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Abstract

This paper analyzes the optimal consumption behavior of a consumer who faces uninsurable

labor income risk and borrowing constraints. In particular, it provides conditions under which

the decision rule for consumption is a concave function of existing assets. The current study

presents two main �ndings. First, it is shown that the consumption function is concave if the

period utility function is drawn from the HARA class and has either strictly positive or zero

third derivative. Second, it is shown that the same result can be obtained for certain period

utility functions that are not in the HARA class.
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1 Introduction

This paper is concerned with the optimal intertemporal consumption behavior of a risk-averse

agent who faces uninsurable labor income risk and has limited borrowing opportunities to �nance

consumption. In particular, this paper seeks to provide conditions under which the agent�s decision

rule for consumption at any point in time is a concave function of existing assets.

There are at least two reasons why the concavity of the consumption function deserves at-

tention. First, it is directly supported by empirical evidence. Using data from the Consumption

Expenditure Survey, Gourinchas and Parker [6] estimate the consumption functions for households

in various age groups and �nd that these functions are concave in liquid wealth. Second, the con-

cavity of the consumption function is important in understanding precautionary saving behavior.

Concavity means that the marginal propensity to consume out of wealth is negatively related to

wealth. Thus, when facing the same variation in total resources available for consumption, poor

agents would make a larger adjustment in consumption than wealthy agents. This implies that

when the total resources at hand are subject to uncertainty, the growth rate of consumption for

poor agents is more volatile than that for wealthy agents.1 This creates an incentive for risk-averse

agents to accumulate precautionary wealth. As emphasized by Carroll [2], a concave consump-

tion function is a key building block of the bu¤er-stock savings model. In this type of models,

an impatient consumer (one with rate of time preference greater than the interest rate) chooses

to maintain a positive �target� level of wealth because the precautionary saving motive prevails

over the desire to dissave induced by impatience when the wealth level is low. The two forces are

in balance when the target level of wealth is reached. In another study on precautionary wealth

accumulation, Huggett [5] examines the conditions under which the average wealth holding of in-

dividuals increases when earnings risk increases. He �nds that a concave consumption function (or

equivalently, a convex savings function) is a key element in generating this type of behavior.

Despite its theoretical and empirical relevance, only a few studies have examined the theoretical

foundations of concave consumption function. In an earlier study, Carroll and Kimball [3] examine

this issue in a model similar to the one considered in the present paper but without borrowing

1See Zeldes [13] and Carroll [2] for a detailed discussion on this point.
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constraints. They show that concavity of the consumption function can be established if the period

utility function exhibits hyperbolic absolute risk aversion (HARA) and has either strictly positive

or zero third derivative. This result is useful because these two properties are satis�ed by a wide

range of utility functions, including the constant-relative-risk-aversion (CRRA) utility functions,

the constant-absolute-risk-aversion (CARA) utility functions, and the quadratic utility functions.

To establish this result, Carroll and Kimball make use of the second and third derivatives of the

value function. The existence of these derivatives, however, is not guaranteed in the presence of

borrowing constraints. This raises the question of whether the results in Carroll and Kimball [3]

remain valid when such constraints are introduced. Two recent studies, Huggett [5] and Carroll

and Kimball [4], address this question using a di¤erent strategy of proof. These studies are able to

establish the concavity of the consumption function in an environment with borrowing constraints,

but only for three speci�c groups of period utility functions: CRRA utility, CARA utility and

quadratic utility. The current study is a continuation of these e¤orts and seeks to generalize their

results.

This paper presents two main �ndings. First, it is shown that in a canonical life-cycle model

with borrowing constraints, the decision rule for consumption at any point in time is a concave

function of existing assets if the period utility function is drawn from the HARA class and has

either strictly positive or zero third derivative. In other words, the current study generalizes the

main result in Carroll and Kimball [3] to an environment with borrowing constraints. However,

unlike Carroll and Kimball [3], our proof only requires the value function to be once continuously

di¤erentiable. This property of the value function is formally established in an intermediate step

towards the main result. The results in Huggett [5] and Carroll and Kimball [4] can be viewed as

special cases of our �rst main result. The second main �nding of this paper is that concavity of

the consumption function can be established even if the period utility function is not a member of

the HARA class. In other words, hyperbolic absolute risk aversion is not a necessary condition for

the consumption function to be concave. To the best of our knowledge, this result is not formerly

mentioned in the existing studies. The current study provides speci�c conditions under which a

non-HARA utility function would give rise to concave consumption functions.
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The reminder of this paper is organized as follows. Section 2 describes the model environment.

Section 3 analyzes the agent�s problem and establishes some intermediate results. Section 4 states

the main �ndings mentioned above, discusses their implications and compares them to those in

the existing studies. Section 5 presents the proof of the main results. Section 6 concludes.

2 The Model

Consider a consumer who faces a (T + 1)-period planning horizon, where T is �nite. The consumer

has preferences over random consumption paths fctg
T
t=0 which can be represented by

E0

"
TX

t=0

�tu (ct)

#
; (1)

where � 2 (0; 1) is the subjective discount factor and u (�) is the utility function. The domain of the

utility function is given by D = [c;1) ; with c � 0:2 The lower bound c is interpreted as a minimum

consumption requirement. Throughout this paper, we maintain the following assumptions on the

utility function.

Assumption A1 The utility function u : D ! [�1;1) is thrice continuously di¤erentiable,

strictly increasing and strictly concave.

Note that Assumption A1 does not impose any restriction on the value of u (c) : This means

the utility function can be either bounded or unbounded below.

In each period, the consumer receives a random amount of labor income. Let et be a random

variable which represents labor endowment at time t: Labor income at time t is then given by

wet; where w > 0 is a constant wage rate. Let X � R+ be the state space of the random labor

endowment, and (X;X ) be a measurable space. The random variable et is assumed to follow a

stationary Markov process with transition function Q : (X;X )! [0; 1] : The following assumption

is imposed on the Markov process.

2This speci�cation encompasses those utility functions that are not de�ned at c = 0: One example is the Stone-
Geary utility function which belongs to the HARA class and features a minimum consumption requirement. All the
results in this paper remain valid if we set c = 0:

4



Assumption A2 One of the following conditions holds:

(i) X is a countable set in R+ with minimum element e and maximum element e; 0 < e < e <1:

(ii) X is a compact interval in R+; represented by X = [e; e] ; 0 < e < e < 1: The transition

function Q has the weak Feller property, i.e., for any bounded, continuous function � : X !

R; the function T� de�ned by

(T�) (e) =

Z

X
�
�
e0
�
Q
�
e; de0

�
;

is also continuous.

In light of the uncertainty in labor income, the consumer can only self-insure by borrowing or

lending a single risk-free asset. The gross return from the asset is (1 + r) > 0: Let at be the agent�s

asset holdings at time t: The consumer is said to be in debt if at is negative. In each period t, the

consumer is subject to the budget constraint

ct + at+1 = wet + (1 + r) at; (2)

and the borrowing constraint: at+1 � �at+1: The parameter at+1 � 0 represents the maximum

amount that the consumer can borrow at time t: The borrowing limits are period-speci�c for the

following reason. In life-cycle models, consumers are typically not allowed to die in debt. This

means the borrowing limit in the terminal period is aT+1 = 0: But the borrowing limit in all other

periods can be di¤erent from zero. Throughout this paper, we maintain the following restrictions

on the borrowing limits.3

Assumption A3 The set of borrowing limits fatg
T+1
t=0 satis�es the following conditions: at � 0;

for all t; aT+1 = 0 and

we� (1 + r) at + at+1 > c; for all t: (3)

