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ABSTRACT

Financial institutions hold risks in their investments that can potentially affect
their ability to serve their clients. For banks to weigh their risks, Value-at-Risk
(VaR) methodology is used, which involves studying the distribution of losses
and formulating a statistic from this distribution. From the myriad of models,
this paper proposes a method of formulating VaR using the Generalized Pareto
distribution (GPD) with time-varying parameter through explanatory variables
(TiVEXx) - peaks over thresholds model (POT). The time varying parameters
are linked to the linear predictor variables through link functions. To estimate
parameters of the linear predictors, maximum likelihood estimation is used
with the time-varying parameters being replaced from the likelihood function
of the GPD. The test series used for the paper was the Philippine Peso-US
Dollar exchange rate with horizon from January 2, 1997 to March 13, 2009.
Explanatory variables used were GARCH volatilities, quarter dummies,
number of holiday-weekends passed, and annual trend. Three selected
permutations of modeling through TiVEx-POT by dropping other covariates
were also conducted. Results show that econometric models and static POT
models were better-performing in predicting losses from exchange rate risk,
but simple TiVEx models have potential as part of the VaR modeling
philosophy since it has consistent green status on the number exemptions and

lower quadratic loss values.

Keywords: Value-at-Risk, Extreme Value Theory, Generalized Pareto
Distribution, Time-Varying Parameters, Use of Explanatory Variables,

GARCH modeling, Peaks-over-Thresholds Model



Estimating Value-at Risk (VaR) using TiVEx-POT Models

Peter Julian A. Cayton', Mary Therese A. Lising® and Dennis S. Mapa®

I. Introduction

Financial institutions expose their assets and equities to different forms of risks that can
potentially affect how they service their clients in providing financial products. To understand
the nature of risks, research aimed to explain its behavior using financial standards, corporate
ratings, and statistical techniques flourished and the modeling and measurement of risks had
been as diverse as the factors of the phenomenon. To guide financial institutions in efficient
risk management, financial regulators introduced guidelines and standards that would aid in

measuring and preparing for risk.

The Bangko Sentral ng Pilipinas (BSP) has stated that in handling risk, financial institutions
should have sufficient capital at hand. Being short of capital relative to risks possessed by the
bank from its portfolios makes the bank susceptible to failure and ultimately to bankruptcy.
To have inefficiently greater capital with respect to risks would be an opportunity cost to the
institution to which the funds could have been used to expand assets. The BSP has set the bar
for appropriate level of capital on levels of risk incurred through the risk-based capital
adequacy ratio. It is the ratio of capital in equity and total weighted risk incurred by the
institution. The BSP requires financial firms to keep their capital adequacy to ten percent,
more conservative from the Basel II provisions (2004) of eight percent. Three main parts of
risks are to be assessed by these institutions; (1) credit risks, which are risks incurred from
lending to other identities, (2) market risks, which are incurred from holding assets
susceptible to changes in market price, such as stock exchanges, currencies, and commodities,

and (3) operational risks, which are risks incurred from uncertainties in internal processes,
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such as legal risks and electric failure risks (BSP Memo Circ. No. 538). Of these, market risks
is our interest because of its risk management methodology is dependent on the study of
financial econometrics and time series analysis. The BSP consider to main approaches in
accounting for these risks, one of them of them is the internal models approach (IMA), which
deals with the use of statistical modeling in assessing risks, or the mark-to-model method of

valuation.

The BSP has outlined a series of guidelines concerning market risk management of financial
institutions with respect to their acquisition of financial assets and products. The guidelines
are summarized by the four steps in managing financial risks: identification, measurement,
control, and monitoring. In all these steps, the importance of modeling or accounting market
risk could never be emphasized further. The BSP also states that effective risk measurement
methodologies as one of the four basic elements in sound risk management practices (BSP
Memo. Circ. No. 544). Such is the reason for the search of the appropriate statistical

methodology in risk measurement in the field of private corporations and the academe.

With the highlights on risks earlier discussed, this paper aims to use a different approach to
measuring risks by minima returns using the Peaks-Over-Thresholds (POT) model and the
Generalized Pareto distribution from Extreme Value Theory (EVT) and improving the
flexibility of the procedure by introducing a deterministic model of time-varying parameters
in the distribution from information on variables explanatory to the returns. Section |
discussed an introduction to risk management and guidelines set by the BSP. Section II aims
to give a background literature on the Value-at-Risk (VaR) framework started by Jorion
(2000), to show the evolution of the VaR models from RiskMetrics to the proposed model of
time-varying parameters-POT, and to show the comparison tests and procedures used to
measure the conservatism, efficiency, and accuracy of VaR . Section III aims to show the
descriptive and exploratory analysis of the information set and explanatory variables to be
used in performing the procedure. Section IV aims to compare the efficiency and accuracy of
the new model with other prevailing statistical methods through backtesting results in terms of

occurrence of exceedances and magnitudes of exceedances. Section V concludes the results of



the paper and summarizes recommendations and stepping stones for further research into

modeling with EVT.

I1. Review of Related Literature

Value-at-risk (VaR) measurement is a prevailing market risk methodology which uses

statistical procedures in probability and distribution theory and cites the minimum potential
loss of holding or possessing assets susceptible to market price change in a given period of
time and probability, holding some assumption on what is the distribution of losses. Simply
describing, VaR statements are built in this format: “The firm can lose more than V pesos T

days later with the chance of a” (Suaiso, 2009).

Sourcing from Tsay (2005), VaR is defined in statistical terms. Assume d to be the time
interval when risk is to be anticipated and measured. AV(d) is the random variable of change
in value of the asset held by a firm, and F,( ) is the cumulative distribution function of AV(d).
We define the long-position VaR at forecast horizon d with probability a as:

a = F,(VaR) = Pr[AV (d) < VaR] @)
In a long position, the asset owner loses asset values when the change in market price of his

asset become negative, thus the losses are negative in value.

RiskMetrics® Modeling

The RiskMetrics methodology was developed by J.P. Morgan to perform VaR calculations. In
its simple form, it assumes that the continuously compounded daily returns of a portfolio
follow a conditional normal distribution. Riskmetrics assumes r|F_ ~ N(u,,h ) where r=log
returns; F;.; = information set available at time #-/; u, =0 is the conditional mean of r,

andh, =ah_ +(1-a)r’,, 0<oa <1 and h;, is the conditional variance of r;. RiskMetrics defines
I-day VaR with 100(1-p)% confidence level as,

VaR = Amount of positionx F~' (p)h"? (ii)

1+1



The F~'(p) is the 100p% quantile of a standard normal distribution and 5

1+1

is the 1-step
ahead forecast of the conditional variance given by 4, = ah, + (1- o). The limitations of the

method are that return series are not normally distributed, with majority of series being
possibly fat-tails, leading to an underestimation of an appropriate VaR for such assets (Tsay,

2005).

Econometric Methods (ARMA-GARCH models)

The measurement of VaR in terms of the mean ARMA (autoregressive moving average)
specification and a GARCH (generalized autoregressive conditional heteroscedasticity) model
can be facilitated and distributional assumption on the standardized errors can be adjusted or
made robust. ARMA modeling facilitates the factoring in of serial autocorrelation, GARCH
modeling is flexible as it accounts volatility clustering and non-constant variances natural to
return series (Engle, 2004) and the method is easy since substitution of values is only
necessary to measure VaR. The risk equation of holding 1-unit of an asset using econometric
method reduces to the equation below.

VaR =7, — F ' (p)h!? (i)

t+1

The 7#,,= the estimated mean at time 7+ modeled by the ARMA(p,q) specification, 4"} =

1+1
conditional variance model, either a deterministic GARCH model or a stochastic volatility
model (Taylor, 1986), and F'(p) is the quantile function at probability p. The quantile

function depends on the assumed error distribution. Common are standard normal, standard t,
and the generalized error distribution (Tsay, 2005). The risk-return premium models such as

GARCH-in-Mean specification can be used as VaR models, as considered by Suaiso (2009).

Extreme Value Theory in VaR Measurement

Extreme value theory (EVT) bases itself on the study of extreme occurrences and the
probability structure. The theory focuses itself to the distribution of the tails of a random
sample as the sample size increases. It models extreme risks by observing the behavior of the

return distribution at the tails (Tsay, 2005). The theory involves two branches of measuring



extreme returns: (1) Block Maxima, or unconditional method, and (2) Peaks-over-Threshold

method (POT), also called the conditional method.
Block Maxima

Tsay (2005) discussed the overview of the rationale of the block maxima technique. Let us
suppose that there is an information set of independent returns {r;} of T days taken from a
distribution F(x). Denoting r(;) as the minimum order statistic, which may be taken as a VaR
for the long position, its distribution function F;(x) would reduce to:
F(x)=1-[1- F(x)]T (iv)

The distribution reduces to a degenerate form when the sample size goes very large and such
information is irrelevant. To understand the behavior of tail returns, we should transform the
return series to a set of standardized minimum r«=(r) - f. ) / a, with B, is a location
parameter and a, > 0 is a scaling factor that would avoid the convergence of the limiting
distribution to degeneracy. The limiting distribution of this transformed minimum as the
sample size gets larger is said to be the generalized extreme value distribution (GEV) with tail
parameter ¢&,. Its distribution is defined by the equation below:

Fas)= {1—exp[—<1 6D g0
1—exp[—exp(x)] if &, =0.

To estimate the parameters o, fS,, and &,, numerous sample minimums should be observed

from the information set, dividing the series in g equal sub-samples of size n. From these

subsets, the minimum is taken and the parameters are estimated by either maximum

likelihood method using GEV or the regression method of sub-sample minimums. The

parameters are marked with subscript # since their values depend on the sub-sample size.

To measure the 100(1-p)% VaR after using the Block Maxima, assuming a short position, the

following equation is used:

(04 -¢
ol —[-nIn(-p)] "} i 0
Vak = ﬁn+§n{ [-nn(-p)] ™"} if &, = i)

B,+a,In[-nln(1-p)] if =0



Extensive research and confirmations on the asymptotic distribution of extreme returns from
companies listed in the New York Stock Exchange converging to GEV were undertaken by
Longin (1996) using graphical methods backed-up by the limiting distribution’s theoretical
properties. The disadvantage of the block maxima is its high sample requirement: (1) large n
to supply a sufficient minimum for each sub-sample, and (2) enough g sub-sample minimums
to make the Generalized Extreme Value distribution approximation sufficiently accurate.

These restrictions make the block maxima method a difficult model to comply.
Peaks-over-Thresholds

Instead of modeling through minimum or maximum values, a paradigm using exceedance
events from a feasible threshold # >0 and the magnitude of exceedance was proposed by
Smith (1989). Since differences with respect to threshold were being used in modeling, the
method was called peaks over thresholds approach (POT). In modeling using this approach, a

pair of observations are recorded: (1) the time of exceedance #; when , >p for short financial
position holding, and (2) the magnitude of exceedance r, —n. Common in literature, POT

models use positive thresholds that estimate the maximum, such as texts by Bystrom (2002)
and the programming tutorial of Gilleland and Katz (2005). The approach is called the

conditional model since the conditional distribution of 7 —n given that r >n is being used.

Tsay (2005) provides the derivation of this distribution and shows that it reduces to the

generalized Pareto distribution (GPD) defined by the following equation:

1—{1+§x} for & #0,
(x) =

n

F. (x)=
5.0y
l—exp{— ol

n

(vii)

} for & =0,

The parameter ¢ is defined as the shape parameter of the distribution and o, is defined as the

scale parameter.

The conundrum that a researcher tackles in using POT models is what threshold to use;
Gilleland and Katz (2005) provide a graphical method to selecting thresholds, such as the

mean excess function, which is also featured in Tsay (2005), and threshold fitting of



parameter estimates, where the stability of parameter estimates given an interval of potential
thresholds is used as criterion. Other methods still exist in literature, and the researcher is not
bounded by such in self-assigning a threshold by convenient rational judgment or by just

simple research constraint.

To measure 100(1-a) % VaR for the long position, the equation is a simple substitution of the

following quantities derived using estimation results of maximum likelihood:

-¢
o, T
VaR,_, (1)=n - 5[1 - { N, (a )} ] (viii)

The N, is the number of exceedances from the threshold in the sample period and T is the

sample size of the evaluation.

As attractive as the EVT methods are in modeling tail distribution, there are some problems in
using them; they do not account seasonal or time dependence in the means and variances of
time series data which is central and important for potent statistical forecasting. Two methods
sprung out as a solution to the problem: (1) model time dependence first of the series through
time series analytics then modeling the standardized or adjusted residuals on an extreme value
distribution, and (2) the use of explanatory variables to create a model of time-varying

parameters (McNeil and Frey, 2000; Smith 2003).
ARMA-GARCH-POT (AGPOT) Modeling of VaR

McNeil and Frey (2000) introduced a different procedure that made the POT model more
“time-adaptable.” It combines the idea of econometric methods and extreme values modeling
by a simple two-step modeling procedure. They suggested a VaR solution of this manner,
which in statistical terms is defined by:

VaR(l)= u,., +hVaR(Z,.,) (ix)
The 4, is the conditional mean of the return series specified and forecasted by an appropriate
ARMA model and the A, is derived from the appropriate GARCH model for the conditional

variance of the returns. Z; = (r, — ,ut)/h// ?is the standardized residual of the series, to which the

kurtosis is tested if thick tails are still observed. If excess kurtosis exhibits normality or if the



distribution of Z; fits an error distribution, then a quantile from that error distribution is
sufficient to cover VaR and substitute the VaR(Z,, ;) term. Otherwise, a POT model is fitted to
the standardized residuals which would estimate VaR(Z;) using (vii) and thus formulate a
VaR(1). Suaiso (2009) has concluded research in the AGPOT for interest rate risk from

secondary bond markets to be a conservative, accurate, and efficient model.

Use of Explanatory Variables (TiVEx-POT)

Besides the AGPOT model for measuring VaR, Tsay(2005), Coles (2001) and Smith (2003)
proposed a model of the POT that uses a different concept of flexibility through time. They
account that the shortcomings of the first EVT models are that they only utilizes information
from the original series and does not account information from explanatory variables. These
variables may be able to describe the behavior of the log returns and the new extreme value
theory approach to VaR computations can easily take into consideration these additional
features of flexibility and information. For asset returns, a volatility index is an example of an
explanatory variable. The explanatory variables can be used by postulating that the two
parameters ¢, and o in the GPD are time-varying and are linear functions of the explanatory
variables and new parameter coefficients of these variables (Tsay, 2005; Coles, 2001). Tsay
(2005) suggests that these explanatory variables should be known prior to time of evaluation ¢,
such as time dummies (e.g., trends, quarters, months, weekdays, number of holidays), and
measures of past volatility indices (e.g., GARCH variances, number of exceeding
observations in the past 2 weeks) and other variables wished to be explored (e.g., panic
buying effects, crisis adjustments). This time-varying-parameters-through-explanatory-
variables POT (TiVEx-POT) is the proposed model of this paper using time variables and
volatility measures as suggested by Tsay (2005) and Smith (2003).



In statistical terms we create a new model of GPD parameters o;, and & linearly dependent to
explanatory variables x=(x;,x2;...,xp;) and y=(yi,Y2s...,¥4) and linked through functions g;
and g respectively:

g(o,,)=0,+t0x,+..+0,X, =0,+6'X,

82(E) =&y HE N+t E v, = +EY, )
The explanatory variables used between two parameters may be of the same set or of different
sets; one parameter may be fixed as independent through time while the other varies. The link
between the linear predictors and the time-varying parameter may be any one-to-one
elementary function, such as the identity link (i.e., g;(u)=u) or the logarithm link (i.e.,
gi(u)=log.u). The scale link function is commonly the logarithm link since it restricts the
scale parameter to positive values while the identity link is sufficient for the shape parameter.
Ultimately, there are no limitations in the possibilities to be used in TiVEX-POT. There is no
error term in the model of the time-varying parameters, so the model is said to be
“deterministic.” Also, the linear coefficients are the new parameters, not o, and &, to be
estimated in the GPD likelihood function using iterative nonlinear maximum likelihood
estimation (MLE). Observations used for the MLE procedure are those that exceed the

assigned threshold and explanatory information from these observations.

After estimating the linear parameters of the time-varying GPD model, the measurement of
the short position VaR is derived with the new altered equation below:

o, T -4
VaR, ,,(H=n +?t] {N} (@ )} -1 (xi)

U

To measure long position VaR would require to negatively transforming the data for the

estimation and measurement using the equation above.
A procedure is suggested below in implementing TiVEx-POT modeling for VaR:

1. Gather the information set and the explanatory variables to be used to vary the
parameters of the GPD. A criterion for selecting variables is that they should be
known prior to time t+/, e.g., time indicators, GARCH volatility indices, past returns

and volatilities of other series shown in theory or to be explored to have an effect to



the return series of interest, and other variables. Since research on non-stationary or
co-integrating explanatory variables on GPD parameters are not yet pursued as of the
time of the paper, use of stationary series is a conservative choice.

2. Set a threshold suitable for modeling. As said earlier, different threshold selection
techniques flood the literature of EVT, but anyone can impose a threshold of their
choosing, such as this paper selected the 0.01 logarithm difference of prices as
threshold for every estimation period due to constraints in the number of observations
necessary for parameter estimation. Impose constraints on the time-varying parameters
using link functions, such as logarithm and identity functions.

3. Take the observations and all connected information on them which exceeds the set
threshold. These values will be used as the sample for the estimation procedure.
Perform initial estimation using MLE procedures to derive the estimates and the
standard errors.

4. Check model assumptions on the GPD distribution using quantile-quantile and
probability-probability plots of observed and fitted values for fit. Check for
significance testing of explanatory variables and refine the model by re-specification
procedures such as variable selection or reduction, transformation of independent
variables, and changing the link functions.

5. When a final model has been adopted, gather the parameter estimates necessary for
measurement and substitute them to the VaR equation. Habitually maintain and

improve statistical model for better time flexibility and updating.

Backtesting VaR models through Exceedances: Basel Standards

The Basel Committee on Banking Supervision (1996) has outlined a framework for banks that
use the Internal Models Approach in measuring VaR. This framework deals with the number
of failures a bank can possess using their models and penalties when these criteria are broken.
A bank is required to report his model and results of evaluation for VaR exemptions, which
are number of occurrences that the VaR was not sufficient in estimating loss (i.e, the number
of days when loss is greater than the assigned VaR). A risk model, based from the Committee,

should be able to sufficiently forecast losses in 99% of the trading days in a year. The number



of allowable VaR exemptions within a year is equal to one percent of the number of trading
days, around 2 or 3 out of 250 per year. For a certain interval of VaR exemptions, a bank is
classified into three zones: green zone, yellow zone, and red zone. The green zone means that
the model of the bank is able to estimate the market risk of holding assets adequately within
99% of trading days. The yellow zone means that the bank’s model may be slightly
inadequate as the model is not fully able to adjust in some instances such as sudden spikes and
market shocks. The 99% standard is possible to be achieve, but at a very low confidence. The
red zone means that the bank’s model for market risk is not able to satisfy the Committee’s
standard of 99%. The number of VaR exemptions and the bank’s assigned zone within a year
is the basis in which how much market risk capital is necessary in holding the asset for that
day. The table below shows the number of VaR exemptions, the three zones, appropriate

multiplier for market risk, and the cumulative probability of occurrence of exemptions.

Zone Number of Scaling Factor for Market Risk Cumulative
Exemptions Capital Probability
0 3.00 8.11%

1 3.00 28.58%

Green Zone 2 3.00 54.32%

3 3.00 75.81%

4 3.00 89.22%

5 3.40 95.88%

6 3.50 98.63%

Yellow Zone 7 3.65 99.60%

8 3.75 99.89%

9 3.85 99.97%

Red Zone 10 or more 4.00 99.99%

Source: Basel (1996)
Table 1. Classification in Zones and Appropriate Scaling Factors for Capital Requirement

Assessing VaR models through Exceedances: Likelihood Ratio Tests (LRTs)

Christoffersen (1998) developed a procedural system of LRTs that examines the ability of
VaR models to be within the allotted standard of confidence. The procedure tests the
following in sequential order: (1) if it is within allowable proportion of VaR exemptions
(unconditional coverage), (2) if the VