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Abstract 

 

Weather derivatives have become very popular tools in weather risk management in recent 

years. One of the elements supporting their diffusion has been the increase in volatility observed 

on many energy markets. Among the several available contracts, Quanto options are now 

becoming very popular for a simple reason: they take into account the strong correlation 

between energy consumption and certain weather conditions, so enabling price and weather risk 

to be controlled at the same time. These products are more efficient and, in many cases, 

significantly cheaper than simpler plain vanilla options. Unfortunately, the specific features of 

energy and weather time series do not enable the use of analytical formulae based on the Black-

Scholes pricing approach, nor other more advanced continuous time methods that extend the 

Black-Scholes approach, unless under strong and unrealistic assumptions. In this study, we 

propose a Monte Carlo pricing framework based on a bivariate time series model. Our approach 

takes into account the average and variance interdependence between temperature and energy 

price series. Furthermore, our approach includes other relevant empirical features, such as 

periodic patterns in average, variance, and correlations. The model structure enables a more 

appropriate pricing of Quanto options compared to traditional methods. 
 

Keywords: weather derivatives, Quanto options pricing, derivative pricing, model simulation 

and forecast. 
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1. Introduction 

 

In many economic sectors, weather conditions may significantly affect the demand for goods 

or services, or influence regular working paths. Accordingly, weather risk has a strong impact 

on sales or production levels (meaning that they are correlated to the weather) and significant 

impact on financial results. Furthermore, given that the weather risk affects the volume of 

sales or production, it is often called a volumetric risk. 

The development of financial engineering led to the diffusion of weather derivatives as a tool 

for transferring weather risks off the balance sheet. However, the first generation contracts 

only dealt with weather risk and just covered exposure to temperature changes. However, 

most energy companies are characterised by a strong weather exposure and cannot effectively 

hedge weather risk with just simple weather derivatives. In fact, there is a low, but significant, 

correlation between outdoor temperature and energy price. Hence, the real weather exposure 

in many energy companies is non-linear and the payout from classic weather derivatives does 

not enable a complete coverage of revenue shifts caused by weather conditions and their 

impact on energy prices. Weather therefore has a direct impact on energy companies through 

revenues (as weather affects energy demand); as well as an indirect impact (by affecting 

energy prices). As a result, to hedge weather exposure more appropriately, non-linear 

contracts that take into account both energy price and weather conditions should be used. 

Quanto options are an example of the type of contract that enables an improvement in the 

weather risk management process.  

Quanto options (abbreviation of ‘quantity adjusting options’) originally appeared in currency-

related markets, where the price of a financial instrument quoted in a given currency is 

converted to another currency at a fixed rate (see Zhang, 2001, for additional details). Within 

the energy market, Quanto options take into account the volumetric impact of weather 

conditions on energy price. For instance, when the winter is colder than expected in a north 

European country, the energy market suffers an increase in demand and an increase in the 

energy price. In this case, energy producers should hedge the volume risk but also take into 

account the benefits of price increases. In addition, Ho et al. (1995) show that hedging with 

Quanto contracts is much cheaper and more efficient than through simple combinations of 

two separate plain vanilla options written on energy prices and temperatures, respectively. 

Unfortunately, several elements affect the correct pricing of Quanto options. Initially, we 

might consider several payoff designs in the knowledge that for many of these designs the 

closed-form pricing formula derived within a Black-Scholes framework is unavailable. A 

relevant computational effort is required for the pricing of such contracts. Secondly, the 

peculiar features of energy price and temperature time series (jumps, long-memory, periodic 

patterns in mean and variance, non-Gaussian distributions) raise some doubts regarding the 

appropriateness of a simple geometric Brownian motion as a reference model. To overcome 

these limitations, contract prices are determined by brokers using a variety of approaches, and 

so a huge dispersion of prices is observed in OTC markets. 

The aim of this paper is to present a pricing methodology for Quanto options that is based on 

Monte Carlo simulations from an econometric model for the underlying time series. The 



 2

approach we propose (in two variants) enables pricing a range of instruments (including 

Quanto options) based on the underlying modelled variables, and can be used to hedge the 

non-linear price and volume exposures that are typical of the energy sector. 

In this study we motivate the need for Quanto options in the energy sector, and we provide a 

pricing approach for these contracts. Our method has several advantages: it includes the 

stylised facts characterising energy log-prices and temperature data (namely, periodic 

patterns, long-memory, heteroskedasticity, and correlation dynamics); the method improves 

on univariate approaches since it includes interdependence of energy from temperature; and it 

allows correlations to depend on a periodic function. The novel aspects of our contribution 

depend thus on the model, on the empirical evidence of periodic structure in energy and 

temperature correlation, and on the proposal of a Financial approach for pricing Quanto 

options. 

The paper proceeds as follows. Section 2 describes energy markets, their correlation with 

weather, and the peculiar features of energy prices and temperature time series. Furthermore, 

Section 2 contains a motivating example on the use and specification of contingent 

derivatives in practice. Section 3 touches on the problem of pricing weather contracts from a 

general viewpoint. In addition, the section highlights the advantages and disadvantages of a 

number of approaches. Section 4 presents the model specification, and discusses the 

estimation and simulation issues. Section 5 contains the empirical results: model estimation 

and pricing of a Quanto option based on Oslo energy price and temperature data. Section 6 

contains a summary and conclusions. 

 

 

2. Quanto options for energy and weather markets 

 

To provide a rationale for the introduction of Quanto options based on weather data and 

energy prices, we start with a brief introduction on energy and weather derivative markets. 

Later, we focus on economic motivations for the use of Quanto options, and we provide a 

short introduction on possible designs for Quanto payoffs. 

 

 

2.1 Energy markets 

 

The deregulation of electricity markets started in the early 1990s in the US and some 

European countries. One of the most important electricity markets that led the way in 

liberalisation was the Nordic Power Exchange (known as Nord Pool) which included Sweden, 

Norway, Finland and Denmark. Nord Pool was established in January 1993 in Norway and 

was progressively expanded to include the other Nordic nations. Nord Pool organises the 

Elspot a day-ahead electricity market (‘spot physical market’) as well as an electricity 

derivatives market (‘financial market’). In the spot market, 24 hourly power contracts are 

traded for physical delivery in one specific hour during the next day. A price per Megawatt 

Hour (MWh), named the system price, is determined separately for each hour for the whole 
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market area through a uniform-price auction, without considering capacity limits in the 

transmission lines. A wide range of derivative contracts are traded at Nord Pool, including a 

variety of forwards, futures, and options. All forward and futures contracts refer to a base load 

of one Megawatt (MW) during every hour for a given ‘delivery period’ (ranging from one day 

to one year in length), and all contracts are settled in cash daily against the system price 

during the ‘delivery period’. Nord Pool, now also termed Nord Pool ASA, is considered one 

of the most liquid wholesale markets in the world.  

There are several bidding areas for which the transmission system operator defines the 

capacity allocated for Elspot. When the flow of power between bidding areas exceeds the 

allocated capacity, the areas may have different prices. If power flows are within the defined 

limits, the energy price becomes common across the areas. 

In Norway, there are six different spot price areas: Bergen, Kristiansand, Kristiansund, Oslo, 

Tromso, and Trondheim. In this study, we make use of data from one specific bidding area, 

that of Oslo, for which we consider both the area daily energy price, and the Oslo daily 

average temperature. As the econometric model used in this paper will allow for the 

interaction between energy prices and temperature, the fact that both variables are 

geographically located is very attractive and unique in the doctrine. 

One additional remarkable feature of the Nordic Electricity Market for financial asset 

valuation purposes, is the existence of wide-ranging futures/forward contract maturities 

(daily, weekly, monthly, quarterly, and yearly). This extensive variety of contracts means the 

forward curve can be obtained for the whole market by using the system price (the main 

reference of the market) as the underlying asset. Further to this, each bidding area has its own 

forward contracts (‘Contracts for Differences’) enabling the estimation of specific forward 

curves for each area. For more details on Nord Pool ASA we refer interested readers to 

www.nordpool.com. 

 

 

2.2 Weather derivative markets 

 

The first contracts linked to weather data appeared in late 90s in the US as an effect of energy 

market liberalisation. At that time, several energy companies realised that outdoor 

temperature is one of the key factors responsible for profit and loss in the energy sector. 

In general terms, weather derivatives represent a wide class of financial contracts (traded on 

exchanges or over-the-counter) whose settlement directly depends on weather variables 

(mainly quantitative such as temperature, wind speed, or precipitation) at a given 

meteorological station. The Chicago Mercantile Exchange (CME) hosts the only exchange 

market actually trading weather contracts. The CME quotes futures and options on these 

futures for 41 locations around the world. The most traded contracts depend on temperature 

indices. The two most popular indices are the Daily HDD (Heating Degree Day) and the 

Daily CDD (Cooling Degree Day) which capture, respectively, the winter and summer 

exposure to temperatures. These indices are defined as: 
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Daily HDD = max (65°F – average daily temperature,
1
 0)     (1) 

 

Daily CDD = max (average daily temperature – 65°F, 0)     (2) 

 

Cumulated CDD (between May-October) and cumulated HDD (between October-April) are 

the reference quantities for contracts covering 18 US and 6 Canadian cities. The CME uses 

similar indices for 9 European locations, with two small differences: the threshold 

temperature level is set to 18 Celsius degrees, and the Cumulative Average Temperature 

(CAT
2
) replaces the CDD because of the cooler summer temperatures in Europe compared to 

those in the US. To evaluate contracts, each index point (tick) has a theoretical value of 20 

USD for US and Canadian location-based contracts and 20 GBP for European-based 

contracts. The CME also quotes a Frost Day Index based contract for Amsterdam; 

temperature-based contracts for Japanese locations (these are based on different temperature 

indices); and snowfall-based contracts (depending on snowfall indices within a day at a 

specific location). 

