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Smoothing Transition Autoregressive (STAR) Models with Ordinary Least
Squares and Genetic Algorithms Optimization

Eleftherios Giovanis
Abstract

In this paper we present, propose and examine additional membership functions as
also we propose least squares with genetic algorithms optimization in order to find the
optimum fuzzy membership functions parameters. More specifically, we present the
tangent hyperbolic, Gaussian and Generalized bell functions. The reason we propose
that is because Smoothing Transition Autoregressive (STAR) models follow fuzzy
logic approach therefore more functions should be tested. Some numerical
applications for S&P 500, FTSE 100 stock returns and for unemployment rate are
presented and MATLAB routines are provided.

Keywords: Smoothing transition; exponential, logistic; Gaussian; Generalized Bell
function; tangent hyperbolic; stock returns; unemployment rate; forecast; Genetic
algorithms; MATLAB

1. Introduction

In the 1950s and the 1960s several computer scientists independently studied
evolutionary systems with the idea that evolution could be used as an optimization
tool for engineering problems. The idea in all these systems was to evolve a
population of candidate solutions to a given problem, using operators inspired by
natural genetic variation and natural selection. Genetic Algortihms (GA) is a method
for moving from one population of "chromosomes" e.g., strings of ones and zeros, or
"bits", to a new population by using a kind of "natural selection" together with the
genetics—inspired operators of crossover, mutation, and inversion. Each chromosome
consists of "genes", each gene being an instance of a particular "allele" (e.g., 0 or 1).
The selection operator chooses those chromosomes in the population that will be
allowed to reproduce, and on average the fitter chromosomes produce more offspring
than the less fit ones. Crossover exchanges subparts of two chromosomes, roughly
mimicking biological recombination between two single—chromosome organisms.
Mutation randomly changes the allele values of some locations in the chromosome.

We propose some additional fuzzy membership functions as well the tangent
hyperbolic function, which is used in neural networks with some appropriate
modifications. We do not present the process and the linearity tests or the tests

choosing either exponential or logistic smoothing functions. Additionally we apply



ordinary least squares with genetic algorithms in order to compute and choose the

parameters of fuzzy membership functions.

2. Methodology

The smoothing transition auto-regressive (STAR) model was introduced and

developed by Chan and Tong (1986) and is defined as:
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,where u, ~ (0,02), 70 and myy are the intercepts in the middle (linear) and outer
(nonlinear) regime respectively w, = (y.;.. y+;) is the vector of the explanatory
variables consisting of the dependent variable with j=/...p lags, y.4 is the transition
variable, parameter c is the threshold giving the location of the transition function and
parameter y is the slope of the transition function. The membership functions we
examine are exponential, logistic, tangent hyperbolic, generalized bell function and
Gaussian defined by (2)-(6) respectively.
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The STAR model estimation is consisted by three steps according to Terdsvirta
(1994).

a) The specification of the autoregressive (4R) process of j=1,... p. One approach is to
estimate 4R models of different order and the maximum value of j can be chosen

based on the 4/C information criterion Besides this approach, j value can be selected



by estimating the auxiliary regression (7) for various values of j=/,...p, and choose

that value for which the P-value is the minimum, which is the process we follow.

b) The second step is testing linearity for different values of delay parameter d. We

estimate the following auxiliary regression:

R=B+fw+. S BR R, +SBRRIASAR R +e
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The null hypothesis of linearity is Hy: 2 = B3 = B4 =0. In order to specify the
parameter d the estimation of (7) is carried out for a wide range of values /<d<D and
we choose d=1,...,6 In the cases where linearity is rejected for more than one values
of d, then d is chosen by the minimum value of p(d), where p(d) is the P-value of the
linearity test. After we find order p and d we estimate 1 with ordinary least squares

and we minimize function (8) in order to find the optimum parameters.
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, where )’ is the target-actual, y is network’s output variable and mse is the mean

squared error The steps of genetic algorithms are (Béack, 1996; Mitchell, 1996)

1. Start with a randomly generated population of n-bit chromosomes, which are
the candidate solutions. In the case we do not use bit or binary encoding, but
we use real number encoding based on the range of the input data. The
chromosomes are equally with the number of weights for both input-to-hidden
layer and hidden-to-output layer.

