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Abstract
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mation of dynamic panel data models with error cross-sectional dependence when
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Our approach asymptotically projects out the common factors from regressors us-
ing principal components analysis and then uses the defactored regressors as instru-
ments to estimate the model in a standard way. Therefore, the proposed estimator
is computationally very attractive. Furthermore, our procedure requires estimating
only the common factors included in the regressors, leaving those that influence
the dependent variable solely into the errors. Hence aside from computational sim-
plicity the resulting approach allows parsimonious estimation of the model. The
finite-sample performance of the IV estimator and the associated t-test is investi-
gated using simulated data. The results show that the bias of the estimator is very
small and the size of the t-test is correct even when (T,N) is as small as (10, 50).
The performance of an overidentifying restrictions test is also explored and the
evidence suggests that it has good power when the key assumption is violated.

Key Words: method of moments; dynamic panel data; cross-sectional dependence
JEL Classification: C13, C15, C23.

∗The usual disclaimer applies.
†Faculty of Economics and Business, University of Sydney, NSW 2006, Australia. Tel: +61-2-9036

9120; E-mail address: vasilis.sarafidis@sydney.edu.au.
‡Corresponding author. Department of Economics and Related Studies, University of York, York

YO10 5DD, UK. Tel: +44-1904-43 3708; E-mail address: ty509@york.ac.uk.

1



1 Introduction

The rapid increase in the availability of panel data during the last few decades has invoked
a large interest in developing ways to model and analyse them effectively. In particular,
the issue of how to characterise ‘between group’ or cross-sectional dependence, and then
creating consistent estimation methods and making asymptotically valid inferences, has
proven both popular and challenging. The main complication arises because there is
no natural ordering of the observations, in at least one dimension, contrary to pure time
series data where a natural temporal ordering exists. To deal with this problem, the litera-
ture has adopted two different approaches, the spatial approach and the factor structure
approach. The former requires that the sample correlations across individuals can be
measured in relation to some index of spatial distance, in a geographic or economic sense,
in which case one may formulate and estimate spatial models based on the method of
maximum likelihood (e.g. Lee, 2004) and the generalised method of moments (see e.g.
Kapoor, Kelejian, and Prucha, 2007; Kelejian and Prucha, 2010). The factor structure
approach relaxes this requirement by assuming that there exists a common component,
which is a linear combination of a finite number of time-varying common factors with
individual-specific factor loadings. One can provide different interpretations of this pro-
cess, depending on the application in mind. In macroeconomic panels the unobserved
factors are frequently viewed as economy-wide shocks, affecting all individuals with dif-
ferent intensities; see e.g. Favero, Marcellino, and Neglia (2005). In microeconomic
panels the factor error structure may be thought to reflect distinct sources of unobserved
individual-specific heterogeneity, the impact of which varies over time. For instance, in
a model of wage determination the factor loadings may represent several unmeasured
skills, specific to each individual, while the factors may capture the vector of price of
these skills, which changes intertemporally; see e.g. Carneiro, Hansen, and Heckman
(2003) and Heckman, Stixrud, and Urzua (2006). Ahn, Lee, and Schmidt (2001) provide
further examples.

Several methods have been proposed in the literature to estimate models with a
multi-factor error structure allowing for possible correlations between the unobserved
common components and the included regressors; Pesaran (2006) proposes augmenting
standard panel data regression models with the cross section averages of the dependent
and explanatory variables, which span asymptotically the unobserved factors. Bai (2009)
proposes an iterative least squares estimator based on principal components analysis.1

However, neither Pesaran (2006) or Bai (2009) consider dynamic panel data models or
models with weakly exogenous regressors in general.

Ahn, Lee, and Schmidt (2006) put forward a GMM estimator that is based on a
quasi-differencing transformation that eliminates the factor structure in the residuals.
Robertson, Sarafidis, and Symons (2010) develop an instrumental-variable estimation
procedure that introduces new parameters to represent the unobserved covariances be-
tween the covariates and the factor component of the residual, and they show that the
resulting estimator is asymptotically more efficient than Ahn, Lee and Schmidt. Bai
(2010) models the correlation between the common components and the included re-
gressors as in Chamberlain (1982) and proposes estimating the model using a likelihood
approach. Notice that contrary to Pesaran (2006) and Bai (2009) these methods allow
for dynamic panel data models and weakly exogenous regressors. On the other hand, the

1For pure factor models, see Bai and Ng (2002), Bai (2003), Forni, Hallin, Lippi, and Reichlin (2000),
among others.
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associated estimation algorithms are rather complicated and they can be computationally
expensive when T is moderately large.

In view of these, in this paper we propose a computationally attractive instrumental
variable (IV) estimator for consistent estimation of dynamic linear panel data models
under cross-sectional dependence when both N and T are large. Our approach at first
stage asymptotically projects out the common component from regressors using principal
components analysis and then uses the defactored regressors as instruments to estimate
the structural parameters. The required assumption is that endogeneity of the covariates
arises due to the non-zero correlation between these variables and the common com-
ponents in the disturbance rather than the idiosyncratic component. Importantly, this
assumption can be tested using an overidentifying restrictions test. Our procedure re-
quires estimating solely the common factors included in the regressors, leaving those that
influence only the dependent variable into the residuals. Hence aside from computational
simplicity the resulting approach allows parsimonious estimation of the model. The finite
sample performance of the proposed IV estimator and the associated t-test is investigated
using simulated data. The results show that the bias of the estimator is very small and
the size of the t-test is correct even when (T, N) is as small as (10, 50). Furthermore, the
overidentifying restrictions test appears to have good power when the key assumption is
violated.

The paper is organised as follows. Section 2 discusses the model and the estimation
methods. The finite sample performance of the proposed estimator is summarised in
Section 3. Section 4 contains some concluding remarks.

2 Model and Estimation Method

Consider the following autoregressive distributed lag, ARDL(1,0), panel data model2:

yit = α + λyi,t−1 + β′xit + uit, i = 1, 2, ..., N, t = 0, 1, ..., T, (1)

with multi-factor error structure

uit = αi + γ′
ift + εit, (2)

where αi is an individual-specific time-invariant effect; the common component, γ′
ift,

consists of ft = (f1t, f2t, ..., fmt)
′, an m × 1 vector of unobservable factors, and γi, an

m × 1 vector of factor loadings in the equation for y; εit is an idiosyncratic error. xit =
(x1it, x2it, ..., xkit)

′ is a k × 1 vector of regressors, which obeys the following process:

xit = µix + Γ′
ixft + vit, (3)

where µi is a vector of individual-specific effects, potentially correlated with αi; Γxi =
(γx1i, γx2i, ..., γxki) is a m×k factor loading matrix; and vit is an idiosyncratic error term.

We define ∆ ≡ 1 − L, where L is a lag operator such that Lℓyt ≡ yt−ℓ. Taking first-
differences in (1) to eliminate the individual-specific time-invariant effects, αi and µix,
and stacking the T observations for each i (making a T × 1 vector) yields

∆yi = λ∆yi,−1 + ∆Xiβi + ∆ui, (4)

2The main results of this paper naturally extend to models with higher order lags, i.e. ARDL(p,q)
for p > 0 and q ≥ 0.
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with
∆ui = ∆Fγi + ∆εi, (5)

where yi = (yi1, yi2, ..., yiT )′, yi,−1 = L1yi = (yi0, yi1, ..., yiT−1)
′, Xi = (xi1,xi2, ...,xiT )′,

ui = (ui1, ui2, ..., uiT )′, F =(f1, f2, ..., fT )′ and εi = (εi1, εi2, ..., εiT )′.3 By letting ∆Wi =
(∆yi,−1, ∆Xi) and θ = (λ, β′)′, we can write (4) more concisely as follows:

∆yi = ∆Wiθ + ∆ui. (6)

Similarly, taking first-differences in (3) to eliminate the random effects, µix, and stacking
the T observations for each i yields

∆Xi = ∆FΓxi + ∆Vi. (7)

∆Wi are heterogeneously cross sectionally correlated through the multifactor error struc-
ture. Also the composite error ∆ui is allowed to be serially correlated through the serial
correlation in the factors, ∆ft.

Our proposed approach involves asymptotically eliminating at first stage the common
factors in ∆Xi by projecting them out, and then using the defactored regressors as
instruments to estimate the structural parameters of the model. To see the main idea,
consider the following projection matrix:

M∆F = IT − ∆F (∆F′∆F)
−1

∆F′. (8)

If ∆F were observable, premultiplying ∆Xi by M∆F would yield M∆F ∆Xi = M∆F ∆Vi,
which, under certain conditions to be specified shortly, satisfies E(∆X′

iM∆F ∆ui) =
E(∆V′

iM∆F ∆εi) = 0. Now let
Xi,−j = LjXi. (9)

Supposing that {yit,x
′
it}, t = −1, 0, 1, ..., T are observable, the T × k matrix ∆Xi,−1 is

also observable (but not ∆Xi,−j for j > 1). It is easily seen that E(∆X′
i,−1M∆F ∆ui) =

E(∆X′
i,−1M∆F ∆εi) = 0. Now let

Zi = [∆Xi, ∆Xi,−1] (T × 2k). (10)

Given model (6) it is clear that the defactored regressors satisfy instrument relevance, i.e.
E(Z′

iM∆F ∆Wi) 6= 0. Therefore, it is relatively straightforward to apply instrumental
variable (IV) estimation using M∆FZi as an instrument vector for ∆Wi.

4

In practice, the factor vector, ∆F, is not observable of course. As a result, we propose
estimating ∆F using a principal components approach, as advanced in Bai (2003) and
Bai (2009).5

To obtain our results it is sufficient to make the following assumptions:

3In this paper we consider cross-sectional correlation that is due to the factor structure only, however,
our results below would be asymptotically valid even when the idiosyncratic errors are weakly cross-
sectionally correlated.

4More instruments become available when further histories of xit are observable. In particular, given
model (3), when {xit}T

t=0−j for j ≥ 0 are observable, (j + 1)k instruments, {∆Xi,−(r−1)}j+1
r=1, become

available.
5A popular alternative is the common correlated effects approach of Pesaran (2006). We consider

this in the experimental section.
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Assumption 1 (idiosyncratic errors): (i) εit is independently distributed across i
and t, having mean zero, E(∆εi∆ε′i) = Σ∆εi which is positive definite. εit has finite
fourth order moment; (ii) vit = Ψi(L)ev,it, where Ψi(L) is absolutely summable
and ev,it ∼ iid(0,Σv,i) across i and t, where Σv,i is a positive definite matrix. ev,it

has finite fourth order moments and is group-wise independent from εit.

Assumption 2 (stationary factors): ft = Φi(L)ef,t, where Φ(L) is absolutely summable,
and ef,t ∼ iid(0,Σf ), where Σf is a positive definite matrix. ef,t has finite fourth
order moments and is group-wise independent from ev,it and εit.

