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1, Introduction

The stability of a dynemic econometrlc model depeands on the
roota of the aassoclated characteristic equation.

As  the structural estimated coefflclantsa of the model ars
subject to sampling errors, also the <characteristic roota are
affected by an error.

The estimation of the asymptotic astandard errors of the
characteristic roote In linear econometric modelzs has beesn deaalt
with by Thell and Boot (1962) {whoswe numerical resaulte for the
Klein~1 qod-} have besn recently revised by Blanchi, Calzolar{
and Corti, I1380), Heudecker and van de Vanpne (1966), Obearhofar
and Xwenta (1973) and Schmidt (1974). By means of thesa

saayeprotic standard errors, it is possible to tect the model for

ztabillty (however, the power of the test im open to quesiion,
because the null hypothesis must be alwsys stabllity, rather than
instability, an vell pointad out in Oberhofer and
Kmenta, 1971,fn.5 and Gustafson, 1978). Unfortunately, all the

procedures proposed to derive tue osymptotic standard =rrors of

‘the characteristic roots meam to have soma drevbacks, which can

be summarized as followvs.

1) They ara confined to linear modala.

2) To operate "mnalytically™ as long <3 poassiblo, they pgeneruwily
Invaolve the use of larpe sccle jspsarsa2) metrices even for
smali-medium slze modela.

3) In case of nonlinear models, an explicit linecrization mwust be
preliminerily performed and explicit veluar must be obtalned
for the variances-coverlances of the linearired model’'s
parameters, which are time-varying,

These difficulties, together with the consideration that sll the

"analytical” methods must in any «case resort to numerical

‘tachniques to solve the charactaristic equation, sugpested to

implement a2 purely numerical {simulation) method, whose

dsscription is the main subject of this paper.

1) The method works [n the mame way both on linear and nonlinear
models; model's linearization, In the neigﬁbcrhood of a glven
polnt, Is performed only Impliclitly and reference ls made only
ts the estimated parametere of the structural form.

2) The procedure does not involve the wuse of 1large sparse
matrices.

2) Mo special input format is renquested for the model:; it can be



simply written in the Gauas-Seldel format usually adoptaed by
most of the bullders of medium-large scale wmodels. The
poaslbiiity of computationsl errors la, therefore, draxtically
reduced.

4) The eaxperiments performed on several modela show that the
conputation is very fast for small models and reasonably fast
for medlum alzxe modela; with higher cost, the computation ia
atill feasible for moderately large models (for which, wvan if
linear, the analytical methods would probably laad to
untreatable dimensions).

In section 2 thc problem of the characteristic roota and

assocliated asymptotic standard arrors in llinsar models is briafly

recalled. In aection 3 the method to deal with local

L{nearizaticns ©of nonlinear wmodels {a brlefly descri{bed; an

outline of a flow-chart {1 given {n section 4. Finally, {n

sectlon 5, numerical results gre displayed for soms nodals of

different slzes.

2. Linear dynam{c models

Ltet 4 linear dynamic econometric model be represantaed, I[n [ts
structural form, as

Ay, * 8x, ¢ Cy._, = v, T2l ..., T
where vy, is thea (m %X 1) vector of the andogenous varlablea at
tlmea v, x;, s tha (n x 1) vector of the exogenous variableas, y,.
1s the vector ¢of the endagenous varlablea lagged one perlod, A, B

and C are the {@ x m), (m x n}) and (m x @) matrices of the

structural coefficlenta (including restrictions) 4and u, Lls the
(m x 1) vactor of the mtructural randos diaturbances (fncluding
zerces for the nonstochaetic definltional squations). Dafining
Ig=-ale,  ne-x's, v =&ty
the restricted reduced form [&a
Yi * Myxg o Jlg¥ey * vy .

