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1 Models for Heavy-tailed Asset

Returns

Szymon Borak, Adam Misiorek, and Rafa l Weron

1.1 Introduction

Many of the concepts in theoretical and empirical finance developed over the
past decades – including the classical portfolio theory, the Black-Scholes-Merton
option pricing model or the RiskMetrics variance-covariance approach to Value
at Risk (VaR) – rest upon the assumption that asset returns follow a normal
distribution. But this assumption is not justified by empirical data! Rather,
the empirical observations exhibit excess kurtosis, more colloquially known as
fat tails or heavy tails (Guillaume et al., 1997; Rachev and Mittnik, 2000). The
contrast with the Gaussian law can be striking, as in Figure 1.1 where we il-
lustrate this phenomenon using a ten-year history of the Dow Jones Industrial
Average (DJIA) index.

In the context of VaR calculations, the problem of the underestimation of risk
by the Gaussian distribution has been dealt with by the regulators in an ad

hoc way. The Basle Committee on Banking Supervision (1995) suggested that
for the purpose of determining minimum capital reserves financial institutions
use a 10-day VaR at the 99% confidence level multiplied by a safety factor
s ∈ [3, 4]. Stahl (1997) and Danielsson, Hartmann and De Vries (1998) argue
convincingly that the range of s is a result of the heavy-tailed nature of asset
returns. Namely, if we assume that the distribution is symmetric and has finite
variance σ2 then from Chebyshev’s inequality we have P(Loss ≥ ǫ) ≤ 1

2σ
2ǫ2.

Setting the right hand side to 1% yields an upper bound for VaR99% ≤ 7.07σ.
On the other hand, if we assume that returns are normally distributed we
arrive at VaR99% ≤ 2.33σ, which is roughly three times lower than the bound
obtained for a heavy-tailed, finite variance distribution.
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Figure 1.1: Left panel : Returns log(Xt+1/Xt) of the DJIA daily closing values
Xt from the period January 3, 2000 – December 31, 2009. Right

panel : Gaussian fit to the empirical cumulative distribution func-
tion (cdf) of the returns on a double logarithmic scale (only the left
tail fit is displayed).
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Being aware of the underestimation of risk by the Gaussian law we should
consider using heavy-tailed alternatives. This chapter is intended as a guide
to such models. In Section 1.2 we describe the historically oldest heavy-tailed
model – the stable laws. Next, in Section 1.3 we briefly characterize their re-
cent lighter-tailed generalizations, the so-called truncated and tempered stable
distributions. In Section 1.4 we study the class of generalized hyperbolic laws,
which – like tempered stable distributions – can be classified somewhere be-
tween infinite variance stable laws and the Gaussian distribution. Finally, in
Section 1.5 we provide numerical examples.

1.2 Stable Distributions

1.2.1 Definitions and Basic Properties

The theoretical rationale for modeling asset returns by the Gaussian distribu-
tion comes from the Central Limit Theorem (CLT), which states that the sum
of a large number of independent, identically distributed (i.i.d.) variables –
say, decisions of investors – from a finite-variance distribution will be (asymp-
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Figure 1.2: Left panel : A semi-logarithmic plot of symmetric (β = µ = 0)
stable densities for four values of α. Note, the distinct behavior of
the Gaussian (α = 2) distribution. Right panel : A plot of stable
densities for α = 1.2 and four values of β.
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totically) normally distributed. Yet, this beautiful theoretical result has been
notoriously contradicted by empirical findings. Possible reasons for the fail-
ure of the CLT in financial markets are (i) infinite-variance distributions of
the variables, (ii) non-identical distributions of the variables, (iii) dependences
between the variables or (iv) any combination of the three. If only the finite
variance assumption is released we have a straightforward solution by virtue
of the generalized CLT, which states that the limiting distribution of sums of
such variables is stable (Nolan, 2010). This, together with the fact that stable
distributions are leptokurtic and can accommodate fat tails and asymmetry,
has led to their use as an alternative model for asset returns since the 1960s.

Stable laws – also called α-stable, stable Paretian or Lévy stable – were intro-
duced by Paul Lévy in the 1920s. The name ‘stable’ reflects the fact that a
sum of two independent random variables having a stable distribution with the
same index α is again stable with index α. This invariance property holds also
for Gaussian variables. In fact, the Gaussian distribution is stable with α = 2.

For complete description the stable distribution requires four parameters. The
index of stability α ∈ (0, 2], also called the tail index, tail exponent or char-
acteristic exponent, determines the rate at which the tails of the distribution
taper off, see the left panel in Figure 1.2. The skewness parameter β ∈ [−1, 1]
defines the asymmetry. When β > 0, the distribution is skewed to the right, i.e.
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the right tail is thicker, see the right panel in Figure 1.2. When it is negative,
it is skewed to the left. When β = 0, the distribution is symmetric about the
mode (the peak) of the distribution. As α approaches 2, β loses its effect and
the distribution approaches the Gaussian distribution regardless of β. The last
two parameters, σ > 0 and µ ∈ R, are the usual scale and location parameters,
respectively.

A far-reaching feature of the stable distribution is the fact that its probability
density function (pdf) and cumulative distribution function (cdf) do not have
closed form expressions, with the exception of three special cases. The best
known of these is the Gaussian (α = 2) law whose pdf is given by:

fG(x) =
1√
2πσ

exp

{

− (x− µ)2

2σ2

}

. (1.1)

The other two are the lesser known Cauchy (α = 1, β = 0) and Lévy (α = 0.5,
β = 1) laws. Consequently, the stable distribution can be most conveniently
described by its characteristic function (cf) – the inverse Fourier transform of
the pdf. The most popular parameterization of the characteristic function φ(t)
of X ∼ Sα(σ, β, µ), i.e. a stable random variable with parameters α, σ, β and
µ, is given by (Samorodnitsky and Taqqu, 1994; Weron, 1996):

logφ(t) =











−σα|t|α{1 − iβsign(t) tan πα
2 } + iµt, α 6= 1,

−σ|t|{1 + iβsign(t) 2
π log |t|} + iµt, α = 1.

(1.2)

Note, that the traditional scale parameter σ of the Gaussian distribution is not
the same as σ in the above representation. A comparison of formulas (1.1) and
(1.2) yields the relation: σGaussian =

√
2σ.

