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Abstract

In many industries, firms pre-order input and forward sell output prior to the ac-

tual production period. It is known that forward buying input induces a “Cournot-

Stackelberg endogeneity” (both Cournot and Stackelberg outcomes may result

in equilibrium) and forward selling output induces a convergence to the Bertrand

solution. I analyze the generalized model where firms pre-order input and for-

ward sell output. First, I analyze oligopolists producing homogenous goods,

generalize the Cournot-Stackelberg endogeneity to oligopoly, and show that it

additionally includes Bertrand in the generalized model. This shows that the

“mode of competition” between firms may be entirely endogenous. Second, I

consider heterogenous goods in duopolies, which generalizes existing results on

forward sales of output, and derive the outcome set in general duopolies. This

set does not contain the Bertrand solution anymore, but it is well-defined and

shows that forward sales increase welfare also when goods are complements.
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1 Introduction

The paper analyzes oligopolistic industries in a model that explicitly contains plan-

ning periods prior the production period. The model sets in T periods prior to the

production period, e.g. T = 52 weeks prior to the year 2011. In these T preliminary

stages, firms may pre-order input (i.e. pre-build capacity for 2011) and conclude for-

ward contracts to sell the output that they will produce. In the production period, firms

set production quantities and sell the output that was not sold via forward contracts.

Capacities can be extended in the production period, possibly at incremental costs.

This model unifies two streams of literature—the studies of production timing

following Saloner (1987) and those of sales timing following Allaz and Vila (1993).

I consider production timing in the sense of capacity pre-building, e.g. pre-ordering

machinery or raw materials, and allow for sales timing assuming efficient forward

contracts (e.g. to retailers). In many markets, these timing issues interact, but their

interaction has not yet been analyzed and it is therefore unclear whether sales or

production timing dominate from a strategic point of view.

If production timing dominates, then the results on the “Cournot-Stackelberg en-

dogeneity” derived by Saloner (1987), Pal (1991), and Romano and Yildirim (2005)

apply. They have shown that in two-stage games of (quantity) accumulation, a contin-

uum of outcomes may result in equilibrium that contains both Stackelberg outcomes

and the Cournot outcome. The continuum exists if the costs of production do not

change between first and second period. Their analyses assumed that quantity pro-

duced in stage 1 cannot be withheld from being sold in the final stage (stage 2). This

assumption is relaxed in the model of “capacity accumulation” analyzed here, inter-

estingly without notable implications with respect to the equilibrium set.1 From a

more general point of view, their work has shown that industries need not converge

to Cournot equilibrium, that non-cost-related size differences may persist in equilib-

rium, and that Stackelberg leadership can be sustained without asynchronous timing

and without retaliations against deviations of followers (i.e. in stationary equilibria of

1Following Kreps and Scheinkman (1983), Saloner (1987), and many subsequent studies, I assume

that the costs of pre-building capacity are sunk in the short term. This implies that capacity is either

constant or accumulates along the path of play and relates the present study to “games of accumulation”

(Romano and Yildirim, 2005).
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repeated games).2

If sales timing dominates, then the results on forward trading in oligopoly, fol-

lowing Allaz and Vila (1993), apply. These results differ strikingly from the Cournot-

Stackelberg endogeneity. Allaz and Vila consider T -stage games where the firms

may sell forward (some of) their eventual output in stages t < T and they set pro-

duction quantities in stage t = T . Contrary to the implications of production timing,

the possibility of sales timing does not affect the dimensionality of the equilibrium

set. The equilibrium outcome is unique, but competition is intensified in relation to

Cournot and the outcome actually converges to Bertrand as T tends to infinity.3 Ma-

henc and Salanié (2004) show that forward trading has the opposite effect—to weaken

competition—if firms compete in prices.

My analysis shows that neither production timing nor sales timing dominates the

other. Rather, the equilibrium structure merges results from both streams of literature.

The outcome set is a continuum that extends the Cournot-Stackelberg endogeneity to

additionally include the Allaz-Vila outcome, and in case the goods are homogenous,

the Allaz-Vila outcome converges to the Bertrand outcome as T approaches infinity.

I derive the outcome set for oligopolies producing homogenous goods, which also

shows how the Cournot-Stackelberg endogeneity generalizes to oligopoly, and for

duopolies producing heterogenous goods, which additionally provides the Allaz-Vila

prices for heterogenous goods.

These results highlight that the mode of competition may be entirely endogenous

in oligopolistic industries. The various equilibrium outcomes may result in ex-ante

equivalent industries if sales timing and production timing interact. Thus, if firms

anticipate Cournot, then they are best off playing according to Cournot, if firms an-

2Another branch of literature, including e.g. Hamilton and Slutsky (1990), Robson (1990), and van

Damme and Hurkens (1999), studies endogenous timing in duopoly. As Matsumura (1999) shows,

endogenous Stackelberg does typically not result if there are more than two firms, and in general,

models of endogenous timing are restrictive in the sense that firms can produce only in one of two or

more initially feasible periods. Romano and Yildirim (2005) discuss this in more detail.
3Independently, Bolle (1993) and Powell (1993) reached similar conclusions for T = 2, and to

name a few subsequent studies, Ferreira (2003) derives a Folk theorem for the case that there is no

final trading period, and Liski and Montero (2006) show that forward trades simplify penal strategies

and tacit collusion in repeated oligopoly.
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ticipate Stackelberg (with an arbitrary leader-follower assignment), then Stackelberg

results, and so on. The firms’ anticipations, in turn, may be given by historical prece-

dents or social norms. The set of equilibrium outcomes will be characterized using a

novel indexation of oligopoly equilibria that is derived from the first order conditions.

The indexation links the classic modes of competition—Cournot, Bertrand, Stackel-

berg, and Allaz-Vila—in terms of conjectural variations and the equilibrium analysis

rationalizes the corresponding conjectures. Finally, the analysis shows that forward

trading of quantity setting firms is socially efficient in general (i.e. also in case the

goods are complements), which was questionable after Mahenc and Salanié (2004)

had shown that it softens competition between price setting firms.

Section 2 defines the notation. Section 3 derives requisite preliminary results,

introduces the equilibrium index, and extends the basic Cournot-Stackelberg endo-

geneity to oligopoly. Section 4 analyzes the general model of oligopolists producing

homogenous goods, Section 5 concerns the case of duopolists producing heteroge-

nous goods. Section 6 concludes. The proofs are relegated to the appendix.

2 The base model

Initially we focus on two-stage oligopoly games in markets for homogenous goods.

Further notation will be introduced when we augment the base model. Firms are

denoted as i ∈ N = {1, . . . ,n}. In stage 1, the planning phase, the firms choose “ca-

pacities” zi (i.e. they order the respective amounts of input factors) and they conclude

forward contracts for yi units of output (e.g. with retailers). In stage 2, the production

phase, they choose the quantities xi to be produced. The players act simultaneously

in each stage, and the choices made in stage 1 are common knowledge in stage 2.

The unit costs of pre-building capacity are γi ≥ 00. In case a quantity xi > zi is cho-

sen in stage 2, the pre-built capacity is extended at unit costs ci ≥ γi. There are no

costs of production besides the costs of capacity. The inverse demand function is

p(x) = a− b∑i∈N xi. The forward sales are priced competitively in that the even-

tually resulting market price is anticipated correctly. Throughout this paper scalar

values and functions are set in italics, e.g. capacities zi, vectors are set in boldface

type, e.g. z = (zi)i∈N , sets of scalars are denoted by capital letters, e.g. Zi ∋ zi, and
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sets of vectors are denoted by capital letters set in boldface type, e.g. Z =×i∈N Zi.

Definition 2.1 (Base game). Strategy profiles are triples (z,y,x) = (zi,yi,xi)i∈N . In

stage 1, firms (i ∈ N) set capacities zi ∈ Zi ⊆ R+ and forward sales yi ∈ Yi ⊆ R+, and

in stage 2, they set quantities xi : Z×Y → Xi ⊆ R+. In stage 2, the forward trades

have been concluded at price p f and the short-term profit of i is

ΠS
i (x|z,y) = (xi − yi) ·

(

a−b∑ j x j

)

+ p f · yi − ci ·max{xi(z,y)− zi,0}− γizi. (1)

The assumption that profitable arbitrage is impossible in equilibrium follows Allaz

and Vila (1993) and implies that the market price for forward trades equates with the

anticipated market price conditional on the choices of (z,y), i.e.

p f (x|z,y) = a−b · ∑
j∈N

x j(z,y). (2)

Substituting p f in Eq. (1), the stage-1 (long term) profit function of i ∈ N becomes

ΠL
i (z,y,x) = xi(z,y)∗ p

(

x|z,y
)

− ci ·max{xi(z,y)− zi,0}− γizi. (3)

We focus on subgame-perfect equilibria (SPEs) in pure strategies.

3 Preliminary analysis and benchmark results

Outcome uniqueness in production phase

In the last round, the production phase, the firms choose quantities (xi) contingent on

their capacity pre-builds (zi) and forward sales (yi). In standard Cournot models with

linear demands, the quantities chosen in equilibrium are unique. Our model assumes

quantity competition and linear demands, too, but the discontinuity at the capacity

limit implies that uniqueness in the production phase is less obvious than in standard

models. Establishing outcome uniqueness in the production phase is important, how-

ever, to understand that the indeterminacy of the mode of competition originates in

the planning phase (as one would expect) rather than the production phase.