Despite recent increase in the volume of weather contracts traded at the CME, the contracts 

still appear to be illiquid, especially for European locations. There are several elements 

driving such evidence, with one element playing a key role: sellers customise contracts to 

end-user needs, and therefore the standardisation (even with respect to the currency of the 

payout) is perceived as a negative element that creates additional risks for end-users. As a 

result, most contracts are exchanged over-the-counter. The writers of these contracts (mostly 

banks, insurance companies, and other financial institutions) sell weather protection to their 

clients, and often define contracts payouts using several weather indices at the same time (to 

hedge weather risk at several locations, or at a location not covered by a meteorological 

station). Furthermore, it is quite common to have contracts based on products or other non-

linear functions of many indices.  

 

 

2.3 An economic motivation for Quanto options  

 

To show how Quanto options can be used for hedging we present a simple case of a power 

operator, a company that is responsible for providing energy (via the grid) to a set of firms 

and households. Firstly, we need to make some assumptions about the activity of the retail 

operator. We assume that the retail operator, using historical data, estimates that in the next 

heating season (from November to March) the HDD index for a given area will reach the 

value of 2500 points with a standard deviation of 300 points. This represents its expectation 

about the future HDD. Using such a forecast, the retail operator defines the amount of energy 

that it should buy through long-term contracts with energy producers. 

The power retail operator also knows that changes in average daily temperature during the 

heating season have significant impacts on power demand. The retailer estimates that the 

impact is equal to 100 MWh per HDD point. Therefore, if the heating season is colder 

                                                 
1 The average temperature is equal to the arithmetic mean of the observed maximum and minimum temperatures 

during one full day at a given meteorological station. 
2 The daily CAT is simply the daily average temperature. 
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(warmer) than expected, the retail operator will have to buy (sell) energy on the spot market, 

being thus exposed to energy price changes. Let’s assume that at the beginning of the heating 

season, the expected average spot market price for the entire heating season is €45/MWh with 

an estimated standard deviation of €8/MWh. Furthermore, retail prices are sticky and must be 

maintained over the heating season. Therefore, the retail operator faces a risk associated with 

temperature variations, as well as with energy price changes. Table 1 presents the changes in 

the total cost suffered by the retail operator caused by deviations in temperature and 

associated with a range of possible values of the spot market energy price (we used a range 

equal to ± two standard deviations). Note the total cost increases if the retail operator needs to 

buy additional power in the spot market, or decreases if it sells excess power in the spot 

market. 

In Table 2 we report the total revenues from customers under the assumption that the retail 

price is fixed at €49.5/MWh (assume this price already includes a margin 10% for the retail 

operator). Note that revenues increase with increases in the HDD index, since the retail 

operator sells larger amounts of energy to retail customers. Table 3 reports the changes in the 

margin obtained by the retail operator (revenues of Table 2 minus costs in Table 1). We note 

that, under the assumption of constant retail prices, the impact of temperature is offset under 

some price states. However, in order to secure profit for the retail operator, these changes 

should be hedged with a proper contract, possibly eliminating the risk implicit in Table 3. 

Quanto options could be used for that objective. 

 

INSERT HERE TABLES 1 TO 3 

 

 

2.3 Quanto options description 

 

Quanto options belong to the wide class of correlation exotic options and are very popular on 

OTC and exchange markets, see Zhang (2001) for a survey. In general, a Quanto option (also 

called product option or flexo option) is a derivative contract, where the payoff depends on 

the product of two indices. As an example, consider a European based investor (with a Euro 

denominated wealth) with a position on a USD-denominated ETF tracking the S&P500 index. 

To offset the risk of a negative return (which is the combination of the ETF and the foreign 

exchange rate returns), the investor may follow alternative approaches. The first possibility is 

static hedging with two separate vanilla options (on the S&P500 and the Euro-Dollar rates). 

However, this coverage is not efficient due to the non-linear exposure of the uro-denominated 

wealth of the investor to the FX and S&P500 risks. Furthermore, this strategy requires the 

payment of two possibly expensive premiums. A second choice is the use of dynamic 

hedging. This strategy suffers because of the same limitations as the static strategy, namely, a 

loss in efficiency and a high cost. Quanto options, as the third solution, are the most 

appropriate choice, see Ho et al. (1995). A derivative based on the products of the S&P500 

index and of the Euro-Dollar exchange rate is cheaper and more efficient. 

If we focus on energy markets, we noted in the previous section that the revenues of power 

retail operators (and thus their risk exposure) are a non-linear function (a product) of two 
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elements: energy price and temperature. Such a feature motivates the use of Quanto options 

for static hedging. 

Let’s continue with the example given in previous section, and recall that Table 3 reports the 

overall risk exposure of the retail operator to energy price and temperature changes. We can 

ideally divide Table 3 into four sections (the four corners), each representing a scenario with 

different deviations from the Temperature HDD expected values and the energy spot market 

price. Each section has only positive or negative values. To receive from a derivative a 

positive payoff associated with energy and temperature values higher than expected (lower-

right corner) we can use the following double call option: 

 

max(0, E-K1)×τ×max(0, HDD-K2)         (4) 

 

where K1 and K2 denote the strike values for energy and weather, respectively, 



m

i

iE
m

E
1

1
, 

iE  is the average daily energy price, m is the number of days in the heating season, 

1

max(0,18 )
m

i

i

HDD T


  , 
iT  is the average daily temperature level, and τ is the tick value, the 

change in energy demand per unit change in the HDD index. In our example, we fix the tick 

value at 100 MWh per point of HDD. Hence the payout of let’s say 5 HDD points 

corresponds to a money transfer equivalent to the price of 500 MWh. 

The opposite scenario (upper-left corner) corresponds to the following double put expression: 

 

max(0, K1-E)×τ×max(0, K2-HDD)         (5) 

 

Clearly, appropriate formulae also exist for mixed scenarios (when one index is below the 

expected value and the other index above the expected value). For the joint offset of negative 

corners of Table 3, we could use the following compositions of (4) and (5) that identify 

Quanto options:  

 

max((E-K1)×τ× (HDD-K2),0)        (6) 

 

max((K1-E)×τ× (K2-HDD),0)        (7) 

 

Note that (6) and (7) represent the same Quanto option, ensuring protection with respect to the 

negative states included in Table 3. The Quanto option depends on the product between two 

quantities (energy and temperature), each in deviation from a proper strike price, and with the 

introduction of a tick-value that translates the underlying option into a monetary quantity. We 

report in Table 4 the design of a Quanto option for the power retail operator example 

introduced in Section 2.2, and the option payoff in Table 5. By combining the outcomes of 

Table 3 and Table 5 we note that if the power retail operator buys a Quanto, its revenues will 

not be affected by negative states (without considering the Quanto premium).   

 

INSERT HERE TABLES 4 AND 5 
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3. Energy and weather derivatives valuation  

 

Theoretically, the most accurate price of a financial instrument is the market price. Such a rule 

also refers to all derivatives based on weather variables. However, if the market for these 

instruments is limited, illiquid, and highly inefficient, then a suitable model should support 

the pricing process, see VanderMarck (2003).  

A contract writer could decide to determine the theoretical contract price by standard methods 

such as the Black and Scholes (1973) model and its numerous extensions. However, Dischel 

(2002), highlights that the Black and Scholes model (B&S thereafter) cannot be used for the 

pricing of temperature-based contracts for a number of reasons: the underlying process 

governing the evolution of temperature is far from being a geometric Brownian motion since 

it includes long and short memory behaviours, as well as seasonal patterns; the market is 

extremely illiquid and shallow (it is mainly driven by reinsurance companies); temperature 

indices may not be adequately modelled by the Gaussian distribution; the underlying variable 

is not a traded asset and therefore pricing by replication is impossible. As a result, the 

Actuarial pricing approach dominates this market. Below we briefly introduce this method 

and later provide a link to a financial pricing approach we could follow to improve the 

Actuarial approach. Note that both methods are based on model simulations, and thus could 

be considered as Monte Carlo option pricing methods.   

 

 

3.1 The Actuarial approach 

 

Writers of weather-based contracts generally define the price using a range of approaches. 

One of the most common is the Actuarial approach, which is a popular methodology in the 

insurance sector. For an introduction to the methodology and some examples, see Zeng 

(2000), Davis (2001), Brix et al. (2005), among others. 

The Actuarial approach depends on the forecasts of the distribution of contract outcomes 

obtained from historical data and, if available, short- and medium-term forecasts. The 

Actuarial price equals the average expected payout coming from the predicted density (this is 

often called the ‘fair value’), plus a margin that, beside remuneration, also covers the costs of 

the contract writer (such as fixed costs, and risk-loading factors for model and market 

uncertainty, see Henderson, 2002). 