Assumption 3 (random effects): µi = (αi, µ
′
ix)

′ ∼ iid(0,Σµ), Σµ is positive semi-
definite with each element having finite fourth order moments. µi is group-wise
independent from εit, ev,it, and ef,t.

Assumption 4 (random factor loadings): (i) Γxi ∼ iid(0,ΣΓ) where ΣΓx is a m×m
positive definite matrix, and each element of Γxi has finite fourth order moments.
Γxi is an independent group from εit, ev,it, ξi, and ef,t; (ii) the eigenvalues of ΣΓx

are different from those of p limT→∞ T−1
∑T

t=1 ftf
′
t.

Assumption 5 (identification of θ): (i) E(Z′
iM∆F ∆Wi) = Ai,T is uniformly bounded

and limN,T→∞
1

NT

∑N
i=1 Ai,T = A is a fixed 2k×(1+k) matrix with full column rank;

(ii) E(Z′
iM∆FZi) = Bi,T is uniformly bounded and limN,T→∞

1
NT

∑N
i=1 Bi,T = B,

which is a fixed positive definite square matrix of dimension 2k;
(iii) E(Z ′

iM∆F∆ui∆u′
iM∆F Zi) = Ωi,T is uniformly bounded and limN,T→∞

1
NT

∑N
i=1 Ωi,T =

Ω, which is a fixed positive definite square matrix of dimension 2k.

The assumptions above require some discussion. First of all, notice that Assumption
1(i) allows non-normality and cross-sectional heteroskedasticity in the idiosyncratic errors
in the equation for y. Furthermore, Assumption 1 implies that the covariates are strongly
exogenous with respect to the idiosyncratic error component (i.e. E(∆εi|∆Xi) = 0). Dy-
namic panel data models with strongly exogenous regressors is a common framework
in the economics literature; some examples include partial adjustment models for labour
supply (e.g. Bover, 1991), household consumption models with habits (e.g. Becker, Gross-
man, and Murphy, 1994) and production functions with adjustment costs (e.g. Blundell
and Bond, 2000). In these applications the autoregressive parameter captures consump-
tion inertia due to habits, or costs of adjustment, so it has a structural significance.
Notwithstanding strong exogeneity with respect to the idiosyncratic disturbance, it is
reasonable to expect that the regressors may be correlated with the unobserved common
factors and are, therefore, endogenous. For instance, in a production function the input
decisions of the firm are likely to be correlated with its individual-specific unobserved
characteristics, γi and αi, that may or may not vary over time. Likewise, determinants
of labour supply, such as the level of wage offered to an individual, are likely to be cor-
related with the common factors influencing supply itself. In fact, this is the standard
fixed effects assumption employed in panel data models, extended to the factor structure.
Notice that in this case, however, first-differencing does not remove endogeneity since
the factor structure remains in the residuals. The strong exogeneity assumption of the
covariates with respect to the purely idiosyncratic error component can be tested using
an overidentifying restrictions test, as shown below.

Assumptions 1(ii) and 2 allow serially correlated but stationary idiosyncratic errors in
the equation for x and the factors. These are slightly stronger than Bai (2003), but they
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can be relaxed such that the factors and (εit,vit) and/or εjt and εis are weakly dependent,
provided that there exist higher order moments; see Assumptions D-F in Bai (2003)6.

Assumption 3 is a random coefficient type assumption but permits non-zero correla-
tion between the individual effects in the y and x equations. Assumption 4 is standard
in the principal components literature; see e.g. Bai (2003) among others. Notice that the
zero-mean restriction on the factor loadings is not binding because for large N one can
always remove the non-zero mean by transforming the variables in terms of deviations
from time-specific averages or by adding time dummies into the model (4). The resulting
correlation between the factor loadings are clearly Op(1/N), thus the results we obtain
below are not affected by this transformation; see Sarafidis, Yamagata, and Robertson
(2009) for more details.

Finally, Assumption 5 is commonplace in overidentified instrumental variable (IV)
estimation; for example see Wooldridge (2002, Ch5).

Remark 1 Assumption 4(i) does not rule out possible non-zero correlation between the
factor loadings in the y and x equations, i.e. it allows E(γiγ

′
xℓi) 6= 0 for all ℓ = 1, 2, ..., k.

Since the variables yit and xit of the same cross section unit i can be affected in a related
manner by the same common shocks, allowing for this possibility is potentially important
in practice.

The first step of our approach is to consistently estimate the number of factors in ∆Xi

using, for example, the method proposed by Bai and Ng (2002), as T and N tend jointly
to infinity. Since these estimators are consistent, our discussion below treats the number
of factors, m, as known. Given m, the factors are extracted using principal components
from {∆Xi}N

i=1. Define ∆F̂ as
√

T times eigenvectors corresponding to the m largest
eigenvalues of the T × T matrix

∑N
i=1 ∆Xi∆X′

i; see Bai (2003) for more details. Note
that ∆F and Γxi are estimated up to an invertible m × m matrix transformation. Since
our aim is to marginal out the unobservable common components, we treat the principal
component estimator ∆F̂ consistent to ∆F in the model, without loss of generality. This
is allowed because the factors and factor loadings in the model always can be redefined
as ∆FH and H−1Γxi, respectively, for some invertible matrix H.

The empirical counterpart of the projection matrix defined in (8) is given by

M∆F̂ = IT − ∆F̂
(

∆F̂′∆F̂
)−1

∆F̂′. (11)

The associated transformed instrument matrix discussed above is

Z̃i = M∆F̂Zi. (12)

Remark 2 Note that we do not estimate the common component ∆Fγi in the ∆yi equa-
tion using the information contained in ∆Xi. Instead, we orthogonalise ∆ui to the instru-
ments Zi. To see the main difference, consider the case in which F could be partitioned
as (F1,F2). Suppose the error term in ∆yi is subject to the full set of the unobserved
factors, namely ∆ui = ∆F1γ1i + ∆F2γ2i + ∆εi, while ∆Xi contains only a subset of ∆F,
i.e. ∆Xi = ∆F1Γx1i + ∆Vit. Assuming cov(γx1i, γ2i) = 0 in addition to Assumption
4(ii), projecting out ∆F1 only is required to make Zi = (∆Xi, ∆Xi,−1) exogenous. This
is because E(∆X′

iM∆F1
∆ui) = E[∆V′

iM∆F1
(∆F2γ2i + ∆εi)] = 0 with M∆F1

= IT −
6This includes conditional heteroskedasticity, such as ARCH or GARCH processes.
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∆F1 (∆F′
1∆F1)

−1 ∆F′
1, and similarly E(∆X′

i,−1M∆F1
∆ui) = E[(∆F1,−1γx1i + ∆Vi,−1)

′

M∆F1
(∆F2γ2i + ∆εi)] = 0.7

We propose an instrumental variable (IV) estimator or two-stage least square estima-
tor of θ,

θ̂IV =
(

A′
NTB−1

NTANT

)−1
A′

NTB−1
NTgNT , (13)

where

ANT =
1

NT

N
∑

i=1

Z̃′
i∆Wi, BNT =

1

NT

N
∑

i=1

Z̃′
iZ̃i, gNT =

1

NT

N
∑

i=1

Z̃′
i∆yi. (14)

The natural variance estimator is

Q̂NT =
1

NT

(

A′
NTB−1

NTANT

)−1
A′

NTB−1
NT Ω̂NTB−1

NTANT

(

A′
NTB−1

NTANT

)−1
, (15)

where

Ω̂NT =
1

NT

N
∑

i=1

Z̃′
i∆ûi∆û′

iZ̃i (16)

with ∆ûi = ∆yi − ∆Wiθ̂IV .8

Firstly let us discuss the consistency of this estimator. Initially, from (6) and (13) we
obtain

√
NT

(

θ̂IV − θ
)

=
(

A′
NTB−1

NTANT

)−1
A′

NTB−1
NT

(

1√
NT

N
∑

i=1

Z̃′
i∆ui

)

. (17)

The main results of Lemma 2 in the Appendix are

Z′
iM∆F̂ ∆W i

T
− Z′

iM∆F ∆W i

T
= Op

(

δ−2
NT

)

, uniformly over i, (18)

Z′
iM∆F̂ ∆F

T
− Z′

iM∆F ∆F

T
= Op

(

δ−2
NT

)

, uniformly over i, (19)

Z′
iM∆F̂ ∆εi

T
− Z′

iM∆F ∆εi

T
= Op

(

δ−2
NT

)

, uniformly over i, (20)

with δ2
NT = min {N, T}.9 Using Lemma 2 and a law of large numbers, it is easily seen

that
plim

N,T→∞
ANT = A, plim

N,T→∞
BNT = B, (21)

7Alternatively, without assuming cov(γx1i, γ2i) = 0, one could transform Zi using a projection matrix

MD = IT −D (D′D)
−1

D′, D = (∆F1∆F1,−1) with ∆F1,−1 = L∆F1. Then, E(∆X′
iMD∆ui) = 0 and

E(∆X′
i,−1MD∆ui) = E[∆V′

i,−1M∆F1
(∆F2γ2i + ∆εi)] = 0.

8Although the proposed IV estimator is based on first-differences, under Assumption 1(i), i.e. strong
exogeneity of the regressors with respect to the idiosyncratic errors, our basic approach holds under
alternative transformations, such as fixed effects or orthogonal deviations.

9See Appendix for the proof.
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without any restrictions on N and T , where A and B are defined in Assumption 5. Also,
by Lemma 2, it can be shown that

1√
NT

N
∑

i=1

Z̃′
i∆ui =

1

N

N
∑

i=1

√
NT

Z′
iM∆F̂ ∆ui

T

=
1√
NT

N
∑

i=1

Z′
iM∆F ∆εi + Op

(√
NTδ−2

NT

)

. (22)

The first term of the right-hand side of (22) is Op(1), which tends to a standard normal

variable with finite variance. In addition, the second term is Op

(

min
{

√

T
N

,
√

N
T

})

,

which is Op(1) if T
N

tends to a finite positive constant c (0 < c < ∞) as N and T → ∞
jointly. Therefore, in such a situation the IV estimator is

√
NT -consistent.

The above discussion is summarised in the following theorem:

Theorem 1 Consider model (1)-(3) and suppose that Assumptions 1-5 hold true. Then,

θ̂IV − θ
p→ 0

as N and T → ∞ jointly in such a way that T/N → c with 0 < c < ∞, where θ̂IV is
defined in (13).

Now we turn our attention to the asymptotic normality properties of the estimator.