3Similar restrictions are also used in Huggett [5, Section 4.2].
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The intuitions of (3) are as follows. Suppose the consumer faces the worst possible state at

time t; i.e., at = �at and et = e: The highest attainable consumption in this particular state is

ct = we � (1 + r) at + at+1: The above condition then ensures that the consumer can meet the

minimum consumption requirement even in the worst possible state. The same condition also

ensures that any debt at time t can be repaid in the future even if the consumer receives the lowest

labor income in all future time periods, i.e.,

T�tX

j=0

we� c

(1 + r)j
� (1 + r) at > 0; for all t:

3 The Agent�s Problem

Given the prices w and r, the agent�s problem is to choose sequences of consumption and asset

holdings, fct; at+1g
T
t=0 ; so as to maximize the expected lifetime utility in (1), subject to the budget

constraint in (2), the minimum consumption requirement ct � c for all t; the borrowing constraint

at+1 � �at+1 for all t; and an initial condition a0 � �a0:

De�ne a sequence of assets fatg
T
t=0 according to

at+1 = we+ (1 + r) at � c;

for t 2 f0; 1; 2; :::; T � 1g, and a0 = a0: This sequence speci�es the amount of asset available in

every period if the consumer receives the highest possible labor income we and consumes only

the minimum requirement c in every period. Since (1 + r) > 0; this sequence is monotonically

increasing and bounded above by

aT � (1 + r)
T a0 + (we� c)

T�1X

j=0

(1 + r)j ;

which is �nite as T is �nite. It is also straightforward to show that any feasible sequence of assets

fatg
T
t=0 must be bounded above by fatg

T
t=0 : Hence the state space of asset in every period t can

be restricted to the interval At = [�at; at] :
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In any given period, the state of the consumer can be summarized by s = (a; e) ; where a

denotes his asset holdings at the beginning of the period, and e is the current realization of labor

endowment. The set of all possible states at time t is given by St = At �X:

De�ne a sequence of value functions fVtg
T
t=0 ; Vt : St ! [�1;1] for each t; recursively according

to

Vt (a; e) = max
c2[c;z(a;e)+at+1]

�
u (c) + �

Z

X
Vt+1

�
z (a; e)� c; e0

�
Q
�
e; de0

��
; (P1)

where z (a; e) � we+ (1 + r) a: In the terminal period, the value function is given by

VT (a; e) = u [we+ (1 + r) a] ; for all (a; e) 2 ST :

De�ne a sequence of optimal policy correspondences for consumption fgtg
T
t=0 according to

gt (a; e) � argmax
c2[c;z(a;e)+at+1]

�
u (c) + �

Z

X
Vt+1

�
z (a; e)� c; e0

�
Q
�
e; de0

��
; (4)

for all (a; e) 2 St and for each t: Given gt (a; e) ; the optimal choices of at+1 are given by

ht (a; e) �
�
a0 : a0 = z (a; e)� c; for some c 2 gt (a; e)

	
: (5)

Our �rst theorem summarizes the main properties of the value functions. The �rst part of the

theorem states that the value function in every period t is bounded and continuous on St. This

is true even if the utility function u (�) is unbounded below. Continuity of the objective function

in (P1) then ensures that the optimal policy correspondence gt (a; e) is non-empty and upper

hemicontinuous. The second part of the theorem establishes the strict monotonicity and strict

concavity of Vt (�; e) : Strict concavity of the value function implies that gt (a; e) is a single-valued

function. The last part of Theorem 1 establishes the di¤erentiability of Vt (�; e) : Speci�cally, this

result states that Vt (�; e) is not only di¤erentiable in the interior of At; it is also (right-hand)

di¤erentiable at the endpoint �at:
4 This property is important because, as is well-known in this

4Note that the standard result in Stokey, Lucas and Prescott [12, Theorem 9.10] only establishes the di¤erentia-
bility of the value function in the interior of the state space.
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literature, the consumer in this problem may choose to exhaust the borrowing limit in certain

states.5 In other words, the agent�s problem may have corner solutions in which ht�1 (a; e) = �at

for some (a; e) 2 St�1: Thus the �rst-order condition of (P1) has to be valid even when ht�1 (a; e) =

�at. This requires the value function Vt (�; e) to be once di¤erentiable at a = �at:

Additional conditions are imposed in part (iii) of Theorem 1 to ensure that gt (a; e) > c for

all (a; e) 2 St: Speci�cally, the proof of part (iii) uses an intermediate result which states that if

the utility function satis�es the Inada condition u0 (c+) � lim
c!c+

u0 (c) = +1; or the consumer is

impatient so that � (1 + r) � 1; then it is never optimal to consume only the minimum requirement

c:6 It follows that ht (a; e) can never reach the upper bound at+1 in any period t: Hence there is

no need to consider corner solutions in which ht�1 (a; e) = at; and the (left-hand) di¤erentiability

of Vt (�; e) at a = at:

Theorem 1 Suppose Assumptions A1-A3 are satis�ed. Then the following results hold for all

t 2 f0; 1; :::; Tg :

(i) The value function Vt (a; e) is bounded and continuous on St:

(ii) For all e 2 X; Vt (�; e) is strictly increasing and strictly concave on At:

(iii) Suppose either u0 (c+) = +1 or � (1 + r) � 1: Then the function Vt (�; e) is continuously

di¤erentiable on [�at; at) for all e 2 X: Let pt (a; e) denote the derivative of Vt (a; e) with

respect to a. Then

pt (a; e) = (1 + r)u
0 [gt (a; e)] ; for all (a; e) 2 St:

Proof. See Appendix A.

Our next theorem establishes some basic properties of the policy functions. These results are

useful in establishing the concavity property of gt (�; e) : The �rst part of Theorem 2 states that

gt (a; e) is strictly greater than the minimum consumption requirement c for all (a; e) 2 St: As

5See, for instance, Schechtman and Escudero [10] and Mendelson and Amihud [8].
6The same assumption is also used in Huggett [5, Lemma 1]. In the bu¤er-stock savings model à la Carroll [2],

it is typical to assume � (1 + r) � 1:
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mentioned above, this follows from the assumption that either u0 (c+) = +1 or � (1 + r) � 1: The

second part of the theorem establishes the Euler equation for consumption. This equation plays a

central role in establishing the concavity property of gt (�; e) : The third part of the theorem states

that the policy functions for consumption and future asset holdings are increasing functions in

current asset holdings.

Theorem 2 Suppose Assumptions A1-A3 are satis�ed. Suppose either u0 (c+) = +1 or � (1 + r) �

1: Then the following results hold for all t 2 f0; 1; :::; Tg :

(i) The policy function for consumption is bounded below by c; i.e., gt (a; e) > c for all (a; e) 2 St:

(ii) For all (a; e) 2 St; the policy functions gt (a; e) and ht (a; e) satisfy the Euler equation

u0 [gt (a; e)] � � (1 + r)

Z

X
u0
�
gt+1

�
ht (a; e) ; e

0
��
Q
�
e; de0

�
; (6)

with equality holds if ht (a; e) > �at+1:

(iii) For all e 2 X; gt (�; e) is strictly increasing whereas ht (�; e) is non-decreasing.

Proof. See Appendix A.

4 Main Results

The main results of this paper are summarized in Theorem 3. This theorem provides a set of

conditions on the utility function u (�) such that the policy function for consumption in every

period is a concave function in current asset holdings. These conditions cover two classes of utility

functions: (i) quadratic utility functions, or those with u000 (c) = 0 for all c 2 D; and (ii) utility

functions with strictly positive third derivative, i.e., u000 (c) > 0 for all c 2 D: For the latter class

of utility functions, an additional condition is needed in order to establish the desired result. It

is shown that this condition is satis�ed by a wide range of utility functions, including all HARA

utility function with strictly positive third derivative, and certain non-HARA utility functions.