Hodels with sndogencus variables lagged wmore than one period can
bs reconducted te ths above achems Bimply by adding definitional
{nonatochaatic) equations (a simple matrix foraulatlon can bs
found in Ohrymes, 1978,p.128),

The dynamic behavior <{(and stability) of the model depends on
the chacscteristic roots of the (m x m} matrizx [, Letr &
conslfatent and asymptotically normally disrributed estimate of
the subset of veduced form coefficlenta which fora (I, bs
avallable, 30 that

l/f (vec ﬁo - vee flg) —— N (0,0,
T~

Let also a conslstent estimare of () be aveiflable (for example,
with the method by Goldberger, Nagar and Odeh, 1361). Then the
asymptotic varlance of a charactaristi{c root can de obtrained v!ia
computatlon of the partise) derivatlves of such a root with
respect to the elements of Ne. Thls computation s, {n
principle, vrather sfimple, each derivative bei{ng equal to the
product of elements of the aigeanvector corresponding to the given
root {thia 18 baslcally the mathod by Thell and Boot, 1962 and by
Heudecker and van de Panne, Y966).

A difficulry, however, arisecs in practice even faor



small-medlum size modelsa, an the dimenajonn of the matrix () mnv
be extremely large; {ts dimensions are, {n fact, (m?x m?), whers
m s the number of endogenous variables of tha “"f{rst order”
system derived from the model, that {s the one obtalned by sdding
equations due to possible presence of some endogenous varlables
lagged more than one period.

The dimensional! problems Involved In the method by Oberhofer
and Kmenta (1973) seem to be similar, as this method desls with
the asymptotic covariance matrix of

vec A - vec A
%3
vec C - vec C
vhose dimensions are (2m2x 2m?),

However, most of the &elements of A and & are generally
restricted a-priori (for example zeroes and onea) so that thae
estimated coeffic{ents can be collacted {nto & vector a whose
dimension {s generally much smaller than ?m?, If the modnl is
linear, it can be possible to mafntain the correspondence between
the slemente of 8 and the correaponding sparse elements of A and
€, so that the dimensions of the problem can be reconducted to
those of the asymptotlic covariance matrix of V?(E—a).

If the model {sm nonkinear and has bmen prelfiminarily
linearized, it seems difficult to treat {n a slmple way the
correspondence betveen the elements of the vector & of the
estimated nonlinear atructural form and the elaments of A and C
in the 1linearized model! (due to nonlinearities, A and C may be
time varying and may {nvolve nonlinear transformations of ths

alements of &).

The method descrided (n section 4 {a clome to the mathods by

Thell and Boot (1962) and by Neudecker and van de Panne {19686),

but {t avolds to explicitly compute (and store) the lsrge

covariance matrix of the elements of fig.

J. Xonlinear dynamic models

Let us represent a structural nonlinesr econometric model by

yi = f(y, » Xy -YQ-lva) ¢ Uy t = 1|2'----T

where:

f is a column vector of functional oporators

(Er, 1=1,2,...,m), continuyous and differentiable with respect to

the elements of y, , x,, Y.y and a, vith continuous derivatives up

to the second order;

Yo > %y and y.; are the column vectora of endogenous, exogenous
and lapgped endopenous variables at time t T 1,2,...,7
Cy; oy 121,200 0m0 x5y, §21,2,...,0)

s Is the column vector (a,, k=1,2,...,8) of structural
coefflcients to be estimated (ths other known coefflclents of the
model being included in the functlonal operators);

u, Is the column vector of structural stochastic dlaturbances
at time t (u;,, £=1,2,...,m).

¥e assume exf{stence of a vector & of consistent estimatan of
a, the asymptotic normality of V?(ﬁ—s)~N(0.W) and tha

svailability of a consistent estimate of v, yr,

The restricted reduced form of the modrl will be indlcated ag

Yo T oglxy ,yiy,a,u0),



where tha vector g of functional operators {3, of course,
generslly unknown 1f thea modal is nonllnear,

The dynamic behavior (and wtability) of & local linesrization
of this nmodel at time t is determined by the characturintic roota
of the (a x w) matrix g, (g, {1 lts estimata) of parctial
der{vatives, in the neighborhood of the molution poeint at time t,
of y, with respect to y,_,.