For this we require that the last term of (22), Op

(√
NTδ−2

NT

)

= Op

(

min
{

√

T
N

,
√

N
T

})

,

is asymptotically negligible. The condition that this term goes to zero asymptotically is
min

{

T
N

, N
T

}

→ 0 as N → ∞ and T → ∞ jointly. This is satisfied, for example, when
T/N = min

{

T
N

, N
T

}

, T = bN1−δ for any finite positive constants b and δ. This is more
stringent than the condition in Theorem 1, in that it does not allow T/N to converge to
some positive finite constant, however, it permits many combinations of N and T . The
results are summarised in the following theorem:

Theorem 2 Suppose that Assumptions 1-5 hold true under model (1)-(3). Then,
(i) min

{

T
N

, N
T

}

→ 0 as N → ∞ and T → ∞ jointly,

√
NT

(

θ̂IV − θ
)

d→ N (0,Q) ,

where
Q =

(

A′B−1A
)−1

A′B−1ΩB−1A
(

A′B−1A
)−1

is a positive definite matrix, with A, B, and Ω defined in Assumption 5.
(ii) Q̂NT − Q

p→ 0 as N and T go to infinity when min
{

T
N

, N
T

}

→ 0, where Q̂NT is
defined by (15).

Proof. See Appendix.

Remark 3 Theorem 2(ii), Q̂NT − Q
p→ 0, holds when N → ∞ and T → ∞ jointly in

such a way that N/T → c, 0 < c < ∞. See Appendix for a proof.
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Remark 4 Similarly to the approach followed in Bai (2009), it is possible to derive the
asymptotic bias of

√
NT (θ̂IV − θ) assuming that T/N tends to a finite positive constant c

(0 < c < ∞) as N and T → ∞ jointly, and then propose a bias-corrected estimator. Al-
ternatively, bootstrap bias-correction of θ̂IV and bootstrapping the associated test statistic
may largely cure the potential problem. However, as it will be shown later, the potential
bias seems almost negligible in finite samples.

Define the two-step estimator and the associated overidentifying restrictions test
statistic as

θ̈IV =
(

A′
NT Ω̂−1

NTANT

)−1

A′
NT Ω̂−1

NTgNT , (23)

SNT =
1

NT

(

N
∑

i=1

∆ü′
iZ̃i

)

Ω̂−1
NT

(

N
∑

i=1

Z̃′
i∆üi

)

, (24)

where ∆üi = ∆yi −∆Wiθ̈IV . Hansen (2007) shows that the t-test based on the variance
estimator (15), in the context of a standard panel fixed effects estimation, is asymptot-
ically valid even when T and N tend jointly to infinity. By a similar discussion, the
asymptotic validity of the two-step estimator and the associated overidentifying restric-
tions test can be verified. The result is summarised in the following theorem:

Theorem 3 Suppose that Assumptions 1-5 hold true under model (1)-(3). Then, min
{

T
N

, N
T

}

→
0 as N → ∞ and T → ∞ jointly,

SNT
d→ χ2

k−1, (25)

for k > 1, under the null hypothesis of strong exogeneity of the covariates, where SNT is
defined in (24).

Proof. See Appendix.
The overidentifying restrictions test is particularly useful in our approach in order to

test the assumption of strong exogeneity of the regressors with respect to the idiosyncratic
errors in the equation for x, which is stated in Assumption 1(ii).

3 Monte Carlo Experiments

In this section we investigate the finite sample behaviour of the proposed estimator by
means of Monte Carlo experiments. In particular, we study its bias and root mean square
error (RMSE), as well as the size and power of the t-tests. Furthermore, we examine the
finite sample performance of the overidentifying restrictions test. In the experiments we
allow the case in which only mx factors enter in the x equation, which are subset of m
factors in the equation for y.

In order to investigate the relative performance of our estimator, four additional IV
estimators are considered. All the estimators can be described in terms of the equation
(13) of θ̂IV , by redefining the matrix of instruments in (12). The associated variance
estimator is also redefined in the same manner using (15). The first estimator is a variant
of the popular Anderson-Hsiao estimator (Anderson and Hsiao, 1981, 1982), which is
generally invalid asymptotically under a factor structure. The transformed matrix of
instruments in (12) is redefined as

Z̃i = (∆yi,−2,∆Xi,∆Xi,−1), (26)
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where yi,−2 = L2yi.
10 The second estimator is the one proposed by Sarafidis, Yamagata,

and Robertson (2009), which uses as instruments the untransformed regressors, assuming
they are strictly exogenous,

Z̃i = Z
i
= (∆Xi,∆Xi,−1). (27)

The third estimator defactors Z
i
using cross-sectional averages instead of principal com-

ponents, as proposed by Pesaran (2006),

Z̃i = M∆X̄Z
i

(28)

where M∆X̄ = IT − ∆X̄
(

∆X̄
′
∆X̄

)−1

∆X̄
′

with ∆X̄ = N−1
∑N

i=1 ∆Xi. The main

advantage of this approach is that consistent estimation of the number of factors is not
required. The disadvantage is that M∆X̄Z

i
is not a valid instrument when the rank

condition on the factor loadings is not satisfied, namely rank[E(Γxi)] ≥ mx, where mx

is the number of factors in Xi. Under the assumption that the factor loadings have zero
mean (see Assumption 4), the rank condition is violated. As pointed out earlier, the cross
section average of the factor loadings can be made zero by including time dummies in
the estimating model.

The fourth estimator is our proposed one, which uses the instruments Z̃i = M∆F̂Z
i
,

where M∆F̂ is the projection matrix of ∆F̂, a T × m̂x matrix extracted from {∆Xi}N
i=1

using principal components, where m̂x is the estimated number of factors. In the exper-
iments the number of factors is estimated by the information criterion IC1 proposed by
Bai and Ng (2002). The maximum number of factors is set to mx + 1.

Finally, an infeasible estimator is included as a benchmark, with instrument matrix
equal to

Z̃i = M∆FZ
i
, (29)

where M∆F is the projection matrix of ∆F, a T ×mx matrix of factors in ∆Xi. Observe
that our estimator is less efficient than the infeasible estimator, since the former estimates
both the number of factors mx as well as the factors themselves, ∆F.

3.1 Design

Consider a data generating process (DGP) with non-normal and time series and cross-
sectionally heteroskedastic errors

yit = αi + λyit−1 +
k

∑

ℓ=1

βℓxℓit +
m

∑

s=1

γsifst + εit, i = 1, 2, ..., N ; t = −49,−48, ..., T , (30)

where βℓ = (1− λ)/k, αi ∼ iidN(0, 1), γsi ∼ iidN(0, 1), εit = σit(ǫit − 1)/
√

2, ǫit ∼ iidχ2
1,

with σ2
it = ηiϕt, ηi ∼ iidχ2

2/2, and ϕt = 1 − 0.01(T/2 + t) for t = −1, 0, ..., T and unity
otherwise. The covariates follow a multi-factor structure

xℓit = µℓi +
mx
∑

s=1

γℓsifst + vℓit, i = 1, 2, ..., N ; t = −49,−48, ..., T,

10It might be reasonable to assume that ∆Xi,−2 is also available, though, for comparison purpose we
did not include it as additional instruments.
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ℓ = 1, 2, ..., k where µℓi ∼ iidN(0, 1), and the factor loadings γℓsi in the equation for xℓit

are correlated with those in the equation for yit, such that

γℓsi = ρℓsγsi + (1 − ρ2
ℓs)

1/2ξℓsi, ξℓsi ∼ iidN(0, 1),

ℓ = 1, 2, s = 1, ..., m. The factors and the idiosyncratic errors of xℓit are serially correlated
such that

fst = ρsfst−1 + (1 − ρ2
s)

1/2ζst, ζst ∼ iidN(0, 1/m),

so that var(
∑m

s=1 fst) = 1 for any m, and

vℓit = ρℓvℓit−1 + (1 − ρ2
ℓ)

1/2̟ℓit, ̟ℓit ∼ iidN(0, 1),

ℓ = 1, 2, ..., k.
To consider the case in which only a subset of factors in the equation for y enters

the x equation, we report the results for m = 4 and mx = 2. In order to investigate the
overidentified model (2k > k + 1), we report the results for k = 2. Also, we set ρℓ = 0.8,
ρs = 0.4, ρℓs = 0.4.11 We examine λ = 0.2, 0.5, 0.8 with βℓ = (1 − λ)/k for ℓ = 1, 2, ..., k,
so that (1 − λ)−1

∑k
ℓ=1 βℓ = 1. We consider several combinations of (T, N), in specific,

T ∈ {10, 20, 50, 100, 200} and N ∈ {10, 20, 50, 100, 200}. The results are obtained based
on 2000 replications, and all tests are conducted at the 5% significance level.

3.2 Results

Tables 1 and 2 report the mean value of the estimated coefficient of the lagged dependent
variable, λ̂, and of x1it, β̂1.

12 The IV estimator that makes use of Z
i
= (∆Xi,∆Xi,−1)

only is highly biased. This is because the instruments are not orthogonal to the composite
error term. Including the lagged dependent variable ∆yi,−2 as an instrument appears to
increase the bias of the estimator. Furthermore, projecting out ∆X̄ from Z

i
by premu-

tiplying it by M∆X̄ does not work. The reason for this result is that the rank condition
is violated in our case because the mean value of the factor loadings is zero. In contrast,
our proposed estimator, which uses M∆F̂Zi as instruments, has little bias for different
values of λ and β1 (including λ = 0.8). In fact, the bias appears to be very similar to
that of the infeasible IV estimator, which makes use of the unobservable true factors. As
a result, while the bias of our estimator is non-negligible when N is small, for N ≥ 50
and T ≥ 10 the bias lies within ±0.001 in most of the cases.

Tables 3 and 4 report the root mean square error (RMSEs) of λ̂ and β̂1. Except
when T = 10 or N = 10, the RMSE of the proposed estimator is very similar to the
infeasible estimator and the difference between the two is mostly within ±0.001. This
may be remarkable considering that our estimator is subject to the extra uncertainty
arising from the fact that both the number of factors and the factors themselves are
unknown and estimated in the model.

Tables 5 and 6 provide the estimated size of the t-test. The size of t-test based on our
approach is very close to the nominal level (5%), especially for N ≥ 50 and T ≥ 10. It is

11We considered other values of k, m, mx (including m = mx), ρℓ, ρs, ρℓs, as well as errors, εit,
drawn from normal distribution with other heteroskedastic schemes (including homoskedasticity). These
results, which are available upon request from the authors, confirm that the presented satisfactory results
of our proposed estimator and associated tests are robust to varieties of experimental design.

12The results for the estimates of β2 are very similar to those of β1, which are not reported, but are
available upon request from the authors.
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also worth noting that the estimated size of the t-test based on our proposed estimator
is similar to that based on the infeasible estimator. The reasonable power of the t-test
based on our estimator is confirmed in Tables 7 and 8.

Table 9 reports the results of the overidentifying restrictions test. The size of our
test is correct in most of the combinations of N and T . Importantly the test has good
power when the idiosyncratic errors in x1it are correlated with the idiosyncratic errors in
yit. Thus, this test can be a reliable statistical tool to check the key assumption of our
approach.