2. Calculate the fitness f{x) of each chromosome x in the population

3. Repeat the following steps until n offspring have been created:

a. select a pair of parents chromosomes of the current population and
compute the probability of selection being an increasing function of
fitness. In this case we take the roulette wheel selection algorithm.
Also the selection process is one with replacement meaning that the
same chromosome can be selected more than once to become a parent.

b. The next step is the crossover. We use one-point crossover process

with probability p. cross over the pair at a chosen point. If no crossover



takes place we form two offspring that are exact copies of their
respective parents.
c. Mutate the two offspring with probability p,, and place the resulting
chromosomes in the new population.
4. Replace the current population with the new population.

5. Go to step 2.

We choose only 10 iterations for faster computation time. The population size is
30. It should be noticed that genetic algorithms is a random process so it not
absolutely always a good approach. But before we reject something, which

unfortunately happens very often, we should try it.

3. Data

In the first example we examine two stock index returns, S&P 500 and FTSE 100
in daily frequency for the period March to December of 2009. The last 20 trading
days are left for out-of-sample forecasts of the test period. In the second application
example we examine the unemployment rate of USA for period 1995-2009 in

monthly frequency and 2009 is left for testing.

4. Empirical results

We take and AR(1) for both S&P 500 and FTSE 100, while we takel and 2 lags for
transition function for S&P 500 and FTSE 100 respectively. The interval for
parameters ¢, Y and b are respectively, [-0.03 0.03], [1 5] and [0.5 2]. The correct
percentage sign for stock index returns are reported in table 1, where you can make
your own conclusions. Additionally, for example in figures 1 and 2 we present the in-
sample forecasts for FTSE 100 with TSTAR and GARCH, which the last one is
mainly used. Even if we take a very long sample for GARCH, because of the statistic

properties, the forecasts will be again a “dead-line”.



Table 1. Correct percentage sign for S&P 500 and FTSE 100

Indices ESTAR | LSTAR | TSTAR | GBELL STAR | GAUSS STAR
S&P 500 70.00 70.00 70.00 75.00 70.00
c -0.0238 -0.0401 -0.0213 -0.0454 -0.0498
4.9277 3.6929 2.1523 3.1188 1.1740
1.8680
Pe 0.20 0.20 0.20 0.20 0.20
Pm 0.05 0.01 0.01 0.005 0.001
FTSE 100 60.00 55.00 55.00 60.00 75.00
c -0.0080 -0.0302 -0.0077 -0.0170 -0.0592
3.5069 2.3413 3.4949 2.8428 1.1752
2.7847
Pe 0.20 0.20 0.20 0.20 0.20
Pm 0.01 0.01 0.008 0.001 0.001
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Fig. 1 In-sample forecasts for FTSE with TSTAR
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Fig. 2 In-sample forecasts for FTSE 100 with GARCH (1,1)

In the last example we examine the unemployment rate of USA during period
1995-2009 and year 2009 is left for forecasting, but for one-step ahead predictions.
We estimate for AR(1) and we take delay lag order 1 for transition function. In table 2
we report the estimated results. The procedure for population initialization is the same
with that we took in stock returns, except from ESTAR and LSTAR, where the
initialization and the optimum values of parameters ¢ and y are based on the minimum
and maximum values of inputs, which is the dependent variable with one lag.
Additionally, it might be more appropriate to take the first differences for
unemployment rate, because there is possibility to reject stationarity, but it is just an
example in order to encourage the use and examination of alternatives procedures, as
in any cases, as the practitioners and professionals know better, the conventional
econometric modelling have failed in many cases. For literature review there are

many case studies.



Table 2. Estimating results for US unemployment rate

Model Linear part Nov-Linear part
ESTAR 10 T M0 1%3
0.9394 1.1615 0.8348 -0.1374
(-1.4222) | (10.364)* | (1.2899) (-1.7396)%**
c 5.9593 Pe 0.2
y 4.8039 P 0.01
LSTAR o T 0 21
0.1041 0.9798 -0.5688 0.1057
(0.4057) | (16.756)* | (-1.7543)*** | (1.6578)%**
c 5.0330 Pe 0.2
Y 6.2709 Pm 0.01
TSTAR o T Mo 1931
0.0159 0.9943 -1.2196 0.0458
(0.0661) | (18.425)* | (-1.1011) (1.9928)**
c 4.6103 Pe 0.2
y 5.9207 Pm 0.01
GBELL_STAR 0 T M0 1%3
-0.5497 1.1583 5.5001 -1.4226
(-1.0424) | (13.644)* | (2.0908)** | (-2.1354)**
c -0.0206 Pe 0.2
y 4.6613 Pm 0.01
b 2.8522
GAUSS_STAR o T o 1931
0.5338 0.7811 -1.5062 -0.4674
(2.4229)** | (8.3290)* | (-1.8918)*** | (2.2641)**
c -0.0222 Pe 0.2
y 3.7881 Pm 0.01