For numerical purposes, it is often useful to use Nolan’s (1997) parameteriza-
tion:

logφ0(t) =











−σα|t|α{1 + iβsign(t) tan πα
2 [(σ|t|)1−α − 1]} + iµ0t, α 6= 1,

−σ|t|{1 + iβsign(t) 2
π log(σ|t|)} + iµ0t, α = 1,

(1.3)
which yields a cf (and hence the pdf and cdf) jointly continuous in all four
parameters. The location parameters of the two representations (S and S0)
are related by µ = µ0 − βσ tan πα

2 for α 6= 1 and µ = µ0 − βσ 2
π log σ for α = 1.
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The ‘fatness’ of the tails of a stable distribution can be derived from the fol-
lowing property: the pth moment of a stable random variable is finite if and
only if p < α. Hence, when α > 1 the mean of the distribution exists (and is
equal to µ). On the other hand, when α < 2 the variance is infinite and the
tails exhibit a power-law behavior (i.e. they are asymptotically equivalent to a
Pareto law). More precisely, using a CLT type argument it can be shown that
(Janicki and Weron, 1994a; Samorodnitsky and Taqqu, 1994):

{

limx→∞ xαP(X > x) = Cα(1 + β)σα,

limx→∞ xαP(X < −x) = Cα(1 + β)σα,
(1.4)

where Cα =
(

2
∫ ∞

0 x−α sin(x)dx
)−1

= 1
πΓ(α) sin πα

2 . The convergence to the
power-law tail varies for different α’s and is slower for larger values of the tail
index. Moreover, the tails of stable cdfs exhibit a crossover from an approximate
power decay with exponent α > 2 to the true tail with exponent α. This
phenomenon is more visible for large α’s (Weron, 2001).

1.2.2 Computation of Stable Density and Distribution

Functions

The lack of closed form formulas for most stable densities and distribution
functions has far-reaching consequences. Numerical approximation or direct
numerical integration have to be used instead of analytical formulas, leading
to a drastic increase in computational time and loss of accuracy. Despite a
few early attempts in the 1970s, efficient and general techniques have not been
developed until late 1990s.

Mittnik, Doganoglu and Chenyao (1999) exploited the pdf–cf relationship and
applied the fast Fourier transform (FFT). However, for data points falling
between the equally spaced FFT grid nodes an interpolation technique has
to be used. The authors suggested that linear interpolation suffices in most
practical applications, see also Rachev and Mittnik (2000). Taking a larger
number of grid points increases accuracy, however, at the expense of higher
computational burden. Setting the number of grid points to N = 213 and the
grid spacing to h = 0.01 allows to achieve comparable accuracy to the direct
integration method (see below), at least for typically used values of α > 1.6.

As for the computational speed, the FFT based approach is faster for large
samples, whereas the direct integration method favors small data sets since
it can be computed at any arbitrarily chosen point. Mittnik, Doganoglu and
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Chenyao (1999) report that for N = 213 the FFT based method is faster
for samples exceeding 100 observations and slower for smaller data sets. We
must stress, however, that the FFT based approach is not as universal as the
direct integration method – it is efficient only for large alpha’s and only as far
as the pdf calculations are concerned. When computing the cdf the former
method must numerically integrate the density, whereas the latter takes the
same amount of time in both cases.

The direct integration method, proposed by Nolan (1997, 1999), consists of
a numerical integration of Zolotarev’s (1986) formulas for the density or the
distribution function. Set ζ = −β tan πα

2 . Then the density f(x;α, β) of a
standard stable random variable in representation S0, i.e. X ∼ S0

α(1, β, 0),
can be expressed as (note, that Zolotarev (1986, Section 2.2) used another
parametrization):

• when α 6= 1 and x 6= ζ:

f(x;α, β) =
α(x− ζ)

1

α−1

π | α− 1 |

∫ π
2

−θ0

V (θ;α, β) exp
{

−(x− ζ)
α

α−1V (θ;α, β)
}

dθ,

(1.5)
for x > ζ and f(x;α, β) = f(−x;α,−β) for x < ζ,

• when α 6= 1 and x = ζ:

f(x;α, β) =
Γ(1 + 1

α ) cos(ξ)

π(1 + ζ2)
1

2α

,

• when α = 1:

f(x; 1, β) =















1
2|β|e

πx
2β

∫ π
2

−π
2

V (θ; 1, β) exp
{

−eπx
2β V (θ; 1, β)

}

dθ, β 6= 0,

1
π(1+x2) , β = 0,

where

ξ =

{

1
α arctan(−ζ), α 6= 1,
π
2 , α = 1,

(1.6)

and

V (θ;α, β) =







(cosαξ)
1

α−1

(

cos θ
sinα(ξ+θ)

)
α

α−1 cos{αξ+(α−1)θ}
cos θ , α 6= 1,

2
π

(

π
2
+βθ

cos θ

)

exp
{

1
β (π2 + βθ) tan θ

}

, α = 1, β 6= 0.
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The distribution F (x;α, β) of a standard stable random variable in represen-
tation S0 can be expressed as:

• when α 6= 1 and x 6= ζ:

F (x;α, β) = c1(α, β) +
sign(1 − α)

π

∫ π
2

−ξ

exp
{

−(x− ζ)
α

α−1 V (θ;α, β)
}

dθ,

for x > ζ and F (x;α, β) = 1 − F (−x;α,−β) for x < ζ, where

c1(α, β) =

{

1
π

(

π
2 − ξ

)

, α < 1,

1, α > 1,

• when α 6= 1 and x = ζ:

F (x;α, β) =
1

π

(π

2
− ξ

)

,

• when α = 1:

F (x; 1, β) =































1
π

∫ π
2

−π
2

exp
{

−e−πx
2β V (θ; 1, β)

}

dθ, β > 0,

1
2 + 1

π arctanx, β = 0,

1 − F (x, 1,−β), β < 0.

Formula (1.5) requires numerical integration of the function g(·) exp{−g(·)},
where g(θ;x, α, β) = (x− ζ)

α
α−1V (θ;α, β). The integrand is 0 at −ξ, increases

monotonically to a maximum of 1
e at point θ∗ for which g(θ∗;x, α, β) = 1,

and then decreases monotonically to 0 at π
2 (Nolan, 1997). However, in some

cases the integrand becomes very peaked and numerical algorithms can miss
the spike and underestimate the integral. To avoid this problem we need to
find the argument θ∗ of the peak numerically and compute the integral as a
sum of two integrals: one from −ξ to θ∗ and the other from θ∗ to π

2 .

To the best of our knowledge, currently no statistical computing environ-
ment offers the computation of stable density and distribution functions in
its standard release. Users have to rely on third-party libraries or commercial
products. A few are worth mentioning. The standalone program STABLE is
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probably the most efficient (downloadable from John Nolan’s web page: aca-
demic2.american.edu/˜jpnolan/stable/stable.html). It was written in Fortran
and calls several external IMSL routines, see Nolan (1997) for details. Apart
from speed, the STABLE program also exhibits high relative accuracy (ca.
10−13; for default tolerance settings) for extreme tail events and 10−10 for
values used in typical financial applications (like approximating asset return
distributions). The STABLE program is also available in library form through
Robust Analysis Inc. (www.robustanalysis.com). This library provides inter-
faces to Matlab, S-plus/R and Mathematica.

