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Abstract: The Heston model stands out from the class of stochastic volatility (SV) 

models mainly for two reasons. Firstly, the process for the volatility is non-

negative and mean-reverting, which is what we observe in the markets. 

Secondly, there exists a fast and easily implemented semi-analytical solution for 

European options. In this article we adapt the original work of Heston (1993) to a 

foreign exchange (FX) setting. We discuss the computational aspects of using the 

semi-analytical formulas, performing Monte Carlo simulations, checking the 

Feller condition, and option pricing with FFT. In an empirical study we show that 

the smile of vanilla options can be reproduced by suitably calibrating three out of 

five model parameters.  
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1 FX Smile in the Heston Model

Agnieszka Janek, Tino Kluge, Rafa l Weron, and Uwe Wystup

1.1 Introduction

The universal benchmark for option pricing is flawed. The Black-Scholes for-
mula is based on the assumption of a geometric Brownian motion (GBM) dy-
namics with constant volatility. Yet, the model-implied volatilities for different
strikes and maturities of options are not constant and tend to be smile shaped
(or in some markets skewed). Over the last three decades researchers have tried
to find extensions of the model in order to explain this empirical fact.

As suggested already by Merton (1973), the volatility can be made a deter-
ministic function of time. While this approach explains the different implied
volatility levels for different times of maturity, it still does not explain the smile
shape for different strikes. Dupire (1994), Derman and Kani (1994), and Ru-
binstein (1994) came up with the idea of allowing not only time, but also state
dependence of the volatility coefficient, for a concise review see e.g. Fengler
(2005). This local (deterministic) volatility approach yields a complete market
model. It lets the local volatility surface to be fitted, but it cannot explain the
persistent smile shape which does not vanish as time passes. Moreover, exotics
cannot be satisfactorily priced in this model.

The next step beyond the local volatility approach was to allow the volatility
to be driven by a stochastic process. The pioneering work of Hull and White
(1987), Stein and Stein (1991), and Heston (1993) led to the development of
stochastic volatility (SV) models, for reviews see Fouque, Papanicolaou, and
Sircar (2000) and Gatheral (2006). These are multi-factor models with one
of the factors being responsible for the dynamics of the volatility coefficient.
Different driving mechanisms for the volatility process have been proposed,
including GBM and mean-reverting Ornstein-Uhlenbeck type processes.
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The Heston model stands out from this class mainly for two reasons. Firstly,
the process for the volatility is non-negative and mean-reverting, which is what
we observe in the markets. Secondly, there exists a fast and easily implemented
semi-analytical solution for European options. This computational efficiency
becomes critical when calibrating the model to market prices and is the greatest
advantage of the model over other (potentially more realistic) SV models. Its
popularity also stems from the fact that it was one of the first models able to
explain the smile and simultaneously allow a front-office implementation and
a valuation of many exotics with values closer to the market than the Black-
Scholes model. Finally, given that all SV models generate roughly the same
shape of implied volatility surface and have roughly the same implications for
the valuation of exotic derivatives (Gatheral, 2006), focusing on the Heston
model is not a limitation, rather a good starting point.

This chapter is structured as follows. In Section 1.2 we define the model and
discuss its properties, including marginal distributions and tail behavior. Next,
in Section 1.3 we adapt the original work of Heston (1993) to a foreign exchange
(FX) setting. We do this because the model is particularly useful in explaining
the volatility smile found in FX markets; in equity markets the typical volatility
structure is a strongly asymmetric skew (also called a smirk or grimace). In
Section 1.4 we show that the smile of vanilla options can be reproduced by
suitably calibrating the model parameters. Finally, in Section 1.5 we briefly
discuss the alternatives to the Heston model.

1.2 The Model

Following Heston (1993) consider a stochastic volatility model with GBM-like
dynamics for the spot price:

dSt = St

(

µ dt+
√
vtdW

(1)
t

)

(1.1)

and a non-constant instantaneous variance vt driven by a mean-reverting square
root (or CIR) process:

dvt = κ(θ − vt) dt+ σ
√
vtdW

(2)
t . (1.2)

The stochastic increments of the two processes are correlated with parameter

ρ, i.e. dW
(1)
t dW

(2)
t = ρdt. The remaining parameters – µ, θ, κ, and σ – can

be interpreted as the drift, the long-run variance, the rate of mean reversion
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Figure 1.1: Sample trajectories (left panel) and volatilities (right panel) of the
GBM and the Heston spot price process (1.1) obtained with the
same set of random numbers.
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to the long-run variance, and the volatility of variance (often called the vol of

vol), respectively. Sample paths and volatilities of the GBM and the Heston
spot price process are plotted in Figure 1.1.

