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Abstract

This paper presents the concept of Model Validation applied to a Dynamic Stochastic General

equilibrium Model (DSGE). The main problem discussed is the approximation of the statistical

representation for a DSGE model when not all endogenous variables are observable. MonteCarlo

experiments in arti�cial world are implemented to assess this problem by using the DSGE-VAR.

Two Data Generating Processes are compared: a forward-looking and a backward-looking model.

These experiments are followed by an empirical analysis with real world data for the US economy.

JEL CODES: C11, C15, C32

KEYWORDS: Bayesian Analysis, DSGE Models, Vector Autoregressions, MonteCarlo experi-
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1 Introduction

Over the last few years, there has been a growing interest in Academia and in Central Banks in using

Dynamic Stochastic General Equilibrium Models (DSGE) to explain macroeconomic �uctuations

and conduct quantitative policy analysis.

Under an econometric point of view, the performance of a DSGE model is often tested against

estimated a Vector Autoregressive model (VAR). This procedure requires that the Data Generating

Process (DGP) consistent with the theoretical economic model has a �nite-order VAR represen-

tation. However, the statistical representation of a DSGE model can be an exact VAR when all

the endogenous variables are observable; otherwise a more complex Vector Autoregressive Moving

Average (VARMA) is needed. As far as the VARMA representation is concerned, several papers

(see Cooley and Dwyer (1998), Chari, Kehoe and McGrattan (2005), Christiano, Eichenbaum and

Vigfusson (2006), Ravenna (2007) and Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson

(2007)) have discussed in general terms the conditions to �nd an in�nite-order VAR representation

and a �nite-order VAR truncation for a VARMA model.

Two main questions are raised in this paper: can we apply the concept of model validation

to DSGE models? What happens to model validation when the DSGE model is represented by a

VARMA format?

To answer the �rst question, we introduce the DSGE-VAR (Del Negro and Schorfheide, 2004

and Del Negro, Schorfheide, Smets and Wouters, 2007a) as a new macroeconometric tool for model

validation. This mixture model is a hybrid form obtained combining an Unrestricted VAR (UVAR)

for actual data and a Bayesian VAR (BVAR) model with dummy observation priors obtained from

the statistical representation of the DSGE model. As far as the model validation1 is concerned, it

consists in �rst giving a statistical representation of the macroeconomic model, then in using this

representation to explain the actual data.

The main contribution of this article is the answer to the second question. Two MonteCarlo

experiments on arti�cial data have been designed and performed to check if the DSGE-VAR can

be used as a valid instrument for model validation. The �rst experiment has as DGP the forward-

looking model candidate to explain the data in the mixture DSGE-VAR. This model is the same

used to generate the restrictions in the BVAR for the theoretical model. The aim of this exercise

is to check if the approximation of a VARMA representation can a¤ect the DSGE-VAR use. In

the proposed example, the forward-looking model is represented by a VARMA(3,3) which can be

restricted by a VAR(2) (see Appendix 2 and Ravenna (2007)). In the second experiment, the

DGP is a backward-looking model (Rudebusch and Svensson (1998), Lindé (2001)) with an exact

statistical format given by a VAR(3). The aim of this exercise is to check if the hybrid model can

recognize the misspeci�cation of the DGP.

1See Consolo, Favero and Paccagnini (2009), Canova and Sala (2009), Komunjer and Ng (2009a, 2009b) and
Iskrev (2010) for more details about the issue of the statistical identi�cation of DSGE models.
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The DSGE-VAR model validation procedure is then carried out in the two cases: the expected

results are that the null hypothesis of the correct DGP to explain data is not rejected in the �rst

MonteCarlo experiment, while it is rejected in the second.

To complicate matters, the DSGE-VAR was estimated with VAR lag-lengths from 1 to 8, to

allow for misspeci�cation also in the number of lags over the DGP.

The quantitative analysis generates the following �ndings. First, if the DGP is a forward-looking

model, the DSGE-VAR recognizes the DGP, not rejecting the null hypothesis as expected. Second,

if the DGP is a backward-looking model, the DSGE-VAR does not recognize the DGP when more

lags are added. The null hypothesis is not rejected. Consequently, a DSGE-VAR(1) tends to

be the DSGE model and the data are explain very well, even if there are misspeci�cations in the

DGP. The most important message from these �ndings is to be careful to approximate a VARMA

representation using a �nite-order VAR. The experiments are followed by an empirical analysis

with the US economy real data. These exercises compare a DSGE-VAR(1) (the most parsimonious

representation as suggested by classical Information Criteria) with a DSGE-VAR(4). More lags in

the VAR component allow the DSGE-VAR to explain the data better.

The remainder of the paper is organized as follows. In Section 2, the concept of Model Validation

applied to DSGE model is introduced. Section 3, the DSGE-VAR approach proposed by Del Negro

and Schorfheide (2004) is discussed as a general assessment and a simple example is presented.

In Section 4, results from MonteCarlo experiments in the arti�cial world are discussed. Section 5

shows the empirical analysis in the real world. Concluding remarks are in Section 6.

2 Model Validation and DSGE

Over the past decade DSGE models have become increasingly popular for their behavioral structure

and microfoundations. The DSGE-VAR introduced by Del Negro and Schorfheide (2004) and

Del Negro, Schorfheide, Smets and Wouters (2007a) is the main instrument to implement model

validation applied to DSGE models. In this mixture model, the DSGE model is treated as a

mechanism for generating prior distributions of the parameters. This approach is the �nal result of

a long tradition in macroeconometrics research to estimate and evaluate the economic models.

In the classical macroeconometrics literature (Canova, 1994), two main approaches have been

proposed to compare general equilibrium rational expectations models with real data. The �rst is

the estimation approach which is the descendant of the econometric methodology introduced by

Haavelmo (1944). The second is the calibration approach introduced by Frisch (1933) and became

famous in the macroeconomic literature by Kydland and Prescott (1982).

The two methodologies have several common features (the same strategy in terms of the model

speci�cation and solution), but also several di¤erences.

On one side, the estimation attempts to �nd the parameters of the decision rule that best �t
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the data either by the marginal likelihood (ML) or Generalized Method of Moments (GMM). The

validity of the speci�cation is implemented by testing restrictions by general goodness of �t tests or

by comparing the �t of the two nested models. Besides these two estimation methods, the Vector

Autoregression model (VAR) becomes very popular to estimate DSGE models. This technique

consists of representing the theoretical model by a pure statistical representation. An example has

been introduced by Sims (1980) and is the Unrestricted VAR model, in which a reduced form for

the data is used to perform statistical hypothesis. VAR can be taken directly to the data, they are

easy to estimate and to generate out-of-sample forecasts.

On the other side, the calibration sets parameters using alternative rules which includes matching

long-run averages, using previous microevidence or a priori selection. The most important exercise

in the calibrated models is the evaluation of the �t of these models. The concept of model evaluation

concerns in selecting a loss function which measures the distance between the set of economic

statistics and the set of statistics obtained from the simulated data. Canova (2005) explains that

there are essentially four groups of approaches to evaluate DSGE models.

1. Approaches based on R2-type measure. In Watson (1993), the economic model is viewed as

an approximation to the stochastic process which is the data generating process, considering

that in the statistical sense the model is not true. The Goodness-of-�t (R2-type) measure is

introduced to provide an assessment evaluation of the approximation. The key ingredient of

the measure is the amount of the error needed to be added to the data generated by the model

so that the autocovariance implied by the model plus the error match the autocovariance of

the observed data.

2. Approaches which measure distance by using the sampling variability of the actual data. For

example, the GMM based approach of Christiano and Eichenbaum (1992) or Fève and Langot

(1994), the indirect approach of Cecchetti et al. (1993) and the frequency domain approach

of Diebold, Ohanian and Berkowitz (1998). This last paper can be considered as an extension

of Watson (1993), using a spectral analysis framework.

3. Approaches which measure distance by using the sampling variability of the simulated data,

such as the calibration as testing which provides a simple way to judge the distance between

population moments or statistics of a simulated macroeconomic model, as in Gregory and

Smith (1991). This method has been used by Soderlind (1994) and Cogley and Nason (1994)

to evaluate their DSGE models. All these examples take the driving forces as stochastic

and the parameters are given. Canova (1994, 1995) and Ma¤ezzoli (2000) allow parameter

uncertainty.

4. Approaches which measure distance by using the sampling variability of both actual and

simulated data. It is possible to distinguish approaches which allow for variability in the
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parameters but not in the exogenous processes, such as DeJong et al. (1996, 2000), Geweke

(1999) and Schorfheide (2000), or allow both to vary.

Canova (1994) explains that the main di¤erence between the estimation and the calibration is

given by the questions the two methodologies ask.

The estimation approach tries to reply to the question: "Given that the model is true, how false

is it?", instead the calibration tries to reply to the question: "Given that the model is false, how

true is it? ". In the testing model process, an econometrician takes the model seriously as a DGP

and analyzes if and what features of the speci�cation are at variance with the data. A calibrationist

takes the opposite view: the model, as a DGP for the data, is false. As the sample size grows, the

data are generated by the model will have more variance with the observed data. The statistical

models rely on the economy theory so loosely, for example, VAR can fail to uncover parameters

that are truly structural. This disadvantage may be crucial in policy evaluation exercises, since

VAR can exhibit instability across periods when monetary and �scal policies change. Despite of

the popularity in their use, VAR models are subject to multicollinearity problems and can fail to

take into account non-linearities in the economy.

The calibrated DSGE models are typically too stylized to be taken directly to the data and

often yield fragile results, using traditional econometric methods for estimation (hypothesis testing,

forecasting evaluation) (Smets and Wouters, 2003 and Ireland, 2004).

However, these two approaches have several critical points, a third method becomes very popular

in the recent literature: the hybrid model. This methodology tries to discipline the concept of model

validation applied to DSGE, combining the statistical properties (of the econometrics approach)

with information from the economic model (such as the calibration).

The �rst attempt to combine these two approaches has been introduced by Sargent (1989) and

Altug (1989). In these two papers, they propose augmenting a DSGE model with measurement

error terms following a �rst autoregressive process. Ireland (2004) proposed a method similar to

Sargent (1989) and Altug (1989), the di¤erences are in imposing no restriction in the measurement

errors and the assumption of �rst-order vector autoregressive for the residuals. Del Negro and

Schorfheide (2004) followed this idea of hybrid model proposed by Ireland (2004) presenting the

DSGE-VAR. However, the use of a theoretical model to generate a prior for VAR parameters is

not new. Theil and Goldberg (1961) introduced the use of dummy observation priors which have

been applied to macroeconomics by Litterman (1981), Doan, Litterman and Sims (1984), Ingram

and Whiteman (1994), DeJong, Ingram and Whiteman (1996 and 2000), Sims (1996). In these

papers, the Bayesian estimation (for VAR or in general for classical regressions) is interpreted as an

estimation based on a sample in which the actual data are augmented by an hypothetical sample

in which observations are generated by the DSGE model, the so-called dummy observation priors.

The basic idea of the use of the dummy observation priors is to express prior beliefs about the

parameters. The parameter space can be shrunk by imposing a set of restrictions, which could be
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for instance obtained from a theoretical structural model, directly on the parameters. Litterman

(1981) and Doan, Litterman and Sims (1984) introduced the so-called Minnesota Prior, where all

equations are centered around a random walk with drift. Ingram and Whiteman (1994) was the

�rst contribution which shows that shrinking the VAR estimates towards the restrictions implied

by a theoretical model (in this case, a neoclassical Real Business Cycle (RBC) model, see King,

Plosser and Rebelo (1988)) produced better forecasting performance than one produced using a

Minnesota prior (see Doan, Litterman and Sims (1984)).

In the DSGE-VAR, the theoretical model is used to generate a prior distribution (as theoretical

second-order moments) for a structural time-series model that relates the theoretical restrictions

of the DSGE. Sims (2007) evidences that one of main advantages of the DSGE-VAR is to de�ne a

continuum of models from the theoretical DSGE model to the VAR rather than comparing models

at two extremes: the pure statistical VAR and the theoretical DSGE.

In this paper the concept of model validation is applied using the DSGE-VAR, considering

its properties to represent an economic model with a statistical representation, taking into account

features of the economic model. For its properties, the DSGE-VAR can be used as a valid instrument

to implement the model validation concept in the DSGE literature. In the remain Sections, I will

illustrate the DSGE-VAR using a simple example in which not all the endogenous variables are

observed and I try to understand if the DSGE-VAR can be used as a valid instrument for model

validation in this speci�c case.