In the late 1990s Diethelm Würtz has initiated the development of Rmetrics, an
open source collection of S-plus/R software packages for computational finance
(www.rmetrics.org). In the fBasics package stable pdf and cdf calculations
are performed using the direct integration method, with the integrals being
computed by R’s function integrate. On the other hand, the FFT based ap-
proach is utilized in Cognity, a commercial risk management platform that
offers derivatives pricing and portfolio optimization based on the assumption
of stably distributed returns (www.finanalytica.com). The FFT implementa-
tion is also available in Matlab (stablepdf fft.m) from the Statistical Software
Components repository (ideas.repec.org/c/boc/bocode/m429004.html).

1.2.3 Simulation of Stable Variables

Simulating sequences of stable random variables is not straightforward, since
there are no analytic expressions for the inverse F−1(x) nor the cdf F (x) it-
self. All standard approaches like the rejection or the inversion methods would
require tedious computations. A much more elegant and efficient solution was
proposed by Chambers, Mallows and Stuck (1976). They noticed that a certain
integral formula derived by Zolotarev (1964) led to the following algorithm:

• generate a random variable U uniformly distributed on (−π
2 ,

π
2 ) and an

independent exponential random variable W with mean 1;

• for α 6= 1 compute:

X = (1 + ζ2)
1

2α
sin{α(U + ξ)}
{cos(U)}1/α

[

cos{U − α(U + ξ)}
W

]

1−α
α

, (1.7)
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• for α = 1 compute:

X =
1

ξ

{

(π

2
+ βU

)

tanU − β log

( π
2W cosU
π
2 + βU

)}

, (1.8)

where ξ is given by eqn. (1.6). This algorithm yields a random variable X ∼
Sα(1, β, 0), in representation (1.2). For a detailed proof see Weron (1996).

Given the formulas for simulation of a standard stable random variable, we
can easily simulate a stable random variable for all admissible values of the
parameters α, σ, β and µ using the following property. If X ∼ Sα(1, β, 0) then

Y =

{

σX + µ, α 6= 1,

σX + 2
πβσ log σ + µ, α = 1,

(1.9)

is Sα(σ, β, µ). It is interesting to note that for α = 2 (and β = 0) the Chambers-
Mallows-Stuck (CMS) method reduces to the well known Box-Muller algorithm
for generating Gaussian random variables.

Many other approaches have been proposed in the literature, including appli-
cation of Bergström and LePage series expansions (Janicki and Weron, 1994b).
However, the CMS method is regarded as the fastest and the most accurate. Be-
cause of its unquestioned superiority and relative simplicity, it is implemented
in some statistical computing environments (e.g. the rstable function in S-
plus/R) even if no other routines related to stable distributions are provided.
It is also available in Matlab (function stablernd.m) from the SSC repository
(ideas.repec.org/c/boc/bocode/m429003.html).

1.2.4 Estimation of Parameters

The lack of known closed-form density functions also complicates statistical
inference for stable distributions. For instance, maximum likelihood (ML) es-
timates have to be based on numerical approximations or direct numerical
integration of the formulas presented in Section 1.2.2. Consequently, ML esti-
mation is difficult to implement and time consuming for samples encountered
in modern finance. However, there are also other numerical methods that have
been found useful in practice and are discussed in this section.

Given a sample x1, ..., xn of i.i.d. Sα(σ, β, µ) observations, in what follows,

we provide estimates α̂, σ̂, β̂ and µ̂ of all four stable law parameters. We
start the discussion with the simplest, fastest and ... least accurate quantile
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methods, then develop the slower, yet much more accurate sample cf methods
and, finally, conclude with the slowest but most accurate ML approach. All
of the presented methods work quite well assuming that the sample under
consideration is indeed stable.

However, testing for stability is not an easy task. Despite some more or less suc-
cessful attempts (Brcich, Iskander and Zoubir, 2005; Paolella, 2001; Matsui and
Takemura, 2008), there are no standard, widely-accepted tests for assessing sta-
bility. A possible remedy may be to use bootstrap (or Monte Carlo simulation)
techniques, as discussed in Chapter ?? in the context of insurance loss distri-
butions. Other proposed approaches involve using tail exponent estimators for
testing if α is in the admissible range (Fan, 2006; Mittnik and Paolella, 1999)
or simply ‘visual inspection’ to see whether the empirical densities resemble
those of stable laws (Nolan, 2001; Weron, 2001).

Sample Quantile Methods. The origins of sample quantile methods for sta-
ble laws go back to Fama and Roll (1971), who provided very simple estimates
for parameters of symmetric (β = 0, µ = 0) stable laws with α > 1. A decade
later McCulloch (1986) generalized their method and provided consistent es-
timators of all four stable parameters (with the restriction α ≥ 0.6). After
McCulloch define:

vα =
x0.95 − x0.05

x0.75 − x0.25
and vβ =

x0.95 + x0.05 − 2x0.50

x0.95 − x0.05
, (1.10)

where xf denotes the f -th population quantile, so that Sα(σ, β, µ)(xf ) = f .
Statistics vα and vβ are functions of α and β only, i.e. they are independent of
both σ and µ. This relationship may be inverted and the parameters α and β
may be viewed as functions of vα and vβ :

α = ψ1(vα, vβ) and β = ψ2(vα, vβ). (1.11)

Substituting vα and vβ by their sample values and applying linear interpolation
between values found in tables given in McCulloch (1986) yields estimators α̂

and β̂. Scale and location parameters, σ and µ, can be estimated in a similar
way. However, due to the discontinuity of the cf for α = 1 and β 6= 0 in
representation (1.2), this procedure is much more complicated.

In a recent paper, Dominicy and Veredas (2010) further extended the quantile
approach by introducing the method of simulated quantiles. It is a promising
approach which can also handle multidimensional cases as, for instance, the
joint estimation of N univariate stable distributions (but with the constraint
of a common tail index).
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Sample Characteristic Function Methods. Given an i.i.d. random sample
x1, ..., xn of size n, define the sample cf by: φ̂(t) = 1

n

∑n
j=1 exp(itxj). Since

|φ̂(t)| is bounded by unity all moments of φ̂(t) are finite and, for any fixed t,
it is the sample average of i.i.d. random variables exp(itxj). Hence, by the law

of large numbers, φ̂(t) is a consistent estimator of the cf φ(t).

To the best of our knowledge, Press (1972) was the first to use the sample cf
in the context of statistical inference for stable laws. He proposed a simple
estimation method for all four parameters, called the method of moments,
based on transformations of the cf. However, the convergence of this method
to the population values depends on the choice of four estimation points, whose
selection is problematic.

