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Abstract

Recent industry-based empirical studies among countries demonstrate that individual

industry’s per capita capital stock and output grow at industry’s own steady state

growth rate. The industry growth rate is highly correlated to industry’s technical

progress measured by total factor productivity TFP) of the industry. Let us refer

to this phenomenon as “unbalanced growth among industries.” Very few research

concerned with this phenomenon has been done yet. Some exceptions are Echevar-

ria (1997), Kongsamut, Rebelo and Xie (2001), and Acemoglu and Guerrieri (2008)

among others. However their models and analytical methods are different from mine.

Applying the theoretical method developed by McKenzie and Scheinkman in turnpike

theory, I now construct a multi-sector optimal growth model with a industry specific

Hicks-neutral technical progress and show that each sector’s per capita capital stock

and output grow at the rate of the sector’s technical progress.

JEL Classification: O14,O21,O24,O41
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1 Introduction

Since the seminal papers by Romer (1986) and Lucas (1988), economics has witnessed

a strong revival of interest in growth theory under the name of “Endogenous growth

theory.” Neoclassical optimal growth models have been applied as benchmarks and

studied intensively since the late 1960. However, these analytical models have a seri-

ous drawback: they are based on highly aggregated macro-production functions and

cannot explain the important empirical evidence that I discuss in the following sec-

tion. Recent industry-based empirical studies among countries clearly demonstrate

that growth in an individual industry’s per capita capital stock and output grow at

industry’s own growth rate, which is closely related to its technical progress measured

by total factor productivity (TFP) of the industry. For example, per capita capital

stock and output of the agriculture industry grow at 5% per annum along its own

steady-state, whereas they grow at 10% annually in the manufacturing industry, also

paralleling the industry’s steady state. Let us refer this phenomenon as “unbalanced

growth among industries.” The attempt to understand this phenomenon has gener-

ated a strong theoretical demand for constructing a multi-sector growth model, yet

very little progress has been made so far. Some exceptions are Echevarria (1997),

Kongsamut, Rebelo and Xie (2001), and Acemoglu and Guerrieri (2008). However

their models and analytical methods are different from mine. Setting up an optimal
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growth model with three sectors: primary, manufacturing and service, Echevarria

(1997) has applied a numerical analysis to solve the model. Kongsamut, Rebelo and

Xie (2001) has constructed the similar model to the one of Echevarria (1997), while

they have investigated the model under a much stronger assumption than her: each

sector produces goods with the same technology. On the other hand, Acemoglu and

Guerrieri (2008) has studied the model with two intermediate-goods sectors and sin-

gle final-goods sector. Note that the last two models will share a common character:

consumption goods and capital goods are identical. Contrastingly, my model pre-

sented here exhibits a sharp contrast with them. Since I assume that each good is

produced with a different technology, consumption goods and capital goods are com-

pletely different goods. As I will demonstrate later, this feature of the model will

make the characteristics of the model far complicated.

The optimal growth model with heterogeneous capital goods has been studied in-

tensively since the early 1970’ under the title of turnpike theory by McKenzie (1976,

1982, 1983 and 1986) and Scheinkman (1976). Turnpike theory shows that any op-

timal path converges asymptotically to the corresponding optimal steady state path

without initial stock sensitivity. In other words, the turnpike property implies that

the per capita capital stock and output of each industry eventually converge to an

industry-specific constant ratio. Therefore, turnpike theory too, cannot explain the

empirical phenomenon: unbalanced growth among industries. McKenzie (1998) has
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articulated this point: “Almost all the attention to asymptotic convergence has been

concentrated on convergence to balanced paths, although it is not clear that opti-

mal balanced growth path will exist. This type of path is virtually impossible to

believe in, if the model is disaggregated beyond the division into human capital and

physical capital, and new goods and new methods of production appear from time to

time.” An additional point is that the turnpike result established in a reduced form

model has not been fully applied to a structural neoclassical optimal growth model.

A serious obstacle in applying the results from the reduced form model is that the

transforming of a neoclassical optimal growth model into a reduced form model will

not yield a strictly concave reduced form utility function, but just a concave one.

In this context, McKenzie (1983) has extended the turnpike property to the case in

which the reduced form utility function is not strictly concave, that is, there is a flat

segment on the surface, which contains an optimal steady state. This flat segment

is often referred to as the Neumann-McKenzie facet. Yano (1990) has studied a neo-

classical optimal growth model with heterogeneous capital goods in a trade theoretic

context. However, in case of the Neumann-Mckenzie facet with a positive dimension,

Yano explicitly assumed the “dominant diagonal block condition” concerned with

the reduced form utility function ( see Araujo and Scheinkman (1978) and McKenzie

(1986)). Thus, he still did not fully exploit the structure of the neoclassical optimal

growth model, especially the dynamics of the path on the Neumann-McKenzie facet,
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to obtain the turnpike property.

By applying the theoretical method developed in turnpike theory, this study seeks

to fill the gap between the results derived by the theoretical research explained above

and the empirical evidence from recent studies at the industry level among countries.

First, I will set up a multi-industry optimal growth model, in which each industry ex-

hibits the Hicks-neutral technical progress with an industry specific rate. This model

will be regarded as a multi-industry optimal growth version of the Solow model with

the Hicks neutral technical progress. Second, I will rewrite the original model into

a per capita efficiency unit model. Third, I will transform the efficiency unit model

into a reduced form model, after which the method developed in turnpike theory will

be applied. The neighborhood turnpike theorem demonstrated in McKenzie (1983)

indicates that any optimal path will be trapped in a neighborhood of the correspond-

ing optimal steady state path when discount factors are sufficiently close to 1, and

the neighborhood can be minimized by choosing a discount factor arbitrarily close

to 1. I will demonstrate the local stability theorem by applying the logic used by

Scheinkman (1976): a stable manifold extends over today’s capital stock plane. As

we see later, the dynamics of the Neumann-McKenzie facet are important in demon-

strating both the theorems. Combining the neighborhood turnpike and the local

stability produces the complete turnpike property: any optimal path converges to a

corresponding optimal steady state when discount factors are sufficiently close to 1.
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For establishing both theorems, we assume generalized capital intensity conditions,

which are the generalized versions of those in a two-sector model. The complete turn-

pike property means that each sector’s optimal per capita capital stock and output

converge to its own steady state path with the rate of technical progress determined

by the industry’s TFP.

The paper is organized in the following manner: In Section 2, I will provide a

several empirical facts based on the recent database at the industry level among

countries. In Section 3, the model and assumptions are presented and show some

existence theorem. In Section 4, the Neumann-McKenzie facet is introduced and the

Neighborhood Turnpike Theorem is demonstrated. The results obtained in Section

4 will be used repeatedly in the proofs of main theorems. In Section 5, I show the

complete turnpike theorem. Some comments are given in Section 6.

2 Empirical Facts

The past few years have witnessed many efforts to collect and archive the industry-

level database among countries. One such a database is now easily accessed on the

Web: the EU-Klems Growth and Productivity Database1, covering 28 countries and

71 industries from 1970 to 2005, that also contains their GDPs and TFPs. Growth

1URL http://www.euklems.net
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accounting has been used to analyze each country’s economic growth. One of the

more interesting applications is to analyze the economic growth of the industries.

Let us assume that the production function of the i industry in a country is given

as:

() = ()
(1()2() · · ··() ())

where  : t
 period capital goods output of the i industry,  : i

 capital goods

used in the j industry in the t period, 
 : t

 period output-augmented technical-

progress (the Hicks neutral technical-progress), and () : t
 period labor input of

the i industry. If  stands for the factor share of the j input factor of the i

industry, then we may derive the following relation concerned with the i industry;

·




=

·

 


−

⎛
⎝

X

=1



·




+ 0

·





⎞
⎠ 

Based on this equation, we are able to calculate TFPs of 20 industries of a

country2. Figure 1 shows the relationship between the average per capita growth

rate of the US GDP and the average TFP growth rate of the US TFP at the industry

2The 20 industries of the US are listed as follows:

1:TOTAL INDUSTRIES 2 :AGRICULTURE, HUNTING, FORESTRY AND FISHING,

3:MINING AND QUARRYING, 4:TOTAL MANUFACTURING,

5:FOOD , BEVERAGES AND TOBACCO, 6:TEXTILES, TEXTILE , LEATHER AND FOOTWEAR,

7:WOOD AND OF WOOD AND CORK 8:PULP, PAPER, PAPER , PRINTING AND PUBLISHING,

9:CHEMICAL, RUBBER, PLASTICS AND FUEL 10:OTHER NON-METALLIC MINERALS,
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level from 1970 to 2005. Figure 2 presents the same data for the Japanese economy.

Note that a 45-degree lines is drawn in both the figures. If an industry were on the

45-degree line, it would imply that the industry’s per capita GDP would grow at its

TFP growth rate. Observing Figures 1 and 2, we may conclude that in both coun-

tries most industries cluster around the 45-degrees line, however, some industries lie

far-above or below it.

[Figure 1-Figure 2]

We may summarize these facts as follows:

1) Each industry has its own steady state with a industry-specific growth rate.

2) The steady state level and its growth rate are highly related to its own TFP.

These facts cannot be explained by New growth theory, since it is based entirely

on the highly aggregated macro production functions. Thus, we must construct an

11:BASIC AND FABRICATED METALS,

12:MACHINERY, NEC 13:ELECTRICAL AND OPTICAL EQUIPMENT,

14:TRANSPORT EQUIPMENT, 15:MANUFACTURING NEC AND RECYCLING,

16:ELECTRICITY, GAS AND WATER SUPPLY,

17:CONSTRUCTION 18:WHOLESALE AND RETAIL TRADE,

19:HOTELS AND RESTAURANTS,

20:TRANSPORT , STORAGE AND COMMUNICATION.

For the Japanese Economy, three more industries are added.

9



industry based multi-industry growth model. On the other hand, although turnpike

theory is based on the multi-industry model, it has a drawback too. The theory

means that each industrial sector with different initial stocks will eventually converge

to its own optimal steady state with the common balanced growth rate. In other

words, each industry’s per capita stock will converge to a certain constant ratio.

Thus, turnpike theory cannot explain why each industry’s per capita stock grows at

its own rate determined by the industry’s TFP.

OECD (2003) also studied the industry-level productivity growth in detail and

reported the following results, which are consistent with our observations discussed

above.

� A large contribution to overall productivity growth patterns comes from produc-

tivity changes within industries, rather than as a result of significant shifts of

employment across industries.

� TFP depends on country-specific and/industry-specific factors.

From the above discussion, it is imperative to set up a multi-industry optimal

growth model with technical progress and demonstrate that each sector’s per-capita

capital and output will grow at the industry-specific growth rate determined by the

industry’s TFP.
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3 The Model and Assumption

Our model is a discrete-time and multi-sector version of the standard neoclassical

optimal growth model with the Hicks-neutral technical progress and in the following

sections, I will use the term “sector” instead of “industry,” which is more commonly

used in turnpike theory:


∞X

=0

µ
1

1 + 

¶

(())

  : (0) = 

() + (1− )()−(+ 1) = 0 (1)

() = 0()
0(10() 20() · · ··0() 0()) (2)

() = ()
(1() 2() · · ··() ()) (3)

X

=0

() = () (4)
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X

=0

() = () (5)

where = 1 2    = 0 1 2 , and the notation is as follows:

 = a subjective rate of discount, r≥g,

() ∈ R+ = the total goods consumed at t,

() ∈ R+ = the t period capital goods output of the i sector,

() ∈ R+ = the t period capital stock of the i sector,

(0) ∈ R+ = an initial capital stock of the i sector,

 (·) : R+1
+ 7−→ R+ = a production function of the j sector,

() = the t period labor input of the i sector,

() = the t period total labor input,

() = the i capital goods used in the j sector

in the t period,

 = the depreciation rate of the i capital goods,

given as 01,

() = the t period output-augmented technical-progress

of the i sector.

I maintain the following standard assumptions throughout the paper.

Assumption 1. 1) The utility function (·) is defined on R+ as the following:
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(()) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩




 if  ∈ (−∞ 1)

log() if  = 0

2) () = (1 + )(0) where  is a rate of population growth. 3) () = (1 +

)
(0) where  is a rate of output-augmented technical progress of the  th sector

and given as ||  1

2) of Assumption 1 means that the sectoral TFP is measured by the sectoral

output-augmented technical progress (the Hicks-neutral technical progress), which is

externally given.

Assumption 2. 1) All the goods are produced nonjointly with the production func-

tions   ( = 1 · · ·  ) which are defined on R+1
+ , homogeneous of degree

one3, strictly quasi-concave and continuously differentiable for positive inputs.

2) Any good  ( = 0 1 · · ·  ) cannot be produced unless   0 for some

 = 1 · · ·  . 3) Labor must be used directly in each sector. If labor input of

some sector is zero, its sector’s output is zero.