3 DSGE-VAR

In Section 3, the DSGE-VAR approach is discussed in a general assessment and by a macroeconomic

example.

3.1 DSGE-VAR: A General Assessment

3.1.1 The Likelihood function

The real data are described by the statistical benchmark (proposed by Del Negro and Schorfheide

(2004)), an Unrestricted Vector Autoregressive Model (UVAR) of order p:

Yt = �0 +�1Yt�1 + :::+�pYt�p + ut (1)

In compact format:

Y = X�+ U (2)
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Y is (T � n) matrix with rows Y 0t ; X is a (T � k) matrix (k = 1 + np; p =number of lags) with

rows X 0
t = [1; Y

0
t�1; :::; Y

0
t�p], U is a (T �n) matrix with rows u

0
t and � is a (k � n) = [�0;�1;:::;�p]

0:

The one step ahead forecast errors ut have a multivariate normal distribution N(0;�u) condi-

tional on past observations of Y:

The log-likelihood function of the data is function of � and �u:

L(Y j�;�u) / j�uj
�T

2 x exp

�
�
1

2
tr
�
��1u (Y 0Y � �0X 0Y � Y 0X�+ �0X 0X�)

��
(3)

3.1.2 Priors from the Model

The theoretical model, for example a DSGE model, can be represented by using the state-space

form solution. Adopting the notation in Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson

(2007):

xt+1 = A(�)xt +B(�)"t+1 (4)

yt+1 = C(�)xt +D(�)"t+1

where "t is an k�1 vector of structural shocks satisfying E ["t] = 0; E ["t"
0
t] = I and E ["t"t�j ] =

0 for j 6= 0, xt is an n�1 vector of state variables and yt is a k�1 vector of variables observed by the

econometrician. The matrices A;B;C and D are non-linear functions of the structural parameters

in the DSGE model as represented by the vector �: Estimation and identi�cation can be complicated

by the fact that there are more variables than shocks in the system. For simplicity, it is possible

to overcome this problem of stochastic singularity, taking the matrix D as a square and invertible

matrix, i.e. the number of shocks is equal to the number of observable variables. Komunjer and

Ng (2009a , 2009b) provide an identi�cation analysis, generalizing the results shown by Ravenna

(2007) to allow the number of shocks to be di¤erent from the number of endogenous variables in

the model.

In the DSGE-VAR, one of the most important aspects is the �nite-order VAR approximation to

the DSGE model. Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson (2007) evidence the

necessity to have the eigenvalues of A�BD�1C to be strictly less than one in modulus in order to

have yt with a in�nite-order VAR representation given by:

yt =
1X

j=1

C
�
A�BD�1C

�j�1
BD�1yt�j +D"t (5)

However, as argued in Ravenna (2007), the �nite order representation will only be exact if all

the endogenous state variables are observable and included in the VAR. If the largest eigenvalue is
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close to the unity, a VAR with few lags is a poor approximation to the in�nite-order VAR implied

by the DSGE model.

The �nite approximate VAR representation of the solved DSGE model is written as the following

VAR in which the number of shocks is equal to the number of the observable variables Yt:

Yt = �
�
0 (�) +�

�
1 (�)Yt�1 + :::+�

�
p (�)Yt�p + u

�
t (6)

u
�
t � N (0;��u (�))

Y = X�
� (�) + u�

u
�

Txn
=

�
u
�
1

Tx1

::: u
�
n

Tx1

�
(7)

Y
Txn

=
h
Y1
Tx1

::: Yn
Tx1

i
(8)

X
Tx(np+1)

=

2
64
X
0
1

:::

X
0
T

3
75 ;

X
0
t

1x(np+1)

=

"
1;Y0

t�1
1xn

:::Y0
t�p
1xn

#
(9)

�
� (�)

(np+1)xn

=

"
�
�
0 (�)
nx1

;��1 (�)
nxn

; :::;��p (�)
nxn

#0
;

where all coe¢cients are convolutions of the structural parameters in the model included in

the vector �: Of course the theoretical model imposes some restrictions on the VAR, that can

be tested by evaluating them against the unrestricted VAR. In a series of papers Del Negro and

Schorfheide (2004 and 2006) and Del Negro, Schorfheide, Smets and Wouters (2007a) propose a

Bayesian framework for model evaluation. This method tilts coe¢cient estimates of an unrestricted

VAR toward the restriction implied by a DSGE model. The weight placed on the DSGE model is

controlled by an hyperparameter called �. This parameter takes values ranging from 0 (no-weight on

the DSGE model) to 1 (no weight on the unrestricted VAR). Therefore, the posterior distribution

of � provides an overall assessment of the validity of the DSGE model restrictions.

The DSGE restrictions are imposed on the VAR by de�ning:

��xx (�) = ED� [XtX
0
t]

��xy (�) = ED� [XtY
0
t]

where ED� de�nes the expectation with respect to the distribution generated by the DSGE
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model, that of course have to be well de�ned.

Let ��xx; �
�
yy; �

�
xy and �

�
yx be the theoretical second-order moments of the variables in Y and X

implied by the DSGE model, where:

�� (�) = ���1xx (�) ��xy (�) (10)

�� (�) = ��yy (�)� �
�
yx (�) �

��1
xx (�) ��xy (�)

The moments are the dummy observation priors used in the mixture model. These vectors

can be interpreted as the probability limits of the coe¢cients in a VAR estimated on the arti�cial

observations generated by the DSGE model.

Conditional on the vector of structural parameters in the DSGE model �, the prior distribution

for the VAR parameters p(�;�uj�); is of the Inverted-Wishart (IW) and Normal form:

�u j� � IW (�T��u (�) ; �T � k; n) (11)

� j�u; � � N

�
�
� (�) ;

1

�T

�
��1u 
 �XX (�)

��1
�

where the parameter � controls the degree of model misspeci�cation with respect to the VAR:

for small values of � the discrepancy between the VAR and the DSGE-VAR is large and a sizeable

distance is generated between unrestricted VAR and DSGE estimators, large values of � correspond

to small model misspeci�cation and for � = 1 beliefs about DSGE mis-speci�cation degenerate

to a point mass at zero. Bayesian estimation could be interpreted as estimation based a sample

in which data are augmented by an hypothetical sample in which observations are generated by

the DSGE model, the so-called dummy prior observations, within this framework � determines the

length of the hypothetical sample.

3.1.3 Posterior Distribution and Marginal Likelihood Function

The posterior distribution of the VAR parameters is also of the Inverted-Wishart and Normal form.

Given the prior distribution, posterior are derived by the Bayes theorem:
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�u j�; Y � IW

�
(�+ 1)T

^

�u;b (�) ; (�+ 1)T � k; n

�
(12)

� j�u; �; Y � N

�
^

�b (�) ;�u 
 [�T�XX (�) +X
0
X]

�1
�

(13)

^

�b (�) = (�T�XX (�) +X
0
X)

�1
(�T�XY (�) +X

0
Y)

^

�u;b (�) =
1

(�+ 1)T

�
(�T�Y Y (�) +Y

0
Y)� (�T�XY (�) +X

0
Y)

^

�b (�)

�

where the matrices
^

�b (�) and
^

�u;b (�) have the interpretation of maximum likelihood estimates of

the VAR parameters based on the combined sample of actual observations and arti�cial observations

generated by the DSGE. The equations (12) and (13) show that the smaller �; the closer the

estimates are to the OLS estimates of an unrestricted VAR. Instead, the higher � the closer the

VAR estimates will be tilted towards the parameters in the VAR approximation of the DSGE model

(
^

�b (�) and
^

�u;b (�))

In order to have proper prior distribution (11), � has to be greater than �min:

�MIN �
n+ k

T
; k = 1 + p� n

p = lags

n = endogenous variables

This lambda is considered the minimum lambda. The optimal lambda must be greater or equal

than the minimum lambda
�
b� � �MIN

�
to get a non-degenerate prior density, which is a necessary

condition for computing meaningful marginal likelihoods.

Adolfson, Laséen, Lindé and Villani (2008) show that �MIN depends on the model and sample

size, hence the marginal likelihood must be reported as a function of the ratio of the number of

post-training arti�cial observations to the number of actual observations, b�� �MIN :

In this paper, the ratio
b���MIN

�MIN
can be considered as a measure to understand if the DSGE-

VAR tends to be well approximated by the DSGE model. If the ratio is high, the distance between

the b� and �MIN is high, it means the DSGE model can explain the data well. Consequently, this

ratio can be conceived as how much the DSGE model explains the actual data over the statistical

representation (the VAR) in the hybrid DSGE-VAR.

The posterior simulator used by Del Negro and Schorfheide (2004) is Markov Chain MonteCarlo

Method and the used algorithm is the Metropolis-Hastings acceptance method. This procedure

generates a Markov Chain from the posterior distribution of �;Monte Carlo experiments are realized.
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See Appendix 1 and Del Negro and Schorfheide (2004) for more details.

The optimal � is given by maximizing the marginal data density:

b� = argmax
�>0

L(Y; �)

To the optimal b�, a corresponding optimal mixture model is chosen. This hybrid model is called
DSGE-VAR

�
b�
�
and b� is the weight of the priors and it can be also interpreted as the restriction

of the theoretical model on actual data.

3.2 DSGE-VAR: An Example

A simple economic model, a DSGE model with forward-looking features, is chosen as candidate

model to explain actual data. This small-scale New- Keynesian represents the actual U.S. time

series for real GDP, CPI and Federal Funds Rate over the period 1981:1-2001:42 . This forward-

looking model is used in one of MonteCarlo experiments in the arti�cial world.

After the trivariate VAR representation for the real data, the �rst step consists of de�ning the

likelihood function given by:

L(Y j�;�u) (14)

In the next step, dummy observation priors are generated from the theoretical model.

This economy is made of a representative household with habit persistence. This household

maximizes an utility function additive separable in consumption, real money balances and hours

worked over in�nite lifetime. The household gains utility from consumption relative to the level of

technology, real balances of money and disutility from hours worked. The household earns interest

from holding government bonds and real pro�ts from the �rms. Moreover, the representative

household pays lump-sum taxes to the government.

In this economy, a perfectly competitive, representative �nal goods producer is supposed to

use a continuum of intermediate goods as inputs and the prices for these inputs are given. The

intermediate good producers are monopolistic �rms which uses labour as the only input. The

production technology is the same for all the monopolistic �rms and �uctuates around the steady-

state growth rate. Nominal rigidities are introduced in terms of price adjustment costs for the

2Del Negro and Schorfheide (2004) consider U.S. quarterly data from 1955:III to 2001:III (1981-2001 is the chosen
sample for the estimation).
The data for real output growth come from the Bureau of Economic Analysis (Gross Domestic Product-SAAR,

Billions Chained 1996$). The data for in�ation come from the Bureau of Labor Statistics (CPI-U: All Items,
seasonally adjusted, 1982-1984=100).
GDP and CPI are taken in �rst di¤erence of logarithmic transformation.
The interest rate series are constructed as in Clarida, Galì and Gertler (2000), for each quarter the interest rate is

computed as the average federal funds rate (source: Haver Analytics) during the �rst month of the quarter, including
business days only.
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monopolistic �rms. Each �rm maximizes the pro�ts over in�nite lifetime by choosing labour input

and its price.

The third component in this economy is the government which spends each period a fraction of

the total output which �uctuates exogenously. The government issues bonds and levies lump-sum

taxes which are the main part in the government�s budget constraint.

The last component is the monetary authority which follows the standard Taylor-rule with the

in�ation target and the output gap.

There are three exogenous economic shocks: the monetary policy shock (in the monetary policy

rule), two autoregressive processes, AR(1) which are the government spending and the technology

shocks. To solve the model, optimality conditions are derived for the maximization problems.

After linearization around the steady-state, the economy is described by the following system

of equations:

ext = Et[gxt+1]�
1

�
(fRt � Et[g�t+1]) + (1� �g)egt + �Z

1

�
ezt (15)

e�t = �Et[g�t+1] + �[ ext � egt] (16)

fRt = �R]Rt�1 + (1� �R)( 1 e�t +  2 ext) + �R;t (17)

egt = �gggt�1 + �g;t (18)

ezt = �zgzt�1 + �z;t (19)

where x is the detrended output (divided by the non-stationary technology process), � is the

gross in�ation rate, and R is the gross nominal interest rate. The tilde denotes percentage deviations

from a steady state or, in the case of output, from a trend path. See details in King (2000) and

Woodford (2003).