4 Concluding Remarks

This paper has proposed a computationally attractive instrumental-variable procedure
for consistent estimation of dynamic linear panel data models with error cross-sectional
dependence when both N and T are large. Our approach involves projecting out the
common factors in the regressors at first stage, and then using the defactored regressors
as instruments for the endogenous variables. Aside from computational simplicity the
method has the advantage that it does not require estimating possible distinct factors
that enter directly only into the y process, thus leaving these factors in the residuals.
Therefore, full specification of the model is not required. In practice, it is also possible
that (a subset of) the factors that hit the covariates are orthogonal to the composite
disturbance of the y process. In this case, full defactoring is not necessary for consistency
of the IV etimator because instrument exogeneity merely requires projecting out the
common components which are correlated with the factors that enter directly into the
y process. Empirically, this issue can be addressed using a sequential testing method
based on the overidentifying restrictions test that we have explored in this paper. In
particular, one may start by testing whether the untransformed covariates are strongly
exogenous with respect to the composite dusturbance. Notice that the null hypothesis
will also be satisfied if the covariates do not have a factor structure at all. If the null
is rejected, one may project out the factor corresponding to the largest eigenvalue of
the T × T matrix

∑N
i=1 ∆Xi∆X′

i and test whether the defactored regressors yield valid
instruments using the same statistic. If the null is rejected, one may project out two
factors, in particular those associated with the two largest eigenvalues of

∑N
i=1 ∆Xi∆X′

i,
and so on. Naturally, the significance level used for this sequential method needs to be
appropriately adjusted. The interested reader is recommended to refer to Ahn, Lee, and
Schmidt (2006), Proposition 2.

Finally, notice that although the proofs of our results require N and T both large, un-
der certain restrictions imposed in the covariates − in particular, asymptotic homoskedas-
ticity and serial uncorrelatedness − it is possible to derive consistency and asymptotic
normality of our estimator even for T fixed; see Bai (2003). On the other hand, the
simulation evidence we have presented suggests that even if these conditions are not met
in practice, the bias of the estimator can be practically negligible and the size of the
t-test is correct for (T,N) as small as (10, 50). Therefore, we hope that our approach
provides a computationally attractive way to estimate dynamic panel data models with
multi-factor residual structures, even in cases where T is moderately small.
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Appendix: Mathematical Proofs

Lemma 1 From Bai (2003) we have

p lim
T,N→∞

∆F̂′∆F

T
= G (A.1)

By Lemmas B1, B2 and B3 of Bai (2003),

T−1(∆F̂ − ∆F )
′
∆εi = Op (δ−2

NT ), (A.2)

T−1(∆F̂ − ∆F )
′
∆F = Op(δ

−2
NT ) (A.3)

and
T−1(∆F̂ − ∆F )

′
∆F̂ = Op(δ

−2
NT ), (A.4)

where δNT = min{
√

N,
√

T}.

Lemma 2 Under Assumptions 1-5 we have

∆X ′
iM∆F̂ ∆W i

T
− ∆X ′

iM∆F ∆W i

T
= Op

(

δ−2
NT

)

, uniformly over i, (A.5)

∆X ′
iM∆F̂ ∆F

T
− ∆X ′

iM∆F ∆F

T
= Op

(

δ−2
NT

)

, uniformly over i (A.6)

and
∆X ′

iM∆F̂ ∆εi

T
− ∆X ′

iM∆F ∆εi

T
= Op

(

δ−2
NT

)

, uniformly over i. (A.7)

Proof. We start by proving (A.5). We need to determine the order of probability of
∥

∥

∥

∆X
′

i
M

∆F̂
∆Xi

T − ∆X
′

i
M∆F ∆Xi

T

∥

∥

∥
.

This is equal to
∥

∥

∥

∥

∥

∥

∥

∆X ′
i∆F̂

(

∆F̂
′
∆F̂

)−1

∆F̂
′
∆Xi

T
− ∆X ′

i∆F
(

∆F ′∆F
)−1

∆F ′∆Xi

T

∥

∥

∥

∥

∥

∥

∥

=

1

T

∥

∥

∥

∥

∆X ′
i∆F̂

(

∆F̂
′
∆F̂

)−1

∆F̂
′
∆Xi − ∆X ′

i∆F
(

∆F̂
′
∆F̂

)−1

∆F̂
′
∆Xi + ∆X ′

i∆F
(

∆F̂
′
∆F̂

)−1

∆F̂
′
∆Xi−

∆X ′
i∆F

(

∆F ′∆F
)−1

∆F̂
′
∆Xi + ∆X ′

i∆F
(

∆F ′∆F
)

−1

∆F̂
′
∆Xi − ∆X ′

i∆F
(

∆F ′∆F
)−1

∆F ′∆Xi

∥

∥

∥

=
1

T

∥

∥

∥

∥

(

∆X ′
i∆ F̂− ∆X ′

i∆F
) (

∆F̂
′
∆F̂

)−1

∆F̂
′
∆Xi + ∆X ′

i∆F
(

∆F ′∆F
)

−1
(

∆F̂
′
∆Xi − ∆F ′∆Xi

)

+

∆X ′
i∆F

(

(

∆F̂
′
∆F̂

)−1

−
(

∆F ′∆F
)−1

)

∆F̂
′
∆Xi

∥

∥

∥

∥

≤
∥

∥

∥

∥

1

T

(

∆X ′
i∆ F̂− ∆X ′

i∆F
) (

∆F̂
′
∆F̂

)−1

∆F̂
′
∆Xi

∥

∥

∥

∥

+

∥

∥

∥

∥

1

T
∆X ′

i∆F

(

(

∆F̂
′
∆F̂

)−1

−
(

∆F ′∆F
)−1

)

∆F̂
′
∆Xi

∥

∥

∥

∥

+

∥

∥

∥

∥

1

T
∆X ′

i∆F
(

∆F ′∆F
)−1

(

∆F̂
′
∆Xi − ∆F ′∆Xi

)

∥

∥

∥

∥

. (A.8)

We examine each of the above terms.

∥

∥

∥

∥

1

T

(

∆X ′
i∆ F̂− ∆X ′

i∆F
) (

∆F̂
′
∆F̂

)−1

∆F̂
′
∆Xi

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

1

T

(

∆X ′
i∆ F̂− ∆X ′

i∆F
)

(

∆F̂
′
∆F̂

T

)−1
∆F̂

′
∆Xi

T

∥

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

∆X ′
i

(

∆F̂ − ∆F
)

T

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

∆F̂
′
∆F̂

T

)−1
∆F̂

′
∆Xi

T

∥

∥

∥

∥

∥

∥

= Op

(

δ−2
NT

)

, uniformly over i, (A.9)
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by (A.1) to (A.4). Next, we have

∥

∥

∥

∥

1

T
∆X ′

i∆F

(

(

∆F̂
′
∆F̂

)−1

−
(

∆F ′∆F
)−1

)

∆F̂
′
∆Xi

∥

∥

∥

∥

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆X ′
i∆F

T

(

∆F̂
′
∆F̂

T

)−1
1

T

(

(

∆F ′∆F
)

−
(

∆F̂
′
∆F̂

))

(

∆F ′∆F

T

)−1
∆F̂

′
∆Xi

T

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

∥

∆F̂
′
∆F̂

T
− ∆F ′∆F

T

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆X ′
i∆F

T

(

∆F̂
′
∆F̂

T

)−1
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∆F ′∆F

T

)−1
∆F̂

′
∆Xi

T

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Since

∆F̂
′
∆F̂

T
=

1

T
(∆F + (∆F̂ − ∆F ))

′
(∆F + (∆F̂ − ∆F )) (A.10)

=
∆F ′∆F

T
+

∆F ′(∆F̂ − ∆F )

T
+

(∆F̂ − ∆F )
′
∆F

T
+

(∆F̂ − ∆F )
′
(∆F̂ − ∆F )

T

=
∆F ′∆F

T
+ Op(δ

−2
NT )

by (A.1) to (A.4), which leads to

∥

∥

∥

∥

1

T
∆X ′

i∆F

(

(

∆F̂
′
∆F̂

)−1

−
(

∆F ′∆F
)−1

)

∆F̂
′
∆Xi

∥

∥

∥

∥

= Op(δ
−2
NT ). (A.11)

Finally,

∥

∥

∥

∥

1

T
∆X ′

i∆F
(

∆F ′∆F
)−1

(

∆F̂
′
∆Xi − ∆F ′∆Xi

)

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

∆X ′
i∆F

T

(

∆F ′∆F

T

)−1
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∆X ′
i(∆F̂ − ∆F )

T

∥

∥

∥

∥

∥

= Op(δ
−2
NT ).

(A.12)
by (A.1) to (A.4). Substituting (A.9), (A.11) and (A.12) into (A.8), we have

∥

∥

∥

∥

∆X ′
iM∆F̂ ∆Xi

T
− ∆X ′

iM∆F ∆Xi

T

∥

∥

∥

∥

= Op

(

δ−2
NT

)

, uniformly over i,

In a similar manner, it is straightforward to prove that

∥

∥

∥

∥

∥

∆X ′
iM∆F̂ ∆yi,−1

T
−

∆X ′
iM∆F ∆yi,−1

T

∥

∥

∥

∥

∥

= Op

(

δ−2
NT

)

, uniformly over i,

and thus
∥

∥

∥

∥

∆X ′
iM∆F̂ ∆W i

T
− ∆X ′

iM∆F ∆W i

T

∥

∥

∥

∥

= Op

(

δ−2
NT

)

, uniformly over i,

as required.
Likewise, it can be proved that

∣

∣

∣

∣

∣

∣

∣

∣

∆X ′
iM∆F̂ ∆εi

T
− ∆X ′

iM∆F ∆εi

T

∣

∣

∣

∣

∣

∣

∣

∣
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)

uniformly over i

∣

∣

∣

∣

∣

∣

∣

∣
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T
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iM∆F ∆F

T

∣
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∣

∣

∣

∣

∣

∣
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∣

∣
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∣

∣

∣

∣

∆X ′
iM∆F̂ ∆F

T

∣

∣

∣

∣

∣

∣

∣

∣

= Op

(

δ−2
NT

)

uniformly over i

Similar discussion holds for ∆X ′
i,−1M∆F ∆W i/T , ∆X ′

i,−1M∆F ∆F /T , and ∆X ′
i,−1M∆F ∆εi/T . Hence,

we can obtain the results as required.