3Under the constant-returns-to-scale assumption, the Hicks-neutral technical progress implies

that all the capital and labor inputs of each industry will face the same rate of technical progress.

In this sense we make rather strong restrictions on each industry’s production function.
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Dividing all the variables by ()(), we will transform the original model into

per-capita efficiency unit model. Firstly, let us transform the  sector’s production

function as follows; dividing both sides of the  sector’s production function by


(), we have:

()

()()
=  

µ
1()

()

2()

()
 · · ··

()

()

()

()

¶
( = 1 · · ·  )

We see that,

e() =  (1() 2() · · ·  () ()) ( = 1 · · ·  )

where e() = ()
()()

 1() =
1()
()

 2() =
2()
()

 · · ·  () =
()
()

and () =

()
()



Applying the same transformation to the consumption sector will provide

e() = 0(10() 20() · · ·  0() 0())

Furthermore, we may also transform the  sector’s accumulation equation as

follows; dividing both sides by 
(), we have

()

()()
+ (1− )

()

()()
− (+ 1)

()()
= 0

Substituting the following relation into this equation:

(+ 1)

()()
=

(1 + )(1 + )(+ 1)

[(1 + )()][(1 + )()]
= (1 + )(1 + )e(+ 1)
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where

e(+ 1) =
(+ 1)

()

, we have finally

e() + (1− )e()− (1 + )(1 + )e(+ 1) = 0

where

e() =
P

=0 ()

()


In a vector form expression,

ey + (I−∆)ek()− (1 + )Gek(+ 1) = 0

where  and ∆ are the following diagonal matrices:

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

(1 + ) 0

. . .

0 (1 + )

⎞
⎟⎟⎟⎟⎟⎟⎠
and ∆ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0

. . .

0 

⎞
⎟⎟⎟⎟⎟⎟⎠


We can also rewrite the objective function in terms of per-capita as follows: Sub-

stituting the following relation into the objective function yields:

e() = ()

0()
=

()

(1 + )(1 + )00(0)

we have: assume that 00(0) = 1
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∞P
=0

∙
(1 + ) (1 + 0)



(1 + )

¸ e()


=
∞P
=0

(e())

Now the original model can be rewritten as the per-capita labor efficiency unit

model as defined below:

The Per-capita Labor Efficiency Units Model


∞P
=0

(e())   =
(1 + ) (1 + 0)



(1 + )


 e(0) =  ( = 1 · · ·  )

e() = 0(10() 20() · · ·  0() 0()) (6)

e() =  (1() 2() · · ·  () ()) ( = 1 · · ·  ) (7)

ey + (I−∆)ek()− (1 + )Gek(+ 1) = 0 (8)

X

=0

() = 1 (9)
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P
=0 ()

()
= e() ( = 1 · · ·  ) (10)

We may add the following assumption and prove the basic property below:

Assumptin 3. 00(0) = 1 and 0    1

Remark 1 The value of  consists of four parameters; the coefficient of relative risk

averse (1− ), the rate of population growth (), the rate of subjective discount rate

() and the rate of technical progress in consumption goods sector (0). Note that the

rate of population could be negative. For example, we may consider the case where

 = 05  = −02  = 02 and 0 = 02.

Lemma 1. Under Assumption 2, Eqs.(6)-(10) except Eq.(8) are summarized as the

social production function e() =  (ey() ek()) which is continuously differen-

tiable in the interior of R2
+ and concave, where ey() = (e1() e3() · · ·  e())

and ek() = (e1()e2() · · · e()).

Proof.

Solving the following problem we can derive the social production function:
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 0(10() 20() · · ·  0() 0())

 e() =  (1() 2() · · ·  () ()) ( = 1 · · ·  )

X

=0

() = 1 and

P
=0 ()

()
= e() ( = 1 · · ·  )

See in detail Benhabib and Nishimura (1979).

If ex and ez stand for initial and terminal capital stock vectors respectively, the

reduced form utility function  (exez) and the feasible set D can be defined as follows:

 (exez) = ( [(1 + )Gez− (I−∆)ex ex])

and

D = {(exez) ∈ R
+ ×R


+ :  [(1 + )Gez− (I−∆)ex ex] ≥ 0}

where ex = (e1() e2() · · ·  e()), ez = (e1(+1)e2(+1) · · · e(+1)) and

I is an n-dimensional unit matrix.

Finally, the above optimization problem will be summarized as the following stan-

dard reduced form model, which is often used in turnpike theory:

Reduced Form Model


P∞

=0 
 (ek() ek(+ 1))

  (ek() ek(+ 1)) ∈ D   ≥ 0  ek(0) = k
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Also note that any interior optimal path must satisfy the following Euler equa-

tions; they show an intertemporal efficiency allocation:

V(ek(− 1) ek()) + V(ek() ek(+ 1)) = 0 for all  ≥ 0 (11)

where the partial derivative vectors mean that

V(ek() ek(+ 1)) = [ (ek() ek(+ 1))e1() · · ·   (ek() ek(+ 1))e()]

V(ek(− 1) ek()) = [ (ek(− 1) ek())e1() · · ·   (ek() ek(− 1))e()]


,and 0 means an n dimensional zero column vector “  ” implies the transposition of

vectors. Note that under the differentiability assumptions, all the price vectors will

satisfy the following relations:

 = (e)e = 1

 = − (ey ek)e ( = 1 2 · · ·  )

 =  (ey ek)e ( = 1 2 · · ·  ), and

0 = e+ pey−wek

Using these relations, we may define the price vectors of capital goods as an

(× 1) row vector p = (1 2 · · ·  ) the output of capital goods as an ( ×1) vector
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ey = (e1 e2 · · ·  e) the rental rate as a (1×) row vector w = (1 2 · · ·  ) and

the capital stock as an ( × 1) vector ek = (e1e2 · · · e) Moreover, let us denote

a wage rate as 0. For simplicity, we may assume that the price of the consumption

good  is normalized as 1

Definition. An optimal steady state path ek (denoted by OSS henceforth) is an

optimal path which solves the above optimization problem and ek = ek() =

ek(+ 1) for all  ≥ 0

Due to the homogeneity assumption of each sector’s production, it is often conve-

nient to express a chosen technology as a technology matrix. Now, let us define the

technology matrix as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

00 · · · 0

10

... A

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

00 a0

a0 A

⎞
⎟⎟⎠

where 0 = ee ( = 0 · · ·  ),  = ee ( = 1 · · ·  ;  = 0 1 · · ·  ) and

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

11 · · · 1

...
...