Our first result establishes outcome uniqueness in the production phase, and in

addition it characterizes the equilibrium outcome. To gain intuition, define the indi-

cator Ixi>zi
, i.e. it evaluates to 1 iff xi > zi, and consider the marginal profit of i. This
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derivative is well defined for all xi 6= zi.

∂ΠS
i

∂xi
= p−b(xi − yi)− ci · Ixi>zi

(4)

The marginal profit is piecewise linear in xi and discontinuous at xi = zi. The non-

standard characteristic of capacity pre-builds is that, if xi = zi, the marginal revenue

MRi = p− b(xi − yi) may attain any value in [0,ci] without violating individual ra-

tionality. If MRi ≥ 0, firm i cannot gain by reducing quantity (no costs are saved by

doing so if xi ≤ zi), and if MRi ≤ ci, increasing quantity does not pay off either (to this

end, the capacity would have to be extended, but the respective unit costs ci would

not be covered). Thus, the equilibrium condition is not p− bxi = ci as in standard

Cournot models or p−b(xi − yi) = ci as in standard Allaz-Vila models, but

p−b(xi − yi) = 0, if xi < zi (5)

p−b(xi − yi) ∈ [0,ci], if xi = zi (6)

p−b(xi − yi) = ci, if xi > zi (7)

for all i ∈ N. Overall, the first order conditions are less restrictive than those of mod-

els without capacity pre-builds, but as I show in the appendix, outcome uniqueness

in the production phase can be established nonetheless. As we will see below, the

relaxation of equilibrium conditions implies that outcome non-uniqueness may result

in the planning phase.

Lemma 3.1. Fix any (z,y). The equilibrium quantities x∗i (z,y) are unique for all

i ∈ N and satisfy, using ri = a−b
(

2zi − yi + x∗−i

)

and x∗−i = ∑ j 6=i x∗j ,

x∗i (z,y) =















zi +
ri

2b
, if ri < 0

zi, if 0 ≤ ri ≤ ci

zi +
ri−ci

2b
, if ri > ci.

(8)

The characterization of the stage 2 equilibrium rests on (ri), which denotes the

hypothetical short-term marginal revenue at xi = zi. If ri < 0, then i does not exploit

the pre-built capacity (x∗i < zi), i chooses x∗i = zi if ri ∈ [0,ci], and it extends capacity

(x∗i > zi) if ri > ci.
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No excess capacity

Varying the capacity zi of firm i in Lemma 3.1, we observe a capacity effect, i.e. a

tendency to exactly use the pre-built capacity. For, xi = zi is optimal whenever ri is

in [0,ci], and if ri is in the interior of [0,ci], then small increments of zi keep ri in the

interior [0,ci]—which implies that the incremented capacity would still be exploited.

To further illustrate, let MRS
i = ∂RS

i /∂xi denote i’s short-term marginal revenue (as

above), and let MRL
i = ∂RL

i /∂zi be i’s long-term marginal revenue.

MRS
i = a−b∑

j

x j −b(xi − yi) MRL
i = a−b∑

j

x j −bxi (9)

The difference between MRS
i and MRL

i is the forward trade effect originally described

by Allaz and Vila (1993). As yi increases, the quantity that is left to be sold in stage

2 shrinks and hence the MR in the short term increases. This effect implies MRS
i ≥

MRL
i in general and MRS

i > MRL
i if yi > 0. In light of this, one might suspect that

if yi is large enough, then MRL ≤ γi and MRS > ci could hold true simultaneously.

In this case, firm i would be best off delaying capacity investments until stage 2.

The next result shows that capacity investments are neither delayed nor excessive in

equilibrium (if ci > γi). Along the equilibrium path, firms exactly exploit their pre-

built capacity.

Lemma 3.2. Fix any SPE (z∗,y∗,x∗). For all i ∈ N, the quantity chosen along the

equilibrium path satisfies x∗i (z
∗,y∗)≥ z∗i , and in case ci > γi it satisfies x∗i (z

∗,y∗) = z∗i .

The case ci = γi is a little more complex. As the formulation of Lemma 3.2

suggests, capacity may be extended in stage 2 if ci = γi. Lemma 4.2 proved below

shows that the set of equilibrium outcomes is unaffected by this effect.

Basic oligopoly models and implied conjectural derivatives

If the pre-built capacity cannot be extended in stage 2, i.e. if ci = ∞ for all i ∈ N,

then the forward trade effect disappears. In this case, the Cournot outcome results.

This shows that a necessary condition for the competition-enhancing effect of forward

trades is that capacity can be extended after output had been sold forward. The first
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order conditions in the Cournot model and the Cournot price are, using p= a−b∑ j z j

and assuming an interior solution exists (i.e. p > γi for all i ∈ N),

p−bzi − γi = 0 ∀i ∈ N, ⇒ pC =
a+∑ j∈N γ j

1+n
. (10)

Secondly, if capacity cannot be pre-built, the framework of Allaz and Vila (1993) re-

sults. If we assume, for notational clarity, that ci = γi applies (since γi as used before is

irrelevant when capacity cannot be pre-built), then the first order conditions on quan-

tities (xi) contingent on (yi) are p−b(xi − yi)− γi = 0 for all i ∈ N. If we solve these

conditions for (xi), and represent the resulting conditions for optimal (yi) in terms of

the induced capacities zi, then the following reduced-form first order conditions of the

Allaz-Vila model are obtained.

p−
1

n
·bzi − γi = 0 ∀i ∈ N, ⇒ pAV =

a+n∑i∈N γi

1+n2
. (11)

These two sets of first order conditions, Eqs. (10) and (11), can be represented as

p−λibzi − γi = 0 ∀i ∈ N (12)

for certain (λi)∈R
N
+. The first order conditions in the Cournot-model are obtained for

λ1 = · · ·= λn = 1, and the Allaz-Vila conditions correspond with λ1 = · · ·= λn = 1/n.

The equilibrium price and profits associated with arbitrary (λi) are

p =
a+∑i λ−1

i γi

1+∑i λ−1
i

, Πi =
1

λib
·

(

a− γi +∑ j λ−1
j (γ j − γi)

1+∑ j λ−1
j

)2

. (13)

Throughout this paper, I will represent models and equilibrium outcomes by such

profiles (λi) ∈ R
N
+. These (λi) relate straightforwardly to conjectural derivatives: λi

describes how the aggregate market quantity increases if i increases xi by a unit. In

the Cournot model, the aggregate quantity increases by a unit, but in the Allaz-Vila

model, an increase of the amount of forward trades induces an increase of the own

quantity which in turn crowds out the opponents’ quantities. The ratio of the resulting

increase of the overall quantity to the increase of the own quantity is λi = 1/n in the

Allaz-Vila model.

To clarify the relation to conjectural derivatives, let xi denote the quantity of i and

x−i the aggregate quantity of i’s opponents. If players compete by choosing quantities
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in a market with inverse demand P(xi+x−i), then i’s first order condition is (assuming

constant marginal costs γi)

P− xi ·P
′(xi + x−i) ·

(

1+ dx−i

dxi

)

− γi = 0. (14)

P = a−b∑i xi implies P′(q) =−b, and hence λi = 1+ dx−i

dxi
= d(x−i+xi)

dxi
.

To conclude this overview, consider the (λi) implied in Stackelberg games.

Definition 3.3 (Stackelberg games). For any partition (Nt)t≤T = (N1,N2, . . . ,NT ) of

N, define the (Nt)t≤T -Stackelberg game as the T -round extensive form game of per-

fect information where the players i ∈ Nt simultaneously move (choosing quantities)

in round t, for all t = 1, . . . ,T .

Lemma 3.4. Assume γi = γ j for all i, j ∈ N. The equilibrium profits of the players in

any (Nt)t≤T -Stackelberg game are given by Eq. (13) using λi = ∏T
t ′=t+1

1
|Nt′ |+1

for all

i ∈ Nt and all t ≤ T .

Thus, Stackelberg followers i∈NT have conjectural derivatives λi = 1 that corre-

spond with those of Cournot oligopolists (they play their best responses). Allaz-Vila

oligopolists have conjectural derivatives that are equivalent to those of singleton first

movers, i.e. to those in
(

{i},N \{i}
)

-Stackelberg games where all opponents of i are

equally ranked followers.4

The Cournot-Stackelberg endogeneity

The “Cournot-Stackelberg endogeneity” (Romano and Yildirim, 2005) was originally

derived by Saloner (1987). He assumed that quantity can be pre-built and showed that

a continuum of outcomes containing the Stackelberg outcomes and the Cournot out-

come may result if ccc = γγγ. Pal (1991) showed that the Cournot-Stackelberg endogene-

ity disappears as ccc 6= γγγ. Correspondingly, I distinguish the cases (i) ci > γi for all i and

(ii) ci = γi for all i. The first main result, Proposition 3.5, shows how the observations

of Saloner and Pal generalize to the oligopoly case, and that they hold true even if

4As for two-player games, this link was previously established by Allaz and Vila (1993, Prop.

2.2). They showed that if only one oligopolist may sell forward in their two-period game, then the

Stackelberg outcome results.
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quantity produced in stage 1 can be withheld from being sold on the market in stage

2 (i.e. if we consider “capacity accumulation” rather than “quantity accumulation”).

This is not obvious, and in fact questioned by Saloner (1987, p. 186f).