By setting xt = log(St/S0)−µt, we can express the Heston model (1.1)-(1.2) in
terms of the centered (log-)return xt and vt. The process is then characterized
by the transition probability Pt(x, v | v0) to have (log-)return x and variance v
at time t given the initial return x = 0 and variance v0 at time t = 0. The time
evolution of Pt(x, v | v0) is governed by the following Fokker-Planck (or forward
Kolmogorov) equation:

∂

∂t
P = κ

∂

∂v
{(v − θ)P} +

1

2

∂

∂x
(vP ) +

+ ρσ
∂2

∂x ∂v
(vP ) +

1

2

∂2

∂x2
(vP ) +

σ2

2

∂2

∂v2
(vP ). (1.3)

Solving this equation yields the following semi-analytical formula for the density
of centered returns x, given a time lag t of the price changes (Dragulescu and
Yakovenko, 2002):

Pt(x) =
1

2π

∫ +∞

−∞

eiξx+Ft(ξ)dξ, (1.4)
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with

Ft(ξ) = κθ
σ2 γt− 2κθ

σ2 log
(

cosh Ωt
2 + Ω2

−γ2+2κγ
2κΩ sinh Ωt

2

)

,

γ = κ+ iρσξ, and Ω =
√

γ2 + σ2(ξ2 − iξ).

Somewhat surprisingly, the introduction of SV does not change the properties of
the spot price process in a way that could be noticed just by a visual inspection
of its realizations, see Figure 1.1 where sample paths of a GBM and the spot
process (1.1) in the Heston model are plotted. To make the comparison more
objective both trajectories were obtained with the same set of random numbers.

In both cases the initial spot rate S0 = 4 and the domestic and foreign interest
rates are rd = 5% and rf = 3%, respectively, yielding a drift of µ = rd − rf =

2%. The volatility in the GBM is constant
√
vt =

√
4% = 20%, while in the

Heston model it is driven by the mean-reverting process (1.2) with the initial
variance v0 = 4%, the long-run variance θ = 4%, the speed of mean reversion
κ = 2, and the vol of vol σ = 30%. The correlation is set to ρ = −0.05.

A closer inspection of the Heston model does, however, reveal some important
differences with respect to GBM. For instance, the probability density functions
(pdfs) of (log-)returns have heavier tails – exponential compared to Gaussian,
see Figure 1.2. In this respect they are similar to hyperbolic distributions
(Weron, 2004, see also Chapter ??), i.e. in the log-linear scale they resemble
hyperbolas, rather than parabolas of the Gaussian pdfs.

1.3 Option Pricing

Consider the value function of a general contingent claim U(t, v, S) paying
g(S) = U(T, v, S) at time T . We want to replicate it with a self-financing
portfolio. Due to the fact that in the Heston model we have two sources of un-
certainty (the Wiener processes W (1) and W (2)) the portfolio must include the
possibility to trade in the money market, the underlying and another derivative
security with value function V (t, v, S).

We start with an initial wealth X0 which evolves according to:

dX = ∆ dS + Γ dV + rd(X − ΓV ) dt− (rd − rf )∆S dt, (1.5)

where ∆ is the number of units of the underlying held at time t and Γ is the
number of derivative securities V held at time t.
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Figure 1.2: The marginal pdfs in the Black-Scholes (GBM) and Heston models
for the same set of parameters as in Figure 1.1 (left panel). The
tails of the Heston marginal pdfs are exponential, which is clearly
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The goal is to find ∆ and Γ such that Xt = U(t, vt, St) for all t ∈ [0, T ].
The standard approach to achieve this is to compare the differentials of U
and X obtained via Itô’s formula. After some algebra we arrive at the partial
differential equation (PDE) which U must satisfy (for details on the derivation
in the foreign exchange setting see Hakala and Wystup, 2002):

1

2
vS2 ∂

2U

∂S2
+ ρσvS

∂2U

∂S∂v
+

1

2
σ2v

∂2U

∂v2
+ (rd − rf )S

∂U

∂S
+

+
{

κ(θ − v) − λ(t, v, S)
}∂U

∂v
− rdU +

∂U

∂t
= 0. (1.6)

The term λ(t, v, S) is called the market price of volatility risk. Heston (1993)
assumed it to be linear in the instantaneous variance vt, i.e. λ(t, v, S) = λvt,
in order to retain the form of the equation under the transformation from the
statistical (or risky) measure to the risk-neutral measure.
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1.3.1 European Vanilla FX Option Prices and Greeks

We can solve (1.6) by specifying appropriate boundary conditions. For a Eu-
ropean vanilla FX option these are:

U(T, v, S) = max{φ(S −K), 0}, (1.7)

U(t, v, 0) =
1 − φ

2
Ke−rdτ , (1.8)

∂U

∂S
(t, v,∞) =

1 + φ

2
e−rfτ , (1.9)

rdU(t, 0, S) = (rd − rf )S
∂U

∂S
(t, 0, S) +

+ κθ
∂U

∂v
(t, 0, S) +

∂U

∂t
(t, 0, S), (1.10)

U(t,∞, S) =

{

Se−rfτ , for φ = +1,

Ke−rdτ , for φ = −1,
(1.11)

where φ = ±1 for call and put options, respectively. The strike K is in units
of the domestic currency and τ = T − t is the time to maturity (i.e. T is the
expiration time in years and t is the current time).