The rational expectations solution of the linearized model is then computed using the algorithm

implemented by Sims (2002) (see Appendix 2, for more details).

The solution of this linearized model is the following policy function that represents the transition

equation:

s

Zt = T (�)
s

Zt�1 +R (�) "t (20)

� = [�; � ;  1;  2; �R; �g; �z; �R; �g; �Z ]
0 (21)

A numerical solution is computed by using the priors reported in Table A1 (see Appendix 2).
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T (�) =

2
666666666666664

0 0 �3:293 0 0:7251 0:0476 0 0

0 0 �0:1551 0 �0:0932 0:0169 0 0

0 0 0:3631 0 �0:0246 0:0157 0 0

0 0 �0:2738 0 �0:0492 0:0313 0 0

0 0 0 0 0:8000 0 0 0

0 0 0 0 0 0:3000 0 0

0 0 �0:1196 0 0:5882 0:0091 0 0

0 0 �0:0563 0 �0:0708 0:0026 0 0

3
777777777777775

R (�) =

2
666666666666664

�0:6585 0:9064 0:1587

�0:3102 �0:1166 0:0564

0:7262 �0:0308 0:0522

�0:5476 �0:0615 0:1045

0 0:63 0

0 0 0:8750

�0:2391 0:7352 0:0304

�0:1126 �0:0885 0:0088

3
777777777777775

Taking into account the system (4), the matrix A � BD�1C is stable since its eigenvalues are

strictly less than one in modulus (the largest is 0.9742). See Appendix 2 for more details.

In this example, not all the endogenous variables are observable and the statistical representation

of the DSGE model is a VARMA. In Appendix 2, there is an explanation why the statistical

representation is a VARMA(3,3). This representation can be restricted using a �nite-order VAR:

Y � = X�� (�) + U�

where Y �; X� and U� derive from the VAR representation for the theoretical model and coef-

�cients matrix �(�) is a function of the parameters used in the model. From this representation,

dummy observation priors are computed and added to the sample data. Taking into account Bayes

Theorem, the posterior is derived, given the prior distribution. After, we maximize the posterior

by numerical methods (as described in the general assessment).

To the optimal b�, a corresponding optimal mixture model is chosen. For example, in Del Negro
and Schorfheide (2004), they use the above discussed simple DSGE model as candidate model to

explain the real data. US economy time-series for real GDP, CPI and Federal Funds Rate are

considered as actual data for 80 observations (from 1981 to 2001). In Del Negro and Schorfheide

(2004), the VARMA representation of the DSGE model is reduced by a VAR(4). The found optimal

lambda, b�, is 0:6:
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4 MonteCarlo Experiments

The issue concerns the approximation of a VARMA statistical representation by a �nite-order

VAR is discussed using MonteCarlo experiments. These exercises are implemented in the arti�-

cial world, with two di¤erent data-generating processes. In the �rst experiment, the DGP is the

forward-looking model used to generate the dummy observation priors, hence the candidate model

to explain the data. Since the forward-looking model has not all the endogenous variables observed,

the statistical representation is a VARMA. In the second experiment, the DGP is a di¤erent macro-

economic model, a backward-looking model (Rudebusch and Svensson (1998), Lindé (2001)) which

has an exact VAR(3) as statistical representation.

The DSGE-VAR model is implemented in each MonteCarlo exercise to validate the DSGE

model.

The MonteCarlo experiments are carried out under the null and alternative hypothesis. Under

the null hypothesis, the DGP is the forward-looking model used in the DSGE-VAR to generate

priors. Instead, under alternative hypothesis, the DGP is a di¤erent model, not the forward-looking

model. In the �rst experiment, we expect not to reject the null hypothesis, since the forward-looking

model candidate to generate priors and to explain the data. While, in the second experiment, we

expect to reject the null hypothesis since the DGP is a backward-looking model.

How is the DSGE-VAR used to asses these MonteCarlo experiments?

We focus attention on the b� and the �min: If the b� is greater than the �min with an high
percentage, the forward-looking model explains the data well. The null hypothesis is not rejected.

Otherwise, if the b� is equal to �min, the forward-looking model is weak to explain the data, the null
hypothesis is rejected. The main �nding from the arti�cial world is to be careful to approximate

the VARMA representation of the DSGE model, mispecifying the lag-order in the VAR component

of the DSGE-VAR. Otherwise, the DSGE can be considered the best representation for the data,

even if the DGP is a di¤erent model.

4.1 Forward-Looking Data Generating Process

In the �rst MonteCarlo experiment, the DGP is the forward-looking model explained in Section 3.

Since not all the endogenous variables are observable, the statistical representation of the forward-

looking model is a VARMA(3,3). Three arti�cial series3 are generated and correspond to the three

series for Real GDP, CPI and Federal Funds Rate. For each series, 80 observations are generated

representing the sample from 1981 to 2001 (the same used in Del Negro and Schorfheide (2004)).

The MonteCarlo experiment is carried out and DSGE-VAR approach to compute the optimal �

3The arti�cial data are generated by taking into consideration mean priors for the parameters and for the standard
deviations of the shocks reported in Table A1.
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is applied. The hybrid model is implemented with a lag-length from 1 to 8. The lambda grid4

includes the minimum lambda5 for each VAR representation in the DSGE-VAR. Arti�cial data are

generated by a MonteCarlo experiment with 100 replications6 . Table 1 summarizes the frequency

of the optimal � for each DSGE-VAR representation (between the brackets (DSGE-VAR()) the

number of lags is indicated):

TABLE 1. MonteCarlo experiment with forward-looking data

DSGE-VAR(1) DSGE-VAR(2) DSGE-VAR(3) DSGE-VAR(4)

b� Frequency b� Frequency b� Frequency b� Frequency

0.09 10 0.13 47 0.17 23 0.2 7

0.1 66 0.17 27 0.2 48 0.24 37

0.13 15 0.2 14 0.24 8 0.25 27

0.17 4 0.24 1 0.25 7 0.28 17

0.2 2 0.25 4 0.28 3 0.3 3

0.25 2 0.28 1 0.3 4 0.31 4

0.31 1 0.3 3 0.31 3 0.35 2

0.31 2 0.35 3 0.4 2

0.35 1 0.45 1 0.5 1

4� =[0 0.09 0.10 0.13 0.17 0.2 0.24 0.25 0.28 0.3 0.31 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.8 0.9 1 5 10 ]. In this
set, the bigger lambda is 10. However, in this MonteCarlo experiment, lambda greater than 0.9 are not chosen as
optimal lambda.

50.09 is the minimum lambda in case of VAR(1); 0.13 is the minimum lambda in case of VAR(2); 0.17 is the
minimum lambda in case of VAR(3); 0.20 is the minimum lambda in case of VAR(4); 0.24 is the minimum lambda
in case of VAR(5); 0.28 is the minimum lambda in case of VAR(6); 0.31 is the minimum lambda in case of VAR(7)
and 0.35 is the minimum lambda in case of VAR(8).

6 In this case, the number of replications in the algorithm to compute the posterior density is 1000. In this exercise,
drawing a complete shape for the marginal likelihood function is not the key aim, hence considering less replications
could not be a problem. This choice is lead by the fact that realizing a MonteCarlo experiment 100 times needs a
great amount of time.
In this experiment, 100 repetitions in the MonteCarlo experiment with 1000 replications in MCMC require around

36 hours with a PC Pentium(R) D CPU 3.00GHz, 0.98 GB for RAM.
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TABLE 1. MonteCarlo experiment with forward-looking data

DSGE-VAR(5) DSGE-VAR(6) DSGE-VAR(7) DSGE-VAR(8)

b� Frequency b� Frequency b� Frequency b� Frequency

0.24 9 0.28 1 0.31 2 0.35 1

0.25 10 0.3 3 0.35 33 0.4 19

0.28 8 0.31 26 0.4 31 0.45 17

0.3 28 0.35 46 0.45 18 0.5 28

0.31 16 0.4 18 0.5 4 0.55 23

0.35 21 0.5 1 0.55 2 0.6 3

0.4 2 0.55 2 0.6 3 0.65 6

0.5 1 0.60 1 0.65 3 0.7 2

0.55 1 0.65 1 0.7 1 0.8 1

0.6 1 0.7 1 0.8 1

0.65 2 0.9 2

0.7 1

Table 1 evidences that when lags are added to the VAR component of the DSGE-VAR, the

optimal lambda is increasing and becomes bigger than the minimum lambda. The DGP is a

VARMA, as shown by Fernandez-Villaverde et al. (2007) and Ravenna (2007), which can be

represented by an in�nite-order VAR. Since more lags in the VAR, the DSGE-VAR tends to be

approximated by a DSGE model. Hence, the candidate model explains the data very well, if we

implement a DSGE-VAR(1). But can we �nd a restricted �nite-order VAR format of the VARMA

used as DGP? Table 3 shows the Information Criteria (Akaike (AIC), Schwarz (SIC) and Hannan-

Quinn (HQ)). Moreover, Table 2 considers two other relevant informations: what is the optimal

lambda across lags for the same MonteCarlo replication and when the ratio
b���MIN

�MIN
is decreasing

at the �rst time.
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TABLE 2. Summary Table

AIC SIC HQ opt lambda Ratio

Lag Frequency Lag Frequency Lag Frequency Lag Frequency Lag Frequency

2 9 2 95 2 41 1 7 1 52

3 51 3 3 57 2 18 2 34

4 21 4 2 3 12 3 11

5 11 4 1 4 3

6 2 5 11

7 2 6 11

8 2 7 16

9 1 8 24

10 1

Information Criteria suggest as a possible reduced form for the VARMA representation a �nite-

order VAR(2). In Appendix 2, following Ravenna (2007), there is a proof that in this example the

VARMA(3,3) can be represented by a VAR(2). The optimal lambda is increasing across lags for the

same MonteCarlo replication and it is equal to the maximum lag-order in the 24% of the cases. The

ratio is decreasing after the �rst lag in 52% of cases, since at the second lag the di¤erence between

the optimal lambda and the minimum lambda is very small. Notice in Table 1, with a DSGE-

VAR(2) the optimal lambda is equal to the minimum lambda in 47% of cases. This result depends

on the fact that a VAR(2) can be considered as a possible �nite-form of the VARMA representation.

Moreover in Table 1, when the DSGE-VAR has a VAR with a lag-length greater than 2, the optimal

lambda is increasing and we can con�rm that adding more lags, the forward-looking model explains

the data better.

The same exercise is repeated taking into account the arti�cial data generated using the DSGE

model represented by a VAR(1). In Appendix 3, Tables A2 and Table A3 show that adding more

than one lag in the VAR component of the DSGE-VAR, the optimal lambda is increasing and the

economic model explains very well the data mispecifying the lag-length.

4.2 Backward-Looking Data Generating Process

In the second MonteCarlo experiment, the null hypothesis is that the DGP is given by the forward-

looking model, but under the alternative hypothesis, the DGP is given by a backward-looking model

(Rudebusch and Svensson (1998), Lindé (2001)). This backward-looking model is not the candidate

model to explain the data, since the dummy observation priors are generated by the forward-looking

model. The aim of this exercise is to understand if the DGSE-VAR can discover this misspeci�cation

16



in the DGP. However, two MonteCarlo exercises are implemented, calibrating the model by using

two di¤erent parameter sets. In this kind of experiment with a backward-looking model, the DGP

is given by an exact VAR with 3 lags, there is not a truncated VARMA representation problem.

The Rudebusch and Svensson model (which is based on the theoretical model presented by

Svensson (1997)) has been chosen since it can be considered a good approximation of real data.

This model presents a richer dynamic than a simple Svensson model by allowing for four lags of

in�ation in Phillips Curve (Aggregate Supply, AS) and two lags of output in Aggregate Demand

(AD) curve.

The Rudebusch and Svensson model consists of AS and AD equations which explain the output

gap (y) (the percentage deviation of output from its steady state level), the in�ation rate (�) and

the monetary policy (i). A third equation concerns the monetary policy instrument, the short-term

interest rate (i) is considered.