Before stating the main theorem, we �rst introduce some additional notation. For expositional

convenience, de�ne � (�) as the marginal utility function, i.e., � (c) � u0 (c) for all c 2 D: Under
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Assumption A1, � (�) is twice continuously di¤erentiable, strictly positive, strictly decreasing and

strictly convex. In addition, the inverse function of �; denoted by ��1 (�) ; is also twice continuously

di¤erentiable and strictly decreasing. If the utility function has strictly positive third derivative,

then we de�ne � : D ! R according to

� (c) =

�
�0 (c)

�2

�00 (c)
�
[u00 (c)]2

u000 (c)
; (7)

and � : R+ ! R according to

� (z) � �
�
��1 (z)

�
: (8)

Both � (�) and � (�) are strictly positive as u000 (�) is strictly positive. Within this group of utility

functions, we con�ne our attention to those that satisfy the following assumption.

Assumption A4 Let � be a probability measure on R+: For any �-integrable function  : R+ !

R+;

�

�
� (1 + r)

Z

R+

 d�

�
� � (1 + r)

Z

R+

� �  d�: (9)

If � is a discrete probability measure with masses f�1; :::; �Ng on a set of points in R+; then

the condition in (9) can be expressed as

�

"
� (1 + r)

NX

i=1

�i i

#
� � (1 + r)

NX

i=1

�i� ( i) ;

for any  = ( 1; :::;  N ) 2 R
N
+ :

Before proceeding further, it is instructive to examine what kind of functions are consistent

with Assumption A4. One important thing to note is that the value of � (1 + r) plays a crucial

role in this issue. If � (1 + r) = 1; then (9) becomes Jensen�s inequality. Hence, any concave

function � (�) de�ned on R+ satis�es Assumption A4 when � (1 + r) = 1: This, however, is not

true when � (1 + r) 6= 1: Below are some examples of � (�) that is consistent with Assumption

A4 when � (1 + r) 6= 1: In Section 4.1, we show that the �rst of these examples encompasses all

HARA utility functions with strictly positive third derivative. The last of these examples provides
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the basis for �nding non-HARA utility functions that satisfy Assumption A4. The details of this

are provided in Section 4.2.

1. If � (z) � bz for some strictly positive real number b; then it satis�es Assumption A4 for any

� (1 + r) > 0:

2. If � : R+ ! R is a linear function with � (0) > 0; then it satis�es Assumption A4 when

� (1 + r) 2 (0; 1) :

3. If � : R+ ! R is nonincreasing and concave, then it satis�es Assumption A4 when � (1 + r) 2

(0; 1) :

We are now ready to state the main theorem. Building on the results in Theorem 2, our main

theorem states that the policy functions fgt (�; e)g
T
t=0 are concave if the utility function u (�) belongs

to either one of the following categories: (i) quadratic utility functions, or (ii) utility functions with

strictly positive third derivative and satisfy Assumption A4.7 The proof of this theorem is given

in Section 5.

Theorem 3 Suppose the conditions in Theorem 2 are satis�ed. For any e 2 X; the policy functions

fgt (�; e)g
T
t=0 are concave if one of the following conditions holds

(i) u000 (c) = 0 for all c � c:

(iii) u000 (c) > 0 for all c � c and Assumption A4 is satis�ed.

4.1 HARA Utility

In this subsection we show that the conditions in Theorem 3 are satis�ed by the utility functions

considered in Carroll and Kimball [3]. To begin with, a twice continuously di¤erentiable utility

function u : D ! R is called a HARA utility function if there exists (�; 
) 2 R such that �+
c � 0

and

�
u00 (c)

u0 (c)
=

1

�+ 
c
; for all c 2 D: (10)

7Theorem 3 only establishes the weak concavity of gt (�; e) : In the presence of borrowing constraints, the policy
function for consumption may not be strictly concave throughout its domain. In particular, the consumption function
is linear in current asset holdings whenever the borrowing constraint is binding. The possibility of a binding borrowing
constraint is formally proved in Mendelson and Amibud [8].
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This de�nition implies that all HARA utility functions are at least thrice continuously di¤erentiable

in the interior of its domain. The HARA class of utility functions encompasses a wide range of

utility functions that are commonly used in economics. For instance, the CARA or exponential

utility functions correspond to the case when � > 0 and 
 = 0: The standard CRRA utility

functions correspond to the case when c = 0; � = 0 and 
 > 0: The more general Stone-Geary

utility functions u (c) = (c� c)1�1=
 = (1� 1=
) correspond to the case when c > 0; � = �c
; and


 > 0: Finally, quadratic utility functions of the form

u (c) = '0 + '1 (c� c) + '2 (c� c)
2 ; with '2 < 0;

correspond to the case when � = c � '1='2 > 0 and 
 = �1: Except for the quadratic utility

functions, all the utility functions mentioned above have strictly positive third derivative. However,

not all of them satisfy the Inada condition u0 (c+) = +1: For instance, u0 (c+) is �nite under the

CARA class and the quadratic class.

An alternative characterization of the HARA utility functions can be obtained by di¤erentiating

(10) with respect to c; which yields

u0 (c)u000 (c)

[u00 (c)]2
= 1 + 
; for all c 2 D:

Carroll and Kimball [3] consider the subclass of HARA utility functions with 
 � �1; which implies

a nonnegative u000 (�) : When 
 > �1, the above expression implies

� (c) =
[u00 (c)]2

u000 (c)
=
u0 (c)

1 + 

=

� (c)

1 + 

;

) � (z) =
z

1 + 

:

In other words, the subclass of HARA utility functions with 
 > �1 corresponds to the case when

� (z) � bz for some b > 0: Hence any HARA utility function with 
 > �1 satis�es Assumption A4

for any � (1 + r) > 0:

The following corollary summarizes what we have learned about the policy functions fgt (�; e)g
T
t=0
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when the utility function is of the HARA class. These results generalize those obtained in Huggett

[5, Lemma 1]. Speci�cally, Huggett proves that fgt (�; e)g
T
t=0 are concave in two particular cases: (i)

when the utility function exhibits CRRA [hence u0 (0+) = +1]; and (ii) when the utility function

exhibits CARA [hence u0 (0+) < +1] and � (1 + r) � 1: The following corollary generalizes the

�rst case to any HARA utility functions with 
 � �1 and u0 (c+) = +1: It generalizes the second

case to any HARA utility functions with 
 � �1 and u0 (c+) <1; and � (1 + r) � 1.

Corollary 4 Suppose the utility function u (�) is of the HARA class and has either strictly positive

or zero third derivative. Suppose Assumptions A2 and A3 are satis�ed, and � (1 + r) > 0: Then

for each e 2 X; the policy functions fgt (�; e)g
T
t=0 are strictly increasing and concave if one of the

following conditions hold:

(i) Marginal utility is in�nite at c = c; i.e., u0 (c+) = +1:

(ii) Marginal utility is �nite at c = c and � (1 + r) � 1:

4.2 Non-HARA Utility

In the previous discussion, we show that Assumption A4 can be satis�ed by several forms of the

function � (�) : In particular, the linear form � (z) � bz; which encompasses all the HARA utility

functions with strictly positive third derivative, is only one of the admissible forms. This suggests

that Assumption A4 can also be satis�ed by utility functions that are not in the HARA class. The

main objective of this subsection is to illustrate this possibility for the case when � (1 + r) � 1: In

particular, we provide conditions on the period utility function such that � (�) is strictly decreasing

and strictly concave.

Suppose the utility function u (�) is su¢ciently smooth so that the function � (�) is twice

continuously di¤erentiable. Then it is straightforward to show that

�0 (z) = 1 +
d

dc

�
u00 (c)

u000 (c)

�
and �00 (z) =

d2

dc2

�
u00 (c)

u000 (c)

�
;
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for z = u0 (c) and for all c 2 D: Hence � (�) is strictly decreasing and strictly concave if and only if

d

dc

�
u00 (c)

u000 (c)

�
< �1 and

d2

dc2

�
u00 (c)

u000 (c)

�
< 0: (11)

Following Kimball [7], we de�ne � (c) � �u000 (c) =u00 (c) as a measure of absolute prudence. Then

the conditions in (11) hold if and only if

�0 (c) < � [� (c)]2 ; and �00 (c)� (c) < �2
�
�0 (c)

�2
;

for all c 2 D: These results suggest that a strictly decreasing and strictly convex absolute prudence

is a necessary condition for � (�) to be strictly decreasing and strictly concave.