Heston (1993) solved the PDE analytically using the method of characteristic
functions. For European vanilla FX options the price is given by:

h(τ) = HestonVanilla(κ, θ, σ, ρ, λ, rd, rf , vt, St,K, τ, φ)

= φ
{

e−rf τStP+(φ) −Ke−rdτP−(φ)
}

, (1.12)

where u1,2 = ± 1
2 , b1 = κ+ λ− σρ, b2 = κ+ λ, and

dj =
√

(ρσϕi − bj)2 − σ2(2ujϕi− ϕ2), (1.13)

gj =
bj − ρσϕi + dj

bj − ρσϕi − dj

, (1.14)

Cj(τ, ϕ) = (rd − rf )ϕiτ + (1.15)

+
κθ

σ2

{

(bj − ρσϕi + dj)τ − 2 log

(

1 − gje
djτ

1 − gj

)}

,

Dj(τ, ϕ) =
bj − ρσϕi + dj

σ2

(

1 − edjτ

1 − gjedjτ

)

, (1.16)
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fj(x, vt, τ, ϕ) = exp{Cj(τ, ϕ) +Dj(τ, ϕ)vt + iϕx}, (1.17)

Pj(x, vt, τ, y) =
1

2
+

1

π

∫

∞

0

ℜ
{

e−iϕyfj(x, vt, τ, ϕ)

iϕ

}

dϕ. (1.18)

Note that the functions Pj are the cumulative distribution functions (in the
variable y = logK) of the log-spot price after time τ = T − t starting at
x = logSt for some drift µ. Finally:

P+(φ) =
1 − φ

2
+ φP1(x, vt, τ, y), (1.19)

P−(φ) =
1 − φ

2
+ φP2(x, vt, τ, y). (1.20)

The Greeks can be evaluated by taking the appropriate derivatives or by ex-
ploiting homogeneity properties of financial markets (Reiss and Wystup, 2001).
In the Heston model the spot delta and the so-called dual delta are given by:

∆ =
∂h(t)

∂St

= φe−rf τP+(φ) and
∂h(t)

∂K
= −φe−rdτP−(φ), (1.21)

respectively. Gamma, which measures the sensitivity of delta to the underlying
has the form:

Γ =
∂∆

∂St

=
e−rfτ

St

p1(logSt, vt, τ, logK), (1.22)

where

pj(x, v, τ, y) =
1

π

∫

∞

0

ℜ
{

e−iϕyfj(x, v, τ, ϕ)
}

dϕ, j = 1, 2, (1.23)

are the densities corresponding to the cumulative distribution functions Pj

(1.18).

The time sensitivity parameter theta = ∂h(t)/∂t can be easily computed from
(1.6), while the formulas for rho are the following:

∂h(t)

∂rd
= φKe−rdτ τP−(φ),

∂h(t)

∂rf
= −φSte

−rf ττP+(φ). (1.24)

Note, that in the foreign exchange setting there are two rho’s – one is a deriva-
tive of the option price with respect to the domestic interest rate and the other
is a derivative with respect to the foreign interest rate.
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The notions of vega and volga usually refer to the first and second derivative
with respect to volatility. In the Heston model we use them for the first and
second derivative with respect to the initial variance:

∂h(t)

∂vt

= e−rf τSt

∂

∂vt

P1(logSt, vt, τ, logK) −

−Ke−rdτ ∂

∂vt

P2(log St, vt, τ, logK), (1.25)

∂2h(t)

∂v2
t

= e−rf τSt

∂2

∂v2
t

P1(logSt, vt, τ, logK) −

−Ke−rdτ ∂2

∂v2
t

P2(log St, vt, τ, logK), (1.26)

where

∂

∂vt

Pj(x, vt, τ, y) =
1

π

∫

∞

0

ℜ
[

D(τ, ϕ)e−iϕyfj(x, vt, τ, ϕ)

iϕ

]

dϕ, (1.27)

∂2

∂v2
t

Pj(x, vt, τ, y) =
1

π

∫

∞

0

ℜ
[

D2(τ, ϕ)e−iϕyfj(x, vt, τ, ϕ)

iϕ

]

dϕ. (1.28)

1.3.2 Computational Issues

Heston’s solution is semi-analytical. Formulas (1.19-1.20) require to integrate
functions fj , which are typically of oscillatory nature. Hakala and Wystup
(2002) propose to perform the integration in (1.18) with the Gauss-Laguerre
quadrature using 100 for ∞ and 100 abscissas. Jäckel and Kahl (2005) sug-
gest using the Gauss-Lobatto quadrature (e.g. Matlab’s quadl.m function) and
transform the original integral boundaries [0,+∞) to the finite interval [0, 1].