t-student in parentheses, *, ** and *** indicate statistical significant in 0.01,
0.05 and 0.10 respectively.
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Fig. 3 Out-of-sample forecasts for US unemployment

d)GBELL_STAR and ¢)GAUSS_STAR

(e)

rate with a) ESTAR, b)LSTAR, c) TSTAR,



Conclusions

In this paper we proposed three additional membership functions for STAR modelling
as also a very simple approach for computing the membership functions parameters
using genetic algorithms. More functions can be used as the triangular, trapezoidal or
s-shaped among others, as also fuzzy rules can be obtained on order to improve the

estimations concerning the imprecision.
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Appendix

MATLAB routine
Smoothing transition functions with ordinary least squares
algorithms optimization

clear all;

% Load input data
load file.mat % load the file with data

nforecast=20
y=data (l:end-nforecast, 1)
t=length (y)

d=2;
x=lagmatrix(y,d)
iii=1;
stdev=std(y)

$Some initial values for parameters c, gamma and b
c=0

gamma=1

be=2

% choose STAR function
model=5

% Set up the population size
popsize=30;

pc=0.2;
pm=0.01;

[

lb ¢c= 0.03 % bounds of the parameters c to be optimized
ub c=-0.03

[

and

lb gamma= 1 % bounds of the parameters gamma to be optimized

ub gamma=5

b=0.5 % bounds of the parameters b to be optimized
b

[o)

5 Set up random population for c

Range ¢ = repmat ((ub_c-1b c), [popsize 1]);
Lower ¢ = repmat (lb ¢, [popsize 1]);
pop_c= rand(popsize,l) .* Range c + Lower c;

% Set up random population for gamma

Range gamma = repmat ((ub_gamma-lb gamma), [popsize 1]);
Lower gamma = repmat (lb gamma, [popsize 1]);
pop gamma= rand(popsize,l) .* Range gamma + Lower gamma;

e

% Set up random population for b

Range b = repmat ((ub b-1b b), [popsize 1]);
Lower b = repmat (lb_b, [popsize 1]);

pop b= rand(popsize,l) .* Range b + Range b;

genetic



oo

For ESTAR, GBELL STAR and GAUSS STAR is better to initialize as

$Range _c = repmat ((ub_c-1b c), [popsize 1]);

$pop_c= rand(popsize,l) .* Range cC

%Range gamma = repmat ((ub_gamma-lb gamma), [popsize 1]);
$pop gamma= rand(popsize,l) .* Range gamma

if model==

pop=[pop_c pop gamma pop b]

else
pop=[pop_gamma pop_ cC]

end

Chromosome=pop

for p=1l:1iii
vlag(:,p)=lagmatrix(y,p)
end

te=length(ylag)

ylag=ylag (iii+d+1l:t, :)
y=y (iii+d+1:t, :)
X=x (1ii+d+1:t, :)
for iterations =1:10
[nkk,nii] = size (pop):;
Chromosome = pop;
for jj = l:nkk

Xl=[ones (size(y)) ylag]

if model== % ESTAR (exponential)

ESTAR 1= l-exp(-Chromosome (jJj,1)./stdev.* ((x-Chromosome (jj,2))."2))
Y=X1

for p=1l:1iii+l

h(:,p)=ESTAR 1.*Y(:,p)

end

elseif model== % LSTAR (logistic)

LSTAR 1=1./(l+exp (-Chromosome (jj,1).* (x-Chromosome (jj,2))))
Y=X1

for p=l:1ii+1
h(:,p)=LSTAR 1.*Y(:,p)

end

elseif model== % TAHN STAR (tangent hyperbolic)
TSTAR 1=(2./(l+exp(-2*Chromosome (jj, 1) .* (x-Chromosome (jj,2))))-1)
Y=X1

for p=l:1iii+l

h(:,p)=TSTAR 1.*Y(:,p)

end

elseif model== % Generalized Bell function
GBELL STAR 1=(1./(l+abs ((x-

Chromosome (jj, 1)) /Chromosome (jj,2)) . "2*Chromosome (J7J,3)))



Y=X1

for p=l:1ii+1
h(:,p)=GBELL STAR 1.*Y(:,p)
end

elseif model== % Gaussian

GAUSS_STAR l=exp(-(x - Chromosome (jj,1))."2/(2*Chromosome (jj,2)"2))
Y=X1

for p=1l:1iii+l

h(:,p)=GAUSS STAR 1.*Y(:,p)

end

end

X=[X1 h]