5 Proof of Main Theorem

The main ideas of the proof are as follows. For each e 2 X and for all t 2 f0; 1; :::; Tg ; the function

gt (�; e) is concave if and only if its hypograph 
t (e) ; de�ned by


t (e) � f(c; a) 2 D �At : c � gt (a; e)g ;

is a convex set. Theorem 3 essentially provides a set of su¢cient conditions under which 
t (e) is

convex.

The �rst step of the proof is to derive an alternative but equivalent expression for 
t (e) :
8 The

main advantage of this alternative expression is that it is analytically tractable. For each e 2 X;

de�ne a set �t (e) according to

�t (e) �

�
(c; a) 2 D �At : c 2 �t (a; e) and u

0 (c) � �

Z

X
pt+1

�
z (a; e)� c; e0

�
Q
�
e; de0

��
; (12)

where �t (a; e) is the constraint set at state (a; e) in period t; i.e.,

�t (a; e) �
�
c : c � c � z (a; e) + at+1

	
;

8The same step is also used in the proof of Lemma 1 in Huggett [5].
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and pt+1 (a
0; e0) � (1 + r)� [gt+1 (a

0; e0)] for all (a0; e0) 2 St+1 by Theorem 1. We now show that


t (e) and �t (e) are equivalent. For any (c; a) 2 
t (e) ; it must be the case that c 2 �t (a; e) and

z (a; e)� c � z (a; e)� gt (a; e) : Since u
0 (�) and pt+1 (�; e

0) are both decreasing functions, we have

u0 (c) � u0 [gt (a; e)] � �

Z

X
pt+1

�
z (a; e)� gt (a; e) ; e

0
�
Q
�
e; de0

�

� �

Z

X
pt+1

�
z (a; e)� c; e0

�
Q
�
e; de0

�
:

The second inequality is the Euler equation in (6). This shows that 
t (e) � �t (e) : Next, consider

any (c; a) 2 �t (e) and suppose the contrary that c > gt (a; e) : If gt (a; e) = z (a; e) + at+1, then

any feasible consumption must be no greater than gt (a; e) and hence there is a contradiction. So

consider the case when z (a; e) + at+1 � c > gt (a; e) : This has two implications: (i) ht (a; e) >

�at+1; and (ii) ht (a; e) > z (a; e) � c: The �rst inequality implies that the Euler equation in (6)

holds with equality. Thus we have

u0 (c) < u0 [gt (a; e)] = �

Z

X
pt+1

�
ht (a; e) ; e

0
�
Q
�
e; de0

�

< �

Z

X
pt+1

�
z (a; e)� c; e0

�
Q
�
e; de0

�
:

This means (c; a) =2 �t (e) which gives rise to a contradiction. Hence �t (e) � 
t (e) : This estab-

lishes the equivalence between �t (e) and 
t (e) :

Rewrite the inequality in (12) as

� (c) � � (1 + r)

Z

X
�
�
gt+1

�
z (a; e)� c; e0

��
Q
�
e; de0

�
:

Since the marginal utility function � (�) is strictly decreasing, this inequality is equivalent to

c � ��1
�
� (1 + r)

Z

X
�
�
gt+1

�
z (a; e)� c; e0

��
Q
�
e; de0

��
:
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For each e 2 X; de�ne a function 	t+1 (�; e) : At+1 ! D according to

	t+1
�
a0; e

�
� ��1

�
� (1 + r)

Z

X
�
�
gt+1

�
a0; e0

��
Q
�
e; de0

��
: (13)

Then the set �t (e) can be rewritten as

�t (e) � f(c; a) 2 D �At : c 2 �t (a; e) and c � 	t+1 (z (a; e)� c; e)g :

This set is convex if 	t+1 (�; e) is a concave function. The converse, however, is not necessarily

true.

Part 1

Suppose u000 (c) = 0 for all c � c: In other words, the utility function u (�) is quadratic and the

marginal utility function can be expressed as

� (c) = 
1 + 
2c;

with 
2 < 0 and 
1 + 
2c > 0: It is then straightforward to show that

	t+1
�
a0; e

�
�
[� (1 + r)� 1] 
1


2
+ � (1 + r)

Z

X
gt+1

�
a0; e0

�
Q
�
e; de0

�
;

for all a0 2 At+1 and for all e 2 X: The concavity of 	t+1 (�; e) follows immediately from an

inductive argument. In the terminal period, the policy function is gT (a; e) � we + (1 + r) a; for

all (a; e) 2 ST : Suppose gt+1 (�; e
0) is concave for all e0 2 X: Since concavity is preserved under

integration, the function 	t+1 (�; e) is also concave for all e 2 X. Hence �t (e) is a convex set for

all e 2 X.

Part 2

Suppose now u000 (c) > 0 for all c � c: Again we use an inductive argument to establish the concavity

of 	t+1 (�; e) : Suppose gt+1 (�; e
0) is concave for all e0 2 X: In the following proof, we �rst establish
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the concavity of 	t+1 (�; e) for the case when X is a �nite point set. We then extend this result to

more general state spaces.

Suppose the labor endowment process fetg follows a discrete state-space Markov process. For-

mally, let X = fee1; ee2; :::; eeNg be the state space of the process and Q = [qi;j ] be the transition

probability matrix. The (i; j)th entry of Q denotes the probability of moving from state eei to state

eej in one period, hence qi;j 2 [0; 1] for all i and j:

Suppose the current state of the Markov process is eei: Then

	t+1
�
a0; eei

�
� ��1

8
<
:� (1 + r)

NX

j=1

qi;j�
�
gt+1

�
a0; eej

��
9
=
; : (14)

Pick any a01 and a
0

2 in At+1: De�ne a
0

� � �a01+(1� �) a
0

2 for any � 2 (0; 1) : Concavity of gt+1 (�; e
0)

implies

gt+1
�
a0�; e

0
�
� �gt+1

�
a01; e

0
�
+ (1� �) gt+1

�
a02; e

0
�
;

for all e0 2 X: Since the marginal utility function � (�) is strictly decreasing, we have

�
�
gt+1

�
a0�; e

0
��
� �

�
�gt+1

�
a01; e

0
�
+ (1� �) gt+1

�
a02; e

0
��
;

and hence

� (1 + r)

NX

j=1

qi;j�
�
gt+1

�
a0�; eej

��
� � (1 + r)

NX

j=1

qi;j�
�
�gt+1

�
a01; eej

�
+ (1� �) gt+1

�
a02; eej

��
:

Since the inverse function ��1 (�) is strictly decreasing, we can write

	t+1
�
a0�; eei

�
� ��1

8
<
:� (1 + r)

NX

j=1

qi;j�
�
gt+1

�
a0�; eej

��
9
=
;

� ��1

8
<
:� (1 + r)

NX

j=1

qi;j�
�
�gt+1

�
a01; eej

�
+ (1� �) gt+1

�
a02; eej

��
9
=
; :

De�ne two sequences of positive real numbers fxjg
N
j=1 and fyjg

N
j=1 by xj � gt+1 (a

0

1; eej) and
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yj � gt+1 (a
0

2; eej) for all j: The function 	t+1 (�; eei) is concave if

��1

8
<
:� (1 + r)

NX

j=1

qi;j� [�xj + (1� �) yj ]

9
=
;

� �	t+1
�
a01; eei

�
+ (1� �)	t+1

�
a02; eei

�

� ���1

8
<
:� (1 + r)

NX

j=1

qi;j� (xj)