Lemma 3 Ω̂NT − Ω → 0 as N and T go to infinity in such a way that N/T → c, 0 < c < ∞.
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Proof. Below, op(1) term is asymptotically negligible when N and T go to infinity in such a way
that N/T → c, 0 < c < ∞. Recall that

Ω̂NT =
1

NT

N
∑

i=1

Z̃′
i∆ûi∆û′

iZ̃i (A.13)

with Z̃′
i = Z′

iM∆F̂ and ∆ui = ∆Fγi+∆εi. Noting that ∆ûi = ∆yi−∆Wiθ̂IV = ∆ui−∆Wi

(

θ̂IV − θ
)

,

we have

1

NT

N
∑

i=1

Z̃′
i∆ûi∆û′

iZ̃i =
1

NT

N
∑

i=1

Z′
iM∆F̂ ∆ui∆u′

iM∆F̂ Zi

− 1

NT

N
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iM∆F̂ ∆Wi
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θ̂IV − θ
)
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− 1

NT
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(

θ̂IV − θ
)(

θ̂IV − θ
)′

∆W′
iM∆F̂ Zi

= I − II − III + IV .

First, look at II. This can be re-written as

II =
T

N

N
∑

i=1
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iM∆F̂ ∆Wi

T

(

θ̂IV − θ
) ∆u′
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T
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T

N
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T
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√

T

N

)

Op(δ
−2
NT )

by (A.2), (A.4), and
(

θ̂IV − θ
)
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(
√

1
TN

)

. Since
∆ε′

i
M∆F Zi

T = Op

(

1√
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)

,

II = TOp (1) .Op
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A similar discussion yields III = op(1). Furthermore,
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T

N
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= op (1) .

Now,

I =
T

N

N
∑

i=1

Z′
iM∆F̂ ∆ui

T

∆u′
iM∆F̂ Zi

T

=
1

TN

N
∑

i=1

Z′
iM∆F ∆εi∆ε′iM∆F Zi + op(1)

by (A.2)-(A.4). By Assumption 5 (ii) and a law of large numbers,

1

TN

N
∑

i=1

Z′
iM∆F ∆εi∆ε′iM∆F Zi − Ω = op(1).
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In sum, Ω̂NT − Ω = op(1). As it is easily seen, the result holds when min
{

T
N , N

T

}

→ 0 as N → ∞ and
T → ∞ jointly, as required.

Proof of Theorem 2. (i) Using Lemma 2 and a LLN, plimN,T→∞ANT = A and plimN,T→∞BNT =

B. By Assumptions 1-5 and a LLN, plimN,T→∞
1

NT

∑N
i=1 Z′

iM∆F ∆εi∆εiM∆F Zi = Ω. Applying

Lemma 2 of Hansen (2007) yields 1√
NT

∑N
i=1 Z′

iM∆F ∆εi
d→ N (0,Ω) (the proof of the lemma is pro-

vided in the Technical Appendix of Hansen (2007)), as required.
(ii) Under Assumptions 1-5 and using Lemma 2, Lemma 3 and a LLN, the result follows.

Proof of Theorem 3. Under Assumptions 1-5, together with the
√

NT consistency of θ̂IV

of Theorem 1 and a LLN, by Lemma 3 we have Ω̂NT − Ω → 0 as N → ∞ and T → ∞ jointly in
such a way that T/N tends to a finite positive constant. The consistency of Ω̂NT leads to the

√
NT

consistency of θ̈IV , and therefore under the null hypothesis a similar discussion for Theorem 2 yields
1√
NT

Ω̂−1/2
∑N

i=1 Z̃′
i∆üi

d→ N(0, I2k), when min
{

T
N , N

T

}

→ 0 as N → ∞ and T → ∞ jointly. Finally,

applying a standard proof for the asymptotic distribution of the overidentifying restrictions test under
the null hypothesis, such as in Arellano (2003), will yield the desired result.
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Table 1: Mean Value of the Estimated Coefficient of the Lagged Dependent Variable in
ARDL(1,0) models. The Factor loadings in the X equation, which contains two factors,
are correlated with those in the Y equation, where the number of factors is four. The
mean value of the factor loadings is zero.

Instruments λ = 0.2 λ = 0.5 λ = 0.8

∆yi,−2,Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.226 0.235 0.234 0.237 0.241 0.519 0.536 0.537 0.543 0.550 0.683 0.757 0.788 0.804 0.818

20 0.231 0.236 0.240 0.240 0.239 0.532 0.541 0.548 0.549 0.547 0.760 0.797 0.815 0.820 0.816

50 0.236 0.237 0.240 0.240 0.239 0.542 0.546 0.550 0.551 0.550 0.803 0.818 0.827 0.827 0.824

100 0.239 0.240 0.241 0.240 0.239 0.549 0.550 0.552 0.550 0.549 0.822 0.828 0.829 0.826 0.823

200 0.240 0.240 0.240 0.240 0.239 0.551 0.551 0.551 0.551 0.550 0.831 0.829 0.828 0.827 0.825

Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.170 0.171 0.169 0.170 0.173 0.440 0.453 0.450 0.453 0.457 0.586 0.669 0.697 0.705 0.712

20 0.166 0.171 0.172 0.171 0.170 0.445 0.454 0.455 0.455 0.454 0.633 0.695 0.711 0.710 0.708

50 0.169 0.170 0.172 0.172 0.170 0.452 0.454 0.456 0.457 0.454 0.699 0.709 0.713 0.716 0.709

100 0.170 0.172 0.172 0.170 0.170 0.453 0.456 0.457 0.454 0.454 0.704 0.713 0.715 0.710 0.709

200 0.172 0.171 0.171 0.171 0.170 0.456 0.455 0.455 0.455 0.454 0.713 0.710 0.712 0.712 0.710

M∆X̄Z
i

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.177 0.178 0.173 0.176 0.179 0.448 0.461 0.457 0.463 0.467 0.587 0.673 0.705 0.722 0.736

20 0.170 0.177 0.179 0.179 0.177 0.454 0.464 0.467 0.467 0.465 0.664 0.698 0.734 0.735 0.731

50 0.175 0.177 0.179 0.178 0.177 0.461 0.464 0.467 0.466 0.464 0.725 0.728 0.734 0.733 0.729

100 0.177 0.179 0.179 0.177 0.177 0.464 0.468 0.467 0.464 0.464 0.726 0.736 0.735 0.729 0.729

200 0.179 0.177 0.177 0.177 0.177 0.468 0.465 0.465 0.465 0.464 0.735 0.730 0.731 0.731 0.730

M∆F̂ Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.190 0.200 0.196 0.198 0.203 0.473 0.489 0.493 0.497 0.504 0.611 0.668 0.780 0.789 0.806

20 0.188 0.199 0.201 0.200 0.200 0.480 0.498 0.501 0.501 0.500 0.688 0.785 0.804 0.801 0.800

50 0.193 0.196 0.200 0.200 0.199 0.488 0.494 0.499 0.500 0.499 0.767 0.787 0.799 0.800 0.798

100 0.195 0.199 0.200 0.199 0.199 0.493 0.498 0.500 0.499 0.499 0.784 0.797 0.801 0.797 0.798

200 0.197 0.198 0.199 0.200 0.199 0.495 0.496 0.499 0.499 0.499 0.790 0.792 0.797 0.799 0.798

M∆F Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.196 0.203 0.195 0.197 0.201 0.482 0.503 0.493 0.496 0.501 0.586 0.628 0.779 0.788 0.801

20 0.194 0.201 0.201 0.200 0.199 0.490 0.501 0.502 0.500 0.499 0.737 0.792 0.806 0.801 0.798

50 0.198 0.198 0.200 0.200 0.199 0.497 0.498 0.501 0.500 0.499 0.784 0.793 0.801 0.801 0.798

100 0.201 0.201 0.201 0.200 0.199 0.501 0.502 0.502 0.499 0.499 0.802 0.805 0.804 0.799 0.798

200 0.202 0.200 0.200 0.200 0.200 0.503 0.500 0.500 0.500 0.499 0.806 0.800 0.800 0.800 0.799

Notes: The DGP follows yit = αi + λyit−1 +
∑k

ℓ=1
βℓxℓit +

∑m
s=1

γsifst + εit with k = 2 and m = 4, where βℓ =

(1 − λ)/k, αi ∼ iidN(0, 1), γsi ∼ iidN(0, 1), εit = σit(ǫit − 1)/21/2, ǫit ∼ iidχ2
1
, with σ2

it = ηiϕt, ηi ∼ iidχ2
2
/2, ϕt =

1 − 0.01(T/2 + t) for t = −1, 0, ..., T , otherwise unity, xℓit = µℓi +
∑mx

s=1
γℓsifst + vℓit with mx = 2, ℓ = 1, 2, ..., k where

µℓi ∼ iidN(0, 1), and the factor loadings, γℓsi, in xℓit are correlated with those in yit such that γℓsi = ρℓsγsi+(1−ρ2

ℓs)
1/2ξsi,

ξsi ∼ iidN(0, 1) with ρℓs = 0.4, ℓ = 1, 2, s = 1, ..., 4, fst = ρsfst−1 + (1 − ρ2
s)1/2ζst, ζst ∼ iidN(0, 1/m) with ρs = 0.4.so

that var(
∑m

s=1
fst) = 1 for any m, vℓit = ρℓvℓit−1 + (1 − ρ2

ℓ )1/2̟ℓit,̟ℓit ∼ iidN(0, 1) with ρℓ = 0.8, ℓ = 1, 2, ..., k.
The first column describes the instruments used for the IV estimation of the model; Zi = (∆Xi,∆Xi,−1) a T × 2k
matrix, where ∆Xi = (∆xi1, ..., ∆xiT )′ with ∆ = 1 − L and ∆xit = (∆x1it, ..., ∆xkit)

′, L is the lag operator and

∆Xi,−1 = (∆xi0, ..., ∆xiT−1)′. Also, ∆yi,−2 = (∆yi,−1, ..., ∆yiT−2)′, M
∆X̄ = IT − ∆X̄(∆X̄

′

∆X̄)
−1

∆X̄
′

with ∆X̄ =

N−1
∑N

i=1
∆Xi, M

∆F̂ = IT −∆F̂(∆F̂′∆F̂)
−1

∆F̂′, where ∆F̂ is T × m̂x matrix computed from the principal component

estimator extracted from {∆Xi}
N
i=1

, m̂x is estimated by IC1 in Bai and Ng (2002) with maximum number equal to three,

M∆F = IT − ∆F(∆F′∆F)−1∆F′, where ∆F is a T × mx matrix of true factors. All the experiments are based on 2000
replications.
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Table 2: Mean Value of the Estimated Coefficient of the Regressor in ARDL(1,0) models.
The Factor loadings in the X equation, which contains two factors, are correlated with
those in the Y equation, where the number of factors is four. The mean value of the
factor loadings is zero.