1 · · · 

⎞
⎟⎟⎟⎟⎟⎟⎠
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It directly follows that Assumption 2 implies that for all  = 0 1 · · ·     0

for some  = 1 · · ·   and 0  0 for all . First, we make the following assumption

expressed in terms of the technology matrix to demonstrate the existence theorem.

Assumption 4. (Viability) For a given  (≥ ), a chosen technology matrix A sat-

isfies

[I− (I+∆)A

]−1 ≥ Θ

where Θ is a ×  zero matrix4.

Due to the well known equivalence theorem to the Hawkins-Simon condition and

Theorem 4 of Mckenzie (1960), Assumption 4 is equivalent to the property such that

the matrix [I− (I + ∆)A

] has a dominant diagonal that is positive; there exists

y ≥ 0 such that [I− (I+∆)A

]y ≥ 0

The following extra assumption will be made.

Assumption 5. 1  0  max
=1

||

Remark 2 This assumption means that the TFP growth rate in the consumption

sector is the highest one among those of sectors. Takahashi, Mashiyama and Sak-

agami (2004) have reported the empirical evidence such that in the postwar Japanese

4Let A and Θ be an -dimentional square matrix and an -dimensional zero matrix respectively.

Then AÀ Θ if   0 for all  , A  Θ if  ≥ 0 for all   and   0 for some   and A ≥ Θ

if  ≥ 0 for all  
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economy, the consumption sector has exhibited a higher per-capita output growth rate

than that of the capital goods sector. If the TFP growth rate has a positive corre-

lation with the per-capita sectoral GDP growth rate, this fact will partially support

Assumption 5.

McKenzie (1983,1984) has demonstrated the existence theorem for both an op-

timal and an optimal steady state paths in the reduced form model. Applying a

same logic as that of McKenzie’s, we can prove the following existence theorem under

Assumptions 1 through 5.

Existence Theorem: Under Assumptions 1 through 5, there exists an optimal

steady state path ek for  ∈ (0 1] and an optimal path {ek()}∞ from any

sufficient initial stock vector ek (0)5.

Proof. We need to show that under Assumptions 1 through 3, all the conditions6

5A capital stock x is called sufficient if there is a finite sequence (k(0),k(1),· · · k(T)) where

x=k(0), (k(t),k(t+1))∈  and k(T) is expansible. k(T) is expansible if there is k(T+1) such that

k(T+1)Àk(T) and (k(T),k(T+1))∈ . Note that the sufficiency will be assured by assuming

“Inada-type” condition on production functions.
6McKenzie’s conditions are followings: 1)  (x z) are defined on a convex set D  2) There is a

  0 such that (x z) ∈ D and |z|   ∞ implies |z|   ∞. 3) If (x z) ∈ D , then (exez) ∈ D

for all ex ≥ x and 0 ≤ ez ≤ z Moreover  (exez) ≥  (x z). 4) Ther is   0 such that |x| ≥  implies

for any (x z) ∈ D , |z|   |x| where 0    1. 5) There is (x z) ∈ D such that z  x
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in Theorem 1 of McKenzie (1983) or in the existence theorem of McKenzie (1984)

are satisfied. Especially, Assumption 4 and the additional condition are needed to

guarantee the non-emptiness of the interior of D (Condition 5) in the footnote) as we

will demonstrate as follows; from the Condition 5), there is an output vector y ≥ 0

such that [I− (I + ∆)A

]y ≥ 0. By a scalar multiplication of y, we can establish

bx = Aby where bx = (1 ex) and by = ( ey). Note that the equality of the first

elements of bx and Aby will provide Eq.(9): the full employment condition. Since the

labor constraints are satisfied for by and that A
is a submatrix of A it follows that

x = A

y holds Now the following relation will be established:

ez− −1ex =

µ
1

1 + 

¶
G−1

©
 + [I−∆− (1 + )G−1]A

ª ey

=

µ
1

1 + 

¶
G−1 + I−∆− (1 + )

⎛
⎜⎜⎜⎜⎜⎜⎝

(1 + 1) 0

. . .

0 (1 + )

⎞
⎟⎟⎟⎟⎟⎟⎠

∙
(1 + )

(1 + )(1 + 0)

¸¸
A


¾
ey

=

µ
1

1 + 

¶
G−1

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

 +

⎡
⎢⎢⎢⎢⎢⎢⎣
I−∆− (1 + )

⎛
⎜⎜⎜⎜⎜⎜⎝

(1+1)
(1+0)

0

. . .

0 (1+)
(1+0)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦
A



⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

ey
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≥
µ

1

1 + 

¶
G−1

©
 + [I−∆− (1 + )I]A

ª ey due to Assumption 5,

=

µ
1

1 + 

¶
G−1[I−(I+∆)]Aey  0 from Assumption 4,

Therefore, y will be chosen so that ez−−1ex ≥ 0 where (exez)D. For the detailed

discussion, see Lemma 3 through Lemma 7 in Takahashi (1985).

Remark 3 It should be noticed that since e =
 ()

()
, it follows that  () =

e() = (1 + )
(0)e for  = 1 · · ·  . Hence the original series of the indus-

try’s optimal per-capita stock  () is growing at the rate of its own sector’s technical

progress, (1 + )

Remark 4 From now on, to avoid further complications of our notation, all the

variables measured in efficiency units will be denoted without the symbol “ ∼” unless

otherwise mentioned.

Suppose that k is an interior OSS in labor-efficiency units with a given , it must

satisfy the Euler equations:

V(k
k) + V(k

k) = 0 (12)
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Due to the above definition of OSS, we will express the partial derivatives of the

Euler equations in terms of price vectors:

V(k
k) = p(I−∆) +w, and

V(k
k) = −(1 + )Gp

where I is a ×  unit matrix. Substituting these relations into the Euler equations

may yield the following:

[w + p(I−∆)]− (1 + )Gp = 0 (13)

and further calculation will finally yield:

p
∙
−I+∆+

µ
1 + 

1 + 0

¶
G

¸
= w

These are clearly non-arbitrage conditions among capital goods; any capital good

must yield the same rate of returns as the subjective discount rate  Hence the Euler

conditions are the non-arbitrage conditions.

Because of differentiability and constant returns to scale technologies, the well-

known proposition proved by Samuelson (1945) will hold: the cost function denoted

by (0w
) ( = 1 · · ·  ) is homogeneous of degree one and  =  where

 =  ( = 1 2 · · ·  ;  = 0 1 · · ·  ). Due to the cost minimization condition
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and this proposition, a unique technology matrix A is chosen on k. Also note that

due to Assumption 3, for a given  ∈ (0 1] the uniquely chosen technology matrix

A

have to satisfy

[I− (I+∆)A

]−1 ≥ Θ

Moreover it follows that 00  0 and a
0 À 0 from Assumption 2. Henceforth, we

use the symbol “” to emphasize that vectors and matrices are evaluated on k.