9
=
;+ (1� �)�

�1

8
<
:� (1 + r)

NX

j=1

qi;j� (yj)

9
=
; :

In other words, if the function � : (c;1)N ! D de�ned by

� (x) � ��1

8
<
:� (1 + r)

NX

j=1

qi;j� (xj)

9
=
; ; (15)

is concave, then 	t+1 (�; eei) is also concave and the hypograph of gt (�; ; eei) is a convex set for all

eei 2 X:

The function � (x) is concave if and only if its Hessian matrix is negative semi-de�nite. Let

H (x) = [hm;n (x)] be the Hessian matrix of � (�) evaluated at a point x: Then for any column

vector z 2 RN ; zT �H (x) z � 0 if and only if 9

�
�0 [� (x)]

	2

�00 [� (x)]
� � (1 + r)

hPN
m=1 qi;mzm�

0 (xm)
i2

hPN
m=1 qi;mz

2
m�

00 (xm)
i : (16)

Using the de�nitions in (7) and (8); we can rewrite the left-hand side of this inequality as

�
�0 [� (x)]

	2

�00 [� (x)]
� � [� (x)] = �

"
��1

(
� (1 + r)

NX

m=1

qi;m� (xm)

)#

= �

2
4� (1 + r)

NX

j=1

qi;m� (xm)

3
5 :

9The mathematical derivation of this result can be found in Appendix B.
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Using Assumption A4, we have

�
�0 [� (x)]

	2

�00 [� (x)]
= �

2
4� (1 + r)

NX

j=1

qi;m� (xm)

3
5

� � (1 + r)
NX

j=1

qi;m� [� (xm)] = � (1 + r)
NX

j=1

qi;m

�
�0 (xm)

�2

�00 (xm)
: (17)

Finally, we use the Cauchy-Schwartz inequality to show that (17) implies (16). De�ne two

sequences of real numbers fbmg
N
m=1 and fdmg

N
m=1 according to bm �

�
qi;m�

00 (xm)
� 1
2 zm and dm �

n
qi;m

�
�0 (xm)

�2
=�00 (xm)

o 1

2

: Then by the Cauchy-Schwartz inequality,

 
NX

m=1

b2m

! 
NX

m=1

d2m

!
=

"
NX

m=1

qi;mz
2
m�

00 (xm)

#"
NX

m=1

qi;m

�
�0 (xm)

�2

�00 (xm)

#

�

 
NX

m=1

bmdm

!2

=

"
NX

m=1

qi;mzm�
0 (xm)

#2
:

Since the marginal utility function is strictly convex, i.e., �00 (�) > 0; this can be rearranged to

become
NX

m=1

qi;m

�
�0 (xm)

�2

�00 (xm)
�

hPN
m=1 qi;mzm�

0 (xm)
i2

hPN
m=1 qi;mz

2
m�

00 (xm)
i :

Hence (17) implies (16). This establishes the concavity of � (x) which implies the concavity of

	t+1 (�; eei) for each eei 2 X: As a result, the hypograph of gt (�; eei) is a convex set and gt (�; eei) is

concave for each eei 2 X: This completes the inductive argument for the case when X is a �nite

point set.

The above result can be readily extended to more general state spaces. Suppose now X is

a countably in�nite set of positive real numbers. For each state i; the transition probabilities

fqi;jg
1

j=1 is a sequence of positive real numbers that satis�es
P
1

j=1 qi;j = 1: For each eei 2 X; the
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function 	t+1 (�; eei) : At+1 ! D is now given by

	t+1
�
a0; eei

�
� ��1

8
<
:� (1 + r)

1X

j=1

qi;j�
�
gt+1

�
a0; eej

��
9
=
; :

Since gt+1 (a
0; e0) > c for all (a0; e0) 2 St+1; � [gt+1 (a

0; e0)] is bounded above for all possible states

in St+1: Hence the in�nite series in the above expression is convergent. For each positive integer

N; de�ne 	Nt+1 (�; eei) according to

	Nt+1
�
a0; eei

�
� ��1

8
<
:� (1 + r)

NX

j=1

eqi;j�
�
gt+1

�
a0; eej

��
9
=
; ;

where eqi;j � qi;j=
PN
j=1 qi;j : Then

�
	Nt+1 (�; eei)

	
forms a sequence of �nite concave function which

converges pointwise to 	t+1 (�; eei) as ��1 (�) is continuous. By Theorem 10.8 in Rockafellar [9], the

limiting function 	t+1 (�; eei) is also a concave function on At+1:

We now extend this result to the case when X is a compact interval in R+: For each a
0 2 At+1;

� [gt+1 (a
0; �)] is bounded and continuous on X = [e; e] : Hence it is Riemann integrable on X: In

the following proof it is more convenient to deal with distribution function rather than probability

measure. For each e 2 X; de�ne the conditional distribution function F (�je) : X ! [0; 1] according

to F (e0je) � Q (e; [e; e0]) for all e0 2 X: For each e 2 X; the function 	t+1 (�; e) : At+1 ! D is now

de�ned as

	t+1
�
a0; e

�
� ��1

�
� (1 + r)

Z

X
�
�
gt+1

�
a0; e0

��
dF
�
e0je
��

;

which is equivalent to (13).

Let N be a positive integer and feeigNi=0 be an arbitrary partition of X so that

e = ee0 � ee1 � ::: � eeN = e:

Using this partition, de�ne a set of real numbers fpi (e)g
N
i=1 according to pi (e) = F (eeije) �
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F (eei�1je) � 0; for i = 1; :::; N and a step function

FN
�
e0je
�
=

NX

i=1

�i
�
e0
�
F (eeije) ;

where �i (e
0) = 1 if e0 2 [eei�1; eei] and zero elsewhere. The function FN (e0je) can be interpreted

as the distribution function of a discrete random variable with masses fpi (e)g
N
i=1 on the set of

points feeigNi=1 : Since FN (�je) converges to F (�je) pointwise on X and � [gt+1 (a
0; �)] is bounded

and continuous on X; we have

NX

i=1

pi (e)�
�
gt+1

�
a0; eei

��
!

Z

X
�
�
gt+1

�
a0; e0

��
dF
�
e0je
�
; for all a0 2 At+1;

as N tends to in�nity.10 For each e 2 X; de�ne a function 	Nt+1 (�; e) according to

	Nt+1
�
a0; e

�
� ��1

(
� (1 + r)

NX

i=1

pi (e)�
�
gt+1

�
a0; eei

��
)
:

Based on our previous result, 	Nt+1 (�; e) is a concave function for all e 2 X and for all N: By

the continuity of ��1 (�) ; we have 	Nt+1 (a
0; e) ! 	t+1 (a

0; e) for all a0 2 At+1: Hence
�
	Nt+1 (�; e)

	

forms a sequence of �nite concave functions that converges pointwise to 	t+1 (�; e) : The limiting

function 	t+1 (�; e) is also a concave function on At+1:This completes the proof of Theorem 3.

6 Concluding Remarks

The main contribution of this paper is twofold. First, we formally prove that, in the presence

of borrowing constraints, the policy function for consumption at any point in time is a concave

function of current asset holdings if the period utility function exhibits hyperbolic absolute risk

aversion and has a nonnegative third derivative. This result essentially generalizes the main result

in Carroll and Kimball [3] to an environment with borrowing constraints. The second contribution

10This uses the following result: Let fFng be a sequence of distribution functions de�ned on a set X. If
lim
n!1

Fn (x) = F (x) for all x 2 X, then
R
X
h (x) dFn (x) !

R
X
h (x) dF (x) for all bounded, continuous, real-valued

function h de�ned on X: For a proof of this statement, see Severini [11, p.325-328].
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of this paper is to show that hyperbolic absolute risk aversion is not necessary for the consumption

function to be concave. The current study also provides speci�c conditions under which a non-

HARA utility function would satisfy the conditions for concave consumption function.
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Appendix A

Proof of Theorem 1

The proof of this theorem is divided into two parts. The �rst part of the proof establishes the

boundedness and the continuity of the value functions. Once these properties are established, the

proofs of strict monotonicity and strict concavity are straightforward and is thus omitted. The

second part of the proof establishes the di¤erentiability of Vt (�; e) for each t and for all e 2 X: An

inductive argument is used in each part. For each t 2 f0; 1; :::; Tg ; de�ne qt � we�(1 + r) at+at+1:

Part 1: Boundedness and Continuity

In the terminal period, the value function is given by

VT (a; e) = u [we+ (1 + r) a] ; for all (a; e) 2 ST :

This function is bounded above by VT (aT ; e) = u [we+ (1 + r) aT ] <1; bounded below by

VT (�aT ; e) = u [we� (1 + r) aT ] > u (c) � �1; (18)

and continuous on ST : The �rst inequality in (18) follows from Assumption A3.

Suppose Vt+1 (a; e) is bounded and continuous on St+1 for some t � T �1: For each (a; e) 2 St;

de�ne the constraint correspondence �t according to

�t (a; e) �
�
c : c � c � z (a; e) + at+1

	
;

where z (a; e) � we+ (1 + r) a: De�ne the objective function at time t as

Wt (c; a; e) � u (c) + �

Z

X
Vt+1

�
z (a; e)� c; e0

�
Q
�
e; de0

�
:

Since Vt+1 (a; e) is bounded and continuous on St+1; the conditional expectation in the above

expression is well-de�ned. By Assumptions A1-A2 and the induction hypothesis, Wt is continuous
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whenever it is �nite. If u (c) > �1; then the objective function Wt (c; a; e) is bounded and

continuous on �t (a; e) for all (a; e) 2 St: By the Theorem of the Maximum, the value function Vt

is continuous and the optimal policy correspondence gt de�ned in (4) is non-empty, compact-valued

and upper hemicontinuous. Since Wt (c; a; e) is bounded for all c 2 �t (a; e) and for all (a; e) 2 St;

the value function Vt is also bounded.

Suppose now u (c) = �1: In this case, Wt (c; a; e) = �1 for all (a; e) 2 St: This means for

any possible states at time t; the objective function in (P1) is not continuous on the constraint

set. Thus we cannot apply the Theorem of the Maximum directly. However, the same results can

be obtained with some additional e¤ort. The following argument is similar to Lemma 2 in Alvarez

and Stokey [1]. Under Assumption A3, we have z (a; e) + at+1 � qt > c; for all (a; e) 2 St and for

all t: De�ne a modi�ed constraint correspondence ��t according to

��t (a; e) �
�
c : qt � c � z (a; e) + at+1

	
:

This correspondence is non-empty, compact-valued and continuous. Most importantly, the objec-

tive function Wt (c; a; e) is �nite and continuous on �
�
t (a; e) for all (a; e) 2 St: De�ne the set of

maximizers of Wt (c; a; e) on �
�
t (a; e) as

g�t (a; e) � argmax
c2��

t
(a;e)

fWt (c; a; e)g :

Then g�t (a; e) is non-empty and Wt (c
�; a; e) > �1 for any c� 2 g�t (a; e) : Let c

� 2 g�t (a; e) : If

Wt (c
�; a; e) � Wt (c; a; e) for all c 2 [c; qt) ; then c

� 2 gt (a; e) : Suppose there exists ec 2 [c; qt)

such that Wt (ec; a; e) > Wt (c
�; a; e) > �1, then ec 2 gt (a; e) : In either case, the optimal policy

correspondence gt (a; e) is non-empty. Note that in the latter case, ec must be strictly greater than

c because Wt (ec; a; e) > �1: It follows that c > c whenever c 2 gt (a; e) : Hence Vt (a; e) > �1:

Since Wt (c; a; e) is still bounded above for all c 2 �t (a; e) and for all (a; e) 2 St; Vt (a; e) is also

bounded above.

We now establish the continuity of Vt under the assumption that u (c) = �1: Since Vt is

single-valued, it su¢ce to show that it is upper hemicontinuous. Let f(an; en)g be a sequence in St
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that converges to some (a; e) 2 St: Pick a sequence of consumption fcng such that cn 2 gt (an; en)

for each n: Such a sequence can always be drawn because gt (an; en) is non-empty for all n: Since

cn 2 �t (an; en) and �t is compact-valued and upper hemicontinuous, there exists a subsequence

of fcng ; denoted by fcnkg ; such that cnk converges to some c 2 �t (a; e) : Since cnk 2 gt (ank ; enk) ;

it follows that cnk > c and Wt (cnk ; ank ; enk) > �1 for all nk: By the continuity of Wt; we have

Vt (ank ; enk) = Wt (cnk ; ank ; enk) ! Wt (c; a; e) : If we can show that Wt (c; a; e) = Vt (a; e) ; then

this establishes (i) the upper hemicontinuity of Vt at (a; e) ; and (ii) c 2 gt (a; e) which implies the

upper hemicontinuity of gt:

Suppose the contrary that there exists bc 2 �t (a; e) such that Wt (bc; a; e) > Wt (c; a; e) > �1:

This implies bc > c: Since �t is lower hemicontinuous and (ank ; enk) converges to (a; e) ; there exists

a sequence fbcnkg such that bcnk 2 �t (ank ; enk) for all nk and bcnk converges to bc: Since bc > c; it

follows that bcnk > c when nk is su¢ciently large. Then by the continuity of Wt;

lim
nk!1

Wt (bcnk ; ank ; enk) =Wt (bc; a; e) > Wt (c; a; e) = lim
nk!1

Wt (cnk ; ank ; enk) :

This means when nk is su¢ciently large, we have Wt (bcnk ; ank ; enk) > Wt (cnk ; ank ; enk) which

contradicts the fact that cnk 2 gt (ank ; enk) : Hence Wt (c; a; e) = Vt (a; e) for any (a; e) 2 St:

From (18), it is obvious that VT (�; e) is strictly increasing and strictly concave for all e 2 X:

A straightforward inductive argument can be used to establish these properties for all t � T � 1:

Given the strict concavity of Vt (�; e) ; the optimal policy correspondences gt (a; e) and ht (a; e) are

both single-valued continuous functions for all t. If u (c) = �1; then the above argument shows

that it is never optimal to choose ct = c: Hence gt (a; e) > c for all (a; e) 2 St. However, when

u (c) > �1 it is still possible to have gt (a; e) = c for some (a; e) :

Part 2: Di¤erentiability

Fix e 2 X: Let V +t (a; e) be the right-hand derivative of Vt (�; e) at any a 2 [�at; at) and V
�

t (a; e) be

the left-hand derivative of Vt (�; e) at a 2 (�at; at) : Since Vt (�; e) is strictly concave, both V
+
t (a; e)

and V �t (a; e) exist and are �nite for all a 2 (�at; at) : To show that Vt (a; e) is di¤erentiable on

[�at; at) ; we need to establish two properties: (i) it is di¤erentiable in the interior of At; and (ii)
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V +t (�at; e) exists and is �nite. To establish the �rst property, we will appeal to Theorem 25.1

in Rockafellar [9]. This theorem states that if the set of supergradients of Vt (�; e) at point a is a

singleton, then Vt (�; e) is di¤erentiable at a: Recall that a real number � (a) is a supergradient of

Vt (�; e) at a 2 At if it satis�es the following condition

Vt (ea; e)� Vt (a; e) � � (a) � (ea� a) ; for every ea 2 At:

Both V +t (a; e) and V
�

t (a; e) are supergradients at a: Any supergradient at a 2 (�at; at) must also

satisfy V +t (a; e) � � (a) � V �t (a; e) <1:

Again we use an inductive argument in the following proof. In the terminal period, we have

gT (a; e) = we+ (1 + r) a � qT > c;

and VT (a; e) = u [we+ (1 + r) a] ; for all (a; e) 2 ST :Given Assumption A1, VT (�; e) is continuously

di¤erentiable in the interior of AT : The derivative of VT (�; e) in the interior of AT is given by

pT (a; e) = (1 + r)u
0 [gT (a; e)] : Also, the right-hand derivative of VT (�; e) at a = �aT exists and

is given by (1 + r)u0 [gT (�aT ; e)] which is �nite.