Koutrouvelis (1980) presented a much more accurate regression-type method
which starts with an initial estimate of the parameters and proceeds iteratively
until some prespecified convergence criterion is satisfied. Each iteration consists
of two weighted regression runs. The number of points to be used in these
regressions depends on the sample size and starting values of α. Typically no
more than two or three iterations are needed. The speed of the convergence,
however, depends on the initial estimates and the convergence criterion. The
regression method is based on the following observations concerning the cf φ(t).
First, from (1.2) we can easily derive:

log(− log |φ(t)|2) = log(2σα) + α log |t|. (1.12)

The real and imaginary parts of φ(t) are for α 6= 1 given by:

ℜ{φ(t)} = exp(−|σt|α) cos
[

µt+ |σt|αβsign(t) tan
πα

2

]

, (1.13)

ℑ{φ(t)} = exp(−|σt|α) sin
[

µt+ |σt|αβsign(t) tan
πα

2

]

. (1.14)

Apart from considerations of principal values, equations (1.13)-(1.14) lead to:

arctan

(ℑ{φ(t)}
ℜ{φ(t)}

)

= µt+ βσα tan
πα

2
sign(t)|t|α. (1.15)

Equation (1.12) depends only on α and σ and suggests that we can estimate
these two parameters by regressing y = log(− log |φn(t)|2) on w = log |t| in the
model: yk = m + αwk + ǫk, where tk is an appropriate set of real numbers,
m = log(2σα), and ǫk denotes an error term. Koutrouvelis (1980) proposed to
use tk = πk

25 , k = 1, 2, ...,K; with K ranging between 9 and 134 for different
values of α and sample sizes.
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Once α̂ and σ̂ have been obtained and α and σ have been fixed at these values,
estimates of β and µ can be obtained using (1.15). Next, the regressions are

repeated with α̂, σ̂, β̂ and µ̂ as the initial parameters. The iterations continue
until a prespecified convergence criterion is satisfied. Koutrouvelis proposed to
use Fama and Roll’s (1971) formula and the 25% truncated mean for initial
estimates of σ and µ, respectively.

Kogon and Williams (1998) eliminated this iteration procedure and simpli-
fied the regression method. For initial estimation they applied McCulloch’s
method, worked with the continuous representation (1.3) of the cf instead of
the classical one (1.2) and used a fixed set of only 10 equally spaced frequency
points tk. In terms of computational speed their method compares favorably
to the original regression method. It is over five times faster than the pro-
cedure of Koutrouvelis, but still about three times slower than the quantile
method of McCulloch (Weron, 2004). It has a significantly better performance
near α = 1 and β 6= 0 due to the elimination of discontinuity of the cf. How-
ever, it returns slightly worse results for other values of α. Matlab imple-
mentations of McCulloch’s quantile technique (stabcull.m) and the regression
approach of Koutrouvelis (stabreg.m) are distributed with the MFE Toolbox
accompanying the monograph of Weron (2006) and can be downloaded from
www.ioz.pwr.wroc.pl/pracownicy/weron/MFE.htm.

Maximum Likelihood Method. For a vector of observations x = (x1, ..., xn),
the maximum likelihood (ML) estimate of the parameter vector θ = (α, σ, β, µ)
is obtained by maximizing the log-likelihood function:

Lθ(x) =

n
∑

i=1

log f̃(xi; θ), (1.16)

where f̃(·; θ) is the stable pdf. The tilde reflects the fact that, in general,
we do not know the explicit form of the stable density and have to approxi-
mate it numerically. The ML methods proposed in the literature differ in the
choice of the approximating algorithm. However, all of them have an appeal-
ing common feature – under certain regularity conditions the ML estimator is
asymptotically normal with the variance specified by the Fischer information
matrix (DuMouchel, 1973). The latter can be approximated either by using the
Hessian matrix arising in maximization or, as in Nolan (2001), by numerical
integration.

Because of computational complexity there are only a few documented attempts
of estimating stable law parameters via maximum likelihood worth mentioning.
DuMouchel (1971) developed an approximate ML method, which was based on
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grouping the data set into bins and using a combination of means to compute
the density (FFT for the central values of x and series expansions for the tails)
to compute an approximate log-likelihood function. This function was then
numerically maximized.

Much better, in terms of accuracy and computational time, are more recent
ML estimation techniques. Mittnik et al. (1999) utilized the FFT approach
for approximating the stable density function, whereas Nolan (2001) used the
direct integration method. Both approaches are comparable in terms of effi-
ciency. The differences in performance are the result of different approximation
algorithms, see Section 1.2.2. Matsui and Takemura (2006) further improved
Nolan’s method for the boundary cases, i.e. in the tail and mode of the den-
sities and in the neighborhood of the Cauchy and the Gaussian distributions,
but only in the symmetric stable case.

As Ojeda (2001) observes, the ML estimates are almost always the most accu-
rate, closely followed by the regression-type estimates and McCulloch’s quantile
method. However, ML estimation techniques are certainly the slowest of all
the discussed methods. For instance, ML estimation for a sample of 2000 ob-
servations using a gradient search routine which utilizes the direct integration
method is over 11 thousand (!) times slower than the Kogon-Williams algo-
rithm (calculations performed on a PC running STABLE ver. 3.13; see Section
1.2.2 where the program was briefly described). Clearly, the higher accuracy
does not justify the application of ML estimation in many real life problems,
especially when calculations are to be performed on-line. For this reason the
program STABLE offers an alternative – a fast quasi ML technique. It quickly
approximates stable densities using a 3-dimensional spline interpolation based
on pre-computed values of the standardized stable density on a grid of (x, α, β)
values. At the cost of a large array of coefficients, the interpolation is highly
accurate over most values of the parameter space and relatively fast – only ca.
13 times slower than the Kogon-Williams algorithm.

Alternative Methods. Besides the popular methods discussed so far other
estimation algorithms have been proposed in the literature. A Bayesian Markov
chain Monte Carlo (MCMC) approach was initiated by Buckle (1995). It was
later modified by Lombardi (2007) who used an approximated version of the
likelihood, instead of the twice slower Gibbs sampler, and by Peters, Sisson and
Fan (2009) who proposed likelihood-free Bayesian inference for stable models.

In a recent paper Garcia, Renault and Veredas (2010) estimate the stable law
parameters with (constrained) indirect inference, a method particularly suited
to situations where the model of interest is difficult to estimate but relatively
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easy to simulate. They use the skewed-t distribution as an auxiliary model,
since it has the same number of parameters as the stable with each parameter
playing a similar role.

1.3 Truncated and Tempered Stable Distributions

Mandelbrot’s (1963) seminal work on applying stable distributions in finance
gained support in the first few years after its publication, but subsequent works
have questioned the stable distribution hypothesis, in particular, the stability
under summation (for a review see Rachev and Mittnik, 2000). Over the next
few years, the stable law temporarily lost favor and alternative processes were
suggested as mechanisms generating stock returns.