Combining these results, the following important property will be established:

Lemma 2. When  ∈ (0 1] , there exists a unique k(À 0)7 with the corresponding

unique positive price vector p and the positive factor price vector (
0w

).

Proof. It follows from applying the same logic as the one used in Theorem1 of

Burmeister and Grahm (1975).

From this lemma, along the OSS with , the nonsingular technology matrix A

will be chosen, and the cost-minimization and full-employment conditions will be

expressed as follows:

(1p) = (
0w

)A

and

(1k) = A(y)

7Let x and y be n-dimensional vectors. Then xÀ y if    for all i, x  y if  ≥  for all i

and at least one j,    and x ≥ y if  ≥  for all i.
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If A has an inverse matrix B, solving these equations yields,

p = w

µ
a − 1

00
a0a


0

¶
+
a
0

00
= w(b)−1 +

a
0

00

and

(k) =

µ
a − 1

00
a0a


0

¶
(y) +

a0
00

= (b)−1(y) +
a0
00

where b is the submatrix of B defined as follows:

B = (A)−1 =

⎛
⎜⎜⎝

00 b0·

b·0 b

⎞
⎟⎟⎠ 

Note that the nonsingularity of b comes from the following observation: Due to the

theorem in Murata (1977), it follows that b = [a − (100)a·0a0·]−1. Furthermore,

by Gantmacher (1960), it also follows that  A = 00[a
−(100)a·0a0·]. Since

A is non-singular, our claim holds.

From now on, we are concentrated on the OSS with  = 1 denoted by k∗. We will

also use the symbol “ ∗ ” to denote the elements and variables evaluated at k∗.

Definition. When  = 1 the chosen technology matrix A∗ satisfies the Generalized

Capital Intensity GCI -I condition, if there exists a set of positive number

(1 · · ·  ) such that

(
∗
∗0
− ∗0

∗00
) 

X

6=0



¯̄
¯̄
∗


∗0
− ∗0

∗00

¯̄
¯̄   = 1 · · ·  
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Similarly, the technology matrix A∗ satisfies the Generalized Capital Intensity

GCI -II condition, if there exists a set of positive number (1 · · ·  ) such that

∗
∗0
− ∗0

∗00
 0

and



¯̄
¯̄
∗


∗0
− ∗0

∗00

¯̄
¯̄ 

X

6=0



¯̄
¯̄
∗


∗0
− ∗0

∗00

¯̄
¯̄   = 1 · · ·  

Consider a capital good sector , and focus on its own capital input  and its

capital-labor ratio in all the other sectors. Due to the definition, the left-hand side

of the GCI-I condition means the excess of the capital-labor ratio of capital input

 for the capital good sector . The right-hand side collects the absolute values of

the discrepancy between the capital-labor ratio of other sectors (  6=  0) to that

of the consumption sector. The GCI-I condition indicates that the sum of such

absolute values still fall short of the the excess of ∗
∗
0 over the comparable ratio

in the consumption sector, ∗0
∗
00.We may give a similar explanation to the GCI-II

condition.

The following lemma can be directly derived from the definition of both intensity

conditions.

Lemma 3. If the technology matrix A∗ satisfies the GCI-I (GCI- II condition) con-

dition, its inverse matrix B∗ has positive (negative) diagonal elements and neg-

ative (positive) off-diagonal elements.
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Proof. From the theorem by Jones et al. (1993), under the Strong GCI-II, its inverse

matrix has negative diagonal and positive off-diagonal elements. On the other hand,

under the Strong CGI-I, by considering the case where one price falls with all the

other prices constant in their proof, their exact logic can be applicable. Hence the

first result will be established.

Due to Lemma 3, we may prove the following important lemma:

Lemma 4. Under the Strong GCI-I (the Strong GCI-II), [b∗ − ((1 + )G+∆− I)]

has a dominant diagonal that is positive (negative) for rows8.

Proof. Due to Lemma 3, under the Strong GCI-I (the Strong GCI-II), the inverse

matrix B∗ has positive (negative) diagonal elements and negative ( positive) off-

diagonal elements. From the accumulation equation y∗ = (1 + )Gk∗ − (I−∆)k∗

and y∗ = b∗k∗ + b∗0 it follows that

[b∗ − ((1 + )G+∆− I)]k∗ = −b∗0

Due to Lemma 3, −b∗0  ()0. Therefore the matrix [b∗ − ((1 + )G+∆− I)] has

the negative (positive) dominant diagonal for rows.

8Suppose A is an ×  matrix and its diagonal elements are negative (positive). Let there exist

a positive vector h such that  |  |
P

=1 6=  |  |  = 1 2 · · ·   Then A is said to have

a dominant main diagonal that is negative (positive) for rows. See McKenzie (1960) and Murata

(1977).
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From now on, we will write the dominant diagonal that is negative as “n.d.d.”

and the dominant diagonal that is positive as “p.d.d.” for short. From the Euler

equations (12), the Jacobian J(k ) is

J(k ) = V(kk) + V(kk) +V(kk) +V(kk)

Evaluating it at k∗ yields

J(k 1) = V(k
∗k∗) +V(k

∗k∗) +V(k
∗k∗) +V(k

∗k∗)

where all matrices are evaluated at k∗9. We will show the following lemma, which is

a counterpart of Lemma 2.5 of Takahashi (1992).

