

EBs
π,∞(c)

[∣∣∣X2
i,m −

(∫ 1

0
Λ
(
ms− (i− 2)

)
dXs

)2∣∣∣
p]
. m−p/2n−p (4.6)

since
Rn

[
Λ
(
m • − (i− 2)

)]
. n−1

by Lemma 4.2, ‖Λ
(
m • − (i − 2)

)
‖L2 = m−1/2 and m ≤ n. By Hölder

inequality it follows

EBs
π,∞(c)

[∣∣∣
m∑

i=2

g
(

i−1
m

)
X

2
i,m −

m∑

i=2

g
(

i−1
m

)( ∫ 1

0
Λ
(
ms− (i− 2)

)
dXs

)2∣∣∣
p]

. | supp(g)|p−1mp−1

×EBs
π,∞(c)

[ m∑

i=2

∣∣∣g
(

i−1
m

)∣∣∣
p∣∣∣X2

i,m −
(∫ 1

0
Λ
(
ms− (i− 2)

)
dXs

)2∣∣∣
p]

. ‖g‖p
L∞m

p/2n−p| supp(g)|p,
(4.7)

which can be further bounded by ‖g‖p
L∞m−p/2| supp(g)|p/2. By Lemma

4.3, we have

EBs
π,∞(c)

[∣∣∣
m∑

i=2

g
(

i−1
m

)( ∫ 1

0
Λ
(
ms− (i− 2)

)
dXs

)2

−
∫ 1

0

m∑

i=2

g
(

i−1
m

)
Λ2
(
ms− (i− 2)

)
σ2

sds
∣∣∣
p]
. ‖g‖p

L∞m
−p/2|supp(g)|p/2,

therefore by triangle inequality also

EBs
π,∞(c)

[∣∣∣
m∑

i=2

g
(

i−1
m

)
X

2
i,m −

∫ 1

0

m∑

i=2

g
(

i−1
m

)
Λ2
(
ms− (i− 2)

)
σ2

sds
∣∣∣
p]

. ‖g‖p
L∞m

−p/2|supp(g)|p/2.
(4.8)
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We are going to force the function Λ in (4.8). To this end, note that

m∑

i=2

g
(

i−1
m

)
Λ2
(
ms− (i− 2)

)

=

m∑

i=1

g
(

i
m

)(
Λ2
(
ms− (i− 2)

)
+ Λ2

(
ms− (i− 1)

))
I( i−1

m ,
i
m

](s)

+

m∑

i=1

(
g
(

i−1
m

)
− g
(

i
m

))
Λ2
(
ms− (i− 2)

)
I( i−1

m ,
i
m

](s)

−g(0)Λ2
(
ms+ 1

)
I(

0,
1
m

](s) − g(1)Λ2
(
ms− (m− 1)

)
I(

1− 1
m,1
](s). (4.9)

Moreover, because of λ̃(u) = −λ̃(2 − u), we have Λ2(u) = Λ2(2 − u) and
also Λ(0) = 0,

Λ2
(
ms− (i− 2)

)
=
( ∫ 1−(ms−(i−1))

0
λ̃(u)du

)2
, for s ∈

(
i−1
m , i

m

]
,

Λ2
(
ms− (i− 1)

)
=
( ∫ ms−(i−1)

0
λ̃(u)du

)2
, for s ∈

(
i−1
m , i

m

]
.

This gives for s ∈
(

i−1
m , i

m

]
, and Λ̄ as in (4.2)

Λ
2(
ms− (i− 1)

)
= Λ2

(
ms− (i− 2)

)
+ Λ2

(
ms− (i− 1)

)
, (4.10)

and 0 otherwise. From (4.9) it follows that on the event σ2 ∈ Bs
π,∞(c)

∣∣∣
∫ 1

0

m∑

i=2

g
(

i−1
m

)
Λ2
(
ms− (i− 2)

)
σ2

sds

−
∫ 1

0

m∑

i=1

g
(

i
m

)
Λ

2(
ms− (i− 1)

)
σ2

sds
∣∣∣ . |g|var,mm−1. (4.11)

Finally, we have for σ2 ∈ Bs
π,∞(c) using ‖Λ‖L2 = 1

∣∣∣
∫ 1

0

m∑

i=2

g
(

i−1
m

)(
Λ

2(
ms− (i− 1)

)
− I( i−1

m ,
i
m

](s)
)
σ2

sds
∣∣∣

≤
∣∣∣
∫ 1

0

m∑

i=2

g
(

i−1
m

)
Λ

2(
ms− (i− 1)

)(
σ2

s − σ2
(i−1)/m

)
ds
∣∣∣

+
∣∣∣
∫ 1

0

m∑

i=2

g
(

i−1
m

)
I( i−1

m ,
i
m

](s)
(
σ2

s − σ2
(i−1)/m

)
ds
∣∣∣

. m−min{s−1/π,1}|g|1,m, (4.12)
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the last estimate coming from the Sobolev embedding Bs
π,∞ ⊂ Bs−1/π

∞,∞
which contains Hölder continuous functions of smoothness min{s −
1/π, 1}. Since for σ2 ∈ Bs

π,∞(c)

∣∣∣
∫ 1

0

m∑

i=2

g
(

i
m

)
I( i−1

m ,
i
m

](s)σ2
sds−

∫ 1

0
g(s)σ2

sds
∣∣∣ . m−1|g|var,m, (4.13)

the conclusion follows by combining (4.8), (4.11), (4.12) and (4.13).