The economy is described by the AS and AD equations and an interest rate equation which

follows an autoregressive process:

�t = ��1�t�1 + ��2�t�2 + ��3�t�3 + ��4�t�4 + �yyt�1 + "
�
t (22)

yt = �y1yt�1 + �y2yt�2 + �r

4X

j=1

1

4
(i� �)t�j + "

y
t (23)

it = it�1 + "
i
t (24)

In the AS equation, (22), the annualized in�ation rate � depends: on past in�ation rates, on

the output gap in the previous period and on an exogenous supply shock "�t (i.i.d. with zero mean

and constant variance �2�).

In the AD equation, (23), output gap yt is related to past output gaps yt�1 and yt�2, to the

average ex post real interest rate in the four previous periods,
P4

j=1
1
4 (i� �)t�j and to an exogenous

demand shock "yt (i.i.d. with zero mean and constant variance �
2
y).

The monetary transmission mechanism is via output to in�ation rate. In Rudebusch and Svens-

son model, the sum of the estimated ��j �s is restricted to be 1 in order to have an acceleration

Phillips curve, where long-run monetary neutrality holds.

The interest rate, (24), follows an autoregressive process with an exogenous monetary shock, "it

(i.i.d with zero mean and constant variance �2i ).

Rudebusch and Svensson (1998) estimate each equation of the model by using OLS on quarterly

US data over the sample period 1961Q1 to 1996Q2.

Lindé (2001) considers the same model, but the parameters estimated for AS-AD come from a

MonteCarlo experiment. Lindé estimates the backward-looking model with OLS on the simulated
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data from the equilibrium model calibrated with the estimated monetary policy rules.

This last approach is preferred since it is possible to catch signi�cant parameter changes due to

the monetary regime shift and Chairman of FED changes (Burns, Volcker, Greenspan).

For generating arti�cial data, Lindé�s estimation for coe¢cients is used since this calibration

provides a stationary VAR representation.

In Appendix 3, Table A4 presents the estimated coe¢cients proposed by Rudebusch and Svens-

son and Lindé (see Appendix 3).

In the MonteCarlo experiments of this paper, Lindé�s estimation is considered for two samples,

the whole sample and the Greenspan sample.

In the �rst exercise, the estimation of coe¢cients calibrated for the whole sample is used,

generating 80 quarters. In the second exercise, the estimation of coe¢cients calibrated for the

sample in which Greenspan has been Chairman of FED is used. Greenspan sample is around the

same period of 80 quarters as considered in Del Negro and Schorfheide (2004) empirical example.

As far as the monetary policy process is concerned, there is no indication about the calibration

of the autoregressive coe¢cient (). This coe¢cient has been estimated on the Federal Funds Rate

time series around 0.9 for both the whole sample and the Greenspan sample. Instead, the standard

error of the monetary policy shock has been estimated 1.34 for the whole sample and 0.69 for the

Greenspan sample.

In this MonteCarlo experiment, we expect to reject the hypothesis that the DGP is given by

the candidate forward-looking model. The DSGE-VAR is the instrument used to detect the DGP

misspeci�cation.

The backward-looking model has an exact VAR format with 3 lags. The convenient state-space

representation is (see Appendix 4, for more details):

Xt = AXt�1 + �t (25)

The set-up of these experiments is the same of the forward-looking model. We generate 80

observations, the chosen lambda grid7 considers the minimum lambda for each DSGE-VAR with

lag-length from 1 to 8. The arti�cial data are generated by a MonteCarlo experiment with 100

replications8 .

In the �rst MonteCarlo, the Whole sample estimation for the parameter is taken into account.

Table 3 shows the frequency of b� in MonteCarlo experiments.
7� = f0; 0:09; 0:10; 0:13; 0:17; 0:2; 0:24; 0:25; 0:3; 0:31; 0:35; 0:4; 0:45; 0:5; 0:55; 0:6; 0:65; 0:7; 0:8; 0:9; 1g
8 In this case, the number of replications in the Metropolis-Hastings algorithm to compute the posterior density

is 1000. In this exercise, drawing a complete shape for the marginal likelihood function is not the key aim, hence
considering less replications could not be a problem. This choice is lead by the fact that realizing a MonteCarlo
experiment 100 times a great amount of time is necessary.
In this experiment, 100 repetitions in the MonteCarlo experiment with 1000 replications in MCMC require around

36 hours with a PC Pentium(R) D CPU 3.00GHz, 0.98 GB for RAM.
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TABLE 3. MonteCarlo experiment with backward-looking data (Whole Sample)

DSGE-VAR(1) DSGE-VAR(2) DSGE-VAR(3) DSGE-VAR(4)

b� Frequency b� Frequency b� Frequency b� Frequency

0.09 68 0.13 97 0.17 71 0.2 89

0.1 32 0.17 2 0.2 29 0.24 5

0.2 1 0.28 6

DSGE-VAR(5) DSGE-VAR(6) DSGE-VAR(7) DSGE-VAR(8)

b� Frequency b� Frequency b� Frequency b� Frequency

0.24 16 0.28 47 0.31 84 0.35 84

0.25 23 0.3 15 0.35 16 0.4 16

0.28 41 0.31 38

0.3 6

0.31 14

In this experiment, we expect to reject the null hypothesis, since the DGP is the backward-

looking model. The way to check the null hypothesis is to compare the optimal and the minimum

lambda. In Table 3, the minimum lambda is also among the possible b� and in any case the
percentage of the minimum lambda which is equal to the optimal lambda is very high and impressive.

Only in case of DSGE-VAR with 5 lags, the optimal lambda is equal to the minimum lambda with

a percentage of 16%. In this exercise, the DSGE-VAR recognizes the misspeci�cation of the DGP.

Table 4 evidences that the classical Information Criteria suggest a VAR(3) as statistical repre-

sentation for the data. The optimal lambda is increasing across lags and equals to the maximum

lag-order in the 94% of the cases. In the majority of the cases, the ratio is decreasing after the �fth

lag. These two results about the optimal lambda and the ratio suggest that for small lag-order, the

optimal lambda is very near to the minimum lambda
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TABLE 4. Summary Table

AIC SIC HQ opt lambda Ratio

Lag Frequency Lag Frequency Lag Frequency Lag Frequency Lag Frequency

3 54 2 2 3 94 7 6 1 31

4 11 3 98 4 5 8 94 2 3

5 2 5 1 3 18

6 5 4 8

8 1 5 40

9 10

10 17

However, the arti�cial data have been generated taking estimation for parameters and variance of

shocks for a long sample from 1970 to 1997. In this long period, the U.S. economy has faced several

monetary policy regimes and crises. The estimation can be a¤ected by these changes in regime,

hence an estimation with a small sample can be better. The same procedure is implemented by

considering the estimation of coe¢cients for the period when Greenspan has been the Chairman of

FED (1987Q3 to 1997Q2). Moreover, the sample period used to generate the dummy observation

priors is from 1981 to 2001, around the Greenspan sample. Results are in Table 5 and 6.
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TABLE 5. MonteCarlo experiment with backward-looking data (Greenspan Sample)

DSGE-VAR(1) DSGE-VAR(2) DSGE-VAR(3) DSGE-VAR(4)

b� Frequency b� Frequency b� Frequency b� Frequency

0.09 57 0.13 65 0.17 33 0.2 24

0.1 43 0.17 29 0.2 53 0.24 6

0.2 6 0.24 3 0.25 10

0.25 3 0.28 40

0.28 7 0.3 8

0.3 1 0.31 12

DSGE-VAR(5) DSGE-VAR(6) DSGE-VAR(7) DSGE-VAR(8)

b� Frequency b� Frequency b� Frequency b� Frequency

0.24 1 0.28 14 0.31 38 0.35 19

0.25 9 0.3 12 0.35 45 0.4 77

0.28 46 0.31 69 0.4 17 0.5 2

0.3 20 0.35 5 0.6 2

0.31 23

0.35 1

Table 5 shows that, in every DSGE-VAR exercise, the minimum lambda is also among the

possible optimal lambda. In case of DSGE-VAR with only one lag, the possible b� is 0.09 or 0.1,
since it is always very close to the minimum lambda. The null hypothesis is rejected, the data do

not come from the forward-looking model. In case of DSGE-VAR with 2 lags, the optimal lambda

is equal to the minimum is 65% cases. The DGP is a VAR(3) and in case of DSGE-VAR with 3

lags, only in 33% cases the minimum lambda is equal to the optimal lambda. Adding lags makes

the b� bigger than the minimum lambda. Consequently, the DSGE-VAR with more lags tends to

be represented by the DSGE model. Misspecifying the lag-order, the DSGE-VAR is not able to

recognize the DGP misspeci�cation.
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TABLE 6. Summary Table

AIC SIC HQ opt lambda Ratio

Lag Frequency Lag Frequency Lag Frequency Lag Frequency Lag Frequency

3 52 3 100 3 96 2 1 1 31

4 13 4 2 3 4 2 30

5 3 5 2 4 17 3 12

6 3 5 5 4 27

7 4 7 7

8 6 8 70

9 1

10 18

Table 6 shows as a statistical representation for the data a VAR with 3 lags, suggested by the

three Information Criteria. The optimal value for lambda is reached at lag 8 in 70% of cases, it

means that b� is increasing across the lags for the same arti�cial data. As far as the �rst fall in the
ratio

b���MIN

�MIN
is concerned, with a percentage of 31%, the ratio falls after the �rst lag. However, as

pointed out in Table 4, the ratio is zero in the most of cases.

This second MonteCarlo experiment with a backward-looking model evidences that the DSGE-

VAR does not help the economist to reject the null hypothesis that DGP is a forward-looking model.

In this exercise, there are two sources of misspeci�cation, the DGP and the number of lags in VAR

representation. Adding more lags, the optimal lambda is increasing as the power of the economic

model to explain the data.

However, the use of the Classical Information Criteria can help the economist to overcome these

problems. Since the priors matter, it could be possible to apply a speci�c information criterion for

mixture models to take into account the weight of the priors of the parameter space of the model.

4.3 Comments on Results

The MonteCarlo experiments generate the following �ndings. First, the DSGE-VAR model tends to

be approximate by the DSGE model when adding more lags in the VAR component. In this sense,

the DSGE model always explains the data. Second, in case of the forward-looking DGP represented

by a VARMA, the DSGE-VAR recognizes that the data-generating process is the same model used

for dummy observation priors and a DSGE-VAR(1) can represent the data better. This result is

expected.

Third, in case of the backward-looking DGP, the DSGE-VAR is not always able to recognize

that the dummy observation priors are generated by a di¤erent model. In this exercise, the DGP
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is an exact VAR(3), adding lags more than 3 in the VAR component of the mixture model, the

optimal lambda is increasing. This result is not expected and shows how the econometrician should

be careful in using the DSGE-VAR. The misspeci�cation of the DGP is not recognized because of

the misspeci�cation of the lag-length. Adding more lags in the DSGE-VAR, the theoretical model

explains the data better regardless the DGP is the candidate model in the hybrid composition.

In the light of these results, the approximation problem becomes considerable in model validation

applied to the DSGE. Suppose to consider a forward-looking model as your candidate model to

explain your data. In this model not all the endogenous variables are observable, the statistical

representation is a VARMA model that can be truncated by a �nite-order VAR (for example a

VAR(2)). Another forward-looking model is the DGP. The econometrician implements a DSGE-

VAR (5). The outcome is that the economic model explains the data, even if there are several

misspeci�cations.

In this example, a simple New-Keynesian model has been chosen with a VARMA representation

which can be reduced using a �nite-order VAR(2). With this simple model we get a powerful result:

the lag length matters in the DSGE model statistical representation. It is obvious that in case of

a more complex model with a VARMA format, a �nite-order VAR truncation is needed and the

result can become more powerful.

In the DSGE-VAR procedure, additional lags are not penalized in the marginal likelihood which

increases with the misspeci�cation of the number of lags. This issue is important for economists

which work with the real data and they do not know the DGP. These results depend on the number

of replications in the Metropolis-Hastings algorithm used to solve the posterior. It is possible to

get a more accurate result, increasing the number of the replications, but this exercise is very

time-consuming. Moreover, we can change the variance shocks in the backward-looking model.