Lemma 5. Suppose that either of the GCI conditions hold. Then there exists a

positive scalar  such that for  ∈ [ 1] the OSS k is unique and is a continuous

vector-value function of  namely k = k() 

Proof. If detJ(k∗ 1) 6= 0 holds, then due to the implicit function theorem, the result

follows. To show this we will use the following fact shown in Benhabib and Nishimura

(1979):

T1 = [y] = −p and T2 = [k] = w
9We use the following notational convention for the partial derivative matrices:V =

[2V(x z)x2]V = [2V(x z)xz] and V = [2V(x z)z
2
] Note that each matrix is

an ×  matrix.
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where p is an output price vector. Differentiating both price vectors with respect

to y and k again will yield the following second-order partial derivative matrices:

T11 = [−py] T12 = [−pk] T21 = [wy] and T22 = [wk] Note that

if the matrices are evaluated at k∗, from the previous equation, we have

[pw] = (b∗)−1

,and due to the symmetry of the Hessian matrix of () =  (y()k()), we have

[pk] = −[wy]

where the suffix ”  ” means a transpose of a matrix. Utilizing these relations,

all the partial derivative matrices at k∗ will be expressed in terms of the matri-

ces b∗ and T22 as follows: T11 = (b∗)−1T
22(b

∗)−1 = (b∗)−1T22(b∗)−1 T12 =

−(b∗)−1T22 and T21 = −T22(b∗)−1. Substituting Y = (I+∆) and Y = I

into the first terms of Eq.(3-21) through Eq.(3-23) in Takahashi (1985), the Jacobian

will be finally rewritten as follows:

J(k∗ 1) = [(1 + )G+∆− I I]

⎛
⎜⎜⎝
T11 T12

T21 T22

⎞
⎟⎟⎠

⎛
⎜⎜⎝
(1 + )G+∆− I

I

⎞
⎟⎟⎠ 

If the right-hand side of this is a negative definite matrix, the proof will be completed.

Substituting all the relations obtained so far into the Hessian matrix of the social

production function, and provided that the matrix b∗ is nonsingular, we may yield

the following equation:
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[(1 + )G+∆− I I]

⎛
⎜⎜⎝
T11 T12

T21 T22

⎞
⎟⎟⎠

⎛
⎜⎜⎝
(1 + )G+∆− I

I

⎞
⎟⎟⎠

= ((1 + )G+∆− I)T11((1 + )G+∆− I)

+((1 + )G+∆− I)T21 +T12((1 + )G+∆− I) +T22

= [b∗ − ((1 + )G+∆− I)]2[(b∗)−1]2T22

Due to Lemma 4, the matrix [b∗ − ((1 + )G+∆− I)] has the negative (positive)

d.d. from the GCI conditions and it must be nonsingular. b∗ is also nonsingular as we

have discussed before. T22 is negative definite and nonsingular due to the argument

of Benhabib and Nishimura (1979,pp68-69). Furthermore, the first two matrices are

symmetric and therefore all the elements are positive. Thus the above matrix is

negative definite and the proof has been completed.

From this lemma, it follows that all the price vectors p w and the technology

matrix A are continuous vecto-value functions of  ∈ [0 1]

4 The Neumann-McKenzie Facet

Now we will introduce the Neumann-McKenzie Facet (denoted by “NMF” for short),

which plays an important role in stability arguments regarding neoclassical growth

models as studied in Takahashi (1985) and Takahashi (1992), and has been intensively
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studied by L. McKenzie (see especially McKenzie (1983)). The NMF will be defined

in the reduced form model as follows:

Definition. The Neumann-McKenzie Facet of an OSS, denoted by F(kk), is de-

fined as:

F(kk) = {(x z) ∈ D : () + pz− px = () + pk − pk}

where k is the OSS and p is the supporting price of k when a subjective discount

rate  is given.

By the definition above, the NMF is a set of capital stock vectors (x z) which arise

from the exact same net benefit as that of the OSS when it is evaluated by the prices

of the OSS. Also, the NMF is the projection of a flat segment on the surface of the

utility function  that is supported by the price vector (−p p 1) onto the (x z)-

space. In Takahashi (1985), I consider a case of the objective function where n capital

goods as well as pure-consumption goods are consumable. Here, the capital goods are

not consumable but the discounted sum of the sequence of pure-consumption goods

is directly evaluated. Due to the well-established nonsubstitution theorem, a unique

technology matrix A defined before will be chosen on the OSS.

By exploiting this fact, we will re-characterize the NMF as a more tractable for-

mula with an (n+1) by (n+1) matrix A and an (n+1)-dimensional vectors as we

will demonstrate in Lemma 6 under Assumption 6:
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Assumption 6. () is linear in the neighaborhood of OSS; () = 

Lemma 6. Under Assumption 6, when A is non-singular, (x z) ∈ F(kk) if and

only if there exists by ≡ (y)0 = 0 such that the following conditions hold:

) bx = Aby, and

) bz =

µ
1

1 + 

¶
G
−1
[by+ (I−∆)]bx

where bx = (1x)bz = (1 z)G−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0 1
(1+1)

...

...
. . . 0

0 · · · 0 1
(1+)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

∆ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and I is an (+ 1)-dimensional unit matrix.

Proof. From the definition of the NMF, we have the price-supporting relation below:

+ pz− px =  + pk − pk

where  and y correspond to (x z). Furthermore, from the fact that V(k
k) =

w + p(I−∆) and V(k
k) = −(1 + )Gp, the Euler equation implies that
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w = p[−1(1+)G− (I−∆)] Also note that from the accumulation relations, z =

(1(1 + ))G−1[y+(I−∆)x] and k = (1(1 + ))G−1[y+(I−∆)k] Substituting

these relations into the price-supporting equations, we finally obtain:

(− ) + 

µ
1

1 + 

¶
G−1{[py−wx]− [py −wk]} = 0 (14)

If {[py − wx] − [py − wk]} 6= 0, whereas the first term is scalar, the second

term will be a vector. Thus the above equality never holds. Hence {[py −wx] −

[py − wk]} = 0 as well as  =  must hold. Combining the results, we finally

obtain:

+ py−wx =  + py −wk

This result is Condition i); (0yx) should lie on the production frontier of  (yk)

and in each sector, the chosen technology must be the same as that in the OSS. In

other words, the OSS technology matrix A will be uniquely chosen. Therefore, on

the NMF, the exact same technology matrix as that of the corresponding OSS is

chosen. In other words, given an OSS technology matrix A, the cost minimization

and the full-employment conditions for labor and capital goods must be satisfied.
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Hence, the following equations must hold:

1) = 
0


00 +w

a·0

2) p = 
0


0· +w

a

3)1 = 00+ a

0·y

4) x = ·0+ a
y

The cost-minimization conditions 1) and 2) imply that the same technology as that

of OSS is chosen. 3) and 4) means that, under the chosen technology, the full em-

ployment conditions hold. It is not difficult to see that 3) and 4) can be summarized

as Condition ii). From these conditions, it follows that ()  0 and y() À 0 hold

for all t. Condition ii) exhibits the (n+1)-dimensional capital accumulation equation

and determines the vector z.

Note that the dynamics of the NMF is expressed by the accumulation equation in

Condition ii). We will rewrite it by using the element of the inverse matrix of A as

follows: first note that b = [a− (100)a0a0]−1. Solving Condition ii) with respect

to y yields:

y = bx+ b·0

Substituting this into the accumulation equation ii) and solving it with respect to z

yields:

z = (1(1 + ))(b + I−∆)x− ((1(1 + ))b·0
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Defining η() = (x− k) and η(+1) = (z− k) we will finally obtain the following

difference equations, which exhibits the dynamics of the NMF:

η(+ 1) = (
1

1 + 
)[(b)−1 + I−∆]η() (15)

It is important to note that the dimension of the NMF could be zero. The following

lemma will give us an exact order of its dimension.

Lemma 7. dim F(kk) =  and F(kk) ⊂  D 

Proof. Let us define d = (01 · · ·  )
 ∈ R+1

+ such that
P

=0 0 = 0 holds

Because the linear constraint must be satisfied, we can exactly choose n linearly

independent vectors d ( = 1 · · ·  ). It is clear that d shows a reallocation of

fixed labor among sectors Moreover, let us define the followings: for  = 1 2 · · ·  

and a positive scalar 

by ≡ by + d


bx ≡ Aby = Aby + A
d

= bk + A
d
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and

bz ≡ G
−1
[by + (I−∆)bx]

= G
−1
[by + (I−∆)bx] + G

−1
[d + (I−∆)Ad]

= bk + G
−1
[I+ (I−∆)A]d

Note that the first element of the vectorAd is zero due to the fact that
P

=0 0

 =

0 for all  Since the first element of bk is 1, the first element of bx will be also 1.

So the vectors bx ( = 1 · · ·  ) are well defined. Since the first element of ek is 1,

ez is also well defined for all . Due to the fact that by À 0 and bk À 0  can be

chosen so that by  0bx  0 and bz  0 for all . From our way of construction,

the vectors bybx and bz satisfy Lemma 2 and the corresponding vector (x z) also

belongs to F(kk) for all . This implies that there are  linearly independent

vectors (x − k z − k). Therefore, there are exactly n linearly independent line

segments on the NMF, F(kk) In other words, the NMF has an -dimensional

facet (flat) containing the OSS, (kk). This completes the proof.

Using Lemma 7, we will show Lemma8.

Lemma 8. F(kk) is a continuous correspondence of  ∈ [ 1)

Proof. See the Appendix.

We will introduce the following definition:
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Definition. The NMF is stable if there are no cyclic paths on it.

The stability of the NMF takes very important roles in demonstrating the turnpike

properties as we will see soon. Under the both GCI conditions, we actually show that

the NMF is stable as we will demonstrate in the next section. Due to the continuity of

the NMF, if the stability of the NNF with  = 1 would have been proved, McKenzie’s

neighborhood turnpike theorem could be applicable as shown in Takahashi (1985)

and Takahashi (1992). Finally we will demonstrate the following theorem:

Theorem 1. (Neighborhood Turnpike Theorem) Provided that the NMF is stable.

Then for any 0, there exists a 0 such that for  ∈ [ 1) and the corre-

sponding () any optimal path {k}
∞ with a sufficient initial capital stock k(0)

eventually lies in the −neighborhood of k Furthermore, as → 1, ()→ 0

Proof. See the argument of Section 4 of Takahashi (1993).

The neighborhood turnpike theoremmeans that any optimal path must be trapped

in a neighborhood of the corresponding OSS and the neighborhood can be taken as

small as possible by making  sufficiently close to 1.

5 Turnpike Theorem

The complete turnpike theorem is described as the following theorem:
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Complete Turnpike Theorem There is a   0 close enough to 1 such that for

any  ∈ [ 1), an optimal path k() with the sufficient initial capital stock will

asymptotically converge to the optimal steady state k

To show the complete turnpike theorem we need to strengthen the generalized

capital intensity conditions: GCI-I and GCI-II.

Remark 5 The first to be noted that in the efficiency unit term, the complete turn-

pike implies that each sector’s optimal path converges to its own optimal steady state.

It follows that in original terms of series, industry’s per-capita capital stock and output

grow at the rate of industry’s TFP. Thus our original purpose will be accomplished by

demonstrating the complete turnpike theorem.

Recall that as we have shown, under Assumption 7, the dimension of the NMF is

n. Furthermore, the dynamics of the NMF is expressed by the n-dimensional linear

difference equation (15). We use the following property to show the stability of the

NMF.

Lemma 9. Let us consider the following difference equation system with the equi-

librium x = 0

x(+ 1) = (C+ I)x()

where x() ∈ R and C is an × matrix. If C has the negative d.d. for rows,

C+ I is a contraction for x() 6= 0 with the maximum norm k · k, i.e., and the
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equation system is globally asymptotically stable and the Liapunov function is

V(x) = kxk, where k · k is defined as kxk = max  |  | and  is a given set

of positive numbers. Furthermore, if C has the positive d.d. for rows, C + I

exhibits total explosiveness for x() 6= 0

Proof. The first part comes from the result in Neumann (1961,pp.27-29). On the

contrary, if C has the negative d.d. for rows, C+I has eigenvalues with their absolute

values greater than one. This comes from the fact that if C has the positive d.d. for

rows, then its eigenvalues have a positive real part. Thus the system is explosive; any

path will diverge from equilibrium.

We may use the second property later. First, we will prove the following theorem:

Lemma 10. Under the negative (positive) d.d., the n-dimensional NMF: F(kk)

where  ∈ [ 1) turns out to be a linear stable (unstable) manifold.

Proof. Because b + I−∆ = [b + (I−∆) − (1 + )G] + (1 + )G it follows

that (1(1 + )G[b + I−∆] = (1(1 + ))G[b + (I−∆)− (1 + )G] + I Defining

C = (1(1 + ))G[b + (I−∆)− (1 + )G] Eq.(8) can be rewritten as:

η(+ 1) = (C+ I)η()

Note again that η() = (x − k) and η( + 1) = (z − k) Thus applying Lemma

4, under the negative d.d. (the positive d.d.), any path on NMF will converge to

(diverge from) the OSS.
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From this lemma, under the Strong GCI-II condition, the local stability and the

stability of the NMF hold simultaneously. Furthermore, the stability of the NMF

will establish the neighborhood turnpike. Thus combining both results follows the

complete turnpike theorem.

Corollary. Under the Strong GCI-II condition, the complete turnpike theorem will

be established.

Proof. To achieve the complete turnpike theorem, we need to combine the neighbor-

hood turnpike theorem and the local stability of the OSS. The neighborhood turnpike

theorem means that any optimal path should be trapped in the neighborhood of the

OSS by choosing the discount rate properly. Therefore when the local stability also

holds in the neighborhood of OSS, the optimal path must jump on the stable mani-

fold, here the NMF itself, and will converge to the OSS. Thus the complete turnpike

theorem has been established.

On the other hand, to show the local stability under the GCI-I condition, we need

to utilize the following well-known lemma by Levhari and Liviatan (1972):

Lemma 11. Provided that det. V
 6= 0, if the following characteristic equation,

given by expanding the Euler equation around the
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¯̄
V


2 + (V

 +V

)+V




¯̄
= 0 (16)

OSS, has  as a root, then it also has 1()

Proof. See Levhari and Liviatan (1972).

Lemma 12. Under the GCI-I condition, the OSS satisfies the local stability.

Proof. All we need to show is that det. V
 6= 0 under the GCI-I condition due

to Lemma 11. From the fact that V(k
k) = p(I−∆) +w (see Benhabib and

Nishimura (1985) for a two-sector case) and Lemma 4, we may show that

V
 = −(b)−1[b + (I−∆)]T

22(b
)−1

where T
22 = [

2 (yk)k2]. Then,

det V
 = −(det(b)−1)2 det[b + (I−∆)] detT

22

Since T
22 is negative-definite, it is non-singular. Furthermore, [b

+(I−∆)] has a

quasi-dominant diagonal that is positive under the GCI-I condition; it is non-singular

too. It follows that V
 is non-singular. Furthermore, the GCI-I condition implies

that the NMF is explosive; there are  characteristic roots with absolute value greater

than one. Applying Lemma 11 will yield that there are  characteristic roots with

its absolute value less than one. Thus the OSS satisfies the local stability.
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We have finally established the following theorem:

Theorem 2 Under the both GCI conditions, the OSS k exhibits the complete turn-

pike property.

Proof. Under the GCI-II condition, the complete turnpike theorem will be estab-

lished due to the above corollary. Under the GCI-I condition, from Lemma 12, the

OSS will exhibit the local stability. Since any path on the NMF is totally unstable,

the NMF is “stable.” Hence the neighborhood turnpike theorem hold. Combining

both results, the complete turnpike theorem is established too. This completes the

proof.

6 Concluding Remarks

We have demonstrated turnpike property under two types of generalized capital in-

tensity conditions. As I mentioned before, the complete turnpike property means

that each industry’s per capita capital stock and output converge to the industry-

specific optimal steady state paths with the rate of technical progress determined by

industry’s TFP. It means that, the per-capita capital stock of the agriculture indus-

try grows at its own rate of technical progress along its optimal steady state and

another industry, say the manufacturing industry grows at its own rate of technical

progress along its own optimal steady state. A similar explanation can be applicable
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to other industries. Therefore, our established theoretical results are consistent with

the evidence obtained in recent empirical research.
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APPENDIX

We will prove Lemma 8 here.

Proof. Since the NMF is upper-semi continuous from its definition, all I need to

establish is that F(kk) = F(k) is lower-semi continuous (l.s.c.) for any  ∈ [ 1)

Under Assumption 7, we can choose  labor-redistribution vectors d as follows:

d = (−1−1−1 · · · −1
X

=0

0

0−1 · · · −1) ( = 0 1 · · ·  )

This means that each producing sector transfers one unit of labor to the  sec-

tor. From Lemma 4, d is a continuous vector-function of  in  ∈ [ 1) and that
P

=0 

0


 = 0 for all  It follows that there are  linearly independent redistribution

vector d. Let us denote these redistribution vector as d ( = 1 · · ·  ). Henceforth,

we may use the notation: k()d() ( = 1 · · ·  ) and F(k()) for denoting OSS,

redistribution vectors and the NMF respectively. Using d() and from Lemma 6,

we can define the following  linearly independent vectors for each  ( = 1 · · ·  ):

bx() = k() + εA()d
() and bz() = k() + εG

−1
[I+(I−∆)A()]d() where

ε is chosen so that bx()  0 and bz()  0 ( = 1 · · ·  ) Let us arbitrarily

pick up a point (x z) ∈ F(k()). Pick up also another point (x0 z0) ∈ F(k(0)) such
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that (x0 z0) ∈  D , (x z) 6= (x0 z0) and choosing 0 ∈ [ 1) sufficiently close to 

Now let us define the plain H as follows:

H ≡ {(x z) ∈ D : 0[k(0) + (1−)k()k(0) + (1−)k()]+

X

=1

[x
(0) + (1− )x() z(0) + (1− )z()]} 

X

=1

 = 1

We can always find an intersection (x z) between H and the line obtained by

connecting between (x z) and (x0 z0), unless (x z) = (x0 z0) Since (x z) is on the

plain H, it can be expressed as follows:

(x z) = 0 [k(
0) + (1−)k()k(0) + (1−)k()]+

X

=1

 [x
(0) + (1− )x() z(0) + (1− )z()] 

X

=1

 = 1

where  → 0 [k(0) + (1−)k()] → k() and [x(0) + (1 − )x() z(0) +

(1 − )z()] → (x z) for  = 1 · · ·   Thus, (x z) converges to (x z) as

→ 0 Also note that (x z) ∈  D due to the convexity of D and the fact that

(x0 z0) ∈  D  Because of the continuity of k()x() and z() in  ∈ [ 1), for any

  0 there exists   0 such that | − |   implies that

kk()− [k(0) + (1− )k()]k  

and for  = 1 · · ·  

°°(k()k())− [x(0) + (1− )x() z(0) + (1− )z()]
°°  
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where  = 0 + (1 − ) and k � k is the Euclidean norm. Furthermore as  →

0  → 0. Now let us also define a point (xz) as follows:

(xz) = 0 (k(
)k()) +

X

=1

(x
() z())

where (0  

1  · · ·  · · ·  


) is used to define (x

z) By choosing  sufficiently close to

zero, we can make (xz) in the interior of D as well as sufficiently close to (x z)

Therefore (xz) is feasible. Since it is also expressed as the linear combination of

(−1) linearly independent vectors x,y and z, it follows that (xz) ∈ F(k())

Also note that due to our way of construction of (xz) as  → 0 (xz) →

(x z) Now make  converge to zero, then (x z) → (x z) and (x z) →

(x z). Thus (xz) ∈ F(k()) converges to (x z) ∈ F(k()) Therefore, F(k())

is l.s.c. at  ∈ [ 1) Apply the same arguments to any point of F(k()) and to any

 ∈ [ 1) it follows that F(k()) is l.s.c. for any  ∈ [ 1)
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Figure 1: U.S. Economy, 1970-2005 Source: EU-KLEMS DATABASE
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