Preliminaries: some estimates for the microstructure noise ǫ

We need some notation. Remember from (1.1) that we observe

Zj,n = Xj/n + a(j/n,Xj/n)ηj,n, j = 1, . . . , n

where the intensity of microstructure noise process as := a(s,Xs) and
noise innovations ηj,n satisfy Assumption 2.2. For a pre-averaging function
λ, recall from (3.1) that we define

ǫi,m := ǫi,m(λ) :=
m

n

∑

j
n∈
(

i−2
m ,

i
m

]
λ̃
(
m j

n − (i− 2)
)
ǫj,n, i = 2, . . . ,m.

Lemma 4.5. Work under Assumption 2.1 and 2.2. Let G denote the σ-
field generated by (Xs, s ∈ [0, 1]). For every function g : [0, 1] → R and
p ≥ 1, we have

E

[∣∣∣
m∑

i=1

g
(

i−1
m

)(
ǫ2i,m(λ) − E

[
ǫ2i,m(λ)

∣∣G
])∣∣∣

p]

. |g|p2,mm
−3p/2n−p + |g|pp,mm

p+1n−p.

Proof. Let us introduce the filtrations

F even

r := σ
(
ηj,n, j/n ≤ 2r/m

)
⊗ σ

(
Xs : s ≤ 2r/m

)
,

Fodd

r := σ
(
ηj,n, j/n ≤ (2r + 1)/m

)
⊗ σ

(
Xs : s ≤ (2r + 1)/m

)
.

Straightforward calculations show that the partial sums Seven

r :=
∑r

i=1 U2i

and Sodd

r :=
∑r

i=1 U2i+1 with

Ui := g
(

i−1
m

)(
ǫ2i,m − m2

n2

∑

j
n∈
(

i−2
m ,

i
m

]
λ̃2
(
m j

n − (i− 2)
)
a2

j/n

)
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form martingale schemes (i = 1, . . . , r ≤ ⌊m/2⌋) with respect to F even

r

and Fodd

r respectively. Further, we have, for every p ≥ 1

E

[∣∣∣ǫ2i,m − m2

n2

∑

j
n∈
(

i−2
m ,

i
m

]
λ̃2
(
m j

n − (i− 2)
)
a2

j/n

∣∣∣
p]

. E
[
|ǫi,m|2p

]
+ ‖λ̃‖2p

L∞‖a‖2p
L∞m

pn−p . mpn−p.

It follows that

E
[
|Ui|p

]
. |g( i−1

m )|pmpn−p. (4.14)

Analogous computations show that

E
[
U2

2i | F even

i−1

]
≤ g2

(
2i−1
m

)
E
[
ǫ42i,m | F even

i−1

]
. g2

(
2i−1
m

)
m2n−2.

Therefore, applying Rosenthal’s inequality for martingales (see [25], p.
23), we obtain

E
[
|Seven

⌊m/2⌋|p
]
. |g|p2,mm

3p/2n−p + |g|pp,mm
p+1n−p.

Likewise, we obtain the same estimate for E
[
|Sodd

⌊(m−1)/2⌋|p
]
. The conclu-

sion follows.

Lemma 4.6. In the same setting as in Lemma 4.5, we have, for every
c > 0 and p ≥ 1

ED∞(c)

[∣∣∣
m∑

i=1

g
(

i−1
m

)
Xi,m(λ) ǫi,m(λ)

∣∣∣
p]

. |g|pp,m

(
n−p/2m+m3p/2+1n−3p/2

)
+ |g|p2,m

(
mp/2n−p/2 +m2pn−3p/2

)
.

Proof. By Assumption 2.1 and the same localization procedure as in the
proof of Lemma 4.1, up to loosing some constant, we may (and will)
assume that X is a local martingale such that |σs| ≤ c almost-surely and
subsequently work with E[•] instead of ED∞(c)[•].

In the same way as for the proof of Lemma 4.5, we define an F even-
martingale by setting

Seven

r :=

r∑

i=1

g
(

2i−1
m

)
X2i,m(λ)ǫ2i,m(λ)
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and proceed for Sodd analogously. By Rosenthal’s inequality for martin-
gales, we have

E
[∣∣S⌊m/2⌋

∣∣p] .mp/2n−p/2 E

[∣∣∣
⌊m/2⌋∑

i=1

g2
(

2i−1
m

)
E
[
X

2
2i,m(λ) | F even

i−1

]∣∣∣
p/2]

+

⌊m/2⌋∑

i=1

∣∣g
(

2i−1
m

)∣∣p(E
[
|X2i,m(λ)|2p

]
)1/2

(
E
[
|ǫ2i,m(λ)|2p

])1/2
,

where we used that ‖a‖L∞ . 1 and Cauchy-Schwarz. On the one hand,
we have

E
[∣∣Xi,m(λ)

∣∣2p]
. E

[∣∣∣mn
∑

j
n∈
(

i−2
m ,

i
m

]
λ̃
(
m j

n − (i− 2)
)
(Xj/n −X(i−2)/m)

∣∣∣
2p]

+m2pn−2p E
[
|X(i−2)/m|2p

]
,

where we used the fact that, by Riemann’s approximation, we have
∣∣∣

∑

j
n∈
(

i−2
m ,

i
m

]
λ̃
(
m j

n − (i− 2)
)∣∣∣ . 1. (4.15)

It follows that E
[∣∣Xi,m(λ)

∣∣2p]
is less than

‖λ̃‖2p
L∞ E

[
sup

s≤2/m
|X(i−2)/m+s −X(i−2)/m|2p

]
+m2pn−2p E

[
|X(i−2)/m|2p

]

which in turn is of order ‖λ̃‖2p
L∞m−p +m2pn−2p thanks to the localization

argument for σ. In a similar way, we have

E
[
X

2
2i,m(λ)

∣∣F even

i−1

]
. m−1 +m2n−2X2

(2i−2)/m ≤ m−1 +m2n−2 sup
s
X2

s .