Let |\, he a real characterlatic raoot of 1o and i, thae
corresponding characteristic raotr of ﬁoJ. Undar the assumptlons
of continufty and differesntiability of <the functiona fonvolved {n
the s9tructural form, since V?(i-al in asymptotically normally
distributed as N(O,¥), then y?{j,-j,) 1a saymptotrically normally
distributed as N(O,j'w) ), where j, Is the vector of partlal

derivatives of At with respect to the elements of a

{Rao, 196%,p.2321). Tf the computstion fa pasrformed for 3,,
through the matrix }lg,, we get a consistent estimate j, of j, and
the aquare root of (i:@i,)/T is the estimated asymptotic standard
error of the given root.

If 3, {3 compleax, the above resulis hold both for the modulus
and for the orgument (or for the corresponding neriod); (n this
cans wa hava to compute two

vectora and 4, . partlal

derivatives of the modulus and of the argument, respectively.

4, The adopted almulation procedurs

The 3 (or p, and q,) vectors for all tha characteriatic roote

can be computed wuslng a s{mulation method, whlch wakes no

differeance between linear and noalfnear modala; thes method fa

based on numerical differentiation of the characteristic roota of

the matrix fg,, with reapsct to the atructural antimated

coafflcienta, where the matrix ﬁoJ {s repsatedly constructed

using numerical differentiatlon of the endogeanous varfsbless with

respect to the Jagged 4andogenous. The procedure can ba

sunmarized ay follows.

1)

2)

3)

N)

S)

6)

7)

A scan 18 prellaionarily performed on the model to determina
vhich ares the lagged endogencus varisbles actually present and
the maximun lag of each of them,

The wodel {3 numerically sclved at time ¢,

An fncrement ls glven to the value of a lagged aendoganous
variable, the model ia again soclved at tima t and the partlial
derlvatives of y, with respect 1o the given lagged endoganocus
are numerically computed. Thie step i{» repeasted for all the
lagged endogenous varjablea and the computed derivatives are
atored into a matrix (Ng,).

The <c¢haracterlatic roota aof the maxri{x are computed and
stored; If they are complex, we compute and store modulil and
arguments (or periods).

An Increment {s glvan to one

structural eatimated

coefflelent.

The process ls repeated from step 72 to step 5 sm many times as

the number of structural eatimated coefflicients

(a,, X=1,2,...,5).
The opartial derivatives of each root, with respect to the

structural coafflclents, are then computed, stored fnto tha



vector i. (or the two vectors p, and q,, If 1the root s

complex)} and the asymptotic standard error of the root i

finally obtained,
Some csre must be taken of the cholce of the incremants to be
glven to the lagged andagenous varlasblea and to the coafficienta
to compute the derivatives. In all the models on which these
experiments have been performed, relative Incrementa In the ranpe
0.001-0.000001 have always led to resultas equal at leaat iIn thae
first 7-3 significant digfts (quite enough for a astandard
errar), Of course, to appreciate these =small i{ncrements, the
tolerance at convergenca {n the {terative Gauss-Seidal method had
to be much smaller than the one ususlly adopted by
ecconometriclans for the solution of simultaneous systems; 1079

has been used for theae experiments,

$. Results on some models

As already mentlioned {n the introduction, the purpoae of this
paper 1ls net to Rgive any judgement on the stabliilty of the
various models analyzed nor on the asfigniflcance of their
characteristic roots, but rather to describe in some details a
simulation method and !ts computational performances.

Therefore, no comments will be made on the raeasults displayed
In this section, 1llke unreasonably lonpg perfods of complax raoots,
or differences among perlods assocfated with characteristic roots
obtai{ned for alternative estimation mathods, or character{satic

roots greater than 1.

5.1, The Klein-~1 model

The model conalsts of three stochsatic plus three defi{n{tions
squations; 12 are the =2stimoted coefficlenta, 4 for aac
aquation. 3 &ere the lagged ondogenous varisbles, all with 1la
1. One of the three nonzero oots i{s real, the other two ar
conjupgate complex; the table balow displays, for asevare
estimation methods (some of these reaults have besen presanted |
Bianch{, Calzolari and Corsi, .980), the real root and <!
aodulus and perlod corresponding to the conjugete couple with, |
paraniheees, thelr standard ec-rors. For egch eatimation matho!
the computatlion has required approximately two gseconds of C}

time on a computer 1BHM/370 model 158,

Catimate Real root Complex palr
Modulus Peri:
2SLS 2% .Bup 14,1
(.075) (.063) (2.01
ISLS LUk .871 13.!
(.,060) (.05%7) (1.6:
LIVE .318 .Bu? 15.1
(.072) (.0613) (2.
TIVE .367 .870 1y .
(.063) (.069) (2.1
TID L33u .838 ) S
(.068) (.0%9) (1.7
LIVE fterat. 317 .84 15,/
(.072) (.060) (2.2
FIVE {terat. 423 . 761 3L,
(.062) (.075) (26,
FINML Lu23 761 Ju.,