Suppose the desired result is true for some t + 1 � T and gt+1 (a; e) > c for all (a; e) 2 St+1:

The remaining proof is divided into several steps. Steps 1-4 essentially establish all the results in

Theorem 2.

Step 1 First, we show that if gt (a; e) > c; then gt (a; e) and ht (a; e) satis�es the following

condition

u0 [gt (a; e)] � �

Z

X
pt+1

�
ht (a; e) ; e

0
�
Q
�
e; de0

�
: (19)

If in addition ht (a; e) > �at+1; then (19) holds with equality.

Fix (a; e) 2 St: De�ne ec = gt (a; e) and ea0 = ht (a; e) : If ec > c; then ea0 < at+1: Suppose now we

increase ea0 by " > 0; reduce ec by " > 0 but maintain ec� " > c: The utility loss generated by this
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is u (ec)� u (ec� ") : The utility gain generated by this is

�

Z

X

�
Vt+1

�
ea0 + "; e0

�
� Vt+1

�
ea0; e0

��
Q
�
e; de0

�
:

If the borrowing constraint is binding originally, i.e., ea0 = �at+1, then any reduction in consumption

would lower the value of the objective function. This means the loss in utility is no less than the

gain for any " > 0 so that

u (ec)� u (ec� ")
"

� �

Z

X

�
Vt+1 (ea0 + "; e0)� Vt+1 (ea0; e0)

"

�
Q
�
e; de0

�
:

By taking the limit "! 0+; we get

u0 (ec) � lim
"!0+

�
�

Z

X

�
Vt+1 (ea0 + "; e0)� Vt+1 (ea0; e0)

"

�
Q
�
e; de0

��
: (20)

Since Vt+1 (a; e) is strictly concave in a; the function

� (�; a; e) �
Vt+1 (a+ �; e)� Vt+1 (a; e)

�
> 0

is strictly decreasing in � for any a 2
�
�at+1; at+1

�
: Hence, it is bounded above by pt+1 (a; e) which

is �nite as Vt+1 (a; e) is di¤erentiable on
�
�at+1; at+1

�
. By the Lebesgue Convergence Theorem,

the limit in (20) can be expressed as

Z

X
lim
"!0+

�
Vt+1 (ea0 + "; e0)� Vt+1 (ea0; e0)

"

�
Q
�
e; de0

�
=

Z

X
pt+1

�
ea0; e0

�
Q
�
e; de0

�
:

Substituting this into (20) gives (19) for the case when ea0 = ht (a; e) = �at+1: If ea0 = ht (a; e) >

�at+1; then any in�nitesimal change in consumption would not a¤ect the maximized value of the

objective. This means (20) will hold with equality. It follows from the above argument that (19)

holds with equality when ea0 = ht (a; e) > �at+1:
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Step 2 Using a similar perturbation argument as in Step 1, we can show that if gt (a; e) = c;

then the following condition must be satis�ed

u0 (c+) � �

Z

X
pt+1

�
ht (a; e) ; e

0
�
Q
�
e; de0

�
; (21)

where u0 (c+) denote the right-hand derivative of u (�) at c: Suppose ec = gt (a; e) = c for some

(a; e) 2 St: Suppose now we increase ec by " > 0, reduce ea0 = ht (a; e) by " > 0; but maintain

ea0� " � �at+1: If it is optimal to consume c; then any in�nitesimal increase in consumption would

either lower or have no e¤ect on the value of the objective function, i.e.,

lim
"!0+

�
u (c+ ")� u (c)

"

�
= u0 (c+) � �

Z

X
lim
"!0+

�
Vt+1 (ea0; e0)� Vt+1 (ea0 � "; e0)

"

�
Q
�
e; de0

�
:

Since Vt+1 (a; e) is di¤erentiable on
�
�at+1; at+1

�
; the left-hand derivative in the above expression

exists and is given by pt+1 [ht (a; e) ; e
0] :

Step 3 We now show that gt (a; e) > c if either u0 (c+) = +1 or � (1 + r) � 1: If u0 (c+) = +1,

then (21) cannot be satis�ed and hence it is never optimal to consume the minimum level c:

Consider the case when u0 (c+) < +1 and � (1 + r) � 1: By the induction hypothesis, we have

gt+1 (a
0; e0) > c and pt+1 (a

0; e0) = (1 + r)u0 [gt+1 (a
0; e0)] for all (a0; e0) 2 St+1: Fix (a; e) 2 St:

Suppose the contrary that gt (a; e) = c: Then by Step 2, it must be the case that

u0 (c+) � � (1 + r)

Z

X
u0
�
gt+1

�
ht (a; e) ; e

0
��
Q
�
e; de0

�

�

Z

X
u0
�
gt+1

�
ht (a; e) ; e

0
��
Q
�
e; de0

�

< u0 (c+) :

The second inequality uses the assumption that � (1 + r) � 1: The third inequality uses the fact

that gt+1 (a
0; e0) > c for all (a0; e0) 2 St+1: This gives rise to a contradiction. Hence gt (a; e) > c for

all (a; e) 2 St: This means the optimal policy functions would only satisfy (19), but not (21).
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Step 4 We now show that gt (�; e) is strictly increasing and ht (�; e) is non-decreasing in a for

all e 2 X: Fix e 2 X: Pick any a2 > a1 � �at: Suppose the contrary that gt (a2; e) � gt (a1; e) :

This has two implications: ht (a2; e) > ht (a1; e) � �at+1 and u
0 [gt (a2; e)] � u0 [gt (a1; e)] : Since

pt+1 (a
0; e0) is strictly decreasing in a0,

pt+1
�
ht (a2; e) ; e

0
�
< pt+1

�
ht (a1; e) ; e

0
�
;

for all e0 2 X: Taking the expectation of this and applying (19) gives

u0 [gt (a2; e)] = �

Z

X
pt+1

�
ht (a2; e) ; e

0
�
Q
�
e; de0

�

< �

Z

X
pt+1

�
ht (a1; e) ; e

0
�
Q
�
e; de0

�
� u0 [gt (a1; e)] :

The �rst equality follows from the fact that ht (a2; e) > �at+1: This contradicts u
0 [gt (a2; e)] �

u0 [gt (a1; e)] : Hence gt (�; e) is strictly increasing. A similar argument can be used to show that

ht (�; e) is a non-decreasing function.