Recall that E
[
|ǫi,m|2p

]
. mpn−p. Putting together these estimates, we

infer that E
[∣∣Seven

⌊m/2⌋
∣∣p] satisfies the desired bound. We proceed likewise

for S⌊(m−1)/2⌋. The conclusion follows.

Preliminaries: some estimates for the bias correction b

We need some notation. Recall the bias correction defined in (3.2)

b(λ, Z•)i,m :=
m2

2n2

∑

j
n∈
(

i−2
m ,

i
m

]
λ̃2
(
m j

n − (i− 2)
)(
Zj,n − Zj−1,n

)2
.

27



We plan to use the following decomposition

b(λ, Z•)i,m = b(λ,X•)i,m + b(λ, ε•)i,m + 2c(λ,X•, ǫ•)i,m,

where

c(λ,X•, ǫ•)i,m

:=
m2

2n2

∑

j
n∈
(

i−2
m ,

i
m

]
λ̃2
(
m j

n − (i− 2)
)(
Xj/n −X(j−1)/n

)(
ǫj,n − ǫj−1,n

)
.

Lemma 4.7. Work under Assumption 2.1 and 2.2. For every p ≥ 1, we
have

E

[∣∣∣
m∑

i=2

g
(

i−1
m

)(
b(λ, ǫ•)i,m − m2

n2

∑

j
n∈
(

i−2
m ,

i
m

]
λ̃2
(
m j

n − (i− 2)
)
a2

j/n

)∣∣∣
p]

. |g|p1,mm
3pn−2p + |g|p2,mm

2pn−3p/2 + |g|pp,mm
2pn−2p+1.

Proof. By triangle inequality, we bound the error by a constant times

m2pn−2p(I + II + III + IV ),

where

I := E

[∣∣∣
m∑

i=2

g
(

i−1
m

)∑

j

λ̃2
(
m j

n − (i− 2)
)
a2

j/n

(
η2

j,n − 1
)∣∣∣

p]
,

II := E

[∣∣∣
m∑

i=2

g
(

i−1
m

)∑

j

λ̃2
(
m j

n − (i− 2)
)
a2

j−1
n

(
η2

j−1,n − 1
)∣∣∣

p]
,

III := E

[∣∣∣
m∑

i=2

g
(

i−1
m

)∑

j

λ̃2
(
m j

n − (i− 2)
)(
a2

j
n

− a2
j−1
n

)∣∣∣
p]
,

IV := E

[∣∣∣
m∑

i=2

g
(

i−1
m

)∑

j

λ̃2
(
m j

n − (i− 2)
)
ǫj−1,nǫj,n

∣∣∣
p]
,

where, as before, the sum in j expands over
{
j/n ∈

(
(i− 2)/m, i/m

]}
.

• The terms I and II. We only bound I, the same subsequent arguments
applying for the term involving ηj−1,n. Let Fj = σ(ηk,n : k ≤ j) ⊗ σ(Xs :
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s ≤ 1). By Rosenthal’s inequality for martingales,

I .

n∑

j=1

( m∑

i=2

∣∣g
(

i−1
m

)∣∣pI{ j
n∈
(

i−2
m ,

i
m

]}
)

E
[∣∣(η2

j,n − 1
)∣∣p
]

+
∣∣∣

n∑

j=1

m∑

i=2

g2
(

i−1
m

)
I{ j

n∈
(

i−2
m ,

i
m

]} E
[(
η2

j,n − 1
)2 ∣∣Fj−1

]∣∣∣
p/2
,

.|g|pp,mn+ |g|p2,mn
p/2.

where we used the fact that the functions a and λ̃ are bounded.

• The term III. Summing by parts, we have

∑

j
n∈
(

i−2
m ,

i
m

]
λ̃2
(
m j

n − (i− 2)
)(
a2

j/n − a2
(j−1)/n

)

= −
∑

j
n∈
(

i−2
m ,

i
m

]
a2

(j−1)/n

(
λ̃2
(
m j

n − (i− 2)
)
− λ̃2

(
m j−1

n − (i− 2)
))

+ a2
(i−2)/mλ̃

2(0) − a2
i/mλ̃

2(2).

Since a is bounded and λ̃ has finite variation, we infer

∣∣∣
m∑

i=2

g
(

i−1
m

) ∑

j
n∈
(

i−2
m ,

i
m

]
λ̃2
(
m j

n − (i− 2)
)(
a2

j/n − a2
(j−1)/n

)∣∣∣
p
. |g|p1,mm

p.

• The term IV . We may split the sum with respect to j in even and
odd part. Proceeding as for I and II, we readily obtain

IV . |g|p2,mn
p/2 + |g|pp,mn.

Lemma 4.8. In the same setting as in Lemma 4.7, for every c > 0, we
have

ED∞(c)

[∣∣∣
m∑

i=2

g
(

i−1
m

)
b(λ,X•)i,m

∣∣∣
p]
. |g|p1,mm

pn−p.

Proof. In the same way as in the proof of Lemma 4.6, we may (and will)
assume that X is a local martingale and that |σ2

s | ≤ c almost surely,
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working subsequently with E[•] instead of ED∞(c)[•]. We readily obtain

E

[∣∣∣
m∑

i=2

g
(

i−1
m

)
b(λ,X•)i,m

∣∣∣
p]

. m2pn−2p E

[∣∣∣
m∑

i=2

∣∣g
(

i−1
m

)∣∣ ∑

j
n∈
(

i−2
m ,

i
m

]
(Xj/n −X(i−2)/m)2

∣∣∣
p]

. |g|p1,mm
pn−p.