As a number of authors have recently reported (Albrecher et al., 2006; Gatheral,
2006; Jäckel and Kahl, 2005), the real problem starts when the functions fj

are evaluated as part of the quadrature scheme. In particular, the calculation
of the complex logarithm in eqn. (1.15) is prone to numerical instabilities. It
turns out that taking the principal value of the logarithm causes Cj to jump
discontinuously each time the imaginary part of the argument of the logarithm
crosses the negative real axis. One solution is to keep track of the winding
number in the integration (1.18), but is difficult to implement because standard
numerical integration routines cannot be used. Jäckel and Kahl (2005) provide
a practical solution to this problem.
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A different approach was taken by Albrecher et al. (2006), see also Gatheral
(2006). They proposed to make a simple transformation when computing the
characteristic function and proved that the numerical stability of the resulting
formulas is guaranteed under the full dimensional and unrestricted parameter
space. Namely, their idea is to switch from gj in (1.14) to

g̃j =
1

gj

=
bj − ρσϕi− dj

bj − ρσϕi+ dj

, (1.29)

which leads to new formulas for Cj and Dj :

Cj(τ, ϕ) = (rd − rf )ϕiτ + (1.30)

+
κθ

σ2

{

(bj − ρσϕi − dj)τ − 2 log

(

1 − g̃je
−djτ

1 − g̃j

)}

,

Dj(τ, ϕ) =
bj − ρσϕi− dj

σ2

(

1 − e−djτ

1 − g̃je−djτ

)

, (1.31)

in (1.17). Note, that the only differences between eqns. (1.14)-(1.16) and (1.29)-
(1.31), respectively, are the flipped minus and plus signs in front of the dj ’s.

The mispricings resulting from using (1.14)-(1.16) are not that obvious to no-
tice. In fact, if we price and backtest on short or middle term maturities only,
we might not detect the problem at all. However, the deviations can become
extreme for longer maturities (typically above 3-5 years; the exact threshold is
parameter dependent, see Albrecher et al., 2006).

Apart from the above semi-analytical solution for vanilla options, alternative
approaches can be utilized. These include the general Fast Fourier Transform
(FFT) approach of Carr and Madan (1999), finite differences, finite element
methods and Monte Carlo simulations. The FFT-based pricing technique is dis-
cussed in Section 1.3.4. As for the other methods, finite differences must be used
with care since high precision is required to invert scarce matrices. The Crank-
Nicholson, ADI (Alternate Direction Implicit), and Hopscotch schemes can be
used, however, ADI is not suitable to handle nonzero correlation. Boundary
conditions must be set appropriately, for details see Kluge (2002). On the
other hand, finite element methods can be applied to price both the vanillas
and exotics, as explained for example in Apel, Winkler, and Wystup (2002).

Finally, the Monte Carlo approach requires attention as the simple Euler dis-
cretization of the CIR process (1.2) may give rise to a negative variance. To
deal with this problem, practitioners generally either adopt (i) the absorbing
vt = max(vt, 0), or (ii) the reflecting principle vt = max(vt,−vt). More elegant,
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but computationally more demanding solutions include sampling from the exact
transition law (Glasserman, 2004) or application of the quadratic-exponential
(QE) scheme (Andersen, 2008). For a recent survey see the latter reference,
where several new algorithms for time-discretization and Monte Carlo simu-
lation of Heston-type SV models are introduced and compared in a thorough
simulation study. Both the absorbing/reflecting patches and the QE scheme
are implemented in the simHeston.m function used to plot Figure 1.1.

1.3.3 Behavior of the Variance Process and the Feller

Condition

The CIR process for the variance, as defined by (1.2), always remains non-
negative. This is an important property which, for instance, is not satisfied
by the Ornstein-Uhlenbeck process. However, ideally one would like a variance
process which is strictly positive, because otherwise it degenerates to a deter-
ministic function for the time it stays at zero. As it turns out, the CIR process
remains strictly positive under the condition that

α :=
4κθ

σ2
≥ 2, (1.32)

which is often referred to as the Feller condition. We call α the dimensionality

of the corresponding Bessel process (see below). If the condition is not satisfied,
i.e. for 0 < α < 2, the CIR process will visit 0 recurrently but will not stay at
zero, i.e. the 0-boundary is strongly reflecting.

Unfortunately, when calibrating the Heston model to market option prices it is
not uncommon for the parameters to violate the Feller condition (1.32). This
is not a complete disaster, as the variance process can only hit zero for an
infinitesimally small amount of time, but it is still worrying as very low levels
of volatility (e.g. say below 1%) are repeatedly reached for short amounts of
time and that is not something observed in the market.

Besides being important from a modeling point of view, the Feller condition also
plays a role in computational accuracy. For Monte Carlo simulations special
care has to be taken so that the simulated paths do not go below zero if (1.32)
is not satisfied. On the PDE side, the Feller condition determines whether
the zero-variance boundary is in- or out-flowing, that is to say whether the
convection vector at the boundary points in- or outwards. To see this, we need
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to write the log-spot transformed Heston PDE in convection-diffusion form

∂

∂t
U = div(A gradU) − div(Ub) + f, (1.33)

and obtain

b(x, v) = v

(

1
2

κ+ λ

)

+

(

1
2ρσ + rf − rd

1
2σ

2 − κθ

)

, (1.34)

which is out-flowing at the v = 0 boundary if

1

2
σ2 − κθ < 0, (1.35)

in which case the Feller condition (1.32) is satisfied.

Having introduced and discussed the importance of this condition, the ques-
tion remains how it is derived. We only give an overview here and refer the
interested reader to Chapter 6.3 in Jeanblanc, Yor, and Chesney (2009) for a
more thorough treatment.

The main idea is to relate the CIR process to the family of squared Bessel
processes which have well known properties. We call Xt an α-dimensional
squared Bessel process and denote it by BES2(α) if it follows the dynamics of

dXt = α dt+ 2

√

X+
t dWt, (1.36)

with X+
t := max{0, Xt}. This definition makes sense for any real valued α.

However, in the case of integer valued α we have an interesting interpretation:
a BES2(α) process Xt, with X0 = 0, follows the same dynamics as the squared
distance to the origin of an α-dimensional Brownian motion, i.e.

Xt =

α
∑

i=1

B
(i)
t , (1.37)

with B(i) being independent Brownian motions. From this we can already
conclude that for α = 2, Xt will never reach zero and, using the stochastic
comparison theorem (Rogers and Williams, 2000), this property remains true
for any α ≥ 2. Similarly for 0 < α ≤ 1 the value zero will be repeatedly hit
(for α = 1 this happens as often as a one-dimensional Brownian motion crosses
zero).
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The stochastic comparison theorem also immediately tells us that BES2(α)
processes are non-negative for non-negative α: for α = 0 we get the trivial
solution Xt = 0 and increasing the drift term to α > 0 cannot make the paths
any smaller. Different methods are needed, however, to examine the behavior
for 1 < α < 2 (which turns out to be similar to the case of 0 < α ≤ 1). For a
proof we refer to Chapter V.48 in Rogers and Williams (2000), from which we
also state the following additional properties. IfXt is an α-dimensional squared
Bessel process BES2(α) and X0 ≥ 0 then it is always non-negative and:

1. for 0 < α < 2 the process hits zero and this is recurrent, but the time
spent at zero is zero,

2. for α = 2 the process is strictly positive but gets arbitrarily close to 0
and ∞,

3. for α > 2 the process is strictly positive and tends to infinity as time
approaches infinity.

To translate these properties to the class of CIR processes, we only need to
apply the following space-time transformation to the squared Bessel process.
Define dYt := e−κtXβ(eκt

−1). Then Yt follows the dynamics of

dYt = κ(αβ − Yt) dt+ 2
√

κβYt dWt, (1.38)

which is the same as the dynamics of the CIR process (1.2) if we set β = σ2

4κ

and α = θ
β

= 4κθ
σ2 .

1.3.4 Option Pricing with FFT

In this section, we briefly describe the numerical option pricing approach of
Carr and Madan (1999), which utilizes the characteristic function (cf) of the
underlying instrument’s price process. The basic idea of the method is to
compute the price by Fourier inversion given an analytic expression for the cf
of the option price.

The rationale for using this approach is twofold. Firstly, the algorithm offers a
speed advantage, including the possibility to calculate prices for a whole range
of strikes in a single run. Secondly, the cf of the log-price is known and has a
simple form for many models, while the pdf is often either unknown in closed-
form or complicated from the numerical point of view. For instance, for the
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Heston model the cf takes the form (Heston, 1993; Jäckel and Kahl, 2005):

E{exp(iϕ logST )} = f2(x, vt, τ, ϕ), (1.39)

where f2 is given by (1.17).

Let us now derive the formula for the price of a European vanilla call option.
Derivation of the put option price follows the same lines, for details see Lee
(2004) and Schmelzle (2010). Alternatively we can use the call-put parity for
European vanilla FX options (see e.g. Wystup, 2006). Let hC(τ ; k) denote the
price of the call option maturing in τ = T −t years with a strike of K = exp(k):

hC(τ ; k) =

∫

∞

k

e−rT (es − ek)qT (s)ds, (1.40)

where qT is the risk-neutral density of sT = logST . The function hC(τ ; k)
is not square-integrable (see e.g. Rudin, 1991) because it converges to S0 for
k → −∞. Hence, consider a modified function HC(τ ; k) = eαkhC(τ ; k), which
is square-integrable for a suitable constant α > 0. A sufficient condition is
given by:

E{(ST )α+1} <∞, (1.41)

which is equivalent to ψT (0), i.e. the Fourier transform of HC(τ ; k), see (1.42)
below, being finite. In an empirical study Schoutens, Simons, and Tistaert
(2004) found that α = 0.75 leads to stable algorithms, i.e. the prices are well
replicated for many model parameters. This value also fulfills condition (1.41)
for the Heston model (Borak, Detlefsen, and Härdle, 2005). Note, that for put
options the condition is different: it is sufficient to choose α > 0 such that
E{(ST )−α} <∞ (Lee, 2004).

Now, compute the Fourier transform of HC(τ ; k):

ψT (v) =

∫

∞

−∞

eivkHC(τ ; k)dk

=

∫

∞

−∞

eivk

∫

∞

k

eαke−rT (es − ek)qT (s)dsdk

=

∫

∞

−∞

e−rT qT (s)

∫ s

−∞

{

eαk+s − e(α+1)k
}

eivkdkds

=

∫

∞

−∞

e−rT qT (s)

{

e(α+1+iv)s

α+ iv
− e(α+1+iv)s

α+ 1 + iv

}

ds

=
e−rTf2{v − (α + 1)i}

α2 + α− v2 + i(2α+ 1)v
, (1.42)
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Figure 1.3: European call (top left) and put (bottom left) FX option prices ob-
tained using the FFT method and the ‘Analytical’ formula (1.12)
for a sample set of parameters. Right panels : The percentage dif-
ferences between the prices: (FFT−Analytical)/Analytical×100%.
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where f2 is the cf of qT , see (1.39). We get the option price in terms of ψT

using Fourier inversion:

hC(τ ; k) =
exp(−αk)

π

∫

∞

0

e−ivkψ(v)dv. (1.43)

This integral can be numerically approximated as (Carr and Madan, 1999):

hC(τ ; ku) ≈ e−αku

π

N
∑

j=1

e−
2πi
N

(j−1)(u−1)eibvjψ(vj)
η

3
{3 + (−1)j − δj−1}, (1.44)
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where ku = 1
η
{−π + 2π

N
(u − 1)}, u = 1, . . . , N , η > 0 is the distance between

the points of the integration grid, vj = η(j − 1), j = 1, . . . , N , and δ is the
Dirac function.

As can be seen in Figure 1.3 the differences between the FFT method and
the (semi-)analytical formula (1.12) are relatively small. The differences result
form the fact that the former method yields ‘exact’ values only on the grid
ku. In order to preserve the speed of the FFT-based algorithm we use linear
interpolation between the grid points. This approach, however, slightly overes-
timates the true prices since the option price is a convex function of the strike
(Borak, Detlefsen, and Härdle, 2005). It can be clearly seen that near the grid
points the prices obtained by both methods coincide, while between the grid
points the FFT-based algorithm generates higher prices than the analytical
solution, see the right panels in Figure 1.3.

1.4 Calibration

1.4.1 Qualitative Effects of Changing the Parameters

Before calibrating the model to market data we will show how changing the
input parameters affects the shape of the fitted smile curve. This analysis
will help in reducing the dimensionality of the problem. In all plots of this
subsection the solid blue curve with x’s is the smile obtained for v0 = 0.01,
σ = 0.2, κ = 1.5, θ = 0.015, and ρ = 0.05.

First, take a look at the initial variance (top left panel in Figure 1.4). Ap-
parently, changing v0 allows for adjustments in the height of the smile curve.
On the other hand, the volatility of variance (vol of vol) has a different impact
on the smile. Increasing σ increases the convexity of the fit, see the top right
panel in Figure 1.4. In the limiting case, setting σ equal to zero would produce
a deterministic process for the variance and, hence, a volatility which does not
admit any smile (a constant curve).

The effects of changing the long-run variance θ are similar to those observed
by changing the initial variance, compare the left panels in Figure 1.4. It
seems promising to choose the initial variance a priori, e.g. set

√
v0 = implied

at-the-money (ATM) volatility, and only let the long-run variance θ vary. In
particular, a different initial variance for different maturities would be incon-
sistent.
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Figure 1.4: The effects of changing the model parameters on the shape of the
smile: initial variance v0 (top left), volatility of variance σ (top
right), long-run variance θ (bottom left), and mean reversion level
κ (bottom right).
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Changing the mean reversion κ affects the ATM part more than the extreme
wings of the smile curve. The low/high deltas (∆) remain almost unchanged
while increasing the mean reversion lifts the center, see the bottom right panel
in Figure 1.4. Moreover, the influence of κ is often compensated by a stronger
vol of vol σ. This suggests fixing mean reversion (at some level, say κ = 1.5) and
only calibrating the remaining three parameters. If the obtained parameters
do not satisfy the Feller condition (1.32), it might be worthwhile to fix κ at a
different level, say κ̃ = 3, recalibrate the remaining parameters and check if the
new estimates fulfill the condition and lead to a more realistic variance process.
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Figure 1.5: The effects of changing the correlation on the shape of the smile.
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Finally, let us look at the influence of correlation. The uncorrelated case pro-
duces a fit that looks like a symmetric smile curve centered at-the-money, see
Figure 1.5. However, it is not exactly symmetric. Changing ρ changes the
degree of symmetry. In particular, positive correlation makes calls more ex-
pensive, negative correlation makes puts more expensive. Note, that the model
yields a volatility skew, a typically observed volatility structure in equity mar-
kets, only when the correlation is set to a very high or low value

1.4.2 The Calibration Scheme

Calibration of SV models can be done in two conceptually different ways. One
is to look at the time series of historical data. Estimation methods such as
Generalized, Simulated, and Efficient Methods of Moments (respectively GMM,
SMM, and EMM), as well as Bayesian MCMC have been extensively applied.
See Broto and Ruiz (2004) for a review. In the Heston model we could also try
to fit empirical distributions of returns to the marginal distributions specified
in (1.4) via a minimization scheme. Unfortunately, all historical approaches
have one common flaw: they do not allow for the estimation of the market
price of volatility risk λ(t, v, S). Observing only the underlying spot price and
estimating SV models with this information will not yield correct prices for the
derivatives.



18 1 FX Smile in the Heston Model

This leads us to the second estimation approach: instead of using the spot data
we calibrate the model to the volatility smile (i.e. prices of vanilla options).
In this case we do not need to worry about estimating the market price of
volatility risk as it is already embedded in the market smile. This means that
we can set λ = 0 by default and just determine the remaining parameters.

As a preliminary step, we have to retrieve the strikes since the smile in FX
markets is specified as a function of delta. Comparing the Black-Scholes type
formulas (in the FX market setting we have to use the Garman and Kohlhagen
(1983) specification) for delta and the option premium yields the relation for
the strikes Ki. From a computational point of view this stage requires only an
inversion of the Gaussian distribution function. Next, based on the findings of
Section 1.4.1, we fix two parameters (initial variance v0 and mean reversion κ)
and fit the remaining three: volatility of variance σ, long-run variance θ, and
correlation ρ for a fixed time to maturity and a given vector of market Black-
Scholes implied volatilities {σ̂i}n

i=1 for a given set of delta pillars {∆i}n
i=1.

After fitting the parameters we compute the option prices in the Heston model
using (1.12) and retrieve the corresponding Black-Scholes model implied volatil-
ities {σi}n

i=1 via a standard bisection method (function fzero.m in Matlab uses
a combination of bisection, secant, and inverse quadratic interpolation meth-
ods). The next step is to define an objective function, which we choose to be
the Sum of Squared Errors (SSE):

SSE(κ, θ, σ, ρ, v0) =

n
∑

i=1

{σ̂i − σi(κ, θ, σ, ρ, v0)}2. (1.45)

We compare the volatilities because they are all of similar magnitude, in con-
trast to the prices which can range a few orders of magnitude for it-the-money
(ITM) vs. out-of-the-money (OTM) options. In addition, one could introduce
weights for all the summands to favor ATM or OTM fits. Finally we minimize
over this objective function using a simplex search routine (fminsearch.m in
Matlab) to find the optimal set of parameters.

1.4.3 Sample Calibration Results

We are now ready to calibrate the Heston model to market data. First, we take
the EUR/USD volatility surface on July 1, 2004 and fit the parameters in the
Heston model according to the calibration scheme discussed earlier. The results
are shown in Figures 1.6–1.7. Note, that the fit is very good for intermediate
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Figure 1.6: The EUR/USD market smile on July 1, 2004 and the fit obtained
with the Heston model for τ = 1 week (top left), 1 month (top
right), 3 months (bottom left), and 6 months (bottom right).
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and long maturities (three months and more). Unfortunately, the Heston model
does not perform satisfactorily for short maturities (see Section 1.5.2 for a
discussion of alternative approaches). Comparing with the fits in Weron and
Wystup (2005) for the same data, the long maturity (2Y) fit is better. This
is due to a more efficient optimization routine (Matlab 7.2 vs. XploRe 4.7)
and utilization of the transformed formulas (1.29)-(1.31) instead of the original
ones (1.14)-(1.16).
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Figure 1.7: The EUR/USD market smile on July 1, 2004 and the fit obtained
with the Heston model for τ = 1 year (top left) and 2 years (top
right). The term structure of the vol of vol and correlation visualizes
the problem with fitting the smile in the short term (bottom panels).
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Now we take a look at more recent data and calibrate the Heston model to
the EUR/USD volatility surface on July 22, 2010. The results are shown in
Figures 1.8–1.9. Again the fit is very good for intermediate and long maturities,
but unsatisfactory for maturities under three months. The term structure of
the vol of vol and correlation visualizes the problem with fitting the smile in
the short term for both datasets. The calibrated vol of vol is very low for the
1W smiles, then jumps to a higher level. The correlation behaves similarly, for
the 1W smiles it is much lower than for the remaining maturities. In 2004 it
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Figure 1.8: The EUR/USD market smile on July 22, 2010 and the fit obtained
with the Heston model for τ = 1 week (top left), 1 month (top
right), 3 months (bottom left), and 6 months (bottom right).
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additionally changes sign as the skew changes between short and longer-term
tenors. Also note, that the more skewed smiles in 2010 require much higher
(anti-)correlation (−0.4 < ρ < −0.3 for τ ≥ 1M) to obtain a decent fit than
the more symmetric smiles in 2004 (−0.01 < ρ < 0.05 for τ ≥ 1M).

As these examples show, the Heston model can be successfully applied to mod-
eling the volatility smile of vanilla FX options in the mid- to longer-term. There
are essentially three parameters to fit, namely the long-run variance (θ), which
corresponds to the ATM level of the market smile, the vol of vol (σ), which
corresponds to the convexity of the smile (in the market often quoted as but-
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Figure 1.9: The EUR/USD market smile on July 22, 2010 and the fit obtained
with the Heston model for τ = 1 year (top left) and 2 years (top
right). Again the term structure of the vol of vol and correlation vi-
sualizes the problem with fitting the smile in the short term (bottom
panels).
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terflies), and the correlation (ρ), which corresponds to the skew of the smile
(quoted as risk reversals). It is this direct link of the model parameters to the
market that makes the Heston model so attractive to practitioners.

The key application of the model is to calibrate it to vanilla options and after-
wards employ it for pricing exotics (like one-touch options, see Wystup, 2003)
in either a finite difference grid or a Monte Carlo simulation. Surprisingly, the
results often coincide with the traders’ rule of thumb pricing method (Wystup,
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2006). This might also simply mean that a lot of traders use the same model.
After all, it is a matter of belief which model reflects the reality most suitably.
Recent ideas are to take prices of one-touch options along with prices of vanilla
options from the market and use this common input to calibrate the Heston
model.

1.5 Beyond the Heston Model

1.5.1 Time-dependent Parameters

As we have seen in Section 1.4.3, performing calibrations for different time
slices of the volatility matrix produces different values of the parameters. This
suggests a term structure of some parameters in the Heston model. Therefore,
we need to generalize the CIR process (1.2) to the case of time-dependent
parameters, i.e. we consider the process:

dvt = κ(t){θ(t) − vt} dt+ σ(t)
√
vt dWt, (1.46)

for some nonnegative deterministic parameter functions σ(t), κ(t), and θ(t).
The formula for the mean turns out to be:

E(vt) = g(t) = v0e
−K(t) +

∫ t

0

κ(s)θ(s)eK(s)−K(t) ds, (1.47)

with K(t) =
∫ t

0
κ(s) ds. The result for the second moment is:

E(v2
t ) = v2

0e
−2K(t) +

∫ t

0

{2κ(s)θ(s) + σ2(s)}g(s)e2K(s)−2K(t) ds, (1.48)

and hence for the variance (after some algebra):

Var(vt) =

∫ t

0

σ2(s)g(s)e2K(s)−2K(t) ds. (1.49)

The formula for the variance allows us to compute forward volatilities of vari-
ance explicitly. Assuming known values σT1

and σT2
for times 0 < T1 < T2, we

want to determine the forward volatility of variance σT1,T2
which matches the
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corresponding variances, i.e.

∫ T2

0

σ2
T2
g(s)e2κ(s−T2) ds = (1.50)

=

∫ T1

0

σ2
T1
g(s)e2κ(s−T2) ds+

∫ T2

T1

σ2
T1,T2

g(s)e2κ(s−T2) ds.

The resulting forward volatility of variance is thus:

σ2
T1,T2

=
σ2

T2
H(T2) − σ2

T1
H(T1)

H(T2) −H(T1)
, (1.51)

where

H(t) =

∫ t

0

g(s)e2κs ds =
θ

2κ
e2κt +

1

κ
(v0 − θ)eκt +

1

κ

(

θ

2
− v0

)

. (1.52)

Assuming known values ρT1
and ρT2

for times 0 < T1 < T2, we want to deter-
mine the forward correlation coefficient ρT1,T2

to be active between times T1

and T2 such that the covariance between the Brownian motions of the variance
process and the exchange rate process agrees with the given values ρT1

and ρT2
.

This problem has a simple answer, namely:

ρT1,T2
= ρT2

, T1 ≤ t ≤ T2. (1.53)

This can be seen by writing the Heston model in the form:

dSt = St

(

µ dt+
√
vt dW

(1)
t

)

, (1.54)

dvt = κ(θ − vt) dt+ ρσ
√
vt dW

(1)
t +

√

1 − ρ2σ
√
vt dW

(2)
t , (1.55)

for a pair of independent Brownian motions W (1) and W (2). Observe that
choosing the forward correlation coefficient as stated does not conflict with the
computed forward volatility.

1.5.2 Jump-diffusion Models

While trying to calibrate short term smiles, the volatility of volatility often
seems to explode along with the speed of mean reversion. This is a strong
indication that the process ‘wants’ to jump, which of course it is not allowed
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to do. This observation, together with market crashes, has lead researchers to
consider models with jumps (Gatheral, 2006; Martinez and Senge, 2002). Such
models have been investigated already in the mid-seventies (Merton, 1976),
long before the advent of SV. Jump-diffusion (JD) models are, in general, more
challenging to handle numerically than SV models. Like the latter, they result
in an incomplete market. But, whereas SV models can be made complete by
the introduction of one (or a few) traded options, a JD model typically requires
the existence of a continuum of options for the market to be complete.

Bates (1996) and Bakshi, Cao, and Chen (1997) suggested using a combination
of jumps and stochastic volatility. This approach allows for even a better fit
to market data, but at the cost of a larger number of parameters to calibrate
from the same market volatility smile. Andersen and Andreasen (2000) let
the stock dynamics be described by a JD process with local volatility. This
method combines ease of modeling steep, short-term volatility skews (jumps)
and accurate fitting to quoted option prices (deterministic volatility function).
Other alternative approaches utilize Lévy processes (Cont and Tankov, 2003;
Eberlein, Kallsen, and Kristen, 2003) or mixing unconditional disturbances
(Tompkins and D’Ecclesia, 2006).
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