In the mid 1990s the stable distribution hypothesis has made a dramatic come-
back, at first in the econophysics literature. Several authors have found a very
good agreement of high-frequency returns with a stable distribution up to six
standard deviations away from the mean (Cont, Potters and Bouchaud, 1997).
For more extreme observations, however, the distribution they found fell off
approximately exponentially. To cope with such observations the so called
truncated Lévy distributions (TLD) were introduced by Mantegna and Stan-
ley (1994). The original definition postulated a sharp truncation of the stable
pdf at some arbitrary point. Later, however, exponential smoothing was pro-
posed by Koponen (1995) leading to the following characteristic function:

logφ(t) = − σα

cos πα2

[

(t2 + λ2)α/2 cos

{

α arctan
|t|
λ

}

− λα
]

, (1.17)

where α 6= 1 is the tail exponent, σ is the scale parameter and λ is the truncation
coefficient (for simplicity β and µ are set to zero here). Clearly the symmetric
(exponentially smoothed) TLD reduces to the symmetric stable distribution
(β = µ = 0) when λ = 0. For small and intermediate returns the TLD behaves
like a stable distribution, but for extreme returns the truncation causes the
distribution to converge to the Gaussian and, hence, all moments are finite. In
particular, the variance and kurtosis are given by:

Var(X) =
α(1 − α)

cos(πα2 )
σαλα−2, (1.18)

k(X) =
cos(πα2 )(α− 2)(α− 3)

α(1 − α)σαλα
. (1.19)
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Figure 1.3: Top panels : Semilog and loglog plots of symmetric 1.7-stable, sym-
metric tempered stable (TSD) with α = 1.7 and λ = 0.2, and
Gaussian pdfs. Bottom panels : Semilog and loglog plots of sym-
metric TSD pdfs with α = 1.7 and four truncation coefficients:
λ = 5, 0.5, 0.2, 0.01. Note, that for large λ’s the distribution ap-
proaches the Gaussian (though with a different scale) and for small
λ’s the stable law with the same shape parameter α.

STF2stab03.m

The convergence to the Gaussian and stable laws can be seen in Figure 1.3,
where we compare stable and exponentially smoothed TLDs (or TSDs, see
below) for a typically reported for financial data value of the tail exponent
(α = 1.7). Thus the observation that the asset returns distribution is a TLD
explains both the short-term stable behavior and the long run convergence to
the normal distribution (for interesting insights on the CLT-type behavior of
the TLD see a recent paper of Grabchak and Samorodnitsky, 2010).
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The (exponentially smoothed) TLD was not recognized in finance until the
introduction of the KoBoL (Boyarchenko and Levendorskii, 2000) and CGMY
models (Carr et al., 2002). Around this time Rosinski coined the term under
which the exponentially smoothed TLD is known today in the mathematics
literature – tempered stable distribution (TSD; see Rosinski, 2007).

Despite the interesting statistical properties, the TSDs (TLDs) have not been
applied extensively to date. The most probable reason for this being the com-
plicated definition of the TSD. Like for stable distributions, only the charac-
teristic function is known. No closed form formulas exist for the density or
the distribution functions. No integral formulas, like Zolotarev’s (1986) for the
stable laws (see Section 1.2.2), have been discovered to date. Hence, statis-
tical inference is, in general, limited to ML utilizing the FFT technique for
approximating the pdf (Bianchi et al., 2010; Grabchak, 2008). Moreover, com-
pared to the stable distribution, the TSD introduces one more parameter (the
truncation λ) making the estimation procedure even more complicated. Other
parameter fitting techniques proposed so far comprise a combination of ad hoc

approaches and moment matching (Boyarchenko and Levendorskii, 2000; Mat-
acz, 2000). Apart from a few special cases, also the simulation of TSD variables
is cumbersome and numerically demanding (Bianchi et al., 2010; Kawai and
Masuda, 2010; Poirot and Tankov, 2006).

1.4 Generalized Hyperbolic Distributions

1.4.1 Definitions and Basic Properties

The hyperbolic distribution saw its appearance in finance in the mid-1990s,
when a number of authors reported that it provides a very good model for the
empirical distributions of daily stock returns from a number of leading German
enterprises (Eberlein and Keller, 1995; Küchler et al., 1999). Since then it has
become a popular tool in stock price modeling and market risk measurement
(Bibby and Sørensen, 2003; Chen, Härdle and Jeong, 2008; McNeil, Rüdiger
and Embrechts, 2005). However, the origins of the hyperbolic law date back
to the 1940s and the empirical findings in geophysics. A formal mathematical
description was developed years later by Barndorff-Nielsen (1977).

The hyperbolic law provides the possibility of modeling heavier tails than the
Gaussian, since its log-density forms a hyperbola while that of the Gaussian is a
parabola (see Figure 1.4), but lighter than the stable. As we will see later in this
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Section, the hyperbolic law is a member of a larger, versatile class of generalized
hyperbolic (GH) distributions, which also includes the normal-inverse Gaussian
(NIG) and variance-gamma (VG) distributions as special cases. For a concise
review of special and limiting cases of the GH distribution see Chapter 9 in
Paolella (2007).

The Hyperbolic Distribution. The hyperbolic distribution is defined as a
normal variance-mean mixture where the mixing distribution is the generalized
inverse Gaussian (GIG) law with parameter λ = 1, i.e. it is conditionally Gaus-
sian (Barndorff-Nielsen, 1977; Barndorff-Nielsen and Blaesild, 1981). More
precisely, a random variable Z has the hyperbolic distribution if:

(Z|Y ) ∼ N(µ+ βY, Y ) , (1.20)

where Y is a generalized inverse Gaussian GIG(λ = 1, χ, ψ) random variable
and N(m, s2) denotes the Gaussian distribution with mean m and variance s2.
The GIG law is a positive domain distribution with the pdf given by:

fGIG(x) =
(ψ/χ)λ/2

2Kλ(
√
χψ)

xλ−1e−
1

2
(χx−1+ψx), x > 0, (1.21)
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where the three parameters take values in one of the ranges: (i) χ > 0, ψ ≥ 0 if
λ < 0, (ii) χ > 0, ψ > 0 if λ = 0 or (iii) χ ≥ 0, ψ = 0 if λ > 0. The generalized
inverse Gaussian law has a number of interesting properties that we will use
later in this section. The distribution of the inverse of a GIG variable is again
GIG but with a different λ, namely if:

Y ∼ GIG(λ, χ, ψ) then Y −1 ∼ GIG(−λ, χ, ψ). (1.22)

A GIG variable can be also reparameterized by setting a =
√

χ/ψ and b =√
χψ, and defining Y = aỸ , where:

Ỹ ∼ GIG(λ, b, b). (1.23)

The normalizing constant Kλ(t) in formula (1.21) is the modified Bessel func-
tion of the third kind with index λ, also known as the MacDonald function. It
is defined as:

Kλ(t) =
1

2

∫ ∞

0

xλ−1e−
1

2
t(x+x−1)dx, t > 0. (1.24)

In the context of hyperbolic distributions, the Bessel functions are thoroughly
discussed in Barndorff-Nielsen and Blaesild (1981). Here we recall only two
properties that will be used later. Namely, (i) Kλ(t) is symmetric with respect
to λ, i.e. Kλ(t) = K−λ(t), and (ii) for λ = ± 1

2 it can be written in a simpler
form:

K± 1

2

(t) =

√

π

2
t−

1

2 e−t. (1.25)

Relation (1.20) implies that a hyperbolic random variable Z ∼ H(ψ, β, χ, µ)
can be represented in the form: Z ∼ µ+ βY +

√
YN(0, 1), with the cf:

φZ(u) = eiuµ
∫ ∞

0

eiβzu−
1

2
zu2

dFY (z). (1.26)

Here FY (z) denotes the distribution function of a GIG random variable Y with
parameter λ = 1, see eqn. (1.21). Hence, the hyperbolic pdf is given by:

fH(x;ψ, β, χ, µ) =

√

ψ/χ

2
√

ψ + β2K1(
√
ψχ)

e−
√

{ψ+β2}{χ+(x−µ)2}+β(x−µ), (1.27)

or in an alternative parameterization (with δ =
√
χ and α =

√

ψ + β2) by:

fH(x;α, β, δ, µ) =

√

α2 − β2

2αδK1(δ
√

α2 − β2)
e−α

√
δ2+(x−µ)2+β(x−µ). (1.28)
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The latter is more popular and has the advantage of δ > 0 being the traditional
scale parameter. Out of the remaining three parameters, α and β determine
the shape, with α being responsible for the steepness and 0 ≤ |β| < α for
the skewness, and µ ∈ R is the location parameter. Finally, note that if we
only have an efficient algorithm to compute K1, the calculation of the pdf is
straightforward. However, the cdf has to be numerically integrated from (1.27)
or (1.28).

The General Class. The generalized hyperbolic (GH) law can be represented
as a normal variance-mean mixture where the mixing distribution is the gen-
eralized inverse Gaussian law with any λ ∈ R. Hence, the GH distribution is
described by five parameters θ = (λ, α, β, δ, µ), using parameterization (1.28),
and its pdf is given by:

fGH(x; θ) = κ
{

δ2 + (x− µ)2
}

1

2
(λ− 1

2
)
Kλ− 1

2

(

α
√

δ2 + (x − µ)2
)

eβ(x−µ),

(1.29)
where:

κ =
(α2 − β2)

λ
2

√
2παλ−

1

2 δλKλ(δ
√

α2 − β2)
. (1.30)

The tail behavior of the GH density is ‘semi-heavy’, i.e. the tails are lighter than
those of non-Gaussian stable laws and TSDs with a relatively small truncation
parameter (see Figure 1.4), but much heavier than Gaussian. Formally, the
following asymptotic relation is satisfied (Barndorff-Nielsen and Blaesild, 1981):

fGH(x) ≈ |x|λ−1e(∓α+β)x for x→ ±∞, (1.31)

which can be interpreted as exponential ‘tempering’ of the power-law tails
(compare with the TSD described in Section 1.3). Consequently, all moments
of the GH law exist. In particular, the mean and variance are given by:

E(X) = µ+
βδ2

ζ

Kλ+1(ζ)

Kλ(ζ)
, (1.32)

Var(X) = δ2

[

Kλ+1(ζ)

ζKλ(ζ)
+
β2δ2

ζ2

{

Kλ+2(ζ)

Kλ(ζ)
−

(

Kλ+1(ζ)

ζKλ(ζ)

)2
}]

. (1.33)

The Normal-Inverse Gaussian Distribution. The normal-inverse Gaus-
sian (NIG) laws were introduced by Barndorff-Nielsen (1995) as a subclass of
the generalized hyperbolic laws obtained for λ = − 1

2 . The density of the NIG
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distribution is given by:

fNIG(x) =
αδ

π
eδ
√
α2−β2+β(x−µ) K1(α

√

δ2 + (x − µ)2)
√

δ2 + (x− µ)2
. (1.34)

Like for the hyperbolic law the calculation of the pdf is straightforward, but
the cdf has to be numerically integrated from eqn. (1.34).

At the expense of four parameters, the NIG distribution is able to model asym-
metric distributions with ‘semi-heavy’ tails. However, if we let α→ 0 the NIG
distribution converges to the Cauchy distribution (with location parameter
µ and scale parameter δ), which exhibits extremely heavy tails. Obviously,
the NIG distribution may not be adequate to deal with cases of extremely
heavy tails such as those of Pareto or non-Gaussian stable laws. However,
empirical experience suggests excellent fits of the NIG law to financial data
(Karlis, 2002; Karlis and Lillestöl, 2004; Venter and de Jongh, 2002).

Moreover, the class of normal-inverse Gaussian distributions possesses an ap-
pealing feature that the class of hyperbolic laws does not have. Namely, it
is closed under convolution, i.e. a sum of two independent NIG random vari-
ables is again NIG (Barndorff-Nielsen, 1995). In particular, if X1 and X2

are independent NIG random variables with common parameters α and β but
having different scale and location parameters δ1,2 and µ1,2, respectively, then
X = X1 + X2 is NIG(α, β, δ1 + δ1, µ1 + µ2). Only two subclasses of the GH
distributions are closed under convolution. The other class with this important
property is the class of variance-gamma (VG) distributions, which is obtained
when δ is equal to 0. This is only possible for λ > 0 and α > |β|. The VG
distributions (with β = 0) were introduced to finance by Madan and Seneta
(1990), long before the popularity of GH and NIG laws.

1.4.2 Simulation of Generalized Hyperbolic Variables

The most natural way of simulating GH variables is derived from the property
that they can be represented as normal variance-mean mixtures. Since the
mixing distribution is the GIG law, the resulting algorithm reads as follows:

1. simulate a random variable Y ∼ GIG(λ, χ, ψ) = GIG(λ, δ2, α2 − β2);

2. simulate a standard normal random variable N ;

3. return X = µ+ βY +
√
Y N.
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The algorithm is fast and efficient if we have a handy way of simulating GIG
variates. For λ = − 1

2 , i.e. when sampling from the so-called inverse Gaussian
(IG) distribution, there exists an efficient procedure that utilizes a transforma-
tion yielding two roots. It starts with the observation that if we let ϑ =

√

χ/ψ
then the IG(χ, ψ) density (= GIG(− 1

2 , χ, ψ); see eqn. (1.21)) of Y can be
written as:

fIG(x) =

√

χ

2πx3
exp

{−χ(x− ϑ)2

2xϑ2

}

. (1.35)

Now, following Shuster (1968) we may write:

V =
χ(Y − ϑ)2

Y ϑ2
∼ χ2

(1), (1.36)

i.e. V is distributed as a chi-square random variable with one degree of freedom.
As such it can be simply generated by taking a square of a standard normal
random number. Unfortunately, the value of Y is not uniquely determined by
eqn. (1.36). Solving this equation for Y yields two roots:

y1 = ϑ+
ϑ

2χ

(

ϑV −
√

4ϑχV + ϑ2V 2
)

and y2 =
ϑ2

y1
.

The difficulty in generating observations with the desired distribution now lies
in choosing between the two roots. Michael, Schucany and Haas (1976) showed
that Y can be simulated by choosing y1 with probability ϑ/(ϑ + y1). So for
each random observation V from a χ2

(1) distribution the smaller root y1 has to
be calculated. Then an auxiliary Bernoulli trial is performed with probability
p = ϑ/(ϑ + y1). If the trial results in a ‘success’, y1 is chosen; otherwise, the
larger root y2 is selected. This routine is, for instance, implemented in the rnig

function of the Rmetrics collection of software packages for S-plus/R (see also
Section 1.2.2 where Rmetrics was briefly described).

In the general case, the GIG distribution – as well as the (generalized) hyper-
bolic law – can be simulated via the rejection algorithm. An adaptive version
of this technique is used to obtain hyperbolic random numbers in the rhyp

function of Rmetrics. Rejection is also implemented in the HyperbolicDist
package for S-plus/R developed by David Scott, see the R-project home page
cran.r-project.org. The package utilizes a version of the algorithm proposed by
Atkinson (1982), i.e. rejection coupled either with a two (‘GIG algorithm’ for
any admissible value of λ) or a three (‘GIGLT1 algorithm’ for 0 ≤ λ < 1) part
envelope (or majorizing function). However, finding the appropriate parame-
ter values for these envelopes requires optimization and makes the technique
burdensome.
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This difficulty led to a search for a short algorithm which would give comparable
efficiencies but without the drawback of extensive numerical optimizations. A
solution, based on the ‘ratio-of-uniforms’ method, was provided by Dagpunar
(1989). First, recalling properties (1.22) and (1.23), observe that we only need
to find a method to simulate Ỹ ∼ GIG(λ, b, b) variables and only for non-
negative λ’s. Next, define the relocated variable Ỹm = Ỹ −m, where the shift
m = 1

b (λ−1+
√

(λ − 1)2 + b2) is the mode of the density of Ỹ . Then Ỹ can be

generated by setting Ỹm = V/U , where the pair (U, V ) is uniformly distributed
over the region {(u, v) : 0 ≤ u ≤

√

h(v/u)} with:

h(t) = (t+m)λ−1 exp

(

− b

2

t+m+ 1

t+m

)

, for t ≥ −m.

Since this region is irregularly shaped, it is more convenient to generate the
pair (U, V ) uniformly over a minimal enclosing rectangle {(u, v) : 0 ≤ u ≤ u+,
v− ≤ v ≤ v+}. Finally, the variate (V/U) is accepted if U2 ≤ h(V/U). The
efficiency of the algorithm depends on the method of deriving and the actual
choice of u+ and v±. Further, for λ ≤ 1 and b ≤ 1 there is no need for the shift
at mode m. Such a version of the algorithm is implemented in UNU.RAN, a
library of C functions for non-uniform random number generation developed
at the Vienna University of Economics, see statistik.wu-wien.ac.at/unuran.

1.4.3 Estimation of Parameters

Maximum Likelihood Method. The parameter estimation of GH distri-
butions can be performed by the ML method, since there exist closed-form
formulas (although, involving special functions) for the densities of these laws.
The computational burden is not as heavy as for stable laws, but it still is
considerable. In general, the ML estimation algorithm is as follows. For a vec-
tor of observations x = (x1, ..., xn), the ML estimate of the parameter vector
θ = (λ, α, β, δ, µ) is obtained by maximizing the log-likelihood function:

L(x; θ) = log κ+
λ− 1

2

2

n
∑

i=1

log(δ2 + (xi − µ)2) +

+

n
∑

i=1

log Kλ− 1

2

(α
√

δ2 + (xi − µ)2) +

n
∑

i=1

β(xi − µ), (1.37)

where κ is defined by (1.30). Obviously, for hyperbolic (λ = 1) distributions
the algorithm uses simpler expressions of the log-likelihood function due to
relation (1.25).
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The routines proposed in the literature differ in the choice of the optimiza-
tion scheme. The first software product that allowed statistical inference with
hyperbolic distributions, the HYP program, used a gradient search technique
(Blaesild and Sorensen, 1992). In a large simulation study Prause (1999) uti-
lized the bracketing method. Matlab functions hypest.m and nigest.m dis-
tributed with the MFE Toolbox (Weron, 2006) use the downhill simplex method,
with slight modifications due to parameter restrictions.

The main factor for the speed of the estimation is the number of modified Bessel
functions to compute. Note, that for λ = 1 (i.e. the hyperbolic distribution)
this function appears only in the constant κ. For a data set with n independent
observations we need to evaluate n and n+1 Bessel functions for NIG and GH
distributions, respectively, whereas only one for the hyperbolic. This leads to a
considerable reduction in the time necessary to calculate the likelihood function
in the hyperbolic case. Prause (1999) reported a reduction of ca. 33%, however,
the efficiency results are highly sample and implementation dependent.

We also have to say that the optimization is challenging. Some of the param-
eters are hard to separate since a flat-tailed GH distribution with a large scale
parameter is hard to distinguish from a fat-tailed distribution with a small
scale parameter, see Barndorff-Nielsen and Blaesild (1981) who observed such
a behavior already for the hyperbolic law. The likelihood function with respect
to these parameters then becomes very flat, and may have local minima. In
the case of NIG distributions Venter and de Jongh (2002) proposed simple esti-
mates of α and β that can be used as staring values for the ML scheme. Starting
from relation (1.31) for the tails of the NIG density (i.e. with λ = −1/2) they
derived the following approximation:

α− β ∼ 1

2

x1−f + E(X |X > x1−f )

E(X2|X > x1−f ) − x1−fE(X |X > x1−f )
,

α+ β ∼ −1

2

xf + E(X |X < xf )

E(X2|X < xf ) − xfE(X |X < xf )
,

where xf is the f -th population quantile, see Section 1.2.4. After the choice of
a suitable value for f , Venter and de Jongh used f = 5%, the ‘tail estimates’
of α and β are obtained by replacing the quantiles and expectations by their
sample values in the above relations.

Another method of providing the starting values for the ML scheme was sug-
gested by Prause (1999). He estimated the parameters of a symmetric (β =
µ = 0) GH law with a reasonable kurtosis (i.e. with δα ≈ 1.04) that had the
variance equal to that of the empirical distribution.
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Other Methods. Besides the ML approach other estimation methods have
been proposed in the literature. Prause (1999) tested different estimation tech-
niques by replacing the log-likelihood function with other score functions, like
the Anderson-Darling and Kolmogorov statistics or Lp-norms. But the re-
sults were disappointing. Karlis and Lillestöl (2004) made use of the MCMC
technique, however, again the results obtained were not impressive. Karlis
(2002) described an Expectation-Maximization (EM) type algorithm for ML
estimation of the NIG distribution. The algorithm can be programmed in any
statistical package supporting Bessel functions and it has all the properties of
the standard EM algorithm, like sure, but slow, convergence, parameters in the
admissible range, etc. Recently Fragiadakis, Karlis and Meintanis (2009) used
this approach to construct goodness-of-fit tests for symmetric NIG distribu-
tions. The tests are based on a weighted integral incorporating the empirical
cf of suitably standardized data. The EM scheme can be also generalized to
multivariate GH distributions (but with fixed λ, see Protassov, 2004).

1.5 Empirical Evidence

The empirical facts presented in Section 1.1 show that we should use heavy
tailed alternatives to the Gaussian law in order to obtain acceptable estimates
of market losses. In this section we apply the techniques discussed so far to
two samples of financial data: the Dow Jones Industrial Average (DJIA) index
and the Polish WIG20 index. Both are blue chip stock market indexes. DJIA
is composed of 30 major U.S. companies that trade on NYSE and NASDAQ.
WIG20 consists of 20 major Polish companies listed on the Warsaw Stock
Exchange. We use daily closing index values from the period January 3, 2000
– December 31, 2009. Eliminating missing values (mostly U.S. and Polish
holidays) we end up with 2494 (log-)returns for each index, see the top left
panels in Figures 1.5 and 1.6.

Like most financial time series, also these index returns contain volatility clus-
ters which imply that the probability of a specific incurred loss is not the same
on each day. During days of higher volatility we should expect larger than
usual losses and during calmer days – smaller than usual. To remove volatility
clusters it is necessary to model the process that generates them. Following
Barone-Adesi, Giannopoulos, and Vosper (1999) and Kuester, Mittnik, and
Paolella (2006) we eliminate volatility clusters by filtering the returns rt with
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Table 1.1: Gaussian, hyperbolic, NIG, and stable fits to 2516 standardized
(rescaled by the sample standard deviation) and σt-filtered returns of
the DJIA from the period January 3, 2000 – December 31, 2009, see
also Figure 1.5. The values of the Kolmogorov (K) and Anderson-
Darling (AD) goodness-of-fit statistics suggest the hyperbolic and
NIG distributions as the best models for filtered and standardized
returns, respectively.

Distribution Parameters Statistics
α σ (δ) β µ K AD

Returns (standardized)

Gaussian 1.0000 -0.0026 4.0829 38.6054
Hyperbolic 1.5003 0.0700 -0.0794 0.0691 0.7561 0.6712
NIG 0.6988 0.6829 -0.0586 0.0548 0.6514 0.4136
Stable 1.6150 0.4982 -0.1624 -0.0247 1.1708 1.7921

Filtered returns

Gaussian 1.0000 -0.0021 1.8573 4.3276
Hyperbolic 2.1899 1.3793 -0.2852 0.2755 0.7133 0.6578
NIG 1.8928 1.8172 -0.2953 0.2849 0.7432 0.7106
Stable 1.9327 0.6669 -0.8026 -0.0101 1.0739 1.5042

a GARCH(1,1) process:

rt = σtǫt, with σt = c0 + c1r
2
t−1 + d1σ

2
t−1, (1.38)

where c0, c1 and d1 are constants and

ǫt =
rt
σt
, (1.39)

are the filtered returns, see the top right panels in Figures 1.5 and 1.6. We
could also insert a moving average term in the conditional mean to remove any
serial dependency if needed.

To find the right model class for each dataset we fit four distributions: Gaussian,
hyperbolic, NIG, and stable to standardized (rescaled by the sample standard
deviation) and σt-filtered returns. The results are presented in Tables 1.1 and
1.2, see also the corresponding Figures 1.5 and 1.6. We compare the fits using
Kolmogorov (K) and Anderson-Darling (AD) test statistics (D’Agostino and
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Table 1.2: Gaussian, hyperbolic, NIG and stable fits to 2514 standardized
(rescaled by the sample standard deviation) and σt-filtered returns
of the Polish WIG20 index from the period January 3, 2000 – Decem-
ber 31, 2009, see also Figure 1.6. The values of the Kolmogorov (K)
and Anderson-Darling (AD) goodness-of-fit statistics suggest the hy-
perbolic distribution as the best model, with the NIG law following
closely by.

Distribution Parameters Statistics
α σ (δ) β µ K AD

Returns (standardized)

Gaussian 1.0000 0.0057 2.3365 11.1869
Hyperbolic 1.5779 0.4884 -0.0069 0.0126 0.4478 0.2467
NIG 1.0972 1.1054 -0.0042 0.0100 0.5569 0.3600
Stable 1.7841 0.5977 0.1069 0.0222 0.9286 1.5499

Filtered returns

Gaussian 1.0000 0.0126 1.598 3.6811
Hyperbolic 2.0121 1.2288 0.0161 -0.0036 0.6391 0.3789
NIG 1.6855 1.6984 0.014 -0.0015 0.6688 0.4349
Stable 1.8891 0.6529 0.1053 0.0200 0.8900 1.0624

Stephens, 1986). The latter may be treated as a weighted Kolmogorov statistics
which puts more weight to the differences in the tails of the distributions.
Although no asymptotic results are known for stable or generalized hyperbolic
laws, approximate critical values for these goodness-of-fit tests can be obtained
via the bootstrap (or simulation) technique, see Stute, Manteiga and Quindimil
(1993), Ross (2002), and Chapter ??, where Monte Carlo simulations are used
for this purpose in the context of insurance loss distributions. In this chapter,
though, we will not perform hypothesis testing and just compare the test values.
Naturally, the lower the values the better the fit. For both datasets, both
statistics suggest the hyperbolic distribution as the best model, with the NIG
law following closely by. Note, that for the DJIA filtered returns the left tail
is significantly heavier than the right tail, with the latter being pretty well
modeled by the Gaussian law, see the bottom right panel in Figure 1.5. This is
also confirmed by strongly negative skewness parameters (β). In contrast, the
WIG20 filtered returns are roughly symmetric.
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