To produce the distribution of contract outcomes we can follow various methods. The 

literature classifies these methods into three groups: Historical Burn Analysis (HBA); Index 

Modelling (IM); Daily Modelling (DM). The first method, HBA, defines the distribution of 

contract payouts using historical weather indices evaluated using weather data. Given its 

simplicity, it is often used as a preliminary pricing method. Index Modelling extends HBA by 

adding a distributional hypothesis to the weather indices. It thus enables the capture of the 

tails and asymmetry of weather indices. The distribution is fitted on historical data and used 

within a Monte Carlo approach to determine the contract fair value. Unfortunately, both HBA 

and IM suffer from several drawbacks, as pointed out by Nelken (2000). In particular, they 

may be inaccurate if used with a limited number of historical observations over weather 
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indices (these are generally evaluated monthly, quarterly, or yearly). Furthermore, these 

methods may not be appropriate for the pricing of products based on a non-traded asset 

(weather) and a traded quantity (such as energy, but also natural gas, or EUA). 

The Daily Modelling method overcomes the previous problems and is thus becoming the 

most popular, see Brix et al. (2005). This method begins by fitting a model on daily weather 

data and then using that model to produce forecasts of weather indices. Given its structure, 

DM enables many features of weather data to be taken into account, and can also be easily 

extended to contracts based on many underlying assets. The use of daily data also simplifies 

the pricing of contracts with very short maturities (for instance weekly), given that the 

approach can incorporate short-term meteorological forecasts. 

The Daily Modelling method bases its results on a time series model to replicate the empirical 

features of the underlying index data. In this study we focus on models for daily temperature 

such as the most popular indices in the weather derivative market that are commonly used in 

Quanto structures. For this purpose, we use the ARFIMA-FIGARCH model with 

deterministic components that include trends and seasonality in mean and variance. Models in 

this shape are widely used on the market and the general idea was presented by Beine and 

Laurent (2003). 

This model is then used to predict the future evolution of these variables and of the associated 

indices (HDD or CDD). By using Monte Carlo methods, a large number of paths or scenarios 

are simulated and used to recover the contract payout density. The expected value of the 

density then defines the contract fair value. In standard practice, the price charged to the 

contract buyer includes a margin calibrated to the Value-at-Risk of the contract payouts, and 

is also discounted by using a risk-free rate (for instance the Euribor rate). 

In this paper, we apply an Actuarial pricing procedure that matches the methods available in 

the literature and consists of the following steps: 

 

1) Propose a model that jointly captures the dynamic of electricity prices and 

temperature; 

2) Simulate a number of paths for electricity and temperature using the model developed 

in step (1); 

3) Estimate the average pay-off of a specific option using the simulated path and given 

the contract parameters; 

4) Increase the above value by a risk-loading factor computed as 5% of the pay-off 

Value-at-Risk at the 95% confidence level; 

5) Discount the above future value using the appropriate Euribor rate. 

 

 

3.2 A Financial approach 

 

In this subsection we present a financial solution to the Quanto valuation using some well 

known facts in derivative valuation. The underlying assumption is that electricity derivatives 

are driven by two state variables: electricity price and weather (proxy of load). The wide 

range of maturities and periods available in the Nord Pool for electricity prices enables 

estimation of the forward curve for every day. We can interpret the forward curve as the risk-



 9

neutral trend of electricity prices.
3
 If we assume that the market price of risk of the weather 

variable is zero, then all the risk adjustment in the derivative valuation will come from the 

electricity price risk.
4
 Under this assumption, we propose to determine a risk-neutral valuation 

of energy and temperature Quanto options following these steps: 

 

1) Estimate the forward curve with a range of futures/forward energy prices; 

2) Propose a model jointly capturing the dynamic of electricity prices and temperatures; 

3) Simulate a number of paths for electricity and temperature using the model developed 

in step (2), but replacing the electricity price estimated trend with the forward curve; 

4) Estimate the average pay-off of a specific option using the simulated path and the 

contract parameters; 

5) Discount the above future value using the appropriate Euribor rate. 

 

We stress that step 2 above and the step 1 of the Actuarial approach provide exactly the same 

model. The relevant difference is in the simulation, where the Actuarial approach uses the 

estimated, or ‘real’ trend, while the Financial approach employs the forward curve by turning 

the Actuarial pricing into a Financial risk-neutral pricing which also accounts for changes in 

outdoor temperature.  

We note that in a recent contribution Pirrong and Jermakyan (2008) proposed a model for 

electricity derivatives valuation using two state variables: demand (load) and fuel price. Given 

that electricity demand is closely related with weather conditions Pirrong and Jermakyan 

(2008) suggest the introduction of weather as an additional state variable as a possible 

extension of their framework. Despite the fact that their proposal would enable the evaluation 

of assets whose payoffs depend on power prices, loads, and weather, we stress that this 

requires a very sophisticated mathematical framework that employs numerical techniques 

without providing closed form solutions. The valuation framework we propose in this paper 

has the advantage of providing a model describing a number of stylised facts regarding the 

joint evolution of energy prices and temperature. Some of these facts have not been 

previously studied (see Section 4.1 below) and can be considered as an extension of the 

Actuarial approach – with a direct link to Financial pricing methods.   

 

 

4. Methodology of Quanto option pricing   

 

This section presents the models and methods we use in the evaluation of Quanto options both 

under the Actuarial and Financial approaches. We first present the model for the joint 

evaluation of energy price and temperature dynamics. We then describe the estimation of the 

                                                 
3 See Hull (1997), pages 297-298.   
4 Benth and Benth (2007) assume the market price of risk to be zero in their application for the Stockholm 

temperature derivative valuation. When two risk factors are considered in a derivative valuation, some authors 

assume that the market price of risk of one of these factors to be zero, see for example Gibson and Schwartz 

(1990).   
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energy price forward curve. Finally, we briefly discuss the simulation approach we follow to 

generate future paths of energy price and temperature. 

 

 

4.1 An econometric model for energy and temperature data 

 

We propose here a model that describes the joint evolution of energy log-prices and average 

temperature – including a number of stylised facts and features characterising the variables. In 

particular, we take into account: seasonality patterns in means and variances for both series; 

day-of-the-week effects in the energy log-price mean and variances; log-memory in both 

series means and variances; weekly seasonal auto-regressive patterns in energy log-prices; 

auto-regressive patterns with spillovers from temperature levels to energy log-prices; 

heteroskedasticity with variance spillovers from temperature to energy; dynamic correlations 

with seasonal evolution. In the following, we present the several components of the model in 

detail. 

Denote by tx  the energy log-price and by 
ty  the average temperature level. The following 

dynamic system governs the mean evolution of both series: 
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      
           

      
      
        
        

  
     

   

 

  1, 1

2,

, 0, ,
tj t

t

t

I D



 
 

 


 

 

and: L denote the backshift operator,  L  is a Vector Auto Regressive (VAR) polynomial of 

order p with a restricted structure enabling an effect of lagged temperature on energy log-

prices;  L  is a Seasonal Vector Auto Regressive (S-VAR) polynomial of order P, needed 

to capture the stochastic weekly patterns (and thus S=7);  L  is a long-memory matrix 

inducing long-range dependence over temperature and energy log-prices; 
tZ  is a 

deterministic mean component that can be partitioned into a vector of sinusoidal trend 

components 
tD  (including sine and cosine waves, a constant, and a polynomial trend), and a 

matrix 
tW  of day-of-the-week dummies and holiday dummies (which affects only the energy 
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log-prices);  L  is a Vector Moving Average (VMA) polynomial of order q with a 

restricted structure similar to that of VAR; the innovation process follows a conditional 

distribution with a time-varying covariance matrix 
t  that will be defined below; and 

1tI 
 is 

time t-1 information set. Furthermore, we assume that all parameter matrices satisfy the 

constraints ensuring stationarity and invertibility. 

Before moving to the second-order moment structure, we will report several comments on the 

mean structure. Firstly, the feedback from temperature to energy is not direct, but temperature 

enters into the energy equation in deviation from its unconditional mean 2 tD   and with a 

long-memory style impact. In fact, the energy log-price equation has the following 

configuration: 

 

            
   

1 2

1,1 1,1 1 1 1,2 2

1,1 1, 1,2 2,

1 1

                                                                      

d d

t t t t t

t t

L L L x D W L L y D

L L

  

 

          

  
  (9) 

 

Thus, the structural evolution of the temperature matters for the evolution of energy log-

prices. We motive this choice by the fact that the unconditional mean could be easily captured 

and anticipated by the market (it is purely deterministic). In addition, the stochastic long-

range dependence characterising temperature is well-known and plays a role in determining 

the movements of energy, thus we also introduce long-memory feedbacks. 

The mean residual vector follows an unspecified conditional density characterised by 

heteroskedasticity, with a covariance matrix decomposed into volatility and correlation 

elements: 

 

t t t tV R V             (10) 

 

where 
tV  is a diagonal matrix of conditional volatilities and 

tR  is a dynamic correlation 

matrix. 

We model conditional variances by long-memory log-GARCH(1,d,1) processes with variance 

spillovers and feedbacks, and with deterministic components. The outer elements in (10) are 

represented as: 

 

 
 
 

20.5
1,1,1,

0.5 2
2,2, 2,

ln0
,      dg

0 ln

ttt

t t t t

tt t

hh
V VV H

hh





                  
     (11) 

 

where the conditional variances are logarithms of underlying quantities that obey the 

following dynamic equations: 
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   
   

2 2
2 2

1, 1 1, 1
1 11, 1, 11

2 2
2 2

22, 2, 1
2, 1 2, 12

ln ln

0 ln ln

t t
t t

t t

t t
t t

E z
D W

E z

  
  

 

  

                                      

ξ α    (12) 

 

In (12), coefficient matrices have the following representation: 

 

1,1 1,2 1,1 1,2

2,2 2,2

,     
0 0

   
 

   
    
   

α ξ , 

 

and 
tD  and 

tW  are the same deterministic matrices used in (8) (the day-of-the-week dummies 

affect only the evolution of log-energy variances). Furthermore, we restrict model orders to 1 

for simplicity (higher orders can be easily introduced, but in our experience they are not 

needed); 
, ,  1, 2i tz i   are the standardised residuals defined as 0.5

, , ,i t i t i tz h   and with 

 2

1,ln 1.27tE z      under Gaussianity. Finally, we note that the ARCH and GARCH 

matrices enable a dependence of energy variances on temperature variances and innovations. 

As a result, if the off-diagonal coefficients in the ARCH and GARCH matrices are jointly 

equal to zero, the two conditional variances evolve as two independent log-GARCH 

processes. In the proposed model, the introduction of a log-transformation enables the 

removal of the constraints for positivity of conditional variances, thus simplifying the model 

estimation. The conditional variance dynamic could follow alternative specifications, starting 

from the seminal contributions of Engle (1982) and Bollerslev (1986), to the long-memory 

model of Baillie et al. (1996), to the more advanced specifications such as the periodic long-

memory GARCH of Bordignon et al. (2007, 2009). For a survey of possible GARCH 

specifications see Bollerslev et al. (1992, 1994), and Bollerslev (2009). 

Finally, we describe the dynamic evolution of the conditional correlations 
tR , which have 

been introduced to account for the dynamic we observed in preliminary exploratory analysis 

of energy and temperature data. This is further confirmed by the estimate of rolling 

correlations over the variance standardised residuals 
, ,  1, 2i tz i   of our empirical data, see 

Figure 1 and the following section for additional details. Dynamic conditional correlations 

models are now quite common in the literature, and their introduction is due to the works of 

Engle (2002), and Tse and Tsui (2002). Despite the huge number of studies proposing 

correlation models (see the surveys by Bauwens et al., 2006, and Silvennoinen and Terasvirta, 

2009), few specifications enable the introduction of exogenous variables in the correlation 

equation without requiring excessive parameter constraints. We adopt here the model of 

Christodoulakis and Satchell (2002) which proposes a dynamic equation for the Fisher 

transformation of the correlation. The model has a relevant limitation, it cannot be generalised 

to system dimensions higher than two, yet it perfectly fits our bivariate framework. The 

conditional correlation matrix 
tR  and the Fisher transformation of the correlation are equal to: 
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1 11
           ln

1 2 1

t t
t t

t t

r r
R

r r


   
        

        (13) 

 

We then model 
t  as follows: 

 

 0 1 1 2 1, 1 2, 1 3 4t t t t t tz z D W      
     ψ ψ       (14) 

 

where 
tD  and 

tW  are the usual dummy matrices of deterministic components, and the 

innovation is given by the cross-product of GARCH standardised residuals. Given the 

estimates of the parameters in (14), we recover the conditional correlation matrix by inverting 

the Fisher transformation in Equation (13): 

 

 
 

exp 2 1

exp 2 1

t

t

t

r







          (15) 

 

Equation (14) could be also slightly modified to allow for correlation targeting, by acting on 

the intercept 

 

    0 1 2 1 21 t tE D E W                  (16) 

 

where   is the Fisher transformation of the sample correlation between GARCH standardised 

residuals. Finally, we denote by 
tη the uncorrelated residuals, equal to 

 
0.5

1,

2,

1

1

tt

t

tt

zr

zr


  

   
   

η
          (17) 

 

The model outlined in the previous paragraphs potentially contains many parameters. The 

introduction of long-memory in both the mean and variance further increases the 

computational complexity. Therefore, we chose to estimate the model in four steps, at the cost 

of loss in estimation efficiency. At first, we estimated the deterministic mean specification 

using the least squares method, and on the residuals we estimated the dynamic mean 

components by Quasi-Maximum Likelihood while assuming a constant variance matrix for 

the innovations. We then estimated the covariance part following Engle (2002) in another two 

steps. Therefore, we filter out the conditional variance dynamic, and finally we estimate the 

correlation parameters. 
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4.2 Estimating the energy forward curve  

 

Benth et al. (2007) propose a method to construct a smooth curve from observed forward 

prices. Since electricity prices are seasonally dependent, they propose to decompose the curve 

into a seasonal component and a correction term. The correction term is defined as a 

polynomial spline function with a maximum smoothness property, so that the constructed 

curve perfectly replicates the observed market prices. The seasonal component is a parametric 

function which is estimated by least squares. Following Benth et al. (2007) the relationship 

between average forward price and fixed delivery forwards is defined as follows: 

 

        (17) 

 

where:  represents the price at time , today, for receiving a unit of electricity (a 

Megawatt) at a continuous flow during the period ;  and  denote, respectively, 

the start and the end of the settlement period; and  represents the price of a forward at 

time  with delivery at the fixed time . Under the risk-neutral measurement  will be 

equal to the expected value of the underlying asset to be delivered in , that is the electricity 

instantaneous forward price. 

Assume that  futures/forward contracts are observed at time . Let  be the start of the 

settlement period for the contract with the shortest time to delivery, and denote by  the end 

of the settlement period for the contract going furthest in the future. The forward price is split 

into two parts 

 

        (18) 

 

where  and  are two continuous functions representing the seasonality of the forward 

curve and the adjustment function that measures the forward curve’s deviation from the 

seasonality, respectively. As the adjustment function is less sensitive to time as the forward 

maturities go ahead, this suggests that a time-varying  should be flat at the long end and 

therefore,  is assumed. Benth et al. (2007) define the ‘smoothness’ criteria as the 

function  minimising the mean square value of its second derivative on , 

, over the set of continuously twice differentiable functions. Benth et al. (2007) 

show that the smoothest adjustment function with the above properties is a polynomial spline 

of order four. Specifically, this function can be written as  

 

     (19) 

 

where  is the list of dates where overlapping contracts are split into sub-periods 

and the parameters to be found define the following vector 
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. We determine parameters by solving the following 

equality constrained convex quadratic programming problem 

 

          (20) 

 

subject to the connectivity and smoothness constraints of derivatives at the knots, 

, 

 

 

 

 
 

and 

 

 
 

 
 

for i = 1, ..., m. This is a minimisation problem with  constraints. The solution can 

be obtained by using the Lagrange Multiplier Method and solving the following 

unconstrained minimization problem  

 

         (21) 

 

The solution is obtained by solving the following linear equation 

 

          (22) 

 

where 

 

 
 

and the matrix A and b are obtained by formulating all the constraints in a equation system 

 where  is a  matrix and  is a  vector.  
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Finally, we must define a seasonal function . We suggest estimating a sinusoidal function 

similar to that used by Benth et al. (2007): 

 

        (23) 

 

where , , and  are parameters to be estimated, while Y should be calibrated to the year 

length (either 365 or 366 days). 

The difference between the sinusoidal trend and the forward prices are then fitted with a 

polynomial spline function using the maximum smoothness criteria. The solution given above 

to the constrained optimisation problem can be difficult to solve because many restrictions in 

the optimisation problem are close to being linear combinations, thus producing explosive 

results. An example could be given by the presence of monthly contracts within a specific 

quarter, as well as quarterly contracts. If the quarterly contract prices is very close to the 

linear combination of the corresponding monthly contract prices, a solution may not be found. 

Benth et al. (2008) propose solving the problem by using the QR factorisation. Alternatively, 

some contracts could be dropped from the analysis, thereby creating an over-identification 

problem. 

 

 

4.3 Simulating Quanto pay-offs  

 

Following the steps mentioned in Sections 3.1 and 3.2, the generation of the Quanto option 

pay-off is based on the simulation of a number of possible paths of energy prices and average 

temperatures. The central element is thus given by the model outlined in Section 4.1. 

To generate the Quanto pay-off we start with the estimated parameters of the model in 

equations (8)-(14) using a sample from time 1 to T. Assuming that the maturity date is in time 

T+h, we follow these steps to generate one possible option payoff: 

i) generate the uncorrelated residuals 
tη  for t=T+1, T+2, … T+h; in order to avoid 

misspecification errors in the joint distribution of model residuals, we suggest generating 

these series by resampling from the in-sample model residuals; 

ii) given the uncorrelated residuals we proceed backward and simulate the variance 

standardised but correlated residuals 
1, 2, t t tz z    z , the mean residuals 

1, 2, t t t     ε , the 

average temperature and energy possible paths 
tx , and 

ty ; all these quantities will be 

simulated for t=T+1, T+2, … T+h, and will represent a possible future evolution of the 

observed paths up to time T (thereby being conditional on the real data available up to time 

T); 

iii) in the case of the Financial approach, the real trend will be now replaced by the forward 

curve estimated in accordance with Section 4.2; 

iv) given the simulated paths of energy price and average daily temperature, determine the 

value of the HDD index in the range T+1 to T+h, and the average energy price in the same 

range; 
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v) determine the possible pay-off of the option for the simulated path, using the Quanto 

formula in (6). 

We then repeat steps i)-v) several times and so recover a density for the Quanto pay-off. The 

option price will then be determined following the steps in Sections 3.1 and 3.2. 