Actually, when the econometrician takes into consideration a unit variance for shock, the result

changes dramatically. The economic model becomes more important in both samples of calibration

for the parameters and it seems the arti�cial data come from the forward-looking model instead of

the backward-looking model. See Tables A12-A13 in Appendix 6.

In Appendix 5, forecasting evaluation tables are reported. In these MonteCarlo experiments, the

forecasting exercises are useless to choice the best model when a di¤erent lag-length is considered.

5 From theMonteCarlo Experiments to the Empirical Analy-

sis

In Section 5, exercises in the US economy real data are implements, in the light of results in the

arti�cial world. As discussed in MonteCarlo experiments, the lambda grid depends on the number

of endogenous variables, the number of lags and the number of the observations in the sample size.

23



In these exercises, we replicate the DSGE-VAR approach with the same forward-looking model

presented in Section 3 and the real data used are real GDP, CPI and Federal Funds Rate for the

sample 1981-2001. Three exercises are implemented.

The �rst one is a mere replication of the DSGE-VAR discussed by Del Negro and Schorfheide

(2004), with the same features, but the lambda grid. This new lambda set has more values for the

hyperparameter lambda, hence it is more precise, � = f0; 0:2; 0:4; 0:5; 0:6; 0:7; 1; 1:4; 1:8; 10g9 . The

found optimal lambda is 0.6 (as in Del Negro and Schorfheide, 2004), considering a VAR(4) in the

hybrid DSGE-VAR. Table 7 shows the marginal data density with a DSGE-VAR(4).

TABLE 7. DSGE-VAR(4) Sample 1981-200110

GRID MDD

0 NaN

0.2 -230.98

0.4 -216.94

0.5 -215.79

0.6 -215.52

0.7 -313.72

1 -216.99

1.4 -219.59

1.8 -221.71

10 -335.31

Inf -242.86

The second exercise consists of increasing the sample size. A large sample from 1961:1 to

2001:4 (160 observations) is taken into account instead of a small sample of 80 observations.

The lambda grid changes. The minimum � is 0.1, instead of 0.2. The new lambda grid is

� = f0; 0:10; 0:15; 0:2; 0:4; 0:5; 0:6; 0:7; 1; 1:4; 1:8; 10g. In this exercise, the optimal � is 0.3, instead

of 0.6. Table 8 shows the marginal data density with a DSGE-VAR(4) implemented with a large

sample.

9 In this case, the in�nite lambda representing the case in which restrictions from DSGE model are extremely
tight is not considered since in this experiment the analysis of the shape of the marginal likelihood function is not
interesting.
1025,000 replications are implemented in the Metropolis-Hastings algorithm.
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TABLE 8. DSGE-VAR(4) Sample 1961-200111

GRID MDD

0 NaN

0.1 -561.36

0.15 -549.46

0.2 -545.72

0.3 -543.86

0.4 -544.71

0.5 -545.91

0.6 -547.36

0.7 -549.37

1 -554.10

1.4 -561.16

1.8 -564.20

10 -585.64

We can compare these two results using the ratio
b���MIN

�MIN
: Whatever the dimension of sample

(large or small) is , the ratio is always equal to 2. Consequently, the sample size in�uences only the

minimum and the optimal lambda. The increase of the number of observations does not a¤ect how

much the DSGE model can explain the data and how is much the distance between the DSGE-VAR

and the two opposite representations: the DSGE model and the pure statistical VAR.

The third exercise consists of changing the lag-length in the VAR component of the hybrid

model. MonteCarlo experiments suggest to be careful in approximating a VARMA representation.

However, we need to approximate the VARMA by using a �nite-order VAR to implement the

DSGE-VAR. We can use two alternative methods to assess the lag-length. The �rst way is to check

the lag-order for US real data by calculating classical Information Criteria12 . Schwarz and Hannan-

Quinn criteria suggest the use of only one lag, while Likelihood Ratio, Final Prediction Error and

Akaike criteria suggest six lags. The second way is to maximize the marginal data density associated

with the DSGE-VAR (b�), as suggested by Del Negro, Schorfheide, Smets and Wouters (2007b). In
this last option, we can evaluate the lag-order, considering into the mixture model, not only the real

data, but also the information from the economic model given by priors and the cross-moments. In

Table 9, there is the description of the b�13 and its marginal data density, considering lags from 1

1125,000 replications are implemented in the Metropolis-Hastings algorithm.
12Likelihood Ratio, Final Prediction Error, Akaike, Schwarz and Hannan-Quinn. It could be interesting Chari,

Kehoe, McGrattan (2007) exercise related to Akaike and Schwartz criteria with Structural VAR.
13 In this case the lambda grid takes into consideration the minimum lambda for each lag, � =

f0; 0:09; 0:10; 0:13; 0:17; 0:2; 0:24; 0:25; 0:3; 0:31; 0:35; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1g and 100,000 replications are imple-
mented in the Metropolis-Hastings algorithm.

25



to 8.

TABLE 9. Maximizing Marginal Data Density

� min � opt MDD

DSGE-VAR(1),T=80 0.09 0.13 -68.185

DSGE-VAR(2), T=80 0.13 0.24 -79.161

DSGE-VAR(3), T=80 0.17 0.24 -81.240

DSGE-VAR(4), T=80 0.2 0.24 -89.956

DSGE-VAR(5), T=80 0.24 0.35 -97.151

DSGE-VAR(6), T=80 0.28 0.9 -112.440

DSGE-VAR(7), T=80 0.31 0.6 -106.029

DSGE-VAR(8), T=80 0.35 0.6 -99.786

These results evidence that the marginal data density is maximized with only one lag. Conse-

quently, both using Information Criteria on real data and maximizing the marginal data density, a

more parsimonious representation is suggested14 .

Table 10 compares the marginal data density of a DSGE-VAR with a VAR(1) representation

for the small and the large sample15 .

14 It is true that considering AIC and SIC on the real data, we forget the total aspect of the DSGE-VAR, supposing
that the model is approximated with the same number of the lags of the real data. But the previous results help to
use standard model selection criteria as an approximation to choose the number of lags. In this context, it could be
very useful to analyze further information criteria, ad hoc in order to recover the prior in�uence in the DSGE-VAR
combination.
15 In case of small sample with 80 quarters, the new lambda grid is
� = f0; 0:09; 0:10; 0:15; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 1; 1:4; 1:8; 10g :
The optimal lambda is 0.15.
In case of large sample with 160 quarters, the new lambda grid is
� = f0; 0:05; 0:09; 0:10; 0:15; 0:2; 0:3; ; 0:4; 0:5; 0:6; 0:7; 1; 1:4; 1:8; 10g.
The optimal lambda is 0.1.
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TABLE 10. VAR(1) Two Samples16

GRID MDD (T=80) MDD (T=160)

0 NaN NaN

0.05 -557.52

0.09 -210.96 -554.70

0.1 -209.61 -554.06

0.15 -208.03 -554.13

0.2 -208.04 -555.01

0.3 -209.17 -557.36

0.4 -210.51 -559.73

0.5 -212.11 -562.16

0.6 -213.64 -564.22

0.7 -214.85 -565.52

1 -218.42 -570.46

1.4 -223.53 -574.91

1.8 -225.76 -577.25

10 -260.15 -587.35

Table 11 shows a sum-up comparing the DSGE-VAR with one and four lags in the VAR part,

for the small and the large sample.

TABLE 11. Summary Table

� min � opt �opt-�min (�opt� �min) =� min

DSGE-VAR(4), T=80 0.2 0.6 0.4 2

DSGE-VAR(4), T=160 0.1 0.3 0.2 2

DSGE-VAR(1), T=80 0.09 0.15 0.06 0.6667

DSGE-VAR(1), T=160 0.05 0.1 0.05 1

When we implement the DSGE-VAR with one lag, the ratio suggests that the DSGE model

explains the data weakly. Adding more lags, the DSGE-VAR can be approximated by the DSGE

model. This problem concerns the use of the forward-looking model with not all the endogenous

variables observable. The VARMA representation can be approximated by a VAR(1). The imple-

mented DSGE-VAR is in�uenced by the VARMA approximation problem. Increasing the lag-order,

the DSGE model explains the data better.

In Appendix 5, forecast evaluation tables compare forecasting performance among VAR, DSGE

1625,000 replications are implemented in Metropolis-Hastings algorithm.
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and a DSGE-VAR models. The best performances in terms of forecasting are given by both VAR(1)

and VAR(4) with a small sample.

6 Concluding Remarks and Comments

This paper discusses the concept of model validation applied to a DSGE model. When not all the

endogenous variables are observable, the statistical representation of a DSGE model is a VARMA

format. A bunch of papers (see Cooley and Dwyer (1998), Chari, Kehoe and McGrattan (2005),

Christiano, Eichenbaum and Vigfusson (2006), Ravenna (2007) and Fernandez-Villaverde, Rubio-

Ramirez, Sargent and Watson (2007)) argued about the conditions to �nd an in�nite-order VAR

representation and a �nite-order VAR truncation for a VARMA model.

The main instrument used in the model validation is the DSGE-VAR proposed by Del Negro

and Schorfheide (2004). In the DSGE-VAR, we need a �nite-order VAR.

In this paper two MonteCarlo experiments are implemented. The �rst exercise has as DGP the

forward-looking model candidate to explain the data in the hybrid model, DSGE-VAR. The second

exercise has a backward-looking model as DGP.

The �rst experiment shows how implementing a DSGE-VAR with an increasing lag-length, the

DSGE-VAR can be approximated by the DSGE model. Hence, the DSGE explains data better. No

surprising result.

The second experiment shows how the DSGE-VAR is not always able to recognize the misspeci�-

cation in the DGP. Moreover, when a DSGE-VAR with an increasing number of lags is implemented.

The main message of this Montecarlo experiment is that mispecifying the lag-length the DSGE-

VAR tends to be the DSGE model even if the DGP is a backward-looking model. This result is

surprising and not expected.

Arti�cial world suggests the econometrician to be careful in adding lags in the DSGE-VAR. In

the light of these results, exercises in the US economy real data are implemented. This empirical

analysis shows how comparing the most parsimonious DSGE-VAR with a DSGE-VAR with four

lags, for example, the DSGE model explains the data di¤erently. More explanation of the data if

the DSGE-VAR with more lags is implemented. This problem is given by the fact that the DSGE

model can be represented by an in�nite VAR.

How can we decide the lag-order? The use of classical Information Criteria can be helpful but

they ignore the priors from the DSGE model. Eventually, we can maximize the marginal data

density.

The above results contribute to the current discussion on the usefulness of the estimation meth-

ods for the DSGE and the application of these models in policy oriented exercises. The DSGE-VAR

can be consider a valid instrument for model validation with a careful attention about the statistical

representation of the DSGE model.
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The next steps in the research agenda can be focused analyzing the marginal likelihood function.

In this way, we can understand what happens in the DSGE-VAR, adding more lags and we can build

a suitable Information Criteria which takes into account the real data and the dummy observation

priors.
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Appendix

Appendix 1: How to generate draws from the posterior
distribution of (�;�u; �)

Here we provide the full derivation of the results reported in Section 2 on the DSGE-VAR

approach to obtain draws from the posterior distribution of (�;�u; �). The analysis will be con-

ditional to a value for � which establishes the relevance of the information between the VAR and

DSGE in order to estimate the structural parameter �: We can think of � as generating a particu-

lar model which can support, with a certain degree, the observed data: the marginal data density

represents such a measure of goodness and it would help us to discriminate among di¤erent models

(i.e. di¤erent �).

This appendix describes i) how to compute moments from DSGE models, ii) how to compute

a proper prior distribution given such a set of moments conditions, iii) how to derive the marginal

data density in case of conjugate prior.

The Bayesian Approach
We follow the Bayesian approach to draw all the relevant inference for the problem at hand.

We consider as a good approximation for the vector of observables, Yt = (� ln yt;� ln pt; Rt)
0
, an

unrestricted Gaussian VAR(p) model for the data.

Together with the likelihood function for the VAR(p) we have to specify a prior distribution

for the VAR coe¢cients. According to Theil and Goldberg (1961) and following the application

by Sims (1996), we can recover a prior distribution by using a set of dummy observations. Such a

procedure could be seen as a set of restrictions on the VAR(p) coe¢cients as well. A novelty of the

DS approach is to use the DSGE model to derive arti�cial data,
�
~Y ; ~X

�
, which can be used to set

up the prior.

The VAR model for the data is

Yt = �Xt + Et; (26)

where Xt =
�
�; Y 0t�1; : : : ; Y

0
t�p

�0
is a vector of dimension k � 1, k = mp+ 1, which concatenates the

constant and p lags of Yt, and � = [�0 j �1 j : : :�p] :

The DSGE model can be described by the following state-space representation

~Yt = �0 (�) + �1 (�) ~Zt + Vt; (27)

~Zt = T (�) ~Zt�1 +R (�)Ut; (28)

which groups the policy function from the RE equilibrium and the mapping between observables,
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~Yt, and simulated data, ~Zt. The vector ~Yt can be computed by simulation methods with respect to

(27) and (28) or analytically since the DSGE model is stationary.

Given the pair of simulated data
�
~Yt; ~Xt

�
17 we can write a similar speci�cation as in (26)

~Yt = � ~Xt + Et; (29)

that indirectly imposes restrictions on � driven from the theoretical model; to derive the DSGE-

based prior we will construct the likelihood function of the process in (29).

Compute DSGE Moments
Given the state-space representation in (27) and (28), the unconditional variance for ~Yt and ~Zt

are

�z;z = T�z;zT
0 +R�u;uR

0 (30)

�y;y = �0�
0
0 + �1�z;z�

0
1 +�v;v + �1R�u;v +�

0
u;vR

0�01 (31)

while the unconditional autocorrelation of order k for ~Yt reads

�z;z (k) = T k�z;z (k � 1) (32)

�y;y (k) = �0�
0
0 + �1�z;z (k) �

0
1 + �1

�
T k
�
R�u;v: (33)

These high-order second moments matrices will be necessary to construct �x;x which is a function

of the lags of ~Yt. Here we have omitted the dependence over �.

Getting a Proper Prior Distribution out of the DSGE model: �1
The likelihood function for the arti�cial data reads

L
�
~Y ; �;�e

�
= (2�)

�mT=2 j�ej
�T=2

exp

�
�
1

2
tr
���

�� ~�
��

~X 0 ~X
��
�� ~�

�
+ ~S

�
��1e

��
; (34)

where the su¢cient statistics are;

~� =
�
~X 0 ~X

��1
~X 0 ~Y (35)

~S = ~Y 0 ~Y � ~Y 0 ~X
�
~X 0 ~X

��1
~X 0 ~Y (36)

which can be also speci�ed in terms of population moments

~� = ��1x;x�x;y (37)

~S = �y;y � �
0
x;y�

�1
x;x�x;y (38)

17 ~Xt collects lags of ~Yt.
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where, for instance, �x;y = E
�
~Xt
~Yt

�
.

We thus use a �at prior to construct a proper distribution based on the DSGE model: the

Je¤reys prior for the multivariate case reads

�0 = j�ej
�
m+1
2 : (39)

By combining (34) and (39) we get the kernel of the distribution

�1 / L
�
~Y j �;�e

�
� �0; (40)

and by integrating with respect to (�;�e) we derive the constant of integration

P ~Y

�
~Y j �

�
= (2�)

�m~v=2 �
��� ~S
���
�
~v
2
�
��� ~H
���
�
m
2
�
h
2m~v=2 � �m(m�1)=4 � �m (~v)

i
; (41)

which is needed to have the DSGE-based prior distribution

�1

�
�;�e j ~Y ; �

�
=

L
�
~Y j �;�e; �

�
� �0

P ~Y

�
~Y j �

� (42)

=
(2�)

�mT�=2

(2�)
�m~v=2

�

��� ~S
���
~v=2

�
��� ~H
���
m=2

� j�ej
�(T�+m+1)=2

2m~v=2 � �m(m�1)=4 � �m (~v)
�

exp

�
�
1

2
tr
�
~S��1e

��
� exp

�
�
1

2
tr

��
�� ~�

�0
(�x;x)

�
�� ~�

�
��1e

��
;

given �x;x non-singular and ~v � ~T � k > k +m.

Hence, �1

�
�;�e j ~Y ; �

�
is distribution from the Normal N

�
~�;�e 
H

�1
�
, Inverse-Wishart

IW
�
~S; ~v
�
family.

The Marginal Data Density given: P (Y j �)
With a proper prior at hand, �1; we can now combine data and model-based information to

fully specify the posterior conditional on the structural parameter �: By combining the likelihood

and the conjugate prior, we get the posterior kernel

P� (�;�e j Y; �) / L (Y j �;�e)� �1
�
�;�e j ~Y ; �

�
; (43)
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which can be integrated to obtain the marginal data density18

PY (Y j �) = (2�)
�Tm=2 �

��� ~S
���
~v=2

�� �S
���v=2

��� ~H
���
m=2

�� �H
��m=2

�
�m (�v)

�m (~v)
� 2m(v̂+k)=2 (44)

The proper posterior reads

P� (�;�e j Y; �) = (2�)
�mk=2 � j�ej

�k=2 � exp

�
�
1

2
tr
��
�� ��

�0 �H
�
�� ��

�
��1e

��
: : :

�

�� �S
���v=2 �� �H

��m=2 � j�ej�(v̂+T
�+m+1)=2

2m�v=2 � �m(m�1)=4�m (�v)
� exp

�
�
1

2
tr
�
�S��1e

��
(45)

or equivalently

p (� j �e;Y;X) = N
�
��;�e 
 �H�1

�
(46)

p (�e j Y;X) = IW
�
�S; �v
�

(47)

where the posterior estimates are as follows

� �H = X 0X + ~T�x;x

� �� = �H�1
�
X 0Y + ~T�x;y

�

� Q = �̂0Ĥ�̂ + ~�0 ~H ~�� ��0 �H ��

� �S = Ŝ + ~S +Q

� ��e =
�S

�v

Metropolis-Hasting Algorithm
We have obtained the posterior distribution of the VAR coe¢cients given the structural para-

meters

P (�;�; � j Y ) = P� (�;� j Y; �)� P� (� j Y ) : (48)

We also need to derive the posterior distribution with respect to �: We use the fact that

P� (� j Y ) / K� (� j Y ) = PY (Y j �)� �2 (�) (49)

18where

~H =

�
~X0 ~X

�

�v = T + ~T � k
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where PY (Y j �) has been computed above and �2 (�) is a set of independent prior distributions over

each element of the vector of parameters �; K� (� j Y ) is the kernel of the posterior. By combining

the likelihood and the prior we don�t have a closed form solution. We thus need to simulate draws

out of the posterior distribution which is unknown. We follow Schorfheide (2000) and Del Negro

and Schorfheide (2004) and we implement a Gaussian random walk Metropolis-Hasting algorithm

to generate from P� (� j Y ). We set as a scale factor the inverse of the Hessian matrix, �H (�) ; with

respect to K� (� j Y ) evaluated at the mode, �
�. For each candidate draw, ~�,

~� = �s�1 + (�H (�
�))

�1=2
N (0; I) ; (50)

we construct an acceptance probability threshold

�
�
~�; �s�1

�
= min

0
@1;

K�

�
~� j Y

�

K� (�s�1 j Y )

1
A : (51)

If �
�
~�; �s�1

�
is higher than a certain probability (varying for each draw) we accept the draw as

coming from the posterior distribution P� (� j Y ) and update the Markov chain �s = ~�, otherwise

we discard ~� and draw another candidate from (50).

In doing so and by controlling for convergence of the chain, we are able to draw from the

posterior distribution of �. Given the full set of draws, we can thus make inference on any function

of the parameters.

Gelfand-Dey Method for P (Y )
We compute the marginal data density which consists of integrating out parameters from the

posterior distribution to evaluate the set of models: they basically di¤er from each other from the

weight implied by the parameter �. However, in this case the functional form of the posterior,

P� (� j Y ), is not known and therefore we have to rely on simulation methods. To compute P (Y )

we use the Gelfand and Dey (1994) method with the correction suggested by Geweke (1999) to

avoid problems in the tails of P (Y ) which, given the way it is computed, could be not �nite.

Once we have a measure of the marginal data density for each model which, in our setup,

depends on the choice of �; we can then compare di¤erent models. The idea of comparing di¤erent

models based on � clari�es the contribution of the information from the DSGE model in shaping

inference. If the maximal of P (Y ) is attained for values of � close to zero, the DSGE model is not

strongly supported by the data.
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Appendix 2: The Sims (2002) representation of the Forward-
Looking model
After linearization around the steady-state, the economy represented by the forward-looking

model can be described by the following system of equations:

ext = Et[gxt+1]�
1

�
(fRt � Et[g�t+1]) + (1� �g)egt + �Z

1

�
ezt (52)

e�t = �Et[g�t+1] + �[ ext � egt] (53)

fRt = �R]Rt�1 + (1� �R)( 1 e�t +  2 ext) + �R;t (54)

egt = �gggt�1 + �g;t (55)

ezt = �zgzt�1 + �z;t (56)

where x is the detrended output (divided by the non-stationary technology process), � is the

gross in�ation rate, and R is the gross nominal interest rate. The tilde denotes percentage deviations

from a steady state or, in the case of output, from a trend path. See details in King (2000) and

Woodford (2003).

The equation (52) is an intertemporal Euler equation obtained from the households� optimal

choice of consumption and bond holdings. There is no investment in the model and so output is

proportional to consumption and it depends on an exogenous process that can be interpreted as

time-varying government spending. The net e¤ects of these exogenous shifts on the Euler equation

are captured in the process gt, which is de�ned as
1

1��t
, where �t is the fraction of output consumed

by the government: The parameter � > 0 can be interpreted as the inverse intertemporal elasticity

of substitution.

As in Del Negro and Schorfheide (2004), gt and zt are assumed to evolve according to univariate

AR(1) processes with coe¢cients �g and �z. The associated iid normal idiosyncratic shocks are �g;t

and �z;t. The standard deviations of these shocks are denoted as �g and �z:

The equation (53) represents the in�ation dynamics determined by the expectional Phillips curve

with slope �. The parameter 0 < � < 1 is the households� discount factor, this parameter could be

represented as 
r� , where  is the steady-state growth rate of technology and r

�is the steady-state

real interest rate.

The equation (54) describes the behavior of the monetary authority. The central bank follows

a nominal interest rate rule by adjusting its instrument to deviations of in�ation and output from

their respective target levels. The iid normal idiosyncratic shock �R;t can be interpreted as the

unanticipated deviation from the policy rule or as the policy implementation error and �R measures

the degree of the central bank�s interest rate smoothing. Its standard deviation is denoted by �R.

The parameters  1 and  2 are the long-run feedback coe¢cients from the target values of in�ation
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and output respectively.

In this linearized model, there are three observed endogenous variables (xt; �t and Rt), three

shocks (�Rt ; �
G
t ; �

Z
t ), but there are also two unobserved endogenous variables, gt and zt. Following

Ravenna (2007), if not all the endogenous state variables are observable, it is not possible to �nd

a �nite order representation. A VARMA representation is needed when there are unobserved

variables.

The solution to the system is the recursive equilibrium law of motion (see Ravenna, 2007 and

Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson, 2007):

yt = Cxt�1 +Dzt

xt = Axt�1 +Bzt

Z(L)zt = "t

where xt�1 is an n�1 vector of endogenous state variables (in this example is xt = [ eRt, egt,ezt]0,so
n = 3), zt is an m � 1 vector of exogenous state variables (monetary, government spending and

technology shocks) (m = 3), yt is an r � 1 vector of endogenous variables (yt =
h
ext; e�t; eRt

i0
)

(r = 3), "t is a vector stochastic process of dimension m � 1 ("t = [�R;t; �g;t; �z;t]
0) (m = 3) such

that E ("t) = 0; E("t"
0
t) = �; E("t"

0
s) = 0 for s 6= t and � is a diagonal matrix. Z(L) is the matrix

polynomial [I�Z1L� :::�ZpL
p] in the lag operator L de�ning a stationary vector AR(p) stochastic

process. The Z(L) is assumed to be of the �rst order, Z(L) = [I � Z1L]:

The �rst step is to understand if the largest eigenvalue of A � BD�1C is smaller than one in

modulus, to check if we can write yt as in�nite-order VAR representation:

yt =
1X

j=1

C
�
A�BD�1C

�j�1
BD�1yt�j +D"t

To obtain this result, the log-linearized model is solved using Sims� algorithm (2002) to compute

rational expectations.

The rational expectations solution of the linearized model is then computed. The �rst step

towards solution is to cast the model in the following form :

�0
s

Zt = �1
s

Zt�1 + C +	�t +��t (57)

t = 1; :::; T where C is a vector of constants, �t is an exogenous vector of shocks, given in this

case by �t = [�R;t; �g;t; �Z;t]
0 and �t is an expectional error, satisfying Et

�
�t+1

�
= 0, all t: The

results are as follows:
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s

Zt =

2
666666666666664

ext
e�t
fRt
fR�t
egt
ezt

Etgxt+1
Etg�t+1

3
777777777777775

�t =

2
64
�Rt

�Gt

�Zt

3
75 �t =

"
�xt = xt � Et�1(xt)

��t = �t � Et�1(�t)

#

�0 =

2
666666666666664

1 0 1
� 0 �(1� �g) ��z

� �1 � 1
�

�� 1 0 0 � 0 0 ��

0 0 1 �(1� �R) 0 0 0 0

� 2 � 1 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

3
777777777777775

�1 =

2
666666666666664

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 �R 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 �g 0 0 0

0 0 0 0 0 �Z 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

3
777777777777775

	 =

2
666666666666664

0 0 0

0 0 0

1 0 0

0 0 0

0 1 0

0 0 1

0 0 0

0 0 0

3
777777777777775

� =

2
666666666666664

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1

3
777777777777775

Using Table 1 with priors
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TABLE A1. Prior Distribution for DSGE Model Parameters for sample 1981-2001

NAME RANGE DENSITY STARTING VALUE MEAN SD

ln  R Normal 0:500 0:500 0:250

ln�� R Normal 1:000 1:000 0:500

ln r� R+ Gamma 0:500 0:500 0:250

� R+ Gamma 0:400 0:300 0:150

� R+ Gamma 1:000 2:000 0:500

 1 R+ Gamma 2:500 1:500 0:250

 2 R+ Gamma 0:300 0:125 0:100

�R [0; 1) Beta 0:400 0:500 0:200

�G [0; 1) Beta 0:800 0:800 0:100

�Z [0; 1) Beta 0:200 0:300 0:100

�R R+ Inv:Gamma 0:500 0:251 0:139

�G R+ Inv:Gamma 0:500 0:630 0:323

�Z R+ Inv:Gamma 1:000 0:875 0:430

The solution of this linearized model is the following policy function that represents the transition

equation:

s

Zt = T (�)
s

Zt�1 +R (�) "t (58)

� = [�; � ;  1;  2; �R; �g; �z; �R; �g; �Z ]
0

where:

T (�) =

2
666666666666664

0 0 �3:293 0 0:7251 0:0476 0 0

0 0 �0:1551 0 �0:0932 0:0169 0 0

0 0 0:3631 0 �0:0246 0:0157 0 0

0 0 �0:2738 0 �0:0492 0:0313 0 0

0 0 0 0 0:8000 0 0 0

0 0 0 0 0 0:3000 0 0

0 0 �0:1196 0 0:5882 0:0091 0 0

0 0 �0:0563 0 �0:0708 0:0026 0 0

3
777777777777775
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R (�) =

2
666666666666664

�0:6585 0:9064 0:1587

�0:3102 �0:1166 0:0564

0:7262 �0:0308 0:0522

�0:5476 �0:0615 0:1045

0 0:63 0

0 0 0:8750

�0:2391 0:7352 0:0304

�0:1126 �0:0885 0:0088

3
777777777777775

The transition equation (58) delivers the dynamics of the deviations of each economic variable

from its steady state value. To obtain the dynamics of output, in�ation and the policy rate the last

equation is combined with the following measurement equation:

Zt = W (�)
s

Zt +D(�) + �t (59)

where

Zt =

2
64
� lnxt

� lnPt

lnRat

3
75 (60)

As in Del Negro and Schorfheide (2004), measurement equations are:

� lnxt = ln  +� ext + ezt (61)

� lnPt = ln�� + e�t
lnRat = 4[(ln r� + ln��) +fRt]

The system is characterized by the following set of parameters:

� = [ln ; ln��; ln r�; �; � ;  1;  2; �R; �g; �z; �R; �g; �Z ]
0

Taking into account the state, endogenous and observable variables, we can write the matrices:
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A =

2
64
0:5 0 0

0 0:8 0

0 0 0:3

3
75

B =

2
64
0:2510 0 0

0 0:63 0

0 0 0:8750

3
75

C =

2
64
�3:293 0:7251 0:0476

�0:1551 �0:0932 0:0169

0:3631 �0:0246 0:0157

3
75

D =

2
64
�0:5476 �0:0615 0:1045

0 0:63 0

0 0 0:8750

3
75

A�BD�1C =

2
64
0:3222 0:3295 0:0217

0:1551 0:8932 �0:0169

�:3631 0:0246 0:2843

3
75

The eigenvalues vector is:

eig =

2
64
0:9742

0:2804

0:2804

3
75

The eigenvalues are all strictly less than one in absolute value, then a in�nite-order VAR can be

written. The A�BD�1C matrix is said to be stable and the VAR can match up with the theory.

The linearized DSGE model is written as:

Yt = FYt�1 +Gzt

zt = Z1zt�1 + "t

Yt =

2
64
ext
e�t
fRt

3
75 ;F =

"
A 0

C 0

#
;G =

"
B

D

#

the vector Yt has dimension n + r � 1 (in this case 6x1). The vector zt has dimension m = 3:

Suppose the number of observable variables is equal to the number of shocks (m = r + n), if G�1
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exists,

Yt = FYt�1 +Gzt

Gzt = (Yt � FYt�1)

zt = G�1 (Yt � FYt�1) then

zt�1 = G�1 (Yt�1 � FYt�2)

substituting zt�1 into

zt = Z1zt�1 + "t

zt = Z1(G
�1 (Yt�1 � FYt�2)) + "t

It is possible to �nd a restricted VAR(2) representation of the system:

Yt = FYt�1 +G(Z1(G
�1 (Yt�1 � FYt�2)) + "t)

Yt =
�
F +GZ1G

�1
�
Yt�1 �

�
GZ1G

�1F
�
Yt�2 +G"t

Yt = �1Yt�1 +�2Yt�2 + �t

where the VAR innovations �t = G"t are a rotation of the a structural shocks vector "t: In this

example, m < r+n (3<3+3), the system is singular. To obtain a non-singular VAR representation,

some of the observable variables must be dropped from the system to satisfym = r+n. In any cases,

a VAR(2) representation (as discussed in Ravenna (2007)) is consistent with the DSGE model.

It is possible to detect the true VARMA representation:

assume [I �AL] is invertible

xt = Axt�1 +Bzt

xt �Axt�1 = Bzt

xt[I �AL] = Bzt

xt�1[I �AL] = Bzt�1

xt�1 = [I �AL]�1BLzt

substituting into

yt = Cxt�1 +Dzt

yt = C
�
[I �AL]�1BLzt

�
+Dzt

yt = Dzt + CH(L)BLzt (62)
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where H(L) = [I �AL]�1 is a lag polynomial of potentially in�nite order.

Suppose a VARMA representation for Z(L) = I and r = m (as in this case).

If zt = "t (62) is a VMA representation of yt. If D
�1 is invertible (62) can be written as:

yt = &t + CH(L)BD
�1L&t

where &t = D"t = Dzt is the reduced form innovations vector. The inverse matrix of H(L)

can be written in terms of its determinant jH(L)j of order n in the lag operator L and the adjoint

matrix VG(L) of order (n� 1) in L :

H(L)�1 = VG(L)jH(L)j
�1

Therefore:

jH(L)jyt = jH(L)j&t + CVG(L)BD
�1L&t = H� (L) &t (63)

This equation is a VARMA(n; n). Consequently, the DSGE model has a VARMA(3,3) repre-

sentation.
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Appendix 3: Another Forward-Looking MonteCarlo
Experiment

The DGP of the forward-looking arti�cial data is a VAR(1). Tables A2 and A3 show that adding

more lags than the VAR(1), the optimal lambda is increasing and the DSGE-VAR approaches to

be the DSGE model with an in�nite number of lags.

TABLE A2. MonteCarlo experiment with forward-looking data

DSGE-VAR(1) DSGE-VAR(2) DSGE-VAR(3) DSGE-VAR(4)

b� Frequency b� Frequency b� Frequency b� Frequency

0.09 27 0.17 28 0.2 2 0.2 2

0.1 43 0.2 36 0.24 12 0.24 1

0.17 19 0.24 11 0.25 19 0.28 8

0.2 7 0.25 14 0.28 20 0.3 11

0.24 1 0.28 6 0.3 17 0.31 22

0.25 1 0.3 3 0.31 19 0.35 29

0.31 1 0.4 2 0.35 8 0.4 23

0.35 1 0.4 2 0.6 1

0.9 1 0.7 1

0.9 2

DSGE-VAR(5) DSGE-VAR(6) DSGE-VAR(7) DSGE-VAR(8)

b� Frequency b� Frequency b� Frequency b� Frequency

0.3 4 0.3 1 0.4 2 0.5 8

0.31 2 0.35 3 0.5 28 0.6 10

0.35 19 0.4 21 0.6 20 0.7 48

0.4 48 0.5 45 0.7 39 0.8 1

0.5 23 0.6 11 0.8 1 0.9 25

0.6 2 0.7 14 0.9 8 1 8

0.7 1 0.8 1 1 2

0.9 1 0.9 4
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TABLE A3. Summary Table

AIC SIC HQ opt lambda Ratio

Lag Frequency Lag Frequency Lag Frequency Lag Frequency Lag Frequency

1 93 1 100 1 99 3 1 1 24

2 5 2 1 4 1 2 35

3 1 6 10 3 26

4 1 7 31 4 15

8 57
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Appendix 4: The Backward-Looking Model (Rudebusch
and Svensson, 1998 and Lindé, 2001)

The Rudebusch and Svensson model consists of AS and AD equations which explain the output

gap (y) (the percentage deviation of output from its steady state level), the in�ation rate (�) and

the monetary policy (i). A third equation concerns the monetary policy instrument, the short-term

interest rate (i) is considered.

The economy is described by the AS and AD equations and an interest rate equation which

follows an autoregressive process:

�t = ��1�t�1 + ��2�t�2 + ��3�t�3 + ��4�t�4 + �yyt�1 + "
�
t (64)

yt = �y1yt�1 + �y2yt�2 + �r

4X

j=1

1

4
(i� �)t�j + "

y
t (65)

it = it�1 + "
i
t (66)

The estimation values of the parameter set is presented in Table A4:

TABLE A4. From Rudebusch and Svensson (RS) (1998) and Lindé (2001)

RS LINDE� LINDE� LINDE� LINDE�

Whole sample Whole sample Burns Volcker Greenspan

1961Q1-1996Q2 1970Q1-1997Q4 1970Q1-1978Q1 1979Q3-1987Q2 1987Q3-1997Q4

AS

��1 0.7 0.559 0.062 0.136 0.174

��2 -0.1 0.293 0.133 0.140 0.077

��3 0.28 0.129 0.062 0.051 0.042

��4 0.12 0.019 0.041 0.022 0.002

�y 0.14 0.052 0.496 0.410 -0.003

�� 3.46 4.47 5.39 2.65

AD

�y1 1.16 0.824 0.474 0.476 0.694

�y2 -0.25 0.099 0.332 0.327 0.214

�r -0.10 -0.015 0.017 -0.041 -0.014

�y 2.24 2.83 3.32 2.00
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The backward-looking model has an exact VAR with 3 lags. The convenient state-space repre-

sentation is:

Xt = AXt�1 + �t (67)

where

Xt =

2
6666666666666666666666664

�t

yt

it

�t�1

�t�2

�t�3

yt�1

yt�2

yt�3

it�1

it�2

it�3

3
7777777777777777777777775

;Xt�1 =

2
6666666666666666666666664

�t�1

yt�1

it�1

�t�2

yt�2

it�2

�t�3

yt�3

it�3

�t�4

yt�4

it�4

3
7777777777777777777777775

; �t =

2
6666666666666666666666664

"�t

"yt

"it

0

0

0

0

0

0

0

0

0

3
7777777777777777777777775

A =

2
6666666666666666666666664

��1 �y 0 ��2 0 0 ��3 0 0 ��4 0 0

��r
4 �y1 ��r

4 ��r
4 �y2 ��r

4 ��r
4 0 ��r

4 ��r
4 0 ��r

4

0 0  0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

3
7777777777777777777777775

The three shocks are distributed as a standard normal. In this case, the backward-looking

arti�cial data can be represented by a VAR with 3 lags.
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Appendix 5: Forecasting

In this Section, forecasting evaluation is presented for MonteCarlo experiments and for empirical

analysis in the real world.

The MonteCarlo analysis is completed by considering the out-of-sample forecasting performance

of DSGE-VAR models in arti�cial world. These models are estimated over the sample from the

�rst quarter of 1981 to the last quarter of 1997 and the out-of-sample performance is used for the

period spanning from the �rst quarter of 1998 to the last quarter of 2001 (16 observations in the

forecasting sample). The most used indicator is the Root Mean Squared Error of the forecasting

errors from the di¤erent models, and is computed as follows:

RMSEy =

vuut 1

16

16X

h=1

�
yt+h � byt+hjt

�2

y = [� lnxt;� lnPt; lnRt]

where byt+hjt is the mean forecast computed as the average across draws and t = 1997 : 4:
In this case, RMSE for each lag of the di¤erent DSGE-VAR model in each replication of the

MonteCarlo experiment is computed. In Table A1, for each DSGE-VAR (from 1 to 8 lags), RMSE,

the minimum, the maximum and the mean value across the 100 replications in the experiments, for
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the three variables (real GDP, CPI, Interest Rate) are reported for forward-looking model ad DGP.

TABLE A5. Forecasting in MonteCarlo experiment with forward-looking as DGP

MEAN MAX MIN MEAN MAX MIN

DSGE-VAR(1) DSGE-VAR(5)

� lnxt 0.66 0.87 0.52 � lnxt 0.66 0.89 0.48

� lnPt 0.33 0.42 0.24 � lnPt 0.32 0.42 0.21

lnRt 0.94 1.83 0.59 lnRt 0.99 1.40 0.65

DSGE-VAR(2) DSGE-VAR(6)

� lnxt 0.65 0.85 0.51 � lnxt 0.66 0.85 0.48

� lnPt 0.34 0.44 0.26 � lnPt 0.34 0.45 0.24

lnRt 0.99 1.87 0.59 lnRt 1.36 2.50 0.79

DSGE-VAR(3) DSGE-VAR(7)

� lnxt 0.64 0.92 0.46 � lnxt 0.66 0.85 0.49

� lnPt 0.31 0.39 0.23 � lnPt 0.35 0.46 0.25

lnRt 0.99 1.51 0.61 lnRt 1.34 2.27 0.69

DSGE-VAR(4) DSGE-VAR(8)

� lnxt 0.68 0.94 0.47 � lnxt 0.65 0.84 0.46

� lnPt 0.32 0.40 0.25 � lnPt 0.32 0.43 0.24

lnRt 1.06 1.73 0.71 lnRt 1.23 2.01 0.69

Taking into account RMSE for each variable across lags, there is no any clear indication con-

cerning the best forecasting evaluation. However, it seems that a DSGE-VAR with 3 lags has the

best forecasting performance for real GDP and CPI and DSGE-VAR with only one lag has the best

performance in case of FFR.

In Table A2, the forecasting evaluation in MonteCarlo experiment is presented when parameters

of the backward-looking model are calibrated by using the whole sample calibration.
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TABLE A6. Forecasting Backward-looking model as DGP (Whole Sample)

MEAN MAX MIN MEAN MAX MIN

DSGE-VAR(1) DSGE-VAR(5)

� lnxt 0.66 0.81 0.51 � lnxt 0.67 0.84 0.51

� lnPt 0.33 0.43 0.22 � lnPt 0.32 0.43 0.24

lnRt 0.95 1.72 0.55 lnRt 1 1.66 0.65

DSGE-VAR(2) DSGE-VAR(6)

� lnxt 0.65 0.86 0.51 � lnxt 0.67 0.79 0.49

� lnPt 0.34 0.44 0.25 � lnPt 0.34 0.44 0.21

lnRt 0.97 1.85 0.50 lnRt 1.37 2.53 0.79

DSGE-VAR(3) DSGE-VAR(7)

� lnxt 0.65 0.87 0.47 � lnxt 0.65 0.81 0.53

� lnPt 0.30 0.41 0.20 � lnPt 0.35 0.46 0.27

lnRt 1.03 1.83 0.62 lnRt 1.24 1.98 0.74

DSGE-VAR(4) DSGE-VAR(8)

� lnxt 0.66 0.91 0.50 � lnxt 0.64 0.88 0.41

� lnPt 0.33 0.44 0.20 � lnPt 0.32 0.42 0.22

lnRt 1.01 1.66 0.60 lnRt 1.28 2.02 0.59

As before, there is no evidence that a certain model is the best in forecasting performance. In

this second table, forecasting evaluation in MonteCarlo experiment is presented where parameters

of the backward-looking model are calibrated by using only Greenspan sample calibration.
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TABLE A7. Forecasting Backward-looking model as DGP(Greenspan Sample)

MEAN MAX MIN MEAN MAX MIN

DSGE-VAR(1) DSGE-VAR(5)

� lnxt 0.66 0.86 0.53 � lnxt 0.66 0.84 0.49

� lnPt 0.33 0.42 0.25 � lnPt 0.32 0.43 0.23

lnRt 0.94 1.56 0.59 lnRt 0.97 1.71 0.65

DSGE-VAR(2) DSGE-VAR(6)

� lnxt 0.64 0.81 0.48 � lnxt 0.66 0.90 0.50

� lnPt 0.34 0.45 0.25 � lnPt 0.35 0.46 0.27

lnRt 0.99 2.08 0.51 lnRt 1.36 2.45 0.81

DSGE-VAR(3) DSGE-VAR(7)

� lnxt 0.64 0.92 0.41 � lnxt 0.66 0.83 0.49

� lnPt 0.31 0.39 0.23 � lnPt 0.36 0.45 0.27

lnRt 0.99 1.50 0.65 lnRt 1.31 2.51 0.61

DSGE-VAR(4) DSGE-VAR(8)

� lnxt 0.67 0.85 0.44 � lnxt 0.63 0.85 0.47

� lnPt 0.32 0.39 0.21 � lnPt 0.31 0.42 0.24

lnRt 1.05 1.67 0.54 lnRt 1.15 1.93 0.67

There is no evidence that a certain model is the best in forecasting performance, however, it

seems that a DSGE-VAR with 8 lags has the best forecasting performance for real GDP and CPI

and DSGE-VAR with only one lag has the best performance in case of FFR.

As done with MonteCarlo experiments, the exercise with real data can be completed by a

forecasting evaluation.

The next tables analyze the forecasting performance in the real world. Table A4 shows the

forecasting evaluation for the small sample size of 80 quarters from 1981:01 to 2001:04. Instead,

Table A5 shows the forecasting evaluation for the large sample of 160 quarters from 1961:01 to

2001:04. The b� has been found for each sample is used in this new estimation for the forecasting
performance. The sample of the estimation for the forecasting is, respectively, from 1981 to 1997,

in case of a small sample (with b� estimated for 80 quarters) and from 1961 to 1997, in case of a

large sample (with b� estimated for 160 quarters).

53



TABLE A8. The Forecasting Performance of alternative models: small sample

MODEL � lnxt � lnPt lnRt

RMSE RMSE RMSE

VAR(4) 80Q 0:62 0:29 0:87

DSGE 0:62
(1:00)

0:27
(0:93)

0:72
(0:83)

DSGE-VAR(4)(�� = 0:6) 80Q 0:61
(0:98)

0:26
(0:90)

0:80
(0:92)

RMSE relative to the VAR(4) within brackets

TABLE A9. The Forecasting Performance of alternative models: large sample

MODEL � lnxt � lnPt lnRt

RMSE RMSE RMSE

VAR(4) 160Q 0:65 0:26 0:78

DSGE 0:62
(0:95)

0:27
(1:04)

0:72
(0:92)

DSGE-VAR(4)(�� = 0:3) 160Q 0:83
(1:28)

0:26
(1:00)

0:77
(0:99)

RMSE relative to the VAR(4) within brackets

Considering the results shown in Tables A4-A5, the hybrid model, DSGE-VAR does not seem

to be always the best model in terms of the forecasting performance. Moreover, it is interesting

to note that using a larger sample in DSGE-VAR model does not improve as one would expect

the forecast performance. This aspect may depend on the priors that have been considered to be

the same for all the samples. However, in case of DSGE, the interest rate has the best forecast

performance in both samples.

In Table A6-A7, the forecasting performance is evaluated by considering the most parsimonious

model with only one lag for VAR and DSGE-VAR. Moreover, DSGE-VAR are evaluated on the two

di¤erent samples: the small sample and the large one.
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TABLE A10. The Forecasting Performance of alternative models: VAR(1), small sample

MODEL � lnxt � lnPt lnRt

RMSE RMSE RMSE

VAR(1) 0:62 0:29 0:90

DSGE 0:62
(1:00)

0:27
(0:93)

0:72
(0:80)

DSGE-VAR(1)(�� = 0:15) 80Q 0:59
(0:95)

0:26
(0:90)

1:04
(1:16)

RMSE relative to the VAR(1) within brackets

TABLE A11. The Forecasting Performance of alternative models: VAR(1), large sample

MODEL � lnxt � lnPt lnRt

RMSE RMSE RMSE

VAR(1) 0:62 0:38 0:97

DSGE 0:62
(1:00)

0:27
(0:71)

0:72
(0:74)

DSGE-VAR(1)(�� = 0:1) 160Q 0:63
(1:02)

0:26
(0:68)

1:41
(1:45)

RMSE relative to the VAR(1) within brackets

In this case, the best performed model is the DSGE-VAR (apart for FFR) representation, in

case of a small sample; instead in case of a larger sample, there is no models with the best forecast

performance. However, as before, RMSE for the interest rate is the smallest one in case of DSGE

model.
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Appendix 6: Other Results

TABLE A12. MonteCarlo experiment with backward-looking data (Whole Sample)

unitary variance shock

DSGE-VAR(1) DSGE-VAR(2) DSGE-VAR(3) DSGE-VAR(4)

b� Frequency b� Frequency b� Frequency b� Frequency

0.09 76 0.2 40 0.2 1 0.25 2

0.1 8 0.24 11 0.24 7 0.28 1

0.13 14 0.25 38 0.25 34 0.3 1

0.2 2 0.28 1 0.28 4 0.31 25

0.31 10 0.31 33 0.35 21

0.35 8 0.4 45

0.4 13 0.5 1

0.6 4

DSGE-VAR(5) DSGE-VAR(6) DSGE-VAR(7) DSGE-VAR(8)

b� Frequency b� Frequency b� Frequency b� Frequency

0.31 4 0.4 11 0.5 2 0.6 19

0.35 4 0.5 9 0.6 32 0.8 72

0.4 45 0.6 41 0.7 3 1 9

0.5 8 0.8 36 0.8 54

0.6 28 1 3 1 9

0.8 11
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APPENDIX A13 MonteCarlo experiment with backward-looking data (Greenspan Sample)

unitary variance shock

DSGE-VAR(1) DSGE-VAR(2) DSGE-VAR(3) DSGE-VAR(4)

b� Frequency b� Frequency b� Frequency b� Frequency

0.09 57 0.17 2 0.24 8 0.3 8

0.1 29 0.2 12 0.25 8 0.31 25

0.13 6 0.24 27 0.3 29 0.35 17

0.2 2 0.25 25 0.31 37 0.4 4

0.24 4 0.3 14 0.35 12 0.5 43

0.25 2 0.31 18 0.4 2 0.6 2

0.35 2 0.5 4 0.9 1

DSGE-VAR(5) DSGE-VAR(6) DSGE-VAR(7) DSGE-VAR(8)

b� Frequency b� Frequency b� Frequency b� Frequency

0.35 7 0.5 66 0.5 21 0.5 1

0.4 3 0.6 5 0.6 9 0.6 5

0.5 72 0.7 4 0.7 6 0.7 5

0.6 12 0.9 11 0.9 28 0.9 30

0.9 3 1 14 1 36 1 59

1 3
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