Prior to stating the result, let me illustrate why a continuum of equilibria exists

in case ccc = γγγ. Saloner considered the case of two players, and expressed in terms

of (λi) as defined above, he showed that all outcomes associated with (λ1,λ2) where

λ1 ∈ [1/2,1) and λ2 = 1 can result in equilibrium. In this case, 1/2 ≤ λ1 < 1 implies

that firm 1 chooses a capacity somewhere between that of a Stackelberg leader and

that of a Cournot duopolist, and λ2 = 1 implies that 2 plays the best response. In

a pure Cournot framework, firm 1 would benefit by decreasing his quantity, but in

the two-stage game considered here, firm 2 would respond by increasing the capacity

in stage 2 in case c2 = γ2. Hence, decreasing capacity pays off for firm 1 only if it

pays off for a Stackelberg leader. The latter, however, cannot be the case if Eq. (12)

holds true for λ1 ≥ 1/2. In turn, player 1 does not benefit from increasing capacity

when Eq. (12) is satisfied for some λ1 ≤ 1. For, firm 2 does not respond to a capacity

increase of 1 by decreasing his quantity in stage 2 as long as λ2 > 0 (i.e. as long

as i’s marginal revenue is positive). To summarize: 1’s incentives correspond with

those of a Cournot duopolist with respect to capacity increases and with those of

Stackelberg followers with respect to capacity decreases. Hence, λ1 may attain any

value in [1/2,1] in equilibrium.

Proposition 3.5 (Zero forward trades). Assume “sufficiently similar” (see below)

marginal costs (γi) and Yi = {0} for all i ∈ N.

1. If ci > γi for all i ∈ N, then the Cournot outcome results in the unique SPE.

2. If ci = γi for all i ∈ N, then an outcome 〈p,(Πi)〉 can result if and only if there

exists a partition (N1,N2) of N such that 〈p,(Πi)〉 satisfies Eq. (13) for some

(λi) where λi ∈
[

1
|N2|+1

,1
]

for all i ∈ N1 and λ j = 1 for all j ∈ N2.

The (γi) are “sufficiently similar” to sustain price p if p > γi for all i ∈ N.

The set of equilibrium outcomes is a continuum containing the outcomes of all

two-stage Stackelberg games5 and the Cournot outcome. The set is not convex in

5Any two-stage Stackelberg game is defined by a partition (N1,N2) of N where all i ∈ N1 move
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the payoff space, but it is the union of finitely many hyperrectangles in (λi)-space.

Namely, it is the union, over all (N1,N2)-Stackelberg games, of the hyperrectangles

containing the respective (N1,N2)-Stackelberg outcome and the Cournot outcome.

For example, in three-player games, the set of outcomes is the union of six hyperrect-

angles (as there are six two-stage Stackelberg games between three players), where

each hyperrectangle has a Stackelberg solution and the Cournot solution at its corner

points.

The set of two-stage Stackelberg games contains all Stackelberg games if we fo-

cus on duopolies, as Saloner (1987), Pal (1991), and Romano and Yildirim (2005)

did, but it is incomplete if there are more than two firms. Proposition 3.5 thus shows

that the Cournot-Stackelberg endogeneity is incomplete in n-player games of accu-

mulation. The following section shows that the Cournot-Stackelberg endogeneity can

be reestablished (slightly weakened) in the more general game allowing for both ca-

pacity accumulation and forward trades.

4 Oligopoly with homogenous goods

The two-stage game

Initially we focus on the “generic” case ci > γi for all i. The extension toward ci = γi

for all i is covered below. The main result, Proposition 4.1, shows that the set of

equilibrium outcomes is a hypercube in (λi)-space, with the Cournot solution (λi = 1

for all i) and the Allaz-Vila solution (λi = 1/n for all i) at its opposite corner points.

It contains all two-stage Stackelberg outcomes and many intermediate outcomes. The

set of equilibrium outcomes is only “quasi-hyperrectangular” in the payoff space, i.e.

neither convex nor hyperrectangular (see also Figure 1).

Proposition 4.1. Assume ci > γi for all i∈N and fix a price p∈R such that p> ci > γi

for all i ∈ N. This price can result in an SPE if and only if there exists (λi) ∈
[

1
n
,1
]N

such that p satisfies Eq. (13), and the corresponding profit profile is Π according to

Eq. (13).

in round 1 and all j ∈ N2 move in round 2. By Lemma 3.4, the solution is characterized by λi =

1/(|N2|+1) for all first-movers i ∈ N1 and λ j = 1 for all followers j ∈ N2.

11



Figure 1: Range of profit profiles that may result in equilibrium (two players, zero

costs)
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To capture the intuition, let us look at the structure of the equilibria constructed

in the proof (further equilibria exist, but they do not induce alternative outcomes). Fix

(λi) ∈
[

1
n
,1
]N

and find the unique capacities (zi)i∈N such that

p−λibzi − γi = 0 ∀i ∈ N, (15)

at the respective market price p = a−b∑i zi. See e.g. Eq. (40). Set (yi)i∈N such that

p−b(zi − yi)− ci = 0 ∀i ∈ N. (16)

Since λi > 0, corresponding yi exist even if ci > γi.
6 All such strategy profiles (z,y)

can be extended to SPEs through the appropriate x∗ (see Lemma 3.1). By Lemma

3.2, x∗i = z∗i results along the path of play for all i ∈ N, and as a result of Eq. (16), the

stage 2 marginal revenue is ri = ci for all i ∈ N. When any i ∈ N deviates unilaterally

by increasing zi in stage 1, then he will be best off exploiting the extended capacity

in stage 2 (his marginal revenue falls below ci but remains positive). Anticipating

this quantity increase after observing the capacity “increase” of i, the opponents’

marginal revenues fall below marginal costs c j, but they remain positive, too. Hence,

6To be precise, such (yi) exist if ci ≤ pAV for all i ∈ N. Eq. (16) cannot be satisfied if ci > p.

Assuming ci = c for all i, pAV ≤ c ≤ pC implies that the equilibrium price range is the interval
[

c, pC
]

.

If c > pC, short-term capacity are effectively prohibitive, and the Cournot outcome results.
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the opponents’ quantities are constant in response to i’s capacity increase, and thus,

i’s capacity increase pays off if and only if it would pay off for a Cournot oligopolist.

The latter applies iff

p−bzi − γi ≥ 0 ∀i ∈ N. (17)

Alternatively, i may cut capacity. The most profitable capacity cut implies that i

simultaneously adjusts yi so that he will not be best off extending capacity in stage

2 again. Regardless of yi, however, the opponents’ marginal revenues in stage 2 rise

above c j due to the capacity cut (i.e. due to correctly anticipating the quantity cut that

follows), and hence they all respond by extending their capacities in stage 2. In turn,

capacity cuts pay off if and only if a quantity cut pays for a Stackelberg leader to

which all n−1 opponents respond by acting simultaneously. This applies iff

p−
1

n
bzi − γi ≤ 0 ∀i ∈ N. (18)

Since Eq. (15) is satisfied for some λi ∈
[

1/n,1
]

, neither Eq. (17) nor Eq. (18) can be

satisfied, i.e. neither capacity cuts nor capacity extensions pay off if λi ∈
[

1/n,1
]

.

The generalized Cournot-Stackelberg endogeneity

Lemma 4.2 establishes that Proposition 4.1 extends to the degenerate case ccc = γγγ.

Lemma 4.2. Assume (γi) are sufficiently similar. The set of outcomes that can be

sustained in equilibrium is upper hemicontinuous in (ci) if ci ≥ γi for all i ∈ N.

This result shows that the Cournot-Stackelberg endogeneity is general, i.e. nei-

ther degenerate nor generic, in the games discussed presently.

Additionally, by Lemma 3.4, an equilibrium of a general (N1, . . . ,NT )-Stackelberg

game corresponds with an equilibrium according to Proposition 4.1 if and only if

∏T
t=2

1
|Nt |+1

≥ 1/n. This includes many Stackelberg outcomes, even of Stackelberg

games with more than two stages, but not all of them. As an example of a Stackelberg

outcome that is included, consider the ({1},{2},{3,4})-Stackelberg game, i.e. the

game where 1 moves first, 2 moves second, while 3 and 4 simultaneously move last.

By Lemma 3.4, its equilibrium is characterized as λ1 =
1
4
, λ2 =

1
2
, and λ3 = λ4 = 1,

which satisfies λi ≥ 1/n for all four players. In turn, the Stackelberg outcome of the

13



game where n = 3 players move strictly sequential (player 1 moves first, 2 moves

second, 3 moves third) is not included. By Lemma 3.4, its equilibrium is character-

ized as λ1 =
1
4
, λ2 =

1
2
, and λ3 = 1, which in this case violates λi ≥

1
n

for all i. Then

again, its outcome is weakly Pareto dominated by the Cournot outcome and strictly

Pareto dominated by other equilibrium outcomes compatible with Proposition 4.1—

and based on the Pareto criterion, it is possible to generalize the Cournot-Stackelberg

endogeneity.

The following result establishes the corresponding generalization: equilibria of

general (N1, . . . ,NT )-Stackelberg games are either compatible with Proposition 4.1 or

they are Pareto dominated by an outcome compatible with Proposition 4.1.

Lemma 4.3. Assume γi = γ j for all i, j ∈ N. Not all equilibrium outcomes of gen-

eral (Nt)t≤T -Stackelberg games correspond with equilibrium outcomes according to

Proposition 4.1. All those that do not are Pareto dominated by some equilibrium

outcome compatible with Proposition 4.1.