 

 

5. Empirical results 

 

5.1. Data description 

 

The empirical part of this research makes use of daily time series of energy prices provided by 

the Nord Pool electricity spot market (Nordic Elspot) and of daily average air temperatures 

provided by the National Climatic Data Center (United States). Time series of daily mean 

temperature for Oslo (Norway) refer to the period 1 January 1978 to 31 December 2008. Time 

series of energy prices refer to the period 1 January, 1999
5
 to 31 December, 2008. The daily 

energy price is equal to the arithmetic average of the hourly prices within a specific day.
6
 The 

reference currency for the entire market is the euro, and prices refer to one Megawatt per hour 

(MWh). Furthermore, in order to apply the Financial approach for Quanto valuation we 

consider a range of futures/forward prices that we report in Table 6. 

 

 

5.2. Preliminary analysis  

 

Table 7 reports the descriptive statistics of electricity returns in the Oslo area and Table 8 

reports the autocorrelation statistics for electricity prices. One of the most discussed features 

of energy prices is the so-called ‘holiday effect’, the impact on electricity returns of the 

weekends. We have obtained a list of Norwegian holidays and weekends from 

www.timeanddate.com. Using the information provided by this website, we define four 

subsets of returns within our sample: the returns obtained between two working days (WW), a 

working day and a holiday (WH), a holiday and a working day (HW), and two consecutive 

days of holiday (HH), respectively. Descriptive statistics for these subsets are reported in 

columns 3 to 6 of Table 7. The last four columns of the same table refer to meteorological 

seasons, where the winter includes the months of December, January and February, and the 

other seasons follow. By looking at Table 7 we can make a number of considerations. At first, 

we note that the Oslo data is characterised by zero average return, and a strong Monday effect 

(increase in prices after holidays) which is observed in column HW. The reverse effect, 

associated with column WH, shows evidence of negative returns. The remaining two 

partitions of the whole sample, WW and HH, are less relevant for the purpose of the actual 

paper; nevertheless, we note that both provide an average negative return. Furthermore, 

                                                 
5 Older observations are unavailable. 
6 Note that every year, due to the transition from standard time to daylight savings time and vice versa, there is a 

day in spring with 23 hours, as well as an autumn day with 25 hours.  
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energy returns are right skewed and leptokurtic, and the variance of electricity price is higher 

in summer and lower in autumn. In addition, the winter and spring variance is similar to the 

variance calculated for the entire sample. Finally, when focusing on dynamic properties of the 

series, the unit root hypothesis cannot be rejected. Table 8 shows that electricity returns and 

squared returns have several significant autocorrelation patterns: daily, weekly, quarterly, and 

yearly. These elements will be important in the time series modelling. 

Table 9 reports a descriptive analysis of Oslo temperature data. We define meteorological 

seasons on a monthly basis, winter contains the months of December, January and February, 

Spring includes April, May and June and so on. In Table 9, the mean increases from winter to 

summer, while the volatility decreases. Furthermore, temperature distribution is not normal, 

the unit root hypothesis cannot be accepted, and data shows a strong autocorrelation pattern 

both in mean and variance (Table 10).  

Finally, given the purpose of jointly modelling energy and temperature, we also examine the 

relation between the two series from a descriptive viewpoint. We observe a significant 

negative correlation between time series of log-changes in energy prices and raw temperatures 

during winter and autumn (Table 11). If we consider changes in energy prices and changes in 

daily temperature then correlations are statistically significant for all seasons and over the 

entire sample. In particular, we note that the correlations are statistically significant and 

negative with only the exception of summer (positive and significant). Our model confirms 

this preliminary finding and shows evidence of periodic patterns in the correlations between 

energy and temperature (see following section).    

 

INSERT HERE TABLES 7-11 

 

 

5.3. Results of model estimation and simulation 

 

We estimate the model presented in Section 4.1 for Oslo energy price and temperature, and 

report the results in Tables 12 to 15. We also estimate the model with the multi-step approach 

described in Section 4.1. This method clearly does not achieve full efficiency but enables a 

relatively fast model estimation (less than two hours). We estimate the model using data up to 

December 2007 for the purpose of pricing a contract that matures at the end of 2008. 

Estimated parameters show that the deterministic component of energy includes a trend and a 

yearly cosine wave, see Table 12. The temperature periodic component seems much more 

relevant, and it is governed by a combination of sine and cosine waves. Energy prices also 

show evidence of Friday, Sunday and Non-Working day effects. In these cases, the average 

energy price is lower than in the other days. Notably, the Monday effect is not present. 

Table 13 reports the coefficients driving the stochastic mean dynamics. Both energy and 

temperature series, in deviation from their deterministic components, show long-memory 

effects. Energy long-range dependence is stronger than that of temperature. Furthermore, 

energy prices have a short-term dynamic that depends on lags of energy (lags 1, 3, 5, and 6) 

and temperature (lags 2, 4, 5, 6, and 7). This last finding supports the dependence of energy 

prices on temperature deviations with respect to its deterministic component. Such a result is 

further confirmed by the significance of the limited, and weekly S-VAR impact of 
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temperature on energy prices (energy S-VAR is also statistically significant). Temperature 

dynamic has a mild short-term component with significant lags 1, 5, 7, together with the SAR 

term. Finally, both series have a statistically significant MA term, and energy does not depend 

on lagged temperature innovations. 

The variance dynamic of temperature (see Table 14) does not depend on periodic 

components, and has a low persistence compared to the financial time series. This was an 

expected result. Energy variances depend on lagged temperature variances (further supporting 

the joint modelling of the two variables), on a yearly cosine wave, and on Monday and Friday 

dummies. 

Finally, we focus on the correlation dynamic shown in Table 15. In Section 4.1 we propose a 

model including periodic elements in the correlation dynamic. To support our choice, Figure 

1 reports the 60 days of rolling correlations between the energy and temperature standardised 

residuals 
1, 2, t t tz z    z : the graph shows evidence of a strong periodic pattern. Therefore, it 

is not surprising to see in Table 15 verification that the correlation dynamic is highly 

persistent and shows relevant sine and cosine waves. 

 

INSERT HERE TABLES 12-15 AND FIGURE 1 

 

To implement the Financial valuation approach we also estimated for the electricity prices in 

Oslo between 1999-2007 a sinusoidal function similar to that used by Benth et al. (2007) and 

reported in Section 4.2, namely, Equation (23). We obtain the 2008 values of the sinusoidal 

function from the following equation: 

 

    (24) 

 

where in parenthesis we report the coefficient standard errors. 

We then fitted the difference between the sinusoidal trend in (24) and the forward prices for 

maturities included in Table 6 with a polynomial spline function by using the maximum 

smoothness criteria (see Section 4.2). To overcome an overidentification problem, we 

eliminated some closely related contracts.
7
 Figure 2 displays the forward curve on 28 

December, 2007; the last trading day in 2007 for the Nord Pool derivative market. 

 

INSERT HERE FIGURE 2 

 

Using the estimated model and forward curve, we proceed to the simulation of 10000 possible 

paths for the energy price and the average temperature for 2008. We decided to limit the 

                                                 
7 Specifically, we drop the contracts with tickers: ENOW02-08, ENOW03-08, ENOW04-08, ENOQ1-08, 

ENOQ2-08, ENOYR-09, SYOSLJAN-08, SYOSLFEB-08, SYOSLMAR-08, SYOSLQ4-08. These contracts are 

not included as restrictions in the forward curve estimation because they generate overidentification problems. 

For instance, this is the case of the monthly forward contracts corresponding to January, February and March and 

the first quarter forward contract. The sum of the three forward prices in January, February and March is almost 

equal to three times the first quarter forward price (they differ by only a small amount). 
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number of simulations to this value because the benefits of increasing the number would have 

been very marginal. We report in Table 16 and in Figures 3 and 4 some descriptive statistics 

of the Monte Carlo simulations. 

 

INSERT HERE FIGURES 3-4 AND TABLE 16 

 

The distribution of HDD indices for the analysed periods appears to be symmetric and close 

to the Gaussian. The simulated energy prices have a strong right-sided asymmetry, coherent 

with the real energy time series. This feature is very important and it will have a relevant 

impact on the premiums of Quanto options. Summarising, the simulated data closely 

replicates the features of real temperature and energy time series. 

 

 

5.4. Valuation of Quanto options 

 

We used the simulations above for pricing a Quanto option under both an Actuarial and a 

Financial approach. We considered a set of different Quanto options where the underlying 

factors are the HDD index (based on the average daily temperature) and the average delivery 

period energy price for the Oslo area. We set the strikes for these options at the historically 

average value for temperature and to the closing forward prices for electricity. Therefore, 

these options can be perceived as ‘at the money’ options. Tables 17 and 18 include the 

contract specification and risk-free rates used in the pricing process, while Table 19 contains 

the pricing results. 

 

INSERT HERE TABLES 17 - 18 

 

For the January delivery period the Actuarial and Financial methods provide similar prices, 

and the difference is less than 2.5%. For other delivery periods the Actuarial approach 

overestimates the option premiums, especially for option type II, where the difference in 

premiums for April is about 60%. On average, premiums provided by the Actuarial approach 

are 14% higher than those provided by the Financial approach for the type I option, and 27% 

higher for the type II option. The reason of such huge differences lays in the calibration of the 

energy price evolution by the forward curve. In this way, the Financial approach introduces 

market expectation about the future evolution of energy into the Quanto prices; that is to say, 

risk adjusted expected electricity prices.  