Step 5 We now show that Vt (�; e) is di¤erentiable in the interior of At and pt (�; e) = (1 +

r)u0 [gt (�; e)] for each e 2 X: Fix e 2 X: Let �t (a; e) be a supergradient of Vt (a; e) at a 2 (�at; at) :

Since Vt (�; e) is strictly increasing and strictly concave on At, �t (a; e) is strictly positive and �nite:

The main idea of the proof is to show that for any a 2 (�at; at) ; there exists a neighborhood N (a)

of gt (a; e) such that gt (a; e) is an interior solution of the following problem

max
c2N(a)

f(1 + r)u (c)� �t (a; e) cg : (P4)

This problem is well-posed as �t (a; e) is �nite and the objective function is strictly concave. Thus,

its solution must satisfy the �rst-order condition

�t (a; e) = (1 + r)u
0 [gt (a; e)] :
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Since this is true for any supergradient �t (a; e) ; this means (1 + r)u
0 [gt (a; e)] is the unique

supergradient at a 2 (�at; at) and so Vt (�; e) is di¤erentiable at a: We now establish the key

steps of this argument. Fix a 2 (�at; at) : Since gt (a; e) > c � 0 and (1 + r) > 0; we can �nd an

" > 0 such that

a� " � max

�
�at; a�

gt (a; e)� c

1 + r

�
:

For any ea 2 (a� "; a+ ") ; de�ne c according to

c = we+ (1 + r)ea� ht (a; e) = (1 + r) (ea� a) + gt (a; e) : (22)

which is strictly greater than c as ea > a � " � a � [gt (a; e)� c] = (1 + r) : In other words, both c

and ht (a; e) are feasible when the current state is (ea; e) : In addition, ea 2 (a� "; a+ ") implies c

is within a certain neighborhood of gt (a; e) ; i.e.,

N (a) = fc : gt (a; e)� (1 + r) " < c < gt (a; e) + (1 + r) "g :

Recall that �t (a; e) is a supergradient of Vt (a; e) at a 2 (�at; at) : Then for any ea 2 At; we

have

Vt (ea; e)� Vt (a; e) � �t (a; e) � (ea� a) :

Since �t (a; e) is �nite, we can rewrite this as

Vt (ea; e)� �t (a; e)ea � Vt (a; e)� �t (a; e) a: (23)

This inequality has to be true for any ea 2 At: So pick ea 2 (a� "; a+ ") ; de�ne c as in (22). Then
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it follows from the de�nition of the value function and (23) that

u (c) + �

Z

X
Vt+1

�
ht (a; e) ; e

0
�
Q
�
e; de0

�
� �t (a; e) �

�
ht (a; e) + c� we

1 + r

�

� Vt (ea; e)� �t (a; e) �
�
ht (a; e) + c� we

1 + r

�

� Vt (a; e)� �t (a; e) �

�
ht (a; e) + gt (a; e)� we

1 + r

�

= u [gt (a; e)] + �

Z

X
Vt+1

�
ht (a; e) ; e

0
�
Q
�
e; de0

�
� �t (a; e) �

�
ht (a; e) + gt (a; e)� we

1 + r

�
:

This can be simpli�ed to become

(1 + r)u (c)� �t (a; e) c � (1 + r)u [gt (a; e)]� �t (a; e) gt (a; e) ;

which is true for all c in N (a). In other words, gt (a; e) is an interior solution of the problem (P4).

This establishes the desired results.

Step 6 We now show that Vt (a; e) is right-hand di¤erentiable at a = �at and the right-hand

derivative is given by (1 + r)u0 [gt (�at; e)] : Fix e 2 X and a 2 (�at; at) : By the concavity of u (�) ;

we have

u [gt (a; e)]� u [gt (�at; e)] � u0 [gt (�at; e)] [gt (a; e)� gt (�a; e)] :

By the result in Step 3, we know that u0 [gt (�at; e)] < u0 (c) � +1: Similarly, by the concavity

and di¤erentiability of Vt+1 (�; e
0) on

�
�at+1; at+1

�
; we have

Vt+1
�
ht (a; e) ; e

0
�
� Vt+1(ht (�at; e) ; e

0) � pt+1
�
ht (�at; e) ; e

0
�
� [ht (a; e)� ht (�at; e)] ;
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for all e0 2 X: Using these, we can write

Vt (a; e)� Vt (�at; e)

= u [gt (a; e)]� u [gt (�at; e)]

+�

Z

X

�
Vt+1

�
ht (a; e) ; e

0
�
� Vt+1(ht (�at; e) ; e

0)
�
Q
�
e; de0

�

� u0 [gt (�at; e)] [gt (a; e)� gt (�a; e)]

+�

�Z

X
pt+1

�
ht (�at; e) ; e

0
�
Q
�
e; de0

��
[ht (a; e)� ht (�at; e)]

� u0 [gt (�at; e)] [gt (a; e) + ht (a; e)� gt (�at; e)� ht (�at; e)] = u0 [gt (�at; e)] (1 + r) (a+ at) :

The second line follows from the de�nition of Vt (a; e) and Vt (�at; e) : The fourth line is obtained

by using condition (19) and the fact that ht (a; e) is non-decreasing in a: The last equality follows

from the budget constraint. Thus we have

Vt (a; e)� Vt (�at; e)

a� (�at)
� (1 + r)u0 [gt (�at; e)] < +1:

By taking the limit a! �at+; we can establish that V
+
t (�at; e) exists and is bounded above by

(1 + r)u0 [gt (�at; e)] : Hence V
+
t (�at; e) is �nite. Since V

+
t (a; e) is strictly decreasing in a, we

have

(1 + r)u0 [gt (a; e)] = V +t (a; e) < V +t (�at; e) � (1 + r)u
0 [gt (�at; e)] ;

for all a 2 (�at; at) : Since both u
0 (c) and gt (�; e) are continuous, we have u

0 [gt (a; e)]! u0 [gt (�at; e)]

as a! �at: Hence V
+
t (�at; e) = (1 + r)u

0 [gt (�at; e)] : This completes the proof of Theorem 1.

Proof of Theorem 2

Part (i) of this theorem is proved in Step 3 of the second part of the above proof. Part (ii) of

Theorem 2 is established in Step 1 of that proof. Part (iii) is established in Step 4 of that proof.
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Appendix B

This section contains the technical details on how to derive the Hessian matrix H (x) and the

expression of zT �H (x) z for any column vector z 2 RN : First, rewrite (15) as

� [� (x)] = � (1 + r)
NX

j=1

qi;j� (xj) :

Di¤erentiating this with respect to xm gives

�0 [� (x)]hm (x) = � (1 + r) qi;m�
0 (xm) ; (24)

) hm (x) = � (1 + r) qi;m
�0 (xm)

�0 [� (x)]
; (25)

where hm (x) � @� (x) =@xm: Di¤erentiating (24) with respect to xn gives

�00 [� (x)]hm (x)hn (x) + �
0 [� (x)]hm;n (x) = 0; (26)

if m 6= n; and

�00 [� (x)] [hm (x)]
2 + �0 [� (x)]hm;m (x) = � (1 + r) qi;m�

00 (xm) ; (27)

if m = n: Combining (25) and (26) gives

hm;n (x) = �
�00 [� (x)]

�0 [� (x)]
hm (x)hn (x)

= � [� (1 + r)]2 qi;mqi;n�
0 (xm)�

0 (xn)
�00 [� (x)]
�
�0 [� (x)]

	3 ;

for m 6= n: Similarly, combining (25) and (27) gives

hm;m (x) = � (1 + r) qi;m
�00 (xm)

�0 [� (x)]
�
�
� (1 + r) qi;m�

0 (xm)
�2 �00 [� (x)]
�
�0 [� (x)]

	3 :
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For any z 2 RN ; we have

z
T �H (x) z = � (1 + r)

PN
m=1 qi;mz

2
m�

00 (xm)

�0 [� (x)]
� [� (1 + r)]2

"
NX

m=1

qi;m�
0 (xm)

#2
�00 [� (x)]
�
�0 [� (x)]

	3

= � (1 + r)
�00 [� (x)]
�
�0 [� (x)]

	3

"
NX

m=1

qi;mz
2
m�

00 (xm)

#8><
>:

�
�0 [� (x)]

	2

�00 [� (x)]
� � (1 + r)

hPN
m=1 qi;mzm�

0 (xm)
i2

hPN
m=1 qi;mz

2
m�

00 (xm)
i

9
>=
>;

Since � (1 + r) > 0; �0 (�) < 0 and �00 (�) > 0; zT �H (x) z � 0 if and only if

�
�0 [� (x)]

	2

�00 [� (x)]
� � (1 + r)

hPN
m=1 qi;mzm�

0 (xm)
i2

hPN
m=1 qi;mz

2
m�

00 (xm)
i ;

for all z 2 RN :
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