The T -stage game

Now assume that the number T of rounds in the planning phase prior to the production

phase is increased. For example, production in 2020 may not just be planned in

2019 (by forward buying input and forward selling output), but already in 2018, or

even 2017, and so on. Alternatively, T increases if the length of the preliminary

planning periods is shortened, from years to say quarters. Allaz and Vila (1993) show

that the forward trade effect intensifies as T increases, with the consequence that the

equilibrium price converges to the Bertrand price as T approaches infinity. Romano

and Yildirim (2005), in turn, show that solutions of accumulation games are invariant

with respect to T , i.e. the set of equilibrium outcomes is independent of the number

of accumulation periods T . The game analyzed in this paper allows for both of these

effects. The following results show that neither of these effects dominates the other

in the sense that the Pareto frontier of the equilibrium set is invariant with respect to

T , whereas the lower bound converges to the Bertrand outcome.

In the following, the game with T planning periods is denoted as Γ(T ). We focus

14



on Markov perfect equilibria (MPEs),7 and make two additional assumptions. The

marginal costs are identical γ1 = · · · = γn, as competitive pricing is not well-defined

in the case of heterogenous marginal costs, and ci = γi for all i ∈ N for notational

convenience (otherwise, the price is bounded below by c, see also Footnote 6).

Our first result relates to the T -invariance observed by Romano and Yildirim

(2005). It shows that the set of outcomes of Γ(T ) is a subset of the outcomes of

Γ(T +1). Hence, the outcomes of Γ(T ) are included in the set of outcomes of Γ(T + l)

for all l ≥ 1, i.e. the earlier the firms start planning the production period, the larger

the set of possible equilibrium outcomes.

Lemma 4.4. For all T ≥ 1 and any payoff profile Π ∈ R
N that results in an MPE of

Γ(T ), there exists an MPE of Γ(T +1) that results in the same payoff profile.

Hence, T -invariance of accumulation games remains partially intact in capacity

accumulation—equilibria do not disappear as T increases. To gain intuition, consider

an MPE of Γ(T ). At the end of round T , all firms have concluded their planning

phase, i.e. their plans (forward trades and pre-built capacities) are mutual best re-

sponses. We can now construct a strategy profile of Γ(T +1) that replicates the moves

in all rounds t ≤ T of the considered MPE, and loosely speaking everything is held

constant in round T + 1. The proof of Lemma 4.4 shows that the mutual optimality

of the plans in Γ(T ) implies that the players may not gain by deviating unilaterally

in round T +1 of Γ(T +1), and based on this, we can construct an outcome-invariant

strategy profile that is an MPE of Γ(T +1).

However, while the players are best off not to deviate unilaterally from an equi-

librium of Γ(T ) in round T + 1, they may well be best off deviating from the Γ(T )-

plans in Γ(T + 1) if all opponents are doing so. That is, either all firms effectively

conclude their planning phase after round T or they do so after round T + 1. This

implies that all equilibria of Γ(T ) can be characterized by an integer T ∗ ≤ T which

denotes the effective duration of the planning phase and a vector (λi) of implicit con-

jectural derivatives. By varying T ∗ and (λi), the general continuum of equilibrium

7The players’ strategies depend on the cumulative amounts of pre-built capacity and forward trades,

and on the current round index t ≤ T , but they do not depend on the actual move sequence detailing

how the cumulative amounts have been reached. By definition, all MPEs are also SPEs, and thus the

set of outcomes that can result in SPEs includes at least the outcomes derived below.
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Figure 2: Set of equilibrium profit profiles for T ≥ 1 (assuming a = b = 1 and γ = 0)
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outcomes is obtained.

Proposition 4.5. Fix T ≥ 1 and γ = γi = ci for all i ∈ N. The Pareto frontier of the

equilibrium profits in Γ(T ) equates with the one of Proposition 4.1, and as T tends

to infinity the minimal equilibrium price converges to marginal costs γ. Price p and

profit profile Π ∈ R
N can result in an MPE of Γ(T ) if and only if there exist T ∗ ≤ T

and λ ∈
[

1
n
,1
]N

such that

p =
a+β1γ

1+β1
and Πi =

α1
i +λ−1

i

b
(p− γ)2

(19)

where βT ∗
= ∑i λ−1

i and for all t ≤ T ∗,

βt = βT ∗
+
[

n+(n−2)βT ∗]
T ∗−t

∑
τ=1

(n−1)τ−1, (20)

αt
i =

T ∗

∑
τ=t+1

(1+βτ −2λ−1
i )∗ (−1)T ∗−τ+1. (21)

The respective capacities/quantities and amounts of forward trades can be com-

puted straightforwardly, as a function of 〈T ∗,(λi)〉, as detailed in the proof of Proposi-

tion 4.5. A graphical representation of the set of equilibrium outcomes in a two-player

case is provided in Figure 2. It is rather easy to distinguish the various components of

the outcome set, i.e. the components that relate to equilibria with effective duration of
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the planning phase T ∗ = 1, T ∗ = 2, and so on. The set of equilibrium outcomes cor-

responding with any T ∗ ≤ T form a hyperrectangle in (λi)-space, and the intersection

of succeeding hyperrectangles consists of exactly one point (i.e. the components are

not disconnected nor do they overlap).8

Proposition 4.5 shows that the mode of competition is fully endogenous if the

firms produce homogeneous goods. The time invariance of accumulation implies that

the Pareto-frontier establishing the Cournot-Stackelberg endogeneity remains in the

equilibrium set, while the the competitiveness of forward trades implies that the lower

bound approaches the Bertrand equilibrium as T grows. The next section examines

whether this continues to hold true as we allow for heterogeneous goods.

5 Duopoly with heterogenous goods

The assumption that goods be perfect substitutes is invalid if mere transportation costs

are taken into account, and obviously it is outright wrong if complements such as coal

and iron ore are considered. Interactions of firms forward selling heterogenous goods

are unexplored in the existing literature, however. By a similar token, the robustness

of the convergence toward Bertrand competition as T grows, as described by Allaz

and Vila, with respect to relaxations of perfect homogeneity is an open question. I

will analyze these issues by assuming the following inverse demands for i = 1,2 and

j = 3− i.9

pi(xi,x j) = a−b1xi −b2x j (22)

The case of complementary goods (b2 < 0) induces a constituent game that exhibits

strategic complements, and thereby may relate to the forward trade model of price

setting duopolists analyzed by Mahenc and Salanié (2004). They found that the firms

go long in the futures market (forward buying their own output). This will not result

in our model, and in this way, the case of quantity setting duopolists producing com-

8The equilibrium outcome corresponding with T ∗ and λi = 1/n∀i equates with the outcome corre-

sponding with T ∗+1 and λi = 1∀i.
9I focus on duopolies for tractability. In case goods are heterogenous, the equation system defined

by the first order conditions has to be solved directly, which becomes intractable for n > 2 and prevents

closed form solutions for general n.
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plements differs from price setting duopolists producing substitutes (although both

games exhibit strategic complements). Technically, the analysis is very similar to the

one made above, and for this reason, the main results are stated immediately.

Proposition 5.1. Assume |N|= 2, |b1|> |b2|, and pi = a−b1xi −b2x j for all i ∈ N.

For all T ∗ ≤ T and λi ∈ [1− b2
2/2b2

1,1], there exists an equilibrium of the T -round

game inducing the prices

pi =
(1+b1µ1

j)(a+b1µ1
i γi +b2µ1

jγ j)−b2µ1
j(a j +b1µ1

jγ j +b2µ1
i γi)

(1+b1µ1
i )(1+b1µ1

j)−b2
2µ1

i µ1
j

(23)

for all i ∈ N (provided pi > ci for all i), using µT ∗

i = λ−1
i b−1

1 and

∀t ≤ T ∗ : rt
i =

−b1(1+b1µt
j)+b2

2µt
j

(1+b1µt
i)(1+b1µt

j)−b2
2µt

iµ
t
j

∀t < T ∗ : µt
i =−µt+1

i −1/rt+1
i .

The following is implied.

1. As T ∗ tends to infinity, µ1
i converges to µ = (b2

1 −b2
2)

−1/2 for all i. This limit is

strictly below µB = b1/(b
2
1 −b2

2) which is implicit in price competition.

2. The amount sold forward in planning period t of an equilibrium inducing price

pi equates with (pi − γi)∗ (µ
t
i −µt+1

i ) and is strictly positive.

3. Fix λ1 = λ2. The equilibrium prices are decreasing in T ∗.

Figure 3 depicts the equilibrium profits for a variety of cases. The main observa-

tion is that the iterated forward trade effect—convergence toward competitive pricing

as T approaches infinity—is not robust to relaxing homogeneity of goods. If b2 drops

to b2/b1 = 0.9, then the profits converge half-way between Cournot and Bertrand

profits, and in this case, the Bertrand profits are far from being competitive already.

Hence, the observation that forward trading induces competitive pricing if T grows

cannot be confirmed in general.

In turn, the results show that forward trading of quantity setting duopolists bene-

fits consumers even when the goods are complements. This contrasts with the results

Mahenc and Salanié (2004), who analyzed price setting duopolists producing substi-

tutes and found that the firms go long and tacitly collude in equilibrium. They argued
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Figure 3: Equilibrium profits if goods are heterogenous (a = b1 = 1, γ1 = γ2 = 0)
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that this observation relates to the fact that price competition exhibits strategic com-

plements, but as b2 < 0 in Proposition 5.1 exhibits strategic complements, too, this

relation is weaker than suspected. For, we observe convergence to price competition

(and lower prices, see Point 3 of Proposition 5.1) even in this case, while Mahenc and

Salanié observe the opposite in their price setting game. Finally, since Bertrand com-

petition benefits both consumers (lower prices) and firms (higher profits) in case the

goods are complements, we can conclude that forward trading raises welfare regard-

less of whether goods are complements or substitutes—provided firms set quantities.