It is important to note, that in both approaches, the real market prices will be slightly higher 

due to the inclusion of additional factors, e.g. current portfolio structure, remuneration, costs 

of contract writing and exchange transactions, risk-loading factors for model and market 

uncertainty, etc. 
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6. Conclusions 

 

In this paper we propose a bivariate model capturing some well-known stylised facts of 

energy log-prices and temperature, together with their interdependence. Furthermore, we 

show evidence that the correlation between these quantities has a periodic behaviour, an 

element not yet discussed in the literature. This econometric model was employed for the 

purpose of Quanto options pricing using two approaches; an Actuarial approach and a 

Financial approach (the latter approach differing from the former approach because it includes 

market expectations about the evolution of energy prices). We provide an empirical 

application showing the benefits of the model proposed and of the Financial approach for 

pricing Quanto contracts. We demonstrate that premiums are, in most cases, lower for the 

Financial approach, a positive outcome which is coupled with transparency and coherency as 

the approach benefits from all the available information on the market. 
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Table 1. Additional cost (€) under different spot market price (€/MWh) and temperature

(HDD) scenarios 

Temperature (HDD) €29/MWh €37/MWh €45/MWh €53/MWh €61/MWh 

1900 -1,740,000 -2,220,000 -2,700,000 -3,180,000 -3,660,000 

2050 -1,305,000 -1,665,000 -2,025,000 -2,385,000 -2,745,000 

2200 -870,000 -1,110,000 -1,350,000 -1,590,000 -1,830,000 

2350 -435,000 -555,000 -675,000 -795,000 -915,000 

2500 0 0 0 0 0 

2650 435,000 555,000 675,000 795,000 915,000 

2800 870,000 1,110,000 1,350,000 1,590,000 1,830,000 

2950 1,305,000 1,665,000 2,025,000 2,385,000 2,745,000 

3100 1,740,000 2,220,000 2,700,000 3,180,000 3,660,000 

Red negative numbers denote an increase in cost, while black positive numbers identify a 

decrease in total cost. 

 

 

Table 2. Additional revenues (€) under different spot market price (€/MWh) and

temperature (HDD) scenarios 

Temperature (HDD) €29/MWh €37/MWh €45/MWh €53/MWh €61/MWh 

1900 -2,970,000 -2,970,000 -2,970,000 -2,970,000 -2,970,000 

2050 -2,227,500 -2,227,500 -2,227,500 -2,227,500 -2,227,500 

2200 -1,485,000 -1,485,000 -1,485,000 -1,485,000 -1,485,000 

2350 -742,500 -742,500 -742,500 -742,500 -742,500 

2500 0 0 0 0 0 

2650 742,500 742,500 742,500 742,500 742,500 

2800 1,485,000 1,485,000 1,485,000 1,485,000 1,485,000 

2950 2,227,500 2,227,500 2,227,500 2,227,500 2,227,500 

3100 2,970,000 2,970,000 2,970,000 2,970,000 2,970,000 

Red negative numbers denote a decrease in revenues, while black positive numbers identify 

an increase in revenues. 

 

 

Table 3. Deviations of the power retailer margin (€) under different spot market price 

(€/MWh) and temperature (HDD) scenarios 

Temperature (HDD) €29/MWh €37/MWh €45/MWh €53/MWh €61/MWh 

1900 -1,230,000 -750,000 -270,000 210,000 690,000 

2050 -922,500 -562,500 -202,500 157,500 517,500 

2200 -615,000 -375,000 -135,000 105,000 345,000 

2350 -307,500 -187,500 -67,500 52,500 172,500 

2500 0 0 0 0 0 

2650 307,500 187,500 67,500 -52,500 -172,500 

2800 615,000 375,000 135,000 -105,000 -345,000 

2950 922,500 562,500 202,500 -157,500 -517,500 

3100 1,230,000 750,000 270,000 -210,000 -690,000 

Red negative numbers denote losses while black positive numbers identify profits. 
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Table 4. Specification of a Quanto option based on HDD and energy price 

Protection period 1 November 2009 – 31 March 2010 

Temperature index HDD Index cumulated during the protection period  

Strike HDD (K2) 2500 

Energy Index (E) Average price of Nord Pool spot price (arithmetic) during protection period  

Strike energy (K1) 49.5 €/MWh 

Tick value  € 100 MWh / HDD 

Payout formula MAX(0,(K2 - HDD)*tick*(K1 - E)) 

Maximum payoff (cap) € 1,000, 000  

 

 

Table 5. Payoff (€) from the Quanto option in Table 4 under different spot market price

(€/MWh) and temperature (HDD) scenarios 

Temperature (HDD) €29/MWh €37/MWh €45/MWh €53/MWh €61/MWh 

1900 1,230,000 750,000 270,000 0 0 

2050 922,500 562,500 202,500 0 0 

2200 615,000 375,000 135,000 0 0 

2350 307,500 187,500 67,500 0 0 

2500 0 0 0 0 0 

2650 0 0 0 52,500 172,500 

2800 0 0 0 105,000 345,000 

2950 0 0 0 157,500 517,500 

3100 0 0 0 210,000 690,000 
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Table 6. Market data from Nord Pool (December 28, 2007) 

This table displays the closing prices of futures contracts (weekly maturities) and forward 

contracts (monthly, quarterly, and yearly maturities) for electricity seasoned at Nord Pool on 

the last trading day of 2007. Contracts at the bottom of the table whose ticker begins with 

‘SYOSL’ are the Contracts for Differences referred to in the Oslo bidding area – and enable 

the estimation of specific forward curves for this area. The remaining contracts are those 

whose underlying is the system price for the whole Nordic area. Columns with headings 

‘Startdate’ and ‘Enddate’ define the delivery period for each contract. 

 

Ticker Closing price Startdate Enddate 

ENOW01-08 47.79 2007-12-31 2008-01-06 

ENOW02-08 50.50 2008-01-07 2008-01-13 

ENOW03-08 51.50 2008-01-14 2008-01-20 

ENOW04-08 52.48 2008-01-21 2008-01-27 

ENOMJAN-08 51.11 2008-01-01 2008-01-31 

ENOMFEB-08 52.95 2008-02-01 2008-02-29 

ENOMMAR-08 49.90 2008-03-01 2008-03-31 

ENOMAPR-08 49.60 2008-04-01 2008-04-30 

ENOMMAY-08 47.60 2008-05-01 2008-05-31 

ENOMJUN-08 47.98 2008-06-01 2008-06-30 

ENOQ1-08 51.55 2008-01-01 2008-03-31 

ENOQ2-08 48.55 2008-04-01 2008-06-30 

ENOQ3-08 49.00 2008-07-01 2008-09-30 

ENOQ4-08 53.93 2008-10-01 2008-12-31 

ENOQ1-09 56.15 2009-01-01 2009-03-31 

ENOQ2-09 48.90 2009-04-01 2009-06-30 

ENOQ3-09 48.70 2009-07-01 2009-09-30 

ENOQ4-09 52.90 2009-10-01 2009-12-31 

ENOYR-09 51.70 2009-01-01 2009-12-31 

ENOYR-10 50.88 2010-01-01 2010-12-31 

ENOYR-11 50.10 2011-01-01 2011-12-31 

ENOYR-12 50.17 2012-01-01 2012-12-31 

SYOSLJAN-08 -1.00 2008-01-01 2008-01-31 

SYOSLFEB-08 -1.00 2008-02-01 2008-02-29 

SYOSLMAR-08 -1.00 2008-03-01 2008-03-31 

SYOSLQ1-08 -1.00 2008-01-01 2008-03-31 

SYOSLQ2-08 -1.00 2008-04-01 2008-06-30 

SYOSLQ3-08 -0.50 2008-07-01 2008-09-30 

SYOSLQ4-08 -0.50 2008-10-01 2008-12-31 
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Table 7: Summary statistics of electricity prices 
This table reports the descriptive statistics of electricity returns in Oslo (basic data provided by the Nord Pool market). Each column heading contains between brackets the 

number of observations. We have examined the holiday effect on electricity returns. The WW, WH, HW and HH headings refer to the returns obtained between two working 

days, a working day and a holiday, a holiday and a working day, and two consecutive days of holiday, respectively. The last four columns refer to meteorological seasons, 

where the winter is defined as the months of December, January, February and so on. Kruskal-Wallis statistics test equality between the whole sample and medians in each 

column time series. Levene statistics test equality between the whole sample and variances in each column time series. Skewness means the skewness coefficient and has the 

asymptotic distribution N(0; 6/T) under normality, where T is the sample size. The null hypothesis tests whether the skewness coefficient is equal to zero. Kurtosis means the 

excess kurtosis coefficient and has an asymptotic distribution of N(0 ; 24/T) under normality.  The hypothesis tests whether the excess kurtosis is equal to zero. The ADF and 

PP refers to the Augmented Dickey and Fuller (1981) and Phillips and Perron (1988) unit root tests on the original log-price time series. One-sided p-values computed 

following Mackinnon (1996) for the ADF and PP test are displayed as . (corresponding to the process with intercept and trend). The number of lags in the ADF test and the 

truncation lag in the PP test are obtained by information criteria (Schwarz and Newey and West, respectively). Marginal significance levels are displayed as [.] in the 

remaining tests.  