X2=[X1 x]

bols=inv (X'*X)*X'*y

yyl=X*bols
e=yyl-y
error=sum(sum(e.”2))

object value(jj, :)=1/2*mse (e)
end
fitness value = object value;

total fit=sum(fitness value);

fitness value=fitness value/total fit;
fitness value=cumsum(fitness_value);
[nkk,nii]=size (pop);

ms=sort (rand(nkk, 1)) ;

fitin=1;

newin=1;

while newin<=nkk

if (ms (newin))<fitness value (fitin)

newpop (newin, :)=pop (fitin, :);
newin=newin+1;

else

fitin=fitin+1;

end

end

[

% crossover between chromosoms
pPop = newpop;

length chrom = size (pop,2);
cp = ceil(rand(size(pop,1)/2,1)* (length chrom-1));
cp = cp.*(rand(size (cp))<pc):;
for i = 1l:length(cp);

newpop ([2*1-1 2*1i]
pop ([2*1 2*i-1],cp (1)
end

;) = [pop([2*%i-1 2*i],1l:cp(i))
+1l:length chrom)];

pop = newpop;
mutated pop = find(rand(size (pop))<pm);
newpop = pop;



newpop (mutated pop) = l-pop(mutated pop);
% finding the best individual
pPop = newpop;

best individual=pop(l,:);
best fit=fitness value(l);
for jj=2:nkk

if fitness value(jj)<best fit
best individual=pop (jj,:);
best fit=fitness value(jJ):;
end

end

iterations

array best ( iterations )= best fit;
index iter ( iterations ) = iterations;
end

best gen=best individual
if model==4

c=best gen(:,1)
gamma=best gen(:,2)
be=best gen(:, 3)

else

gamma=best gen(:,1)

c=best gen(:,2)

end

if model== % ESTAR (exponential)
ESTAR 2= l-exp(-gamma.* ((x-c)."2))

Y=X1

f=y(end, :) *ESTAR 2 (end, :)

for p=l:1ii+1
h(:,p)=ESTAR 2.*Y(:,p)

end

elseif model==2 % LSTAR (logistic)
LSTAR 2=1./(l+exp(-gamma.* (x-c)))

Y=X1

f=y(end, :) *LSTAR 2 (end, :)

for p=1l:1iii+l
h(:,p)=LSTAR 2.*Y(:,p)

end

elseif model== % TAHN STAR (tangent hyperbolic)
TSTAR 2=(2./ (l+exp(-2*gamma.* (x-c)))-1)

Y=X1

f=y(end, :) *TSTAR 2 (end, :)

for p=1l:1iii+l
h(:,p)=TSTAR 2.*Y(:,p)



end

[o)

elseif model==4 % Generalized Bell function

GBELL STAR 2=(1./(l+abs((x-c)/gamma)."2*be))
Y=X1
f=y(end, :) *GBELL STAR 2 (end, :)

for p=1l:1iii+1
h(:,p)=GBELL STAR 2.*Y(:,p)
end

[o)

elseif model==5 % Gaussian

GAUSS STAR 2=exp(-(x - c)."2/(2*gamma”2))
Y=X1
f=y (end, :) *GAUSS STAR 2 (end, :)

for p=l:iii+1
h(:,p)=GAUSS_STAR 2.*Y(:,p)
end

end

X new=[Y h]

[nk ni]=size (X new)

bols new=inv (X new'*X new)*X new'*y
res=y-X new*bols new

s2 = (y-X new*bols new) '* (y-X new*bols new)/ (nk-ni);

Vb=s2*inv (X new'*X new); % Get the variance-covariance
matrix

se=sqrt (diag (Vb)) ; % Get coefficient standard errors

tstudent=bols new./se;
yf=X new*bols
[H,pValue,ARCHstat,CriticalValue] = archtest(res,2,0.05)

[o)

% Heteroskedasticity test

e2=res.*res;

X2=X.%X;

v=e2-x2* (e2'/x2"')"';

e2=e2-mean (e2) ';

te=length(res (:,1))*(1-(v'*v)/(e2'*e2));
ht=1-chi2cdf (te, length(x(1,:)))

$1jung box statistic for autocorrelation
[H,p_Jung,Qstat,CriticalValue] =lbgtest(res,2,0.05)

for kkk=1l:nk
if yf(kkk,:)>0
S _in sample (kkk, :)=1

elseif yf (kkk,:)<0
S _in sample (kkk, :)=0
end
end
Actual positive in sample=find(y==1)
Actual negative in sample=find (y==0)



Predicted positive in sample=find(S_in sample==1)
Predicted negative in sample=find(S_in sample==0)

Sum_ actual positive in sample=length (Actual positive in sample)
Sum_actual negative in sample=length (Actual negative in sample)

Sum predicted positive in sample=length (Predicted positive in sample)
Sum_predicted negative in sample=length (Predicted negative in sample)

Total predicted in sample=find(y==S_in sample)
Perc=(length(Total predicted in sample) /nk) *100

for ii=nforecast:-1:1
y=data(l:end-1ii, 1)

x=lagmatrix(y,d)

clear ylag

for p=1:1iii
vlag(:,p)=lagmatrix(y,p)
end

te=length(ylaqg)
t=length (y)

ylag=ylag (iii+d+1l:t, :)
y=y (1ii+d+1:t, :)

x=x (iii+d+1l:t, :)

X1=[ones (size(y)) ylag]

1if model== % ESTAR (exponential)
ESTAR 1= l-exp(-gamma.* ((x-c)."2))

Y=X1

f=y(end, :) *ESTAR 1 (end, :)

clear h

for p=l:1ii+1
h(:,p)=ESTAR 1.*Y(:,p)

end

elseif model==2 % LSTAR (logistic)
LSTAR 1=1./(l+exp(-gamma.* (x-c)))

Y=X1

f=y(end, :) *LSTAR 1 (end, :)

clear h

for p=l:1ii+1
h(:,p)=LSTAR 1.*Y(:,p)

end

elseif model== % TAHN STAR (tangent hyperbolic)
TSTAR 1=(2./(l+exp(-2*gamma.* (x-c)))-1)

Y=X1

f=y (end, :) *TSTAR 1 (end, :)



clear h

for p=l:1ii+1
h(:,p)=TSTAR 1.*Y(:,p)
end

[

elseif model== % Generalized Bell function

GBELL STAR 1=(1./(l+abs((x-c)/gamma) ."2*be))
Y=X1

f=y(end, :) *GBELL STAR 1 (end, :)

clear h

for p=l:1ii+1

h(:,p)=GBELL STAR 1.*Y(:,p)

end

[

elseif model== % Gaussian

GAUSS STAR l=exp(-(x - c)."2/(2*gamma”2))
Y=X1

f=y (end, :) *GAUSS STAR 1 (end, :)

clear h

for p=l:1ii+1

h(:,p)=GAUSS STAR 1.*Y(:,p)

end

end

X=[Y h]

yhat (ii, :)=[X(end, 1) y(end,:) X(end,3) f ]*bols
end

for iii=1l:nforecast
yfore(iii, :)=yhat (end-iii+1,:)
iii=iii+l

end

test y=data(end-nforecast+l:end, 1)

X3=[X1 h]
predict=X3*bols

tt=length (test vy)
for kkk=1l:tt
if test y(kkk,:)>0
S out of sample (kkk,:)=1

elseif test y(kkk,:)<0
S _out of sample (kkk, :)=0
end
end

for kkk=1l:tt
if yfore (kkk, :)>0



S(kkk,:)=1

elseif yfore (kkk, :)<0
S (kkk, :)=0
end
end
Actual positive out of sample=find(S out of sample==1)
Actual negative out of sample=find(S_out of sample==0)

Predicted positive out of sample=find(S==1)

Predicted negative out of sample=find(S==0)

Total predicted out of sample=find(S_out of sample==S)

Perc out sample=(length(Total predicted out of sample)/tt)*100

figure, plot(y(l:end-nforecast,:),'-r'); hold on; plot(yf,'-b'");
xlabel ('Periods')

ylabel ('Values")

hl = legend('Actual', 'forecasts',1l);

$title('Out of sample forecasts')

figure, plot(test y,'-r'); hold on; plot(yfore,'-b'");

figure, plot (index iter , array best );

The initialization for ESTAR, LSTAR and TSTAR is

) % bounds of the parameters c to be optimized

)
X))

lb= min (min (x
ub = max (max (

if model==4
pop=[pop_c pop gamma pop b]

else

pop=[pop_gamma pop_c]

end

Range = repmat ( (ub-1b), [popsize chromlengthl]) ;
Lower = repmat (lb, [popsize chromlengthl]);

pop= rand(popsize,chromlength) .* Range + Lower;