Let M be a continuous, locally square integrable F-martingale and
H some progressive measurable process with finite quadratic variation.
Then for 0 ≤ s < t <∞

E

[( ∫ t

s
HudMu

)2
|Fs

]
= E

[ ∫ t

s
H2

ud〈M〉u|Fs

]
.

This fact will be referred to in the sequel as conditional Ito-isometry (cf.
[31], Section 3.2 B).

Lemma 4.9. In the same setting as in Lemma 4.7, for every c > 0, we
have

ED∞(c)

[∣∣∣
m∑

i=2

g
(

i−1
m

)
c(λ,X•, ǫ•)i,m

∣∣∣
p]

.
[
|g|p2,m + |g|pp,m(n−p/2+1 +m−p/2+1)

]
m2pn−2p.

Proof. As in Lemmas 4.6 and 4.8, we may (and will) assume that X is
a local martingale and that |σ2

s | ≤ c almost surely, working subsequently
with E[•] instead of ED∞(c)[•]. It suffices then to bound

E

[∣∣∣
m∑

i=1

g
(

i−1
m

) ∑

j
n∈
(

i−2
m ,

i
m

]
λ̃2
(
m j

n − (i− 2)
)
(Xj/n −X(j−1)/n)ǫj,n

∣∣∣
p]
.

We define j∗n(r) := max{j : j/n ≤ r/m}. Let us introduce the filtra-
tions

Geven

r := σ
(
ηj,n, j/n ≤ 2r/m

)
⊗ σ

(
Xs : s ≤ j∗n(2r)/n

)
,

Godd

r := σ
(
ηj,n, j/n ≤ (2r + 1)/m

)
⊗ σ

(
Xs : s ≤ j∗n(2r + 1)/n

)
.

30



The process

Seven

r :=

r∑

i=1

g
(

2i−1
m

) ∑

j
n∈
(

2i−2
m ,

2i
m

]
λ̃2
(
m j

n − (2i− 2)
)
(Xj/n −X(j−1)/n)ǫj,n

is a Geven-martingale and likewise for Sodd

r defined similarly w.r.t. the
filtration Godd

r . Moreover, on one hand

E

[∣∣∣g
(

i−1
m

) ∑

j
n∈
(

i−2
m ,

i
m

]
λ̃2
(
m j

n − (i− 2)
)
(Xj/n −X(j−1)/n)ǫj,n

∣∣∣
p]

.
∣∣g
(

i−1
m

)∣∣p
(
m−p/2 +

∑

j
n∈
(

i−2
m ,

i
m

]
E
[∣∣(Xj/n −X(j−1)/n)ǫj,n

∣∣p]
)

.
∣∣g
(

i−1
m

)∣∣pm−1(m−p/2+1 + n−p/2+1),

and on the other hand by conditional Ito-isometry

E

[(
g
(

2i−1
m

) ∑

j
n∈
(

2i−2
m ,

2i
m

]
λ̃2
(
m j

n − (2i− 2)
)
(Xj/n −X(j−1)/n)ǫj,n

)2∣∣∣ Geven
i−1

]

. g2
(

2i−1
m

) ∑

j
n∈
(

2i−2
m ,

2i
m

]
E
[
(Xj/n −X(j−1)/n)2

∣∣Geven
i−1

]
. m−1g2

(
2i−1
m

)
.

Therefore, by Rosenthal’s inequality for martingales, we infer

E
[∣∣Seven

⌊m/2⌋
∣∣p] . |g|pp,m(n−p/2+1 +m−p/2+1) + |g|p2,m.

We proceed likewise for Sodd

⌊(m−1)/2⌋ and the conclusion follows by incorpo-

rating the multiplicative termm2pn−2p in front of the two error terms.

Completion of proof of Theorem 3.2

Since

Em(hℓk) =

m∑

i=2

hℓk

(
i−1
m

)[
Z

2
i,m − b(λ, Z•)i,m

]

we plan to use the following decomposition

Em(hℓk) − 〈σ2, hℓk〉L2 = I + II + III, (4.16)
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with

I :=

m∑

i=2

hℓk

(
i−1
m

)
X

2
i,m − 〈σ2, hℓk〉L2 ,

II :=

m∑

i=2

hℓk

(
i−1
m

)[
ǫ2i,m − b(λ, Z•)i,m

]
,

III := 2

m∑

i=2

hℓk

(
i−1
m

)
Xi,mǫi,m.

• The term I. By Lemma 4.4, we have

EBs
π,∞(c)[|I|p] . ‖hℓk‖p

L∞m
−p/2|supp(hℓk)|p/2

+ |hℓk|p1,mm
−min{s−1/π,1}p + |hℓk|pvar,mm−p.

Using that ‖hℓk‖L∞ . 2ℓp/2‖h‖L∞ and |supp(hℓk)|p/2 . 2−ℓp/2, this term
has the right order.
• The term II. Applying successively Lemmas 4.5, 4.7, 4.8 and 4.9, we
derive

EBs
π,∞

[
|II|p

]

. |hℓk|p1,mm
pn−p + |hℓk|p2,mm

−3p/2n−p + |hℓk|pp,mm
p+1n−p

and this term also has the right order.
• The term III. Finally, by Lemma 4.6, we have

EBs
π,∞(c)

[∣∣∣III
∣∣∣
p]

. |hℓk|pp,m

(
n−p/2m+m3p/2+1n−3p/2

)
+ |hℓk|p2,m

(
mp/2n−p/2 +mp/2n−3p/2

)
,

which also has the right order. The proof of Proposition 3.2 is complete.

4.2 Proof of Theorem 3.3

4.2.1 Preliminary: a martingale deviation inequality

If (Mk) is a locally square integrable Fk-martingale with M0 = 0, we
denote by [M ]k =

∑k
i=1(∆Mi)

2 with ∆Mi = Mi −Mi−1 its quadratic

variation and by 〈M〉k =
∑k

i=1 E
[
(∆Mi)

2 | Fi−1

]
its predictable compen-

sator. We will heavily rely on the following result of Bercu and Touati
[8]
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Theorem 4.10 (Touati and Bercu [8]). Let (Mk) be a locally square
integrable martingale. Then, for all x, y > 0, we have

P
[
|Mn| ≥ x, [M ]k + 〈M〉k ≤ y

]
≤ 2 exp

(
− x2

2y

)
.

From Theorem 4.10, we infer the following estimate

Lemma 4.11. Let (Mj) be a locally square integrable Fj-martingale. Sup-
pose that for p ≥ 1 there is some deterministic sequence (Cj)j (j = j(m))
and δ > 0 such that P(〈M〉j > Cj(1 + δ)) . m−p. If further for every
κ ≥ 2

max
i=1,...,j

E
[
|∆Mi|κ

]
. 1, (4.17)

then,

P

[∣∣Mj

∣∣ > 2(1 + δ)
√
Cj p logm

]
. m−p

provided mq0 ≤ j ≤ m for some 0 < q0 ≤ 1 and there is an ǫ > 0 such
that Cj & j

1/2+ǫ.

Proof. We have by Theorem 4.10

P
[∣∣Mj

∣∣ ≥ 2(1 + δ)
√
Cjp logm

]

≤ 2m−p + P
[
[M ]j + 〈M〉j > y, 〈M〉j ≤ Cj(1 + δ)

]
+ P

[
〈M〉j > Cj(1 + δ)

]
,

with y = 2Cj(1 + 2δ). Further we obtain

P
[
[M ]j + 〈M〉j > y, 〈M〉j ≤ Cj(1 + δ)

]
≤ P

[
[M ]j − 〈M〉j > 2Cjδ

]
.

Since ([M ]j − 〈M〉j) is a Fj-martingale it follows by Chebycheff’s and
Rosenthal’s inequality for martingales and κ ≥ 2

P
[
[M ]j − 〈M〉j > 2Cjδ

]
. C−κ

j E

[∣∣[M ]j − 〈M〉j
∣∣κ
]

. C−κ
j

j∑

i=1

E
∣∣∆Mi

∣∣2κ
+ C−κ

j E

∣∣∣
j∑

i=1

E
(
(∆M)4i |Fi−1

)∣∣∣
κ/2

. C−κ
j (j + jκ/2) . j−ǫκ,

where we used Hölder’s inequality

E

∣∣∣
j∑

i=1

E
(
(∆M)4i |Fi−1

)∣∣∣
κ/2
. jκ/2−1

j∑

i=1

E

(
E
(
|∆Mi|2κ|Fi−1

))
. jκ/2.
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Choosing κ := q−1
0 pǫ−1 > 2, we finally obtain

P
[
[M ]j + 〈M〉j > y, 〈M〉j ≤ Cj(1 + δ)

]
. j−p/q0 ≤ m−p.

Lemma 4.12. Work under Assumptions of Proposition 3.3. Then we
have for every fixed δ > 0

P

(∣∣∣∣∣

m∑

i=2

hℓk

(
i−1
m

)
X

2
i,m (λ) −

〈
σ2, hℓk

〉
L2

∣∣∣∣∣

> 4c (1 + δ)

√
p log m

m and σ2 ∈ Bs
π,∞ (c)

)
. m−p,

where c = c (s, π, c) is such that Bs
π,∞ (c) ⊂ D∞ (c) provided

m−(s−1/π)|hℓk|1,m . m
−1/2.

Proof. Recall that Λ (s) =
∫ 2
s λ̃ (u) du and let Ht,i be defined as in (4.3),

where g is replaced by hℓk. Using the integration by parts formula (4.4)
we bound the probability by I + II + III, with

I := P

(∣∣∣
m∑

i=2

hℓk

(
i−1
m

)(
X

2
i,m(λ) −

( ∫ 1

0
Λ(ms− (i− 2))dXs

)2)∣∣∣

> cδ

√
p log m

m and σ2 ∈ Bs
π,∞ (c)

)

II := P

(∣∣∣
m∑

i=2

∫ 1

0
Ht,idXt

∣∣∣ > 2c
(
1 + δ

2

)√p log m
m and σ2 ∈ D∞ (c)

)

III := P

(∣∣∣
m∑

i=2

hℓk(
i−1
m )
( ∫ 1

0
Λ2 (ms− (i− 2))σ2

sds−
〈
σ2, hlk

〉
L2

)∣∣∣

> cδ

√
p log m

m and σ2 ∈ Bs
π,∞ (c)

)
.

Note that P (X > t and B) = E
(
I{X>t}∩B

)
≤ t−p E (Xp IB) , for p ≥

0. Using m ≤ n1/2 and (4.7) we find that I can be bounded by any
polynomial order of 1/m.

The term II can be bounded further by II ≤ IIeven + IIodd, with

IIeven / odd := P

(∣∣∣
m∑

i=2, i even / odd

∫ Tc

0
Ht,idXt

∣∣∣ > c
(
1 + δ

2

)√p log m
m

)
.
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Since h has support [0, 1], hℓk(
2i−1
m ) 6= 0 can happen only if 1

2(k2−lm+1) ≤
i ≤ 1

2((k + 1)2−lm+ 1). We will treat the term IIeven only, since similar

arguments apply for IIodd. The process Mr := 2−l/2m
∑r

i=1

∫ Tc

0 Ht,2idXt

is a martingale with respect to the filtration Fr = σ (Xs : s ≤ 2r/m)
starting at M⌊(k2−lm+1)/2⌋ = 0. Recall that Ht,2i vanishes outside [2(i−
1)/m, 2i/m] and I{Tc≤(2i−2)/m} is Fi−1 measurable. Now, using Lemma
4.2 and conditional Ito-isometry

〈M〉⌊1
2 ((k+1)2−lm+1)⌋ ≤ 2−lm2c

⌊m/2⌋∑

i=1

∫ 1

0
E
(
H2

s∧Tc,2i|Fi−1

)
ds

≤ 2−l−1c2m

⌊m/2⌋∑

i=1

h2
ℓk

(
2i−1
m

)
≤ 2−lm 1

4c
2 (1 + δ) ,

where the last step follows for allm ≥ m0 andm0 is fixed and independent
of ℓ, k. Furthermore, by BDG, we bound

E
[
|∆Mi|κ

]
. 2−lκ/2mκ E

[∣∣
∫ 1

0
Ht,2iI[0,Tc](t)dXt

∣∣κ
]

. 2−lκ/2mκ E

[∣∣
∫ 1

0
H2

t∧Tc,2idt
∣∣κ/2

]

. 2−lκ/2mκ/2 E

[
sup

t≤2/m

∣∣H(t+(i−2)/m)∧Tc,2i

∣∣κ
]

. 2−lκ/2
∣∣hℓk

(
i−1
m

)∣∣κ . 1

uniformly over i. Now, we may apply Lemma 4.11 for j ∼ m2−l and
obtain IIeven . m

−p.

In the same way we bound IIodd and thus obtain II . m−p.

In order to bound III it follows from m−(s−1/π)|hℓk|1,m . m
−1/2, (4.11),

(4.12), and (4.13) that for sufficiently large m on σ2 ∈ Bs
π,∞ (c)

∣∣∣
m∑

i=2

hℓk

(
i−1
m

)(∫ 1

0
Λ2 (ms− (i− 2))σ2

sds−
〈
σ2, hlk

〉
L2

) ∣∣∣ ≤ cδ

√
p log m

m .

This yields the conclusion.

Lemma 4.13. Work under Assumptions of Proposition 3.3. Then we
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have for every fixed δ > 0

P

(∣∣∣
m∑

i=2

hℓk

(
i−1
m

)
Xi,m (λ) ǫi,m(λ)

∣∣∣

>
√

8c ‖a‖L∞ ‖λ̃‖L2 (1 + δ)

√
p log m

m and σ2 ∈ Bs
π,∞ (c)

)
. m−p,

where c (s, π, c) is such that Bs
π,∞ (c) ⊂ D∞ (c) .

Proof. Let Xi,m,Tc
be defined as Xi,m with Xj/n replaced by Xj/n∧Tc

.
Then by separating even and odd terms it suffices to show

P

(∣∣∣
m∑

i=2, i even

hℓk

(
i−1
m

)
Xi,m,Tc

(λ) ǫi,m

∣∣∣

>
√

2c ‖a‖L∞ ‖λ̃‖L2 (1 + δ)

√
p log m

m

)
. m−p

since the same argumentation can be done for the sum
over odd i. Similar as in the proof of Lemma 4.12, Mr =
n1/22−l/2

∑2r
i=1 hℓk

(
2i−1
m

)
X2i,m,Tc

ǫ2i,m defines a martingale with re-
spect to the filtration Feven

r , starting at M⌊(k2−lm+1)/2⌋ = 0.

〈M〉⌊1
2 ((k+1)2−lm+1)⌋ ≤ n2−l

⌊m/2⌋∑

i=1

h2
ℓk(

2i−1
m ) E(X

2
2i,m,Tc

ǫ22i,m|Feven
i−1 )

≤ n2−l ‖a‖2
L∞

⌊m/2⌋∑

i=1

h2
ℓk(

2i−1
m ) E(X

2
2i,m,Tc

|Feven
i−1 )

× m2

n2

∑

j
n∈
(

2i−2
m ,

2i
m

]
λ̃2(m j

n − (2i− 2)).

By the assumed piecewise Lipschitz continuity of λ it follows

m
n

∑

j
n∈
(

2i−2
m ,

2i
m

]
λ̃2(m j

n − (2i− 2)) = ‖λ̃‖2
L2 +O

(
m
n

)
, (4.18)

uniformly in i. Next, we will derive a bound for E(X
2
2i,m,Tc

|Feven
i−1 ). Note
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that X2i,m,Tc
= U1 + U2, with

U1 := m
n

∑

j
n∈
(

2i−2
m ,

2i
m

]

( n∑

l=j

λ̃(m l
n − (2i− 2))

)(
X j

n∧Tc

−X j−1
n ∧Tc∧2i−2

m

)
,

U2 := X2i−2
m ∧Tc

m
n

∑

j
n∈
(

2i−2
m ,

2i
m

]
λ̃(m j

n − (2i− 2)).

Clearly, E(X
2
2i,m,Tc

|Feven
i−1 ) = E(U2

1 |Feven
i−1 ) + U2

2 . By conditional Ito-
isometry

E
((
X j

n∧Tc

−X j−1
n ∧Tc∧2i−2

m

)(
X j′

n ∧Tc

−X j′−1
n ∧Tc∧2i−2

m

)
|Feven

i−1

)
≤ δj,j′c

1
n

= cE

((
W j

n

−W j−1
n

)(
W j′

n

−W j′−1
n

))
, for j

n ,
j′

n ∈ (2i−2
m , 2i

m ],

where W denotes a standard Brownian motion. Lemma 4.2 and setting
X = W in (4.6) yields

E(U2
1 |Fi−1) ≤ cE

[(
m
n

∑

j
n∈
(

2i−2
m ,

i
m

]
λ̃(m j

n − (2i− 2))Wj/n

)2]

= cE

(∫ 1

0
Λ2
(
ms− (2i− 2)

)
ds
)

+O
(
m−1/2n−1

)

= cm−1 +O
(
m−1/2n−1

)

uniformly over i. By using (4.15) we infer U2
2 .

m2

n2 X
2
2i−2
m ∧Tc

. Thus, we

obtain for the predictable quadratic variation, δ1, δ2 > 0 and sufficiently
large m

〈M〉⌊1
2 ((k+1)2−lm+1)⌋ ≤ 2−l−1m ‖a‖2

L∞ c‖λ̃‖2
L2(1 + δ1)

+ 2−l m3

n2 ‖a‖2
L∞ ‖λ̃‖2

L2(1 + δ2)

⌊m/2⌋∑

i=1

h2
ℓk(

2i−1
m )X2

2i−2
m ∧Tc

.

Now, for any fixed δ3 > 0 we find by Chebycheff inequality that

m2

n2

⌊m/2⌋∑

i=1

h2
ℓk(

2i−1
m )X2

2i−2
m ∧Tc

. m3

n2 sup
s≤Tc

X2
s ≤ δ3,
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with probability larger than 1−m−p. Hence for δ > 0 we may find δ1, δ2, δ3
such that

P

(
〈M〉⌊1

2 ((k+1)2−lm+1)⌋ > 2−l−1m ‖a‖2
L∞ c‖λ̃‖2

L2(1 + δ)
)
. m−p.

In the next step, we bound maxi E[|∆Mi|κ]. In the proof of Lemma 4.6,
we already derived E[|Xi,m(λ)|2κ] . m−κ and E[|ǫi,m|2κ] . mκn−κ. By
the same arguments we obtain also E[|Xi,m,Tc

(λ)|2κ] . m−κ. Therefore,
it is easy to see that

max
i

E[|∆Mi|κ] . 2−lκ/2nκ/2
∣∣h( i−1

m )
∣∣κ E1/2[|Xi,m,Tc

(λ)|2κ] E1/2[|ǫi,m|2κ] . 1.

Hence the assumptions of Lemma 4.11 are satisfied and the conclusion
follows.

Lemma 4.14. Work under Assumptions of Proposition 3.3. Let G denote
the σ-field generated by (Xs, s ∈ [0, 1]). Then we have for every fixed δ > 0

P

(∣∣∣
m∑

i=2

hℓk

(
i−1
m

) (
ǫ2i,m(λ) − E[ǫ2i,m(λ)|G]

)∣∣∣

> 4 ‖a‖2
L∞ ‖λ̃‖2

L2 (1 + δ)

√
p log m

m

)
. m−p.

Proof. We show that

P

(∣∣∣
m∑

i=2, i even

hℓk

(
i−1
m

) (
ǫ2i,m(λ) − E[ǫ2i,m(λ)|G]

)∣∣∣

> 2 ‖a‖2
L∞ ‖λ̃‖2

L2 (1 + δ)

√
p log m

m

)
. m−p

and argue similar for the sum over i odd. Let Feven
r , Ui and the martingale

Seven
r be defined as in the proof of Lemma 4.5 with g replaced by hℓk. Now
hℓk(

2i−1
m ) 6= 0 can happen only if 1

2(k2−lm+1) ≤ i ≤ 1
2((k+1)2−lm+1). In

the following we will consider the martingale Mr := n
m2−l/2Seven

r started
at M⌊(k2−lm+1)/2⌋ = 0. We obtain

〈M〉⌊1
2 ((k+1)2−lm+1)⌋ ≤

n2

m2 2−l

⌊m/2⌋∑

i=1

h2
ℓk(

2i−1
m ) E

[(
ǫ22i,m − E[ǫ22i,m|G]

)2|Feven
i−1

]
.
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Elementary calculations and (4.18) show further that we may find a de-
terministic bound, i.e. uniformly in i

E

[(
ǫ2i,m − E[ǫ2i,m|G]

)2|Feven
i−1

]

= 2 ‖a‖4
L∞

(
m2

n2

∑

j
n∈
(

i−2
m ,

i
m

]
λ̃2(m j

n − (i− 2))
)2

+O
(

m3

n3

)

= 2m2

n2 ‖a‖4
L∞ ‖λ̃‖4

L2 +O
(

m3

n3

)
.

From this we obtain for sufficiently large m,

〈M〉⌊1
2 ((k+1)2−lm+1)⌋ ≤ m2−l ‖a‖4

L∞ ‖λ̃‖4
L2(1 + δ).

By (4.14), we infer E[|∆Mi|κ] . 1. Applying Lemma 4.11 yields the con-
clusion.

Completion of proof of Theorem 3.3

Let I, II, and III be defined as in (4.16).

• The term I. By Lemma 4.12, we have

P

(
|I| > 4c(1 + δ)

√
p log m

m and σ2 ∈ Bs
π,∞(c)

)
. m−p.

• The term II. Applying Lemmas 4.14, 4.7, 4.8 and 4.9, we derive by
Chebycheff’s inequality and |hℓk|pp,m . mp/2−1 , p ≥ 2

P

(
|II| > 4 ‖a‖2

L∞ ‖λ̃‖2
L2(1 + δ)

√
p log m

m and σ2 ∈ Bs
π,∞(c)

)
. m−p.