 
 WHOLE (3652) WW (1970) WH (548) HW (549) HH (585) Winter (902) Spring (920) Summer (920) Autumn (910)

Mean x 100 [=0] 0.03 [0.86] -0.58 [0.00] -4.60 [0.00] 9.49 [0.00] -2.42 [0.00] -0.08 [0.78] -0.33 [0.27] 0.33 [0.38] 0.19 [0.25] 

Median x100 [kruskal-wallis] -0.28 -0.39 [0.13] -3.27 [0.00] 6.57 [0.00] -1.14 [0.00] -0.47 [0.21] -0.69 [0.01] 0.08 [0.03] -0.03 [0.11] 

SD [levene] 0.09 0.07 [0.00] 0.08 [0.97] 0.10 [0.00] 0.07 [0.00] 0.09 [0.47] 0.09 [0.06] 0.11 [0.00] 0.05 [0.00] 

Skewness [=0] -0.01 [0.74] -2.02 [0.00] -2.56 [0.00] 3.67 [0.00] -6.36 [0.00] 2.34 [0.00] 0.70 [0.00] -1.90 [0.00] 1.25 [0.00] 

Kurtosis [=0] 35.72 [0.00] 61.38[0.00] 20.49 [0.00] 27.61 [0.00] 89.66 [0.00] 51.93 [0.00] 7.81 [0.00] 30.14 [0.00] 7.52 [0.00] 

Minimum -1.19 -1.19 -0.81 -0.12 -1.12 -0.81 -0.53 -1.19 -0.18 

Maximum 1.25 0.80 0.36 1.25 0.32 1.25 0.61 0.80 0.36 

ADF -4.28 0.00         

PP -4.97 0.00         

 

 

 



 

Table 8: Autocorrelation statistics for electricity prices 

This table reports the autocorrelation statistics of electricity returns for Oslo in the Nord Pool 

market. The column (.) reports the autocorrelation coefficient, while the Q(.) and Q
2
(.) labels 

identify columns containing the Ljung-Box tests for serial correlation on the levels and on 

their squares, respectively. At lag k, both test statistics are distributed as a Chi-square with k 

degrees of freedom. We report the p-values in brackets. 

 
Lags  Q(.) Q2(.) 

 -0.04 [0.02] 5.57 [0.02] 182.59 [0.00] 

 0.25 [0.00] 404.68 [0.00] 855.68 [0.00] 

 0.26 [0.00] 717.46 [0.00] 1297.75 [0.00] 

 0.29 [0.00] 1120.58 [0.00] 1438.98 [0.00] 

 0.21 [0.00] 2618.56 [0.00] 1596.19 [0.00] 

 0.21 [0.00] 12149.22 [0.00] 1816.69 [0.00] 

 

 

 

 

Table 9. Summary statistics of temperature in Oslo - raw data [°C] 

 
This table reports the descriptive statistics of temperature data in Oslo (raw data provided by the National 

Climate Data Center). Each column heading contains between brackets the number of observations. We have 

also examined meteorological seasons, where the winter is defined as the December, January and February 

months and so on. Kruskal-Wallis statistic tests equality between the whole sample and medians in each column 

time series. Levene statistic tests equality between the whole sample and variances in each column time series. 

Jarque-Bera statistic tests whether the time series is normally distributed. The reported probability [p-value] is 

the probability that a Jarque-Bera statistic exceeds (in absolute value) the observed value under null hypothesis 

of a normal distribution. The ADF and PP refer to the Augmented Dickey and Fuller (1981) and Phillips and 

Perron (1988) unit root tests on the original log-price time series. One-sided p-values computed for the ADF and 

PP test are displayed as . (corresponding to the process with intercept and trend). The number of lags in the 

ADF test and the truncation lag in the PP test are obtained by information criteria (Schwarz and Newey and 

West, respectively).   

 

  WHOLE (11323) Winter (2798) Spring (2852) Summer (2852) Autumn (2821) 

Mean 4.48  -5.52  3.92  14.70  4.62  

Median [Kruskal-Wallis] 4.64  -4.64 [0.0] 3.89 [0.0] 14.50 [0.0] 5.11 [0.17] 

SD [Levene] 8.95  6.17 [0.0] 5.95 [0.0] 3.06 [0.0] 5.78 [0.0] 

 Skewness -0.37  -0.61  -0.27  0.19  -0.36  

Kurtosis 2.61  2.93  3.28  2.68  2.71  

Minimum -27.94  -27.94  -18.86  5.50  -15.50  

Maximum 23.64  7.36  19.31  23.64  18.36  

Jarque-Bera [p-value]  328.3 [0.00]   175.2 [0.00]   43.2 [0.00]   29.7 [0.00]   71.2 [0.00]  

ADF [p-value] -6.93 [0.00] -14.7 [0.00] -13.11 [0.00] -17.70 [0.00] -14.45 [0.00] 

PP [p-value] -13.51 [0.00] -16.54 [0.00] -13.08 [0.00] -17.32 [0.00] -14.68 [0.00] 
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Table 10. Autocorrelation statistics of temperature data 

This table reports the autocorrelation statistics of time series of daily temperature in Oslo after 

removing trend and seasonality in mean. The column (.) reports the autocorrelation 

coefficient, while the Q(.) and Q
2
(.) labels identify columns containing the Ljung-Box tests 

for serial correlation on the levels and on squares, respectively. At lag k, both test statistics are 

distributed as a Chi-square with k degrees of freedom. We report the p-values in brackets. 

 
Lags  Q(.) Q2(.) 

 0.80 [0.00] 7298.93 [0.00] 5732.10 [0.00] 

 0.61 [0.00] 11517.06 [0.00] 8342.09 [0.00] 

 0.49 [0.00] 14223.61 [0.00] 9981.17 [0.00] 

 0.4 [0.00] 16070.93 [0.00] 11169.77 [0.00] 

 0.34 [0.00] 17373.74 [0.00] 12033.06 [0.00] 

 0.19 [0.00] 20672.91 [0.00] 14949.36 [0.00] 

 0.14 [0.00] 23438.71 [0.00] 17490.67 [0.00] 

 0.06 [0.00] 26204.58 [0.00] 21723.53 [0.00] 

 0.00 [0.00] 26405.62 [0.00] 22595.09 [0.00] 

 0.00 [0.00] 26470.80 [0.00] 28367.76 [0.00] 

 0.05 [0.00] 27662.87 [0.00] 42254.09 [0.00] 

 

 

 

Table 11. Correlation between electricity and temperature 

 WHOLE WINTER SPRING SUMMER AUTUMN

Energy log-price changes 

and temperature levels 
-0.0235 -0.1317* -0.0500 0.0160 -0.1024* 

Energy log-price changes 

and temperature changes 
-0.2102* -0.2644* -0.2880* 0.1146* -0.1163* 

* indicates significant at the 5% of significant level. 

 

 

 

Table 12. Coefficients in the mean deterministic component 

Energy Temperature 

Coeff. St.dev. T-stat Coeff. St.dev. T-stat 

βi,1: Constant 2.314 0.148 15.683 5.477 0.202 27.074 

βi,2: Linear trend 0.332 0.062 5.388  

βi,3: Yearly cosine wave 0.211 0.073 2.888 -10.242 0.297 -34.486 

βi,4: Yearly sine wave -3.513 0.269 -13.043 

δ1,1: Friday -0.021 0.006 -3.600  

δ1,3: Sunday -0.031 0.011 -2.935  

δ1,3: Non-working days -0.065 0.014 -4.681  

The table reports estimated coefficients together with their standard errors and T-statistics. Note that i=1 for 

Energy and i=2 for temperature. The last three coefficients enter only in the energy equation. 
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Table 13. Coefficients in the mean dynamic component 

Energy Temperature 

Coeff St.dev. T-stat Coeff St.dev. T-stat 

di :Memory 0.397 0.059 6.731 0.189 0.046 4.101 

ø1,1,1: Energy (t-1) 0.134 0.050 2.693    

øi,2,1: Temperature (t-1) -0.004 0.003 -1.279 0.194 0.095 2.050 

ø1,1,2: Energy (t-2) -0.001 0.046 -0.024    

øi,2,2: Temperature (t-2) 0.109 0.002 52.716 0.001 0.070 0.012 

ø1,1,3: Energy (t-3) 0.060 0.017 3.487    

øi,2,3: Temperature (t-3) 0.000 0.001 0.031 -0.026 0.014 -1.809 

ø1,1,4: Energy (t-4) 0.001 0.018 0.043    

ø1,2,4: Temperature (t-4) 0.037 0.001 57.233 0.001 0.017 0.044 

ø1,1,5: Energy (t-5) 0.356 0.017 21.546    

øi,2,5: Temperature (t-5) 0.006 0.001 10.242 0.230 0.015 15.529 

ø1,1,6: Energy (t-6) 0.203 0.017 11.853    

øi,2,6: Temperature (t-6) -0.004 0.001 -7.114 0.026 0.017 1.558 

ø1,1,6: Energy (t-7) -0.007 0.032 -0.222    

øi,2,7: Temperature (t-7) 0.017 0.002 8.031 -0.168 0.043 -3.908 

ξ1,1,1: Energy SAR(1) -0.243 0.034 -7.056    

ξi,2,1: Temperature SAR(1) -0.007 0.002 -3.074 0.189 0.043 4.450 

θ1,1,1: MA(1) Energy 0.372 0.061 6.059    

θi,2,1: MA(1) Temperature 0.001 0.003 0.340 0.454 0.096 4.733 
The table reports estimated coefficients together with their standard errors and T-statistics. Note that i=1 for 

Energy and i=2 for temperature. Non-significant coefficients are reported in italics. 
 