6 Concluding discussion

The paper presents the first analysis of an industry where firms do both, pre-order in-

put and forward contract output, prior to the production period. Pre-ordering input al-

lows firms to pre-build capacity (cumulatively, following e.g. Kreps and Scheinkman,

1983, and Saloner, 1987) and forward contracting with say retailers allows firms to

improve their short-term marginal revenue and hence their strategic positioning in the

production period (the “forward trade effect” of Allaz and Vila, 1993).

The main contributions can be summarized as follows. The Cournot-Stackelberg

endogeneity (Saloner, 1987; Pal, 1991; Romano and Yildirim, 2005) is shown to be

robust to capacity accumulation (as opposed to quantity accumulation) and general-

ized to oligopolistic industries, which shows that the endogeneity is incomplete in

oligopolistic games of accumulation. The T -round Allaz-Vila prices are derived for

duopolists producing heterogenous goods, which allowed me to show that they do

not converge to the Bertrand prices in general, and yet forward trades are welfare

improving even in case the goods are complements. Finally, the outcome set of the

joined model is characterized using a novel indexation of oligopoly equilibria and

it is shown to consist of T hyperrectangles stretching from the Cournot-Stackelberg

frontier on one end to the Allaz-Vila price on the other end (which generalizes the

Cournot-Stackelberg endogeneity).

Since the Allaz-Vila price converges to the Bertrand price in case the goods are

homogenous, the “mode of competition” may therefore be entirely independent of

“objective differences” between markets—to the degree that different focal points or
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historical standards do not constitute objective differences—and different modes are

fully self-sustaining in the sense that repeated interaction and complex penal codes

are not required.

The assumptions made above are fairly standard. For example, linear demand

and constant marginal costs are standard and can be generalized in several ways,

although closed-form solutions may then be unavailable (note also the conditions

for existence of Cournot equilibria, e.g. Novshek, 1980). Similarly, the assumption

that capacity accumulates, i.e. that capacity investments represent sunk costs at later

stages, is standard. An issue that deserves more discussion relates to the point raised

by Pal (1996) who argues, in the context of two-period Cournot games, that asymmet-

ric equilibria seem implausible in symmetric games. Note that we do not argue that

say specific Stackelberg equilibria necessarily result in specific industries, but that

asymmetric outcomes may be sustained in stationary equilibrium points of industries

with ex-ante symmetric firms. Such industries may well have historically established

leadership and follower assignments, even if firms do not move asynchronously, and

since the equilibria are shown to be self-sustaining, such role assignments need not

disappear over time even if firm owners or managers tend to think myopically (low δ,

hence no Folk theorem) or tend to act stationarily or forward-looking (which rules out

the possibility of retaliations against firms that deviated from acting as say followers).

To conclude, let me recall that the present paper analyzed a model of compe-

tition, and as such, it does not rationalize everything. That is, it generates several

falsifiable predictions. As Figures 2 and 3 show, the relative profits of different firms

are correlated and bounded in equilibrium (though the correlation weakens as the

number of firms grows). Similarly, there is a falsifiable mapping from implicit con-

jectural derivatives (= 1−λi as discussed above) to the set of outcomes. Empirical

tests of these predictions may be a topic for further research.
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A Proofs of results in Section 3

Proof of Lemma 3.1 Fix (z,y). For all i ∈ N, define the intervals X ′
i = [yi,xi] such

that a− bxi = 0. The best response of i to x−i ∈ X−i is unique, continuous in x−i,

and necessarily satisfies xi ∈ X ′
i . Since X ′

i is compact, closed, and convex for all i ∈

N, existence of a pure strategy equilibrium (x∗i )i=1,...,n follows from Brouwer’s fixed

point theorem. Eq. (8) represents the necessary conditions for a profile of mutual best

responses, which therefore have to be satisfied in any equilibrium x∗. We have to show

that the equilibrium is unique. For any equilibrium x∗ there exist sets N−,N+ ⊆ N,

with N−∩N+ = /0, such that

x∗i < zi for i ∈ N−, x∗i = zi for i /∈ N−∪N+, x∗i > zi for i ∈ N+. (24)

Define m and k such that, relabeling the players appropriately, the sets are N− =

{1, . . . ,m} and N+ = {k+1, . . . ,n}. Using the necessary condition Eq. (8), x∗ solves a

linear (m+n−k)–dimensional equation system with the solution (x∗1, . . . ,x
∗
m,x

∗
k+1, . . . ,x

∗
n).























x∗1

.

x∗m

x∗k+1

.

x∗n




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















=























2s
s+1

. − 2
s+1

− 2
s+1

. − 2
s+1

. . . . . .

− 2
s+1

. 2s
s+1

− 2
s+1

. − 2
s+1

− 2
s+1

. − 2
s+1

2s
s+1

. − 2
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. . . . . .

− 2
s+1

. − 2
s+1

− 2
s+1

. 2s
s+1


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
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




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



×























a+by1

2b

.
a+bym

2b
a−ck+1+byk+1

2b

.
a−cn+byn

2b























(25)

where s := m+n−k. In turn, any pair N−,N+ defines a unique set of necessary con-

ditions Eq. (8) and has a unique solution x∗ through Eq. (25). Hence, the equilibrium

is unique if N− and N+ are unique. Fix any pair N−,N+ such that an equilibrium
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is induced. By Eq. (8), N− contains the players i ∈ N that have the lowest values of
a+byi

2b
. Hence, if j /∈ N−, then he must have a greater value of

a+by j

2b
.

i ∈ N− and j /∈ N− ⇒
a+byi

2b
<

a+by j

2b
. (26)

Also by Eq. (8), N+ contains the players i∈N with the largest
a−ci+byi

2b
, which implies

i ∈ N+ and j /∈ N+ ⇒
a− ci +byi

2b
>

a− c j +by j

2b
. (27)

If (z,y) and c are given, then the m players with the lowest values of
a+by j

2b
are

identified, as are the n− k players with the highest values of
a−ci+byi

2b
. Hence, the

sets N−,N+ are uniquely defined through pairs (m,k) satisfying m := |N−| and k :=

n−|N+|, and thus, for any (m,k), there is a unique solution x∗ satisfying Eqs. (8) and

(25). Now pick any equilibrium x∗ and for contradiction assume that it is not unique.

An equilibrium x∗′ 6= x∗ exists which is characterized by N′−,N′+ where

x∗i
′ < zi for i ∈ N′−, x∗i

′ = zi for i /∈ N′−∪N′+, x∗i
′ > zi for i ∈ N′+. (28)

Further, define m′ := |N′−| and k′ := n− |N′+|. If x∗′ 6= x∗, then (m′,n′) 6= (m,n)

follows from the previous argument. Without loss of generality assume m′>m, which

implies N′− ⊃ N−. We first show that N′+ ⊃ N+ follows. Define ∆x∗i := x∗i
′− x∗i for

all i. This implies ∆x∗i < 0 for all i ∈ N′− \N−. Putting the solution Eq. (25) for

N′−,N′+ in relation to that for N−,N+, the condition ∆x∗i < 0 for all i ∈ N′− \N−

implies ∆x∗i < 0 for all i ∈ N−. This can be optimal for these firms, by the necessary

condition Eq. (8), only if there exists j /∈ N′− such that ∆x∗j > 0. By Eq. (25), again,

this can result only if N′+ ⊃ N+. Now, using the necessary conditions Eq. (8), we

obtain for all i ∈ N′−

x∗i
′ =

a+byi

2b
−

1

2
∑
j 6=i

x∗j
′, x∗i ≤

a+byi

2b
−

1

2
∑
j 6=i

x∗j

(the inequality on the right-hand side is an equality if i ∈ N−, but not necessarily for

i ∈ N′− \N−), and similarly for all i ∈ N′+,

x∗i
′ =

a− ci +byi

2b
−

1

2
∑
j 6=i

x∗j
′, x∗i ≥

a− ci +byi

2b
−

1

2
∑
j 6=i

x∗j .
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Hence, for all i ∈ N′− and j ∈ N′+, we obtain

x∗i +
1

2
∑
k 6=i

x∗k ≤ x∗i
′+

1

2
∑
k 6=i

x∗k
′, x∗j +

1

2
∑
k 6= j

x∗k ≥ x∗j
′+

1

2
∑
k 6= j

x∗k
′

(29)

and thus

x∗j
′− x∗j +

1

2
(x∗i

′− x∗i )≤
1

2
∑

k 6=i, j

(x∗k − x∗k
′)≤ x∗i

′− x∗i +
1

2
(x∗j

′− x∗j). (30)

This can be satisfied only if x∗j
′−x∗j ≤ x∗i

′−x∗i , which contradicts ∆x∗i < 0 and ∆x∗j > 0.

Hence, the equilibrium x∗ is unique.

Proof of Lemma 3.2 Assume an SPE (z∗,y∗,x∗) exists where x∗i (z
∗,y∗) 6= z∗i for

some i ∈ N (the two cases x∗i < z∗i and x∗i > z∗i are distinguished below). We show

that i benefits by deviating unilaterally to z′i = x∗i (z
∗,y∗) in stage 1. By Lemma

3.1, the choices of x∗(z′i,z
∗
−i,y

∗) following this unilateral deviation are unique, and

hence the following quantities, which are mutual best responses, must be played:

x∗j(z
′
i,z

∗
−i,y

∗) = x∗j(z
∗,y∗) for all j 6= i, and x∗i (z

′
i,z

∗
−i,y

∗) = z′i. The implied gain of

player i is −(x∗i − z∗i )γi if x∗i (z
∗,y∗) < z∗i , and (x∗i − z∗i )(ci − γi) if x∗i (z

∗,y∗) > z∗i .

Hence, the initially assumed strategy profile is not an SPE under the assumptions of

the Lemma.

Proof of Lemma 3.4 The proof is made by logical induction starting in round T .

Assuming x−T ∈ R denotes the aggregate quantity of the players acting in previous

rounds, the first order condition for all i ∈ NT is Π′
i = p− bxi − γi = 0, and hence

the aggregate quantity of all i ∈ NT is xa
T = (a−bx−T − γi)/b∗ |NT |/(1+ |NT |). Fix

t ≤ T . Now assume that the aggregate quantity of all players acting in rounds t ′ ≥ t

can be expressed as a function of the aggregate quantity x−t of the players acting in

earlier rounds as follows.

xa
t =

βt

1+βt
·

1

b
(a−bx−t − γi) . (31)

Using βT = |NT |, this applies for t = T . The first order condition for all i ∈ Nt−1 is

Π′
i = p−

1

βt
·bxi − γi = 0, (32)
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which allows us, in combination with Eq. (31) and p = a−b∑i xi, to express the price

as a function of x−(t−1) (the aggregate quantity prior to round t −1) as follows.

p− γi =
1

1+βt ∗ (|Nt−1|+1)
· (a− γi −bx−(t−1)) (33)

Substituting this for p− γi in Eq. (32), again using Eq. (31), yields

xa
t−1 =

βt ∗ (|Nt−1|+1)

1+βt ∗ (|Nt−1|+1)
·

1

b
· (a− γi −bx−(t−1)). (34)

Hence, βt−1 = βt ∗ (|Nt−1|+1) = ∏T
t ′=t−1(|Nt ′ |+1), which thus applies for all t ≤ T .

For all t ≤ T and all i ∈ Nt , λi in Eq. (13) corresponds with β−1
t+1 in Eq. (32), and thus

it confirms the first part of the lemma. The second part follows, since an equilibrium

corresponding with (λi) exists under the conditions of Proposition 4.1 if λi ≥
1
n

for

all i ∈ N.

Proof of Proposition 3.5 Point 1. Fix any SPE (z∗,y∗,x∗), let p denote the cor-

responding market price, and define ri := a− b(z∗−i + 2z∗i − y∗i ) for all i. By Lemma

3.2, x∗i (z
∗,y∗) = z∗i for all i ∈ N holds true along the path of play in any SPE. Thus,

p = a− b∑i x∗i = a− b∑i z∗i and ri = a− b(z−i + 2zi − yi) imply that the following

holds true in any SPE.

p = b(z∗i − y∗i )+ ri ∀i ∈ N (35)

In any SPE, ∂Πi

∂zi
= (p−bz∗i )∗

∂xi

∂zi
−γi ≤ p−bz∗i −γi ≤ 0 holds true for ∂zi > 0. Due to

yi = 0 and Eq. (35), ri ≤ γi < ci follows for all i ∈ N. By Lemma 3.1, r j < c j implies

∂x j(z
∗,y∗)/∂zi = 0 for ∂zi < 0, and combined, we obtain

∂x j(z
∗,y∗)

∂zi
= 0 for all i, j ∈ N.

This implies that the Cournot condition

∂Πi

∂zi
= p−bz∗i − γi = 0 ∀i ∈ N. (36)

is necessary. Since it also is sufficient, the unique solution is z∗i =
1

(n+1)b ∗
(

a+∑ j∈N γ j

)

−
γi

b
for all i ∈ N.

Point 2. Fix a strategy profile (z,y,x). Due to the assumption of sufficiently

similar (γi), we can focus on the case that all capacities are positive, which implies

that the induced market price is above marginal costs γi for all i ∈ N. Let p denote the
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induced market price. Hence, there exists a profile (λi)∈R
N
+ such that p−λibzi−γi =

0 for all i ∈ N. It is easy to verify that p−λibzi−γi = 0∀i ∈ N induces the equilibrium

outcome described in the proposition. Define k := #{ j ∈ N|λ j = 1}.

First we show that if (z,y,x) is an SPE, then λi ∈
[

1
k+1

,1
]

for all i ∈ N. To begin

with, note that xi > zi for some i ∈ N can result in equilibrium only if k = 1, λi = 1,

and λ j =
1
2

for all j 6= i. Otherwise, some j 6= i would benefit by deviating unilaterally

toward a higher z j in stage 1 (as j’s increase in stage 1 would crowd out i’s increase in

stage 2). This case implies λi ∈
[

1
k+1

,1
]

for all i ∈ N. In all alternative SPEs, capacity

must be fully pre-built in stage 1 (along the path of play). The condition that (z,y,x)

is an SPE implies λi ≤ 1 (for all i ∈ N), since i would otherwise benefit by increasing

zi unilaterally in stage 1 (note that no opponent responds to a small increase of zi by

decreasing quantity since p > γ j ⇔ λ j > 0 for all j 6= i). It implies λi ≥
1

k+1
(for all

i ∈ N), since i would otherwise be best off cutting capacity zi unilaterally in stage 1

(note that k players respond to i’s capacity cut by increasing quantity in stage 2).

Second we show that if λi ∈
[

1
k+1

,1
]

for all i ∈ N, then (z,y,x) is an SPE. To

begin with, p−λibzi − γi = 0 for all i implies (by Lemma 3.1) that quantities equate

with capacities in the unique stage 2 equilibrium. This confirms that capacity is fully

pre-built in this case. Now, λi ∈
[

1
k+1

,1
]

for all i∈N implies ∃i∈N : λi = 1, i.e. k ≥ 1.

No player may benefit from extending capacity unilaterally in stage 1 because of

λi ≤ 1 for all i ∈ N. Also, no player may benefit from cutting capacity since λi ≥
1

k+1

for all i with λi < 1 and λi ≥
1
k

for all i with λi = 1 (note that k and k− 1 players,

respectively, respond to the capacity cut by extending quantity in stage 2).

B Results on two-stage games with homogeneous goods

Proof of Proposition 4.1 Fix a strategy profile (z,y,x∗) where x∗(z,y) is the stage-

2 Nash equilibrium for all (z,y). Let p denote the induced market price. We focus

on SPEs where ri = ci for all i ∈ N results along the path of play (it will be shown

that such SPEs exist, and it is easy to see that the set of outcomes of SPEs where

ri 6= ci for at least one i ∈ N is a subset of the outcomes derived in the following). To

abbreviate notation of directional derivatives, let ∇(∆zi,∆yi) f (z,y) denote the change

of f (which could be xi, x j, or Πi) if i changes (zi,yi) along (∆zi,∆yi). By Lemma
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3.2, directions (∆zi,∆yi) that induce ∇(∆zi,∆yi)x
∗
i (z,y) 6= 0 are generally sub-optimal.

Given the stage 2 solutions x∗i (z,y) from Eq. (25), it follows that we can focus on

directions (∆zi,∆yi) such that either (i) ∆zi > 0 and ∆yi ≤ 2∆zi, or (ii) ∆zi < 0 and

∆yi ≤
n+1

n
∆zi. It further holds that if a deviation in any direction is profitable, then

either of the extreme deviations where ∆yi is bound by an equality must be profitable.

Consider first ∆zi > 0 and ∆yi = 2∆zi. By Eq. (25), this implies ∇(∆zi,∆yi)x
∗
i (z,y) = 0

and ∇(∆zi,∆yi)x
∗
j(z,y) = 0 for all j 6= i, and therefore

∇(∆zi,∆yi)Πi(z,y) = p−bzi − γi ≤ 0 (37)

has to be satisfied in equilibrium. Second consider ∆zi < 0 and ∆yi =
n+1

n
∆zi. By Eq.

(25), ∇(∆zi,∆yi)x
∗
i (z,y) = 0 and ∇(∆zi,∆yi)x

∗
j(z,y) =

1
n

for all j 6= i result, which implies

that

∇(∆zi,∆yi)Πi(z,y) =−
(

p− 1
n
bzi − γi

)

≤ 0 (38)

has to be satisfied. In turn, all (z,y) that satisfy both conditions are extended by the

stage-2 equilibria x∗ to an SPE. Hence, the necessary and sufficient condition for SPE

(conditional on the initial assumption ri = ci for all i∈N) can be expressed as follows.

∀i ∈ N ∃λi ∈
[

1
n
,1
]

: p−λibzi − γi = 0 (39)

Hence, bzi = λ−1
i p−λ−1

i γi for all i, and since p = a−b∑i zi in equilibrium, this im-

plies p =
(

a+∑i λ−1
i γi

)

/
(

1+∑i λ−1
i

)

. Since λibzi = p− γi, see Eq. (39), it follows

that

λibzi =
1

1+∑ j λ−1
j

(

a− γi +∑ j λ−1
j (γ j − γi)

)

(40)

and that zi > 0 are positive for all i ∈ N and all (λi)∈
[

1
n
,1
]N

if the (γi) are sufficiently

similar. Finally, ri = p− b(zi − yi), see Eq. (35), and p = λibzi + γi, see Eq. (39),

imply that the initial condition ri = ci is satisfied if byi = ci − γi +(1−λi)bzi. Since

λi ∈
[

1
n
,1
]

, appropriate yi ≤ zi exist whenever ci is sufficiently close to γi. It is easy to

see that these (yi) do not contradict payoff maximization, since increasing yi implies

ri > ci, decreasing yi is payoff irrelevant, and directional variations of (zi,yi) are not

profitable due to the arguments made above.

Proof of Lemma 4.2 By a standard argument of upper hemicontinuity it follows

that the set of SPEs constructed for the case c ≈ γγγ in Prop. 4.1 remain SPEs when
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c = γγγ. Hence, the set of equilibrium outcomes (prices and profits) in case c = γγγ

contains all equilibrium outcomes that may result if c ≈ γγγ (where c > γγγ). It also

follows that all outcomes that may result in SPEs in case c = γγγ but not in case c ≈ γγγ

necessitate xi > zi for at least one i ∈ N along the path of play. It has to be shown that

the outcomes associated with such equilibria are in the set of equilibrium outcomes

even if c ≈ γγγ. This follows, as it can be shown that all SPEs where xi > zi for at least

one i ∈ N along the path of play induce the Allaz-Vila outcome (price and profits).

The details are skipped.

Proof of Lemma 4.3 We show first that all payoff profiles Eq. (13) associated with

some (λi) ∈ [0,1]N where mini∈N λi <
1
n

are Pareto dominated by some (λ′
i) ∈ [0,1]N

satisfying λ′
i ≥ λi for all i ∈ N and λ′

i > λi for at least one i ∈ N. Using r = 0, the

payoff of i ∈ N at (λi) can be expressed as, using hi(r) = (r+λ−1
i )/λ−1

i ,

Πi(r) =
1

λ
hi(r)
i b

·





a− γi

1+∑ j λ
−h j(r)
j





2

. (41)

The first derivative of Πi(r) with respect to r is proportional to

dΠi(r)

dr
∝ −λi · lnλi +2 ·

∑ j lnλ j

1+∑ j λ−1
j

(42)

and hence negative if λi = 1 (in this case, some j 6= i exists such that λ j < 1/n < 1).

Considering the case λi < 1, the aforementioned derivative of Πi is negative if

λi ·
(

1+∑ j λ−1
j

)

< 2 ·∑
j

logλi
λ j, (43)

which is generally satisfied if mini λi <
1
n
. As a result of dΠi/dr < 0 for all i ∈ N if

mini λi <
1
n
, for any (λi) ∈ [0,1]N where minλi <

1
n

there exists (λ′
i) ∈

[

1
n
,1
]N

such

that the payoff profile associated with (λi) is Pareto dominated by the one associated

with (λ′
i). By Lemma 3.4 it thus follows that all outcomes of Stackelberg games are

either in the set of outcomes compatible with Prop. 4.1 or Pareto dominated by one

of those.
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C Results on T -stage games with homogeneous goods

The proofs in this section use the following extended notation. The set of “states” is

denoted by T ×H with T = {1, . . . ,T} and H = Z×Y. Given any state (t,h), the

accumulated capacity is denoted as zi(h), and following Romano and Yildirim (2005)

we assume prior capacity investments are sunk. The capacity choices are therefore

strategies satisfying

zi : T ×H → Zi s.t. zi(t,h)≥ zi(h) ∀(t,h). (44)

Similarly, the accumulated amount of forward trades is denoted as yi(h) for i ∈ N, and

following Allaz and Vila (1993), forward trades are cumulative, too.

yi : T ×H → Yi s.t. yi(t,h)≥ yi(h) ∀(t,h) (45)

Finally, the quantity choice has to match the forward trades.

xi : H → R s.t. xi(h)≥ yi(h) ∀h (46)

Strategies are tuples (zi,yi,xi) for all i ∈ N.

Proof of Lemma 4.4 Fix T ≥ 1 and any MPE (z,y,x) of Γ(T ). Construct a strategy

profile (z′,y′,x′) of Γ(T +1) as follows. (i) For all states (t,h) associated with some

t ≤ T maintain the strategies from Γ(T ), i.e. z′i(t,h) = zi(t,h) and y′i(t,h) = yi(t,h)

for all t ≤ T and h ∈ H. (ii) In the production period, set xi according to the unique

equilibrium x∗(h), for all h, derived in Lemma 3.1. (iii) For all states (t,h) associ-

ated with t = T + 1, set zi equal to the greater of zi(h) and xi(h), i.e. z′i(T + 1,h) =

max{zi(h),xi(h)}, and set y′i(T + 1,h) such that (for all i and h) p∗(h)− b(xi(h)−

y′i(T +1,h))≤ γi where p∗(h) := a−b∑ j x j(h). Appropriate y′i(T +1,h)≥ yi(h) ex-

ist for all h since, by Lemma 3.1, the xi(h) chosen in any SPE imply p∗(h)−b(xi(h)−

yi(h))≤ ci = γi for all i.

Note that (z′,y′,x′) is outcome equivalent to (z,y,x). It remains to be shown that

it is an MPE of Γ(T + 1). By construction the latter is satisfied for the production

period and also with respect to the y′i chosen in states (t,h) associated with round

t = T + 1 (they are payoff irrelevant). By Lemma 3.1, the fact that (z,y,x) is an
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MPE of Γ(T ) implies p∗− b(xi(h)− yi(h)) ∈ [0,γi] for all i and h, and this in turn

implies that z′i(T + 1,h) = max{zi(h),xi(h)} are mutual best responses in the states

associated with period T +1. Finally, note that the construction of (z′,y′,x′) implies

that for all states (t,h) with t = T and all action profiles viable in this state, the

profiles of continuation payoffs are identical under (z′,y′,x′) and (z,y,x). Hence,

action profiles that constitute mutual best responses in state (T,h) of Γ(T ) must also

be best responses in state (T,h) of Γ(T +1), and by backward induction, this applies

in all states (t,h) with t ≤ T .

Proof of Proposition 4.5 Fix any T ∗ ≤ T . The following derives the conditions

under which a given outcome can result in an MPE of Γ(T ∗) subject to the constraint

that the quantity sold forward is increased in every planning period of Γ(T ∗). By

Lemma 4.4, an outcome equivalent MPE of Γ(T ) exists. Hence, the set of outcomes

that can be sustained in MPEs of Γ(T ) is the union of all outcomes as derived next

over all T ∗ ≤ T . Considering Γ(T ∗), fix any state (t,h) where t = T ∗. Similarly to

the argument leading to Eq. (39), it can be shown that the necessary and sufficient

condition for MPE is (along the equilibrium path, where zi(T
∗,h) > zi(h) can be

assumed w.l.o.g.)

∀i ∈ N ∃λi ∈
[

1
n
,1
]

: p∗(T ∗,h)−λib(zi(T
∗,h)− yi(h))− γi = 0, (47)

where p∗(T ∗,h) denotes the market price resulting along the equilibrium path condi-

tional on state (T ∗,h). Using p = a−b∑i zi it follows that

p∗(T ∗,h) =
1

1+∑i λ−1
i

(

a+∑i λ−1
i γi −b∑i yi(h)

)

(48)

Define βT ∗
:= ∑i λ−1

i . Thus, using γ = γ1 = · · ·= γn and y(h) = ∑i yi(h),

p∗(T ∗,h) =
(

a+βT ∗
γ−by(h)

)

/(1+βT ∗
). (49)

We now turn to states (t,h) in arbitrary rounds t ≤ T ∗. Define yT ∗

i (t,h) as the quantity

that is going to be sold forward, prior to round T ∗ and conditional on the current state

(t,h), along the equilibrium path. The induction assumptions are (i) p∗(t,h) = (a+

βtγ−by(h))/(1+βt), which is satisfied for t = T ∗ using βT ∗
as defined above, and (ii)

yT ∗

i (t,h) = yi(h)+
p∗−γ

b
·αt

i, which is satisfied for t = T ∗ if αT ∗

i = 0 for all i ∈ N. By
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definition, the profit of i in state (t,h) is Πi(t,h) = (z∗i − yi(h))∗ (p− γi)+ p f ∗ yi(h),

for some constant p f and using z∗i as the capacity that is going to be built eventually

conditional on (t,h). Eq. (47) allows us to express z∗i as a function of yT ∗

i (·), and

the latter can be expressed as yT ∗

i (t + 1, ·) = yi(t,h) +
p∗−γ

b
·αt+1

i by the induction

assumption. The following expression of Πi follows, neglecting the constant term

p f ∗ yi(h).

Πi(t,h) =
1

λib
(p∗− γ)2 +

(

yi(t,h)+
p∗− γ

b
·αt+1

i − yi(h)

)

· (p∗− γ) (50)

The first order conditions of maximizing Πi(t,h) over yi(t,h) yield, for all i ∈ N,

yi(t,h) = yi(h)+
p∗− γ

b
·
[

1+βt+1 −2(αt+1
i +λ−1

i )
]

. (51)

Hence, αt
i = αt+1

i +
[

1+βt+1 −2(αt+1
i +λ−1

i )
]

= 1+βt+1 −αt+1
i −2λ−1

i , and

∑
i∈N

yi(t,h) = ∑
i∈N

yi(h)+
p∗− γ

b
·
[

n∗ (1+βt+1)−2∑i(α
t+1
i +λ−1

i )
]

. (52)

Using the induction assumption (i) p∗(t+1,h)= (a+βt+1γ−b∑i yi(t,h))/(1+βt+1),

p∗(t,h) =
a−by(h)+ γ ·

[

n+(n+1)βt+1 −2∑i(α
t+1
i +λ−1

i )
]

(n+1)∗ (1+βt+1)−2∑i(α
t+1
i +λ−1

i )

It follows that βt = n+(n+1)βt+1−2∑i(α
t+1
i +λ−1

i ), and recursively both (αt
i) and

βt are thus well-defined for all t ≤ T ∗. Since yi(h) = 0 for all i ∈ N in t = 1 (no output

is sold forward prior to round 1), Eq. (48) thus yields the equilibrium price, Eq. (47)

yields the equilibrium capacity/quantity for all i ∈ N, and yT ∗

i (1,h) = 0+ p∗−γ
b

·α1
i

for all i ∈ N. The equilibrium profit Eq. (19) follows from Eq. (50), using t = 1 and

y1
i = 0 for all i. To see that βt is increasing in T ∗, resolve the recursive definition of

βt . If T ∗− t is even,

βt = βt+1 +n(βt+1 −2βt+2 +2βt+3 −·· ·+ · · ·−2βT ∗
−1)+2βT ∗

(53)

βt+1 = βt+2 +n(βt+2 −2βt+3 +2βt+4 −·· ·+ · · ·+2βT ∗
+1)−2βT ∗

(54)

and (partially) substituting for βt+1, we obtain βt = βt+1 +(n− 1)(βt+1 −βt+2) and

the expression provided in the proposition. The same applies if T ∗− t is odd. Note

βT ∗−1 − βT ∗
= n+ (n− 2)βT ∗

and βT ∗
= ∑i λ−1

i . Hence βt → ∞ as well as p → γ

when T ∗ → ∞. Resolving the recursive definition of αt
i yields, for all i ∈ N, αt

i =

∑T ∗

τ=t+1(1+βτ −2λ−1
i )∗ (−1)T ∗−τ+1.
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D Proof of Proposition 5.1

Lemma D.1. Assume |N| = 2 and pi = a− b1zi − b2z j for all i ∈ N. If pi − (zi −

yi)/µi − γi = 0 for all i ∈ N, then

pi =
(1+b1µ j)Ai −b2µ jA j

(1+b1µi)(1+b1µ j)−b2
2µiµ j

(55)

for all i ∈ N, using Ai := a−b1

[

yi −µiγi

]

−b2

[

y j −µ jγ j

]

for all i.

Proof. Using zi = yi +µi(pi − γi) and pi = a−b1zi −b2z j, we obtain

pi = a−b1

[

yi +µi(pi − γi)
]

−b2

[

y j +µ j(p j − γ j)
]

(56)

(1+b1µi)pi +b2µ j p j = a−b1

[

yi −µiγi

]

−b2

[

y j −µ jγ j

]

=: Ai, (57)

i.e. an equation system implying

(

1+b1µi

b2µ j
−

b2µi

1+b1µ j

)

pi =
1

b2µ j
Ai −

1

1+b1µ j
A j (58)

which yields the result.

Lemma D.2. If pi − (zT
i − yt+1

i )/µi − γi = 0 for all i ∈ N, then pi − (zT
i − yt

i)/(−µi −

1/ri)− γi = 0 for all i ∈ N, using ri := d pT
i /dyt+1

i .

Proof. The expected profit in round t is

Πi(t,h) =
(

zT
i − yt

i

)

∗ (pi − γi)+ p
f
i ∗ yt

i (59)

using pi − (zT
i − yt+1

i )/µi − γi = 0 and dropping the constant term p
f
i ∗ yt

i yields

Πnet
i (t,h) = µi ∗ (pi − γi)

2 +(yt+1
i − yt

i)∗ (pi − γi) (60)

Now, using ri := d pT
i /dyt+1

i , the first order conditions dΠnet
i /dyt+1

i = 0 for both i

become

µi ∗2ri(pi − γi)+(pi − γi)+ ri(y
t+1
i − yt

i) = 0 (61)

and thus

yt+1
i = yt

i − (pi − γi)∗ (2µi +1/ri) (62)
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Substituting this for yt+1
i in the initially assumed equilibrium condition pi − (zT

i −

yT
i )/µi − γi = 0, we obtain

pi −
[

zT
i − yt

i +(pi − γi)∗ (2µi +1/ri)
]

/µi − γi = 0 (63)

and the result follows.

Lemma D.3. The limit of (µt
i) as t →−∞ is µ = (b2

1 −b2
2)

−1/2.

Proof. Using the definition of (µt
i,µ

t
j),

µt
i =

(1+b1µt+1
i )(1+b1µt+1

j )−b2
2µt+1

i µt+1
j

b1(1+b1µt+1
j )−b2

2µt+1
j

−µt+1
i (64)

its fixed points µt = µt+1 satisfy

µi =
(1+b1µi)(1+b1µ j)−b2

2µiµ j

b1(1+b1µ j)−b2
2µ j

−µi (65)

which yields (b2
1 −b2

2)µiµ j +b1(µi −µ j) = 1. Since this is true for all i 6= j, it implies

µi = µ j in the limit, i.e. (b2
1 −b2

2)µ
2 = 1 as claimed. Since this fixed point is unique,

it must also be the limit of the sequence as t →−∞.

Lemma D.4. Assume |N| = 2 and pi = a− b1zi − b2z j for all i ∈ N. The Bertrand

profits are characterized as

pi − zi/
(

b1

b2
1−b2

2

)

− γi = 0 ∀i ∈ N. (66)

Proof. The demand functions are

zi =
b1(a− pi)−b2(a− p j)

b2
1 −b2

2

(67)

for all i ∈ N, and hence, profit and first order conditions are

Πi = (pi − γi)∗
b1(a− pi)−b2(a− p j)

b2
1 −b2

2

(68)

Π′
i =

b1(a− pi)−b2(a− p j)

b2
1 −b2

2

+(pi − γi)∗
−b1

b2
1 −b2

2

= 0 (69)

⇒ pi − zi/
(

b1

b2
1−b2

2

)

− γi = 0. (70)
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Lemma D.5. Fix λ1 = λ2. The equilibrium price (Prop. 5.1) is decreasing in T ∗.

Proof. By definition, λ1 = λ2 implies µt
1 = µt

2 =: µt for all t and µ1 is increasing in

T ∗. By Eq. (72), the equilibrium price satisfies pi− zT
i /µ1

i −γi = 0 for all i ∈ N. First,

consider the case b2 > 0 and assume (for contradiction) that the price is not decreasing

in µ. Thus, there exist µ′ > µ′′ and p′i > p′′i , p′j R p′′j such that p′i − zT
i /µ′− γi = 0 and

p′′i − zT
i /µ′′− γi = 0.

pi =
(1+b1µ)(a+b1µγi +b2µγ j)−b2µ(a+b1µγ j +b2µγi)

(1+b1µ)2 −b2
2µ2

(71)

and its derivative with respect to µ is negative if

[

(1+b1µ)(b1γi +b2γ j)−b2µ(b1γ j +b2γi)
]

∗
[

(1+b1µ)2 −b2
2µ2
]

<
[

(1+b1µ)(a+b1µγi +b2µγ j)−b2µ(a+b1µγ j +b2µγi)
]

∗
[

b1(1+b1µ)−b2
2µ
]

Case 1: b2 > 0. The negativity condition is equivalent to

(b1γi +b2γ j)−b2(b1µγ j +b2µγi)

< b1(1+b1µ)2a−b2µb1(1+b1µ)a−b2
2µ(1+b1µ)a+b3

2µ2a

and in case 0 < b2 < b1, this is satisfied, since (using µ > 1/b1)

b1γi(1−b1µ)+b2γ j(1−b1µ)< b1a+b2
1µ(a−a)

Case 2: b2 < 0. The negativity condition is equivalent to

b1(γi −b1µa)+b2γ j +b2b1µ(a− γ j)−b2
2µγi

< ab1 +µa(b2
1 −b2

2)+b1µ2a(b2
1 −b2

2)−b2µ2a(b2
1 −b2

2)

and since a > γi, a > γ j, µ > 1/b1, and |b1|> |b2|, this is generally true if b2 < 0.

Proof of Proposition 5.1 Similar to above, we can show that a necessary and suf-

ficient condition for equilibrium in round T is pi − (zT
i − yT

i )/λ−1
i b−1

1 − γi = 0 for all

i ∈ N. Using µT
i = λ−1

i b−1
1 and t = T , this condition can be expressed as follows.

pi − (zT
i − yt

i)/µt
i − γi = 0 ∀i ∈ N. (72)
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By Lemma D.1, this implies

rt
i := d pt

i/dyt
i =

−b1(1+b1µt
j)+b2

2µt
j

(1+b1µt
i)(1+b1µt

j)−b2
2µt

iµ
t
j

(73)

for all t. In addition, by Lemma D.2, for all t < T ,

µt
i =−µt+1

i −1/rt+1
i . (74)

The equilibrium price follows from Lemma D.1 for t = 1 and y1
i = 0 for all i ∈ N.

The convergence of µ is established in Lemma D.3 and the µB characterizing price

competition follows from Lemma D.4. By Eq. (62), the amount sold forward in round

t is

yt+1
i − yt

i =−(pi − γi)∗ (2µt+1
i +1/r+1

i )≡ (pi − γi)∗ (µ
t
i −µt+1

i ), (75)

where µt
i > µt+1

i follows from its definition. Finally, the fact that pi is decreasing in

T ∗ follows from Lemma D.5.

36