• The term III. We find by Lemma 4.13

P

(
|III| > 4

√
2 c ‖a‖L∞‖λ̃‖L2(1 + δ)

√
p log m

m and σ2 ∈ Bs
π,∞(c)

)
. m−p.

The proof of Theorem 3.3 is complete.

4.3 Proof of Theorem 2.9

We readily apply the bounds of the wavelet threshold algorithm over
atomic spaces, as developed by Kerkyacharian and Picard in [32]. By
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assumption, we have s− 1/π ≥ α0 and 2ℓ0 ∼ m1−2α0 therefore, the term
m−min{s−1/π,1}p|hℓk|p1,m is less than a constant times

m−α02−ℓ/2 . m−α0m(1−2α0)/2 ∼ m−1/2,

where we used that |hℓk|1,m . 2−ℓ/2 with h = ϕ. This together with
Theorem 3.2 shows that Condition (5.1) of Theorem 5.1 in Kerkyacharian
and Picard [32] is satisfied with c(n) = n−1/4 and Λ(n) = n1/2 (with the
notation of [32]). Likewise for their Condition (5.2) thanks to Theorem
3.3. By applying successively their abstract Corollary 5.2 and Theorem
6.1, the result follows after some elementary computations. (Alternatively,
one can also see [22] for a derivation of Theorem 6.1 of [32] where the
formalism of the effective smoothness function s(t) is explicitly used, up
to losing some inessential logarithmic factors.)

4.4 Proof of Theorem 2.11

Preliminaries

Let (C, C) denote the space of continuous functions on [0, 1], equipped
with the norm of uniform convergence and its Borel σ-field C. Let
(Ω′,F ′,P′) be another probability space rich enough to contain an in-
finite sequence of i.i.d. Gaussian random variables. On (Ω̃, F̃) := (C ×
C × Ω′, C ⊗ C ⊗ F ′) we construct a probability measure P̃ as follows. Let
(σ, ω, ω′) denote a generic element of Ω̃.

We pick an arbitrary probability measure µ(dσ) on (C, C), and we
construct the measure Pσ(dω) on (C, C) such that, under Pσ, the canonical
process X on C is a solution (in a weak sense for instance) to

Xt = X0 +

∫ t

0
σs dWs,

where W is a standard Wiener process. We then set

P̃ := µ(dσ) ⊗ Pσ(dω) ⊗ P′(dω′).

This space is rich enough to contain our model: indeed, by construction,
any µ(dσ) will be such that, under µ, we have Assumption 2.1. By con-
structing on (Ω′,F ,P′) an i.i.d. Gaussian noise (ǫj,n) for j = 0, . . . , n with

constant variance function a2 > 0 for a given a2 > 0, the space Ω̃ is rich
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enough to contain an additive Gaussian microstructure noise, indepen-
dent of X, and we have Assumption 2.2. Next, consider the statistical
experiment

En =
(
C × Ω′, C ⊗ F ′, (Pn

σ, σ ∈ D)
)
,

where D ⊂ C and Pn
σ is the law of the data (Zj,n), conditional on σ. The

probability µ(dσ) can be interpreted as a prior distribution for the “true”
parameter σ.

Completion of proof. We are ready to prove Theorem 2.11. Let D =
Bs

π,∞(c) denote a Besov ball such that s−1/π > (1+
√

5)/4. Then D ⊂ C.
Assume further that µ is such that µ

[
D
]

= 1. Then Condition (2.5) is
satisfied.

Moreover, for any normalizing factor vn > 0 and any c′ > 0, we have

lim inf
n→∞

inf
bσn

v−1
n Ẽ

[
‖σ̂2

n − σ2‖Lp([0,1])I
{

σ2∈Bs
π,∞(c)

}]

≥c′ lim inf
n→∞

inf
bσn

∫

C
µ(dσ) Pn

σ

[
v−1
n ‖σ̂2

n − σ2‖Lp([0,1]) ≥ c′
]

(4.19)

since µ
[
D
]

= 1.

Let us now consider the statistical experiment E ′
n generated by the

observation of the Gaussian measure

Yn =
√

2σ + an−1/4Ḃ

where Ḃ is a Gaussian white noise, with same parameter space D. We
denote by Qn

σ the law of Yn. By picking µ(dσ) as the least favourable prior
in order to obtain lower bounds over Besov classes (see for instance [26])
we know that, for any c′ > 0

lim inf
n→∞

inf
(bσ2

n)′

∫

C
µ(dσ)Qn

σ

[
n−s(π⋆)/(4s(π⋆)+2)‖(σ̂2

n)′ − σ2‖Lp([0,1]) ≥ c′
]
> 0,

(4.20)
where the infimum is taken over all estimators (σ̂2

n)′ in the experiment E ′
n.

This follows from classical analysis of the white Gaussian noise model, see
again [26] (or [22] for the notation encompassing the effective smoothness
function s(π⋆) with noise level n−1/4).

It remains to relate (4.19) and (4.20). By the result of Reiß [39], since
s−1/π > (1+

√
5)/4, we have that En and E ′

n are asymptotically equivalent
as n→ ∞. This means that we can approximate Pn

σ by Qn
σ in variational
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norm, uniformly on σ, up to randomization via a Markov kernel that
does not depend on σ. Therefore, the lower bound (4.20) automatically
transfers to (4.19), up to considering an extension of the space so that
randomized decisions (or estimators) can be considered too (see Le Cam
and Yang [33]). (However, the approximation is valid only up to the ex-
tension of estimators to the larger class of randomized procedures; since
we are considering a Bayesian decision problem only, the extra techni-
cality coming from the randomization can be ignored by conditioning on
the randomization and applying Fubini. We leave out these inessential
details.) The proof is complete.
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