Instruments β1 = 0.4 (β1 = 1−λ
k , λ = 0.2) β1 = 0.25 (β1 = 1−λ

k , λ = 0.5) β1 = 0.10 (β1 = 1−λ
k , λ = 0.8)

∆yi,−2,Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.617 0.616 0.617 0.614 0.615 0.467 0.468 0.468 0.465 0.467 0.302 0.311 0.313 0.310 0.313

20 0.616 0.617 0.622 0.620 0.619 0.466 0.468 0.473 0.471 0.470 0.309 0.312 0.319 0.317 0.316

50 0.620 0.619 0.622 0.623 0.623 0.470 0.470 0.474 0.475 0.474 0.315 0.316 0.320 0.321 0.320

100 0.621 0.622 0.624 0.623 0.624 0.472 0.473 0.475 0.474 0.475 0.318 0.319 0.321 0.320 0.321

200 0.616 0.620 0.625 0.625 0.625 0.467 0.471 0.476 0.476 0.477 0.313 0.317 0.322 0.322 0.322

Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.611 0.609 0.608 0.604 0.605 0.457 0.458 0.456 0.452 0.454 0.294 0.301 0.301 0.298 0.299

20 0.607 0.607 0.611 0.609 0.608 0.456 0.455 0.460 0.457 0.456 0.300 0.300 0.306 0.303 0.302

50 0.610 0.608 0.611 0.612 0.612 0.458 0.457 0.459 0.460 0.460 0.304 0.302 0.305 0.306 0.305

100 0.610 0.611 0.612 0.612 0.612 0.459 0.459 0.460 0.460 0.460 0.304 0.304 0.306 0.305 0.305

200 0.605 0.609 0.613 0.613 0.614 0.453 0.457 0.461 0.461 0.462 0.299 0.302 0.307 0.306 0.307

M∆X̄Z
i

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.552 0.562 0.556 0.556 0.555 0.399 0.413 0.405 0.405 0.404 0.225 0.253 0.251 0.251 0.252

20 0.562 0.563 0.563 0.562 0.562 0.411 0.412 0.412 0.411 0.411 0.258 0.258 0.259 0.258 0.258

50 0.563 0.559 0.566 0.567 0.564 0.412 0.408 0.415 0.416 0.412 0.261 0.256 0.262 0.263 0.259

100 0.564 0.565 0.565 0.566 0.565 0.413 0.414 0.414 0.414 0.414 0.260 0.261 0.261 0.261 0.261

200 0.556 0.561 0.566 0.567 0.567 0.405 0.410 0.415 0.416 0.416 0.253 0.257 0.262 0.263 0.262

M∆F̂ Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.406 0.416 0.402 0.402 0.402 0.255 0.268 0.252 0.252 0.252 0.084 0.123 0.101 0.102 0.102

20 0.409 0.405 0.402 0.401 0.399 0.259 0.255 0.252 0.251 0.249 0.107 0.104 0.103 0.102 0.099

50 0.403 0.398 0.401 0.400 0.399 0.253 0.248 0.251 0.250 0.249 0.103 0.098 0.101 0.100 0.099

100 0.405 0.400 0.399 0.400 0.400 0.255 0.250 0.249 0.250 0.250 0.105 0.100 0.099 0.100 0.100

200 0.397 0.399 0.400 0.400 0.400 0.247 0.249 0.250 0.250 0.250 0.098 0.099 0.100 0.100 0.100

M∆F Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.400 0.407 0.402 0.400 0.400 0.244 0.259 0.252 0.250 0.250 0.088 0.113 0.101 0.100 0.100

20 0.401 0.402 0.402 0.401 0.399 0.251 0.252 0.252 0.251 0.249 0.104 0.101 0.102 0.101 0.099

50 0.403 0.398 0.401 0.400 0.399 0.253 0.248 0.251 0.250 0.249 0.103 0.098 0.101 0.100 0.099

100 0.402 0.399 0.399 0.400 0.400 0.252 0.250 0.249 0.250 0.250 0.103 0.100 0.099 0.100 0.100

200 0.398 0.399 0.400 0.400 0.400 0.248 0.249 0.250 0.250 0.250 0.098 0.099 0.100 0.100 0.100

Notes: See notes to Table 1. The reported estimates are of β1 which is coefficient on x1it. The results for the estimates of
β2 are very similar and not reported (available upon request from the authors).
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Table 3: Root Mean Square Error of the Estimated Coefficient of the Lagged Dependent
Variable in ARDL(1,0) models. The Factor loadings in the X equation, which contains
two factors, are correlated with those in the Y equation, where the number of factors is
four. The mean value of the factor loadings is zero.

Instruments λ = 0.2 λ = 0.5 λ = 0.8

∆yi,−2,Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.200 0.144 0.105 0.087 0.080 0.293 0.210 0.149 0.120 0.109 0.555 0.424 0.274 0.206 0.171

20 0.135 0.103 0.076 0.067 0.060 0.193 0.144 0.106 0.091 0.079 0.363 0.280 0.185 0.143 0.114

50 0.090 0.072 0.057 0.052 0.048 0.127 0.101 0.077 0.069 0.063 0.220 0.172 0.114 0.090 0.071

100 0.072 0.059 0.051 0.046 0.044 0.101 0.082 0.068 0.061 0.056 0.167 0.124 0.086 0.067 0.053

200 0.061 0.052 0.046 0.043 0.042 0.084 0.070 0.061 0.057 0.054 0.127 0.094 0.067 0.052 0.043

Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.287 0.174 0.115 0.084 0.067 0.524 0.279 0.179 0.130 0.105 1.468 0.710 0.395 0.262 0.215

20 0.171 0.121 0.079 0.061 0.051 0.272 0.191 0.123 0.095 0.078 0.796 0.472 0.252 0.189 0.156

50 0.107 0.078 0.053 0.044 0.039 0.168 0.120 0.081 0.067 0.060 0.402 0.250 0.159 0.132 0.119

100 0.078 0.057 0.042 0.038 0.035 0.123 0.089 0.065 0.058 0.054 0.259 0.178 0.127 0.115 0.106

200 0.058 0.046 0.037 0.033 0.032 0.090 0.070 0.057 0.051 0.050 0.193 0.139 0.111 0.100 0.098

M∆X̄Z
i

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.332 0.198 0.128 0.092 0.075 0.633 0.330 0.196 0.141 0.116 1.352 1.876 0.487 0.300 0.244

20 0.176 0.126 0.080 0.061 0.049 0.299 0.199 0.124 0.094 0.076 0.833 0.738 0.259 0.189 0.150

50 0.106 0.075 0.050 0.041 0.035 0.165 0.116 0.076 0.063 0.054 0.514 0.242 0.151 0.124 0.106

100 0.075 0.054 0.038 0.033 0.030 0.117 0.083 0.059 0.051 0.046 0.251 0.168 0.117 0.101 0.090

200 0.054 0.041 0.032 0.028 0.027 0.084 0.064 0.049 0.043 0.041 0.182 0.127 0.097 0.085 0.081

M∆F̂ Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.334 0.203 0.123 0.081 0.056 0.619 0.363 0.196 0.123 0.086 1.786 1.419 0.499 0.264 0.179

20 0.171 0.118 0.072 0.052 0.035 0.285 0.186 0.113 0.080 0.054 0.786 0.463 0.253 0.164 0.110

50 0.100 0.068 0.042 0.031 0.021 0.157 0.106 0.065 0.047 0.032 0.348 0.226 0.133 0.096 0.065

100 0.069 0.047 0.029 0.021 0.015 0.109 0.074 0.045 0.033 0.023 0.248 0.156 0.093 0.066 0.047

200 0.049 0.032 0.021 0.014 0.010 0.076 0.050 0.032 0.022 0.016 0.185 0.105 0.066 0.043 0.032

M∆F Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.309 0.184 0.116 0.080 0.055 0.550 0.304 0.184 0.122 0.085 1.283 3.370 0.461 0.257 0.176

20 0.165 0.117 0.072 0.051 0.035 0.298 0.185 0.113 0.079 0.054 0.762 0.536 0.255 0.163 0.109

50 0.098 0.068 0.042 0.030 0.021 0.155 0.105 0.065 0.047 0.032 0.345 0.225 0.132 0.095 0.065

100 0.069 0.047 0.029 0.021 0.015 0.109 0.074 0.045 0.032 0.023 0.259 0.155 0.093 0.066 0.047

200 0.049 0.032 0.021 0.014 0.010 0.076 0.050 0.032 0.021 0.016 0.172 0.104 0.066 0.043 0.032

Notes: See notes to Table 1.
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Table 4: Root Mean Square Error of the Estimated Coefficient of the Regressor in
ARDL(1,0) models. The Factor loadings in the X equation, which contains two fac-
tors, are correlated with those in the Y equation, where the number of factors is four.
The mean value of the factor loadings is zero.

Instruments β1 = 0.4 (β1 = 1−λ
k , λ = 0.2) β1 = 0.25 (β1 = 1−λ

k , λ = 0.5) β1 = 0.10 (β1 = 1−λ
k , λ = 0.8)

∆yi,−2,Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.320 0.274 0.242 0.228 0.224 0.322 0.276 0.243 0.229 0.225 0.321 0.274 0.239 0.225 0.221

20 0.282 0.252 0.238 0.228 0.224 0.283 0.253 0.239 0.230 0.225 0.279 0.250 0.235 0.226 0.220

50 0.264 0.243 0.232 0.228 0.226 0.265 0.244 0.233 0.230 0.227 0.260 0.239 0.229 0.225 0.223

100 0.257 0.241 0.231 0.228 0.226 0.257 0.242 0.232 0.229 0.227 0.253 0.238 0.228 0.224 0.223

200 0.250 0.237 0.232 0.229 0.227 0.251 0.238 0.233 0.230 0.228 0.247 0.234 0.229 0.225 0.224

Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.319 0.266 0.233 0.218 0.213 0.331 0.267 0.231 0.216 0.212 0.414 0.281 0.230 0.213 0.208

20 0.274 0.242 0.227 0.218 0.213 0.273 0.241 0.226 0.216 0.211 0.315 0.242 0.222 0.212 0.206

50 0.255 0.232 0.221 0.217 0.214 0.253 0.230 0.219 0.215 0.212 0.251 0.227 0.214 0.211 0.208

100 0.246 0.230 0.220 0.216 0.214 0.244 0.228 0.218 0.214 0.212 0.239 0.224 0.213 0.209 0.208

200 0.240 0.226 0.221 0.217 0.215 0.238 0.224 0.219 0.215 0.213 0.233 0.219 0.214 0.210 0.208

M∆X̄Z
i

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.334 0.259 0.201 0.181 0.172 0.359 0.263 0.200 0.180 0.171 0.395 0.363 0.204 0.178 0.169

20 0.256 0.212 0.186 0.175 0.170 0.257 0.211 0.185 0.174 0.169 0.284 0.217 0.184 0.172 0.166

50 0.220 0.191 0.179 0.175 0.169 0.219 0.190 0.178 0.174 0.167 0.227 0.188 0.175 0.171 0.164

100 0.207 0.187 0.176 0.172 0.169 0.205 0.186 0.174 0.171 0.168 0.202 0.183 0.171 0.167 0.165

200 0.194 0.182 0.175 0.173 0.170 0.193 0.181 0.174 0.171 0.169 0.190 0.177 0.171 0.168 0.166

M∆F̂ Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.426 0.270 0.150 0.101 0.069 0.480 0.274 0.151 0.101 0.069 0.634 0.409 0.159 0.103 0.070