(.069) (.127) (68,



5.2, The Xlein-Goldberger model

The mode) on which the experiments have been parformed {s the
revined veralon deacribed in Xlein (1969). It is nonlinear and
coneists of alxteen stochastle and four defini{tional equations,
{t tncludes 5S4 estimated <coefficlent and 18 lagped oﬁdorenous
var{ables with maximum lag of two years. Castimation has been
performed by means of 25LS with 4 princlpal! components, a8 In
Xlein (1969). The derivatives with resapect to the lagged
endogenous variables are computed in the solution point at 1964
(last year of the sample perliod).

For brevity's sake, the table below displays only the two
larpant real roots and the two larpest ({n modulus) couples of
complex roots with standard errora,

The computation has required spproximately ona minute of CPU

time on a computer IBM/370 model 158,

Estimate Real roota Complex pairs
Hodulus Period
2SLS - v PC 1.15 389 87.9
(.0u3) (.392) (u28.)
1.01 .228 6.13
(.020) (.689) (3.91)

5.3. The ISPL model of the Italian econaomy

The nonlinear model analyzad in this sectlon {3 &8n annual model
of the [ta)lan economy developed by & team led by ISPE (fstituto

Studi Programmazione Lconomica). The model, orlginally describod

in Sartoril (1978), has been raseastimated for the period 1955-1976
using 25LS with principal components, according to method 4 by
Kloek and Mennes (1960). It conpiats of 19 stochastic plus 25
deflnitlonal equations; 75 are the eytimated coeffici{onts and 18§
are the lagged endogencus variablea, with a maximum 1ag of 2
years. The derivatives with reapect to the lagged endogenaus
variables are computed in the solution point at 1976 (last year
of the sample period).

The table below displays the three largest real roots and the
three largest palrs of complex roots with =standard errors §n
parentheses,

The computatfon has required & minutes of CPU time on a

computer IBM/370 model 158,

Estimate Real roots Complex pairs

Modulus Period

2SLS - PC 1,21 . 932 28.5%
(.012) {.118) (20.%)

1.20 .41l b,u2

(.014) (.079) (.352)

. 751 .100 4.96

(.164) (.073) (.262)

S.4. The IBM model of United Ki{ngdom

The mode)l analyzed {n this section {s the model of United
Klngdom developed by the IBM CHQ Cconomics. It {8 & quarterly
model, with 120 equatlons, 21 of which =stochastic and 1212

exogenous varfables; the structural) estimated coeff{cients are 58



and the lagged endogennus variables are 33, with & maxlmum lap of
“ quarters., The sample perlod starts from 1956/2 to 1969/1 and
alvays ends at 1975/4. Latimation ham becen performed by means of
the Limltad {nformation Inatrumental varfnblas ©[L[Ffficlent method
(LIve), described in Brundy and Jorgenson {1571). The
derivatives with reapect to the lagpned endogenous varismbles sre
computed In the solutien polnt at 1975/ (laat quarter of tha
ssmple period),

The table below d{splays the five largest rasl reots and the
Five largest pairs of complex roota with steandard errora In
parentheses.

The computation has required approximately cne heur of CPU

time on a computer IBN/370 model 158.

Estimate Real roota Complax pairs

Kodulus Period

LIYE . 1.086 1.0u 3502,
(.001) {.001) (?2156.)

1.08 .BOB 41u.2
(.0013) (.1u7) (6213.)

1.0% .762 1%.12

(.002) (.078) (B.9))

1.03 .63%% b, 30

(.00u) {.002) (.00u}

1.0l 657 4_30

{.001) {.001) {.002)
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