 

 

 

 

Table 14. Coefficients of the variance dynamic 

Energy Temperature 

Coeff St.dev. T-stat Coeff St.dev. T-stat 

ωi: intercept -0.684 0.317 -2.156 0.645 0.366 1.764

αi,i: ARCH 0.176 0.022 7.889 0.042 0.013 3.271

α1,2: temperature innovations (t-1) -0.023 0.014 -1.667       

ξi,i: GARCH 0.730 0.057 12.837 0.618 0.225 2.748

ξ1,2: temperature variances (t-1) 0.066 0.029 2.303       

γi,1: Yearly Cosine wave -0.206 0.096 -2.141 0.186 0.117 1.597

γi,2: Yearly Sine wave 0.007 0.023 0.285 0.029 0.031 0.944

φ1,1: Monday 0.754 0.184 4.092       

φ1,2: Friday 0.498 0.242 2.057       

φ1,3: Saturday -0.182 0.461 -0.396       

φ1,4: Non-working days 0.401 0.264 1.519       
The table reports estimated coefficients together with their standard errors and T-statistics. Note that i=1 for 

Energy and i=2 for temperature. Non-significant coefficients are reported in italics. 
 

 

 



 32

Table 15. Coefficients of correlation dynamic 

Coeff St.dev. T-stat 

ψ0: intercept -0.186 0.013 -14.080 

ψ1: innovations -0.013 0.006 -2.213 

ψ2: persistence 0.943 0.027 35.001 

ψ3,1: yearly cosine wave -0.014 0.005 -2.563 

ψ3,2: half-yearly cosine wave 0.006 0.002 2.470 

ψ3,3: quarterly cosine wave 0.005 0.003 2.002 

ψ4,1: yearly sine wave 0.001 0.002 0.127 

ψ4,2: half-yearly sine wave 0.001 0.002 0.604 

ψ4,3: quarterly sine wave -0.004 0.002 -2.239 
The table reports estimated coefficients together with their standard errors and T-statistics.  

Non-significant coefficients are reported in italics. 
 

 

Table 16. Monte Carlo simulations of weather and energy variables  

This table reports the mean, minimum, maximum, positive and negative semi-deviation of 

Monte Carlo simulated weather and energy variables appearing in Equation (15) that will be 

used to compute Quanto options payouts. In Panels A and B the model appearing in Section 4 

and estimated in Section 5.2 is used to obtain 10,000 simulations for the whole of year 2008. 

In Panel C, the Monte Carlo simulation of the energy variable is carried out after the 

estimated trend of the process for energy prices is substituted with the risk-neutral trend 

appearing in Figure 2.  

 

Panel A. HDD simulations with the real estimated distribution. 

Statistics January February March April Autumn 

Minimum 332.36 323.43 256.62 128.63 937.57 

Mean 688.87 638.02 571.98 397.31 1,528.51 

Maximum 1,029.20 970.53 948.53 660.40 2,212.05 

Semi-deviation (-) -53.12 -54.84 -50.10 -40.01 -96.61 

Semi-deviation (+) 53.78 53.71 48.98 40.00 98.60 

 

Panel B. Average energy prices simulations with the real estimated distribution. 

Statistics January February March April Autumn 

Minimum 12.95 8.97 13.39 10.11 24.96 

Mean 43.50 42.73 38.66 34.98 46.47 

Maximum 244.75 198.56 119.97 108.18 106.61 

Semi-deviation (-) -10.09 -13.13 -8.59 -7.25 -5.44 

Semi-deviation (+) 4.40 5.54 4.44 4.02 3.79 

 

Panel C. Average energy prices simulations with the risk-neutral (calibrated) distribution. 

Statistics January February March April Autumn 

Minimum 12.75 12.68 18.35 19.42 26.23 

Mean 43.30 46.43 43.62 44.28 47.73 

Maximum 244.55 202.27 124.94 117.48 107.87 

Semi-deviation (-) -10.09 -13.13 -8.59 -7.25 -5.44 

Semi-deviation (+) 4.40 5.54 4.44 4.02 3.79 
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Table 17. Specification of Quanto options based on HDD and energy price for Oslo 

Temperature index 

(HDD) 

Index with base 18C cumulated during protection period basing on readings from 

meteorology station in Oslo (WMO 1384) 

Energy Index (E) Nord Pool spot price (monthly arithmetic average) during protection period  

Tick value €10  × MWh / HDD 

Maximum payout No limit 

Payout formula for 

Quanto option I MAX[0,(K2-HDD)*tick*(K1 - E)] 

Payout formula for  

Quanto option II MAX[0,(HDD-K2)*tick*(K1 - E)] 

Protection period January 2008 February 2008 March 2008 April 2008 Autumn 2008 

Strike energy (K1)* 50.11 51.95 48.9 49.6 53.43 

Strike HDD (K2)** 683 622 589 400 1579 

* Forward prices (€/MWh) for Oslo electricity prices at Nord Pool in 28 December, 2007; to be used 

as strikes for energy prices. These prices are closing prices. The Autumn protection period refers to 

the 4th quarter: October, 1; to December, 31.  

** 10 years average HDD decreased by 2 points for each month and decreased by 5 points for each quarter 

to be used as strikes for weather index with dealer margin included. 

 

 

 

Table 18. Euribor(%) December 31st, 2007 

 

Period act/360 log. Rate 

1 week 4.141 4.139 

2 weeks 4.175 4.172 

3 weeks 4.228 4.223 

1 month 4.288 4.280 

2 months 4.494 4.477 

3 months 4.684 4.657 

4 months 4.698 4.662 

5 months 4.702 4.657 

6 months 4.707 4.652 

7 months 4.713 4.649 

8 months 4.716 4.643 

9 months 4.725 4.643 

10  months 4.732 4.641 

11 months 4.739 4.639 

12 months 4.745 4.636 
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Table 19. Quanto options valuation 

The last row in each panel reports the final price for each given type of option. In both 

approaches the final price is the mean value discounted with the risk-free rates. Panels A and 

B represent pure Actuarial approach, while panels C and D represent the Financial approach 

where in the Monte Carlo simulation the estimated trend of the energy prices is calibrated 

with the risk-neutral trend (forward curve of energy prices) appearing in Figure 1 and then 

discounted with the risk-free rates. Panel E shows the the real pay-offs of Quanto options 

using the true temperature and electricity prices in 2008.  

 

Panel A. Actuarial approach to Quanto option I 

Statistics January February March April Autumn 

Mean € 4,966 € 6,674 € 7,069 € 5,385 € 10,365

Standard deviation € 10,227 € 13,292 € 10,589 € 8,671 € 15,700

Value at Risk 95% € 22,430 € 30,625 € 29,197 € 23,441 € 43,707

Value at Risk 99% € 40,050 € 56,395 € 46,442 € 38,416 € 69,091

Maximum € 283,731 € 243,060 € 99,101 € 89,969 € 133,427

Final price € 4,948 € 6,625 € 6,987 € 5,302 € 9,896
 

Panel B. Actuarial approach to Quanto option II 

Statistics January February March April Autumn 

Mean € 2,160 € 3,201 € 1,730 € 2,818 € 2,148

Standard deviation € 4,221 € 5,781 € 3,834 € 4,886 € 5,101

Value at Risk 95% € 10,652 € 15,607 € 9,898 € 13,408 € 12,465

Value at Risk 99% € 18,904 € 26,024 € 17,688 € 20,995 € 24,613

Maximum € 95,235 € 56,792 € 39,657 € 43,951 € 61,797

Final price € 2,152 € 3,178 € 1,710 € 2,774 € 2,050

 

Panel C. Financial approach to Quanto option I 

Statistics January February March April Autumn 

Mean € 5,000 € 6,322 € 5,591 € 3,450 € 9,483

Standard deviation € 10,260 € 13,158 € 8,874 € 6,013 € 14,606

Value at Risk 95% € 22,590 € 28,781 € 23,532 € 15,081 € 40,265

Value at Risk 99% € 40,455 € 55,778 € 39,572 € 26,760 € 64,671

Maximum € 283,443 € 251,101 € 112,137 € 98,287 € 127,495

Final Price € 4,982 € 6,275 € 5,526 € 3,397 € 9,054
 

Panel D. Financial approach to Quanto option II 

Statistics January February March April Autumn 

Mean € 2,206 € 2,256 € 1,097 € 1,133 € 1,905

Standard deviation € 4,280 € 4,564 € 2,784 € 2,459 € 4,633

Value at Risk 95% € 10,846 € 11,725 € 6,575 € 6,201 € 11,303

Value at Risk 99% € 19,078 € 21,457 € 13,239 € 11,490 € 22,413

Maximum € 94,892 € 49,769 € 44,689 € 36,211 € 56,804

Final price € 2,198 € 2,239 € 1,084 € 1,116 € 1,818

 

Panel E. Real Quanto pay-offs in 2008 

Quanto option I €4,697 €15,051 0 €3,247 0 

Quanto option II 0 0 €317 0 €1,729 
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Figure 1. 60 days rolling correlations between energy and temperature variance standardised 

residuals. 
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Figure 2. Oslo forward curve for the year 2008 computed on 28 December, 2007. 
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Figure 3. Distribution of simulated HDD values for Oslo for different contract option periods. 
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Figure 4. Distribution of simulated energy meanprices for Oslo for different contract option 

periods. 
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