20 0.240 0.146 0.094 0.065 0.045 0.242 0.147 0.094 0.065 0.045 0.271 0.156 0.095 0.065 0.045

50 0.132 0.089 0.057 0.039 0.027 0.133 0.089 0.057 0.039 0.027 0.135 0.090 0.057 0.039 0.027

100 0.093 0.063 0.038 0.027 0.019 0.093 0.063 0.038 0.027 0.019 0.094 0.063 0.038 0.027 0.019

200 0.064 0.044 0.027 0.019 0.013 0.064 0.044 0.027 0.019 0.013 0.064 0.044 0.027 0.019 0.013

M∆F Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.323 0.218 0.138 0.096 0.068 0.360 0.223 0.138 0.096 0.068 0.426 0.459 0.145 0.098 0.069

20 0.207 0.141 0.092 0.065 0.045 0.212 0.142 0.092 0.065 0.045 0.237 0.158 0.094 0.065 0.045

50 0.123 0.087 0.056 0.039 0.027 0.124 0.087 0.056 0.039 0.027 0.126 0.088 0.056 0.039 0.027

100 0.087 0.061 0.037 0.027 0.019 0.088 0.061 0.037 0.027 0.019 0.089 0.061 0.037 0.027 0.019

200 0.060 0.043 0.026 0.019 0.013 0.060 0.043 0.026 0.019 0.013 0.060 0.043 0.026 0.019 0.013

Notes: See notes to Table 1.
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Table 5: Estimated Size of the t-test for the Estimated Coefficient of the Lagged De-
pendent Variable in ARDL(1,0) models. The Factor loadings in the X equation, which
contains two factors, are correlated with those in the Y equation, where the number of
factors is four. The mean value of the factor loadings is zero.

Instruments H0 : λ = 0.2 (DGP: λ = 0.2) H0 : λ = 0.5 (DGP: λ = 0.5) H0 : λ = 0.8 (DGP: λ = 0.8)

∆yi,−2,Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.146 0.113 0.145 0.206 0.321 0.140 0.109 0.137 0.180 0.277 0.154 0.116 0.107 0.118 0.172

20 0.149 0.137 0.166 0.270 0.377 0.138 0.125 0.137 0.231 0.325 0.138 0.107 0.098 0.123 0.167

50 0.170 0.171 0.264 0.418 0.601 0.167 0.159 0.223 0.359 0.529 0.139 0.120 0.098 0.145 0.172

100 0.200 0.232 0.418 0.599 0.771 0.179 0.207 0.362 0.516 0.697 0.142 0.112 0.120 0.154 0.206

200 0.262 0.334 0.593 0.811 0.937 0.246 0.303 0.513 0.711 0.893 0.158 0.132 0.156 0.189 0.268

Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.128 0.085 0.101 0.110 0.142 0.135 0.093 0.111 0.115 0.149 0.149 0.123 0.134 0.132 0.171

20 0.114 0.095 0.097 0.131 0.188 0.115 0.106 0.105 0.140 0.192 0.140 0.129 0.131 0.161 0.219

50 0.139 0.122 0.133 0.195 0.322 0.149 0.129 0.138 0.201 0.333 0.171 0.156 0.161 0.222 0.361

100 0.145 0.141 0.196 0.313 0.517 0.159 0.150 0.204 0.322 0.521 0.174 0.174 0.225 0.345 0.541

200 0.174 0.195 0.304 0.490 0.763 0.184 0.206 0.314 0.501 0.766 0.203 0.230 0.338 0.529 0.773

M∆X̄Z
i

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.130 0.082 0.102 0.102 0.143 0.136 0.089 0.110 0.106 0.148 0.160 0.118 0.124 0.117 0.163

20 0.119 0.093 0.092 0.113 0.147 0.129 0.100 0.096 0.122 0.156 0.145 0.131 0.112 0.143 0.169

50 0.127 0.110 0.103 0.160 0.250 0.135 0.114 0.111 0.165 0.257 0.159 0.130 0.130 0.179 0.275

100 0.132 0.114 0.155 0.247 0.393 0.136 0.118 0.161 0.255 0.399 0.145 0.134 0.177 0.271 0.417

200 0.150 0.156 0.231 0.370 0.582 0.154 0.162 0.236 0.377 0.589 0.162 0.181 0.258 0.398 0.603

M∆F̂ Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.116 0.075 0.062 0.055 0.044 0.121 0.077 0.064 0.055 0.043 0.133 0.103 0.073 0.060 0.040

20 0.091 0.077 0.055 0.056 0.056 0.094 0.078 0.055 0.058 0.058 0.117 0.086 0.059 0.059 0.055

50 0.106 0.070 0.057 0.061 0.048 0.111 0.072 0.054 0.063 0.049 0.122 0.079 0.047 0.060 0.044

100 0.107 0.070 0.045 0.064 0.059 0.100 0.066 0.044 0.065 0.056 0.092 0.064 0.044 0.060 0.055

200 0.095 0.076 0.059 0.043 0.059 0.092 0.072 0.059 0.043 0.061 0.090 0.074 0.056 0.046 0.059

M∆F Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.097 0.066 0.061 0.049 0.044 0.092 0.067 0.061 0.053 0.041 0.115 0.085 0.071 0.063 0.040

20 0.091 0.069 0.053 0.057 0.053 0.089 0.070 0.053 0.055 0.054 0.105 0.075 0.057 0.057 0.055

50 0.098 0.069 0.053 0.058 0.050 0.095 0.069 0.051 0.057 0.049 0.104 0.070 0.045 0.053 0.047

100 0.095 0.069 0.050 0.059 0.060 0.087 0.065 0.047 0.059 0.059 0.080 0.060 0.045 0.057 0.059

200 0.095 0.070 0.052 0.043 0.059 0.092 0.068 0.052 0.044 0.060 0.084 0.065 0.050 0.044 0.058

Notes: See notes to Table 1. The t test is based on the variance estimator defined by (15) but replacing instruments with
associated estimators accordingly (see Section 3 for more details). The tests are conducted at the 5% significance level.
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Table 6: Estimated Size of the t-test for the Regressor in ARDL(1,0) models. The Factor
loadings in the X equation, which contains two factors, are correlated with those in the
Y equation, where the number of factors is four. The mean value of the factor loadings
is zero.

Instruments

∆yi,−2,Zi H0 : β1 = 0.4 (DGP: β1 = 0.4) H0 : β1 = 0.25 (DGP: β1 = 0.25) H0 : β1 = 0.1 (DGP: β1 = 0.1)

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.277 0.349 0.593 0.800 0.962 0.271 0.344 0.595 0.804 0.963 0.230 0.312 0.566 0.790 0.960

20 0.351 0.473 0.782 0.954 0.999 0.349 0.476 0.783 0.957 0.999 0.329 0.461 0.773 0.953 0.999

50 0.445 0.629 0.924 0.998 1.000 0.446 0.631 0.923 0.998 1.000 0.440 0.622 0.918 0.997 1.000

100 0.495 0.706 0.966 1.000 1.000 0.493 0.709 0.965 1.000 1.000 0.490 0.701 0.962 1.000 1.000

200 0.527 0.732 0.978 1.000 1.000 0.529 0.734 0.979 1.000 1.000 0.529 0.728 0.977 1.000 1.000

Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.267 0.333 0.576 0.789 0.957 0.252 0.321 0.563 0.785 0.956 0.208 0.271 0.519 0.767 0.950

20 0.335 0.455 0.766 0.948 0.999 0.333 0.451 0.760 0.945 0.999 0.294 0.409 0.740 0.940 0.998

50 0.429 0.607 0.907 0.996 1.000 0.430 0.610 0.908 0.996 1.000 0.414 0.592 0.906 0.995 1.000

100 0.469 0.680 0.954 0.999 1.000 0.469 0.678 0.953 0.999 1.000 0.458 0.671 0.953 0.999 1.000

200 0.508 0.703 0.970 1.000 1.000 0.506 0.702 0.970 1.000 1.000 0.502 0.697 0.971 1.000 1.000

M∆X̄Z
i

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.168 0.198 0.310 0.483 0.714 0.147 0.191 0.299 0.482 0.710 0.123 0.156 0.266 0.444 0.692

20 0.234 0.292 0.515 0.751 0.939 0.221 0.286 0.511 0.751 0.938 0.201 0.252 0.490 0.740 0.934

50 0.318 0.432 0.760 0.953 0.996 0.319 0.431 0.759 0.952 0.996 0.294 0.421 0.755 0.950 0.996

100 0.363 0.552 0.849 0.985 1.000 0.363 0.552 0.849 0.985 1.000 0.356 0.545 0.848 0.983 1.000

200 0.389 0.584 0.921 0.996 1.000 0.389 0.581 0.922 0.996 1.000 0.388 0.576 0.919 0.996 1.000

M∆F̂ Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.092 0.060 0.056 0.047 0.051 0.086 0.058 0.052 0.047 0.052 0.068 0.047 0.042 0.042 0.049

20 0.095 0.060 0.066 0.051 0.050 0.098 0.058 0.066 0.052 0.049 0.081 0.049 0.060 0.049 0.046

50 0.089 0.065 0.063 0.058 0.048 0.087 0.062 0.061 0.058 0.048 0.078 0.064 0.061 0.056 0.046

100 0.089 0.065 0.048 0.051 0.049 0.088 0.066 0.048 0.051 0.051 0.085 0.063 0.047 0.053 0.052

200 0.088 0.069 0.055 0.051 0.056 0.088 0.069 0.054 0.050 0.056 0.086 0.068 0.056 0.051 0.056

M∆F Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.090 0.063 0.055 0.043 0.052 0.082 0.058 0.049 0.043 0.052 0.071 0.050 0.044 0.039 0.050

20 0.098 0.065 0.059 0.052 0.049 0.096 0.061 0.060 0.052 0.050 0.082 0.050 0.056 0.047 0.049

50 0.098 0.064 0.059 0.055 0.049 0.096 0.063 0.059 0.055 0.048 0.080 0.060 0.059 0.053 0.047

100 0.094 0.076 0.050 0.051 0.050 0.092 0.073 0.050 0.051 0.050 0.088 0.071 0.050 0.051 0.051

200 0.088 0.073 0.051 0.049 0.056 0.089 0.072 0.051 0.050 0.056 0.089 0.068 0.051 0.050 0.055

Notes: See notes to Tables 5 and 1.
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Table 7: Estimated Power of the t-test for the Estimated Coefficient of the Lagged
Dependent Variable in ARDL(1,0) models. The Factor loadings in the X equation, which
contains two factors, are correlated with those in the Y equation, where the number of
factors is four. The mean value of the factor loadings is zero.

Instruments H0 : λ = 0.1 (DGP: λ = 0.2) H0 : λ = 0.4 (DGP: λ = 0.5) H0 : λ = 0.7 (DGP: λ = 0.8)

∆yi,−2,Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.222 0.178 0.240 0.308 0.417 0.202 0.153 0.180 0.228 0.294 0.201 0.155 0.167 0.178 0.231

20 0.229 0.228 0.281 0.418 0.587 0.190 0.174 0.183 0.245 0.380 0.189 0.162 0.166 0.205 0.285

50 0.276 0.327 0.472 0.656 0.833 0.215 0.222 0.259 0.363 0.534 0.209 0.196 0.207 0.274 0.409

100 0.349 0.433 0.654 0.849 0.962 0.241 0.254 0.359 0.525 0.723 0.221 0.219 0.269 0.399 0.587

200 0.464 0.611 0.842 0.967 0.998 0.289 0.352 0.500 0.695 0.872 0.256 0.284 0.382 0.554 0.772

Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.229 0.226 0.337 0.492 0.675 0.202 0.182 0.258 0.344 0.484 0.209 0.181 0.220 0.256 0.324

20 0.281 0.325 0.513 0.731 0.920 0.236 0.249 0.367 0.509 0.752 0.224 0.209 0.262 0.330 0.492

50 0.424 0.547 0.822 0.961 0.999 0.332 0.397 0.612 0.838 0.973 0.267 0.287 0.400 0.567 0.803

100 0.601 0.770 0.969 1.000 1.000 0.455 0.570 0.840 0.978 1.000 0.320 0.393 0.579 0.800 0.957

200 0.771 0.929 0.999 1.000 1.000 0.602 0.789 0.977 1.000 1.000 0.433 0.562 0.811 0.968 0.999

M∆X̄Z
i

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.215 0.209 0.307 0.406 0.566 0.202 0.179 0.232 0.292 0.411 0.207 0.174 0.207 0.220 0.281

20 0.276 0.297 0.482 0.658 0.875 0.232 0.232 0.309 0.447 0.672 0.219 0.199 0.223 0.284 0.412

50 0.409 0.513 0.792 0.946 0.998 0.308 0.363 0.577 0.791 0.955 0.248 0.263 0.343 0.502 0.724

100 0.576 0.733 0.961 0.999 1.000 0.414 0.531 0.801 0.959 0.999 0.291 0.347 0.502 0.734 0.915

200 0.740 0.922 0.999 1.000 1.000 0.559 0.753 0.962 1.000 1.000 0.380 0.503 0.747 0.931 0.995

M∆F̂ Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.194 0.167 0.236 0.330 0.481 0.176 0.147 0.172 0.212 0.283 0.180 0.145 0.134 0.137 0.144

20 0.238 0.250 0.367 0.564 0.806 0.198 0.177 0.230 0.325 0.501 0.177 0.142 0.145 0.170 0.222

50 0.357 0.432 0.697 0.901 0.993 0.264 0.278 0.420 0.623 0.872 0.198 0.179 0.188 0.263 0.394

100 0.502 0.640 0.909 0.992 1.000 0.330 0.399 0.620 0.863 0.986 0.200 0.207 0.273 0.416 0.646

200 0.671 0.862 0.994 1.000 1.000 0.461 0.620 0.868 0.988 1.000 0.261 0.283 0.429 0.641 0.876

M∆F Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.187 0.185 0.247 0.344 0.491 0.171 0.148 0.182 0.220 0.297 0.173 0.138 0.137 0.144 0.150

20 0.220 0.241 0.373 0.565 0.810 0.172 0.172 0.230 0.328 0.508 0.161 0.145 0.139 0.173 0.223

50 0.346 0.414 0.690 0.898 0.993 0.240 0.273 0.407 0.618 0.871 0.177 0.172 0.180 0.266 0.396

100 0.479 0.622 0.905 0.991 1.000 0.293 0.381 0.610 0.859 0.983 0.170 0.187 0.256 0.407 0.649

200 0.647 0.853 0.993 1.000 1.000 0.430 0.592 0.859 0.988 1.000 0.234 0.246 0.412 0.637 0.875

Notes: See notes to 5 and 1.
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Table 8: Estimated Power of the t-test for the Regressor in ARDL(1,0) models. The
Factor loadings in the X equation, which contains two factors, are correlated with those
in the Y equation, where the number of factors is four. The mean value of the factor
loadings is zero.

Instruments H0 : β1 = 0.3 (DGP: β1 = 0.4) H0 : β1 = 0.15 (DGP: β1 = 0.25) H0 : β1 = 0 (DGP: β1 = 0.1)

∆yi,−2,Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.170 0.168 0.258 0.381 0.602 0.163 0.167 0.259 0.386 0.606 0.133 0.145 0.231 0.359 0.577

20 0.192 0.201 0.356 0.559 0.811 0.193 0.202 0.356 0.567 0.818 0.175 0.191 0.339 0.539 0.795

50 0.230 0.268 0.492 0.772 0.953 0.233 0.272 0.500 0.780 0.958 0.223 0.263 0.478 0.757 0.946

100 0.238 0.323 0.578 0.835 0.985 0.239 0.327 0.584 0.842 0.985 0.240 0.316 0.562 0.819 0.980

200 0.261 0.340 0.625 0.878 0.995 0.264 0.344 0.634 0.881 0.995 0.262 0.334 0.613 0.867 0.994

Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.155 0.154 0.237 0.343 0.560 0.147 0.150 0.227 0.339 0.551 0.122 0.126 0.188 0.303 0.515

20 0.183 0.184 0.326 0.509 0.763 0.180 0.175 0.315 0.496 0.759 0.160 0.158 0.281 0.461 0.722

50 0.214 0.250 0.444 0.708 0.915 0.210 0.241 0.436 0.700 0.910 0.201 0.222 0.413 0.666 0.893

100 0.227 0.290 0.522 0.774 0.964 0.223 0.287 0.512 0.772 0.960 0.214 0.272 0.490 0.753 0.951

200 0.243 0.309 0.560 0.827 0.987 0.242 0.307 0.556 0.817 0.987 0.235 0.298 0.538 0.797 0.980

M∆X̄Z
i

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.107 0.090 0.118 0.147 0.233 0.101 0.084 0.111 0.141 0.228 0.082 0.068 0.093 0.127 0.205

20 0.133 0.109 0.151 0.234 0.368 0.129 0.100 0.149 0.229 0.360 0.109 0.089 0.135 0.209 0.334

50 0.149 0.147 0.230 0.363 0.552 0.145 0.145 0.223 0.358 0.543 0.141 0.130 0.207 0.331 0.512

100 0.156 0.156 0.270 0.437 0.645 0.154 0.155 0.265 0.428 0.636 0.146 0.149 0.256 0.408 0.617

200 0.165 0.177 0.290 0.472 0.728 0.163 0.173 0.283 0.467 0.720 0.158 0.167 0.270 0.449 0.700

M∆F̂ Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.103 0.091 0.110 0.175 0.305 0.094 0.085 0.107 0.173 0.305 0.077 0.068 0.088 0.167 0.293

20 0.120 0.121 0.209 0.357 0.601 0.113 0.115 0.204 0.356 0.605 0.102 0.103 0.195 0.354 0.601

50 0.181 0.259 0.458 0.735 0.946 0.178 0.255 0.461 0.738 0.948 0.172 0.252 0.458 0.740 0.951

100 0.281 0.423 0.763 0.948 1.000 0.279 0.418 0.765 0.949 1.000 0.272 0.409 0.764 0.949 1.000

200 0.474 0.680 0.958 0.999 1.000 0.478 0.682 0.960 0.999 1.000 0.478 0.678 0.961 1.000 1.000

M∆F Zi

T,N 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

10 0.110 0.084 0.119 0.196 0.315 0.100 0.076 0.114 0.192 0.313 0.087 0.068 0.108 0.180 0.309

20 0.128 0.133 0.221 0.358 0.610 0.124 0.125 0.215 0.360 0.610 0.116 0.113 0.204 0.353 0.608

50 0.201 0.281 0.467 0.739 0.951 0.196 0.280 0.466 0.739 0.951 0.193 0.265 0.466 0.742 0.955

100 0.315 0.452 0.777 0.952 1.000 0.314 0.449 0.778 0.952 1.000 0.298 0.437 0.779 0.950 1.000

200 0.492 0.712 0.962 1.000 1.000 0.487 0.708 0.961 1.000 1.000 0.491 0.704 0.961 1.000 1.000

Notes: See notes to Tables 5 and 1.
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Table 9: Estimated Size and Power of the Overidentifying Restrictions Test in ARDL(1,0)
models, for λ = 0.5, β1 = 0.25.

Instruments Size Power: εit and x1ix are correlated

M∆F̂ Zi

T,N 10 20 50 100 200 10 20 50 100 200

10 0.038 0.041 0.044 0.048 0.049 0.051 0.094 0.195 0.370 0.672

20 0.032 0.051 0.044 0.041 0.053 0.084 0.184 0.462 0.753 0.943

50 0.032 0.043 0.045 0.046 0.048 0.179 0.435 0.847 0.988 1.000

100 0.035 0.045 0.050 0.042 0.038 0.321 0.694 0.977 0.999 1.000

200 0.035 0.040 0.047 0.048 0.049 0.497 0.872 0.999 1.000 1.000

M∆F Zi

T,N 10 20 50 100 200 10 20 50 100 200

10 0.039 0.047 0.048 0.048 0.050 0.053 0.101 0.208 0.386 0.668

20 0.030 0.051 0.044 0.045 0.050 0.085 0.191 0.463 0.748 0.945

50 0.033 0.044 0.044 0.046 0.047 0.190 0.435 0.856 0.986 1.000

100 0.035 0.048 0.047 0.042 0.038 0.337 0.701 0.979 1.000 1.000

200 0.035 0.038 0.045 0.049 0.049 0.511 0.874 1.000 1.000 1.000

Notes: The DGP follows yit = αi + λyit−1 +
∑k

ℓ=1
βℓxℓit +

∑m
s=1

γsifst + εit, εit = σit(ηit − 1)/21/2, ηit ∼ iidχ2
1
, with

k = 2 and m = 4, where βℓ = (1 − λ)/k, xℓit = µℓi +
∑mx

s=1
γℓsifst + vℓit with mx = 2, vℓit = ρℓvℓit−1 + (1 − ρ2

ℓ )1/2̟ℓit,

̟ℓit = πℓεit + (1 − π2

ℓ )1/2̺ℓit with ̺ℓit ∼ iidN(0, 1), ℓ = 1, 2, ..., k. To estimate the size of the test the identical DGP to
that in Table 1 is used, namely, πℓ = 0 for ℓ = 1, 2(= k). To estimate the power of the test, π1 = 0.4 and π2 = 0 so that
the idiosyncratic error of x1it is correlated with εit. The rest of the specifications of the DGP is identical to those in Table
1. The overidentifying restrictions test statistic is defined by (24), and the 5% critical value from χ2

1
distribution is used

for the test. All the experiments are based on 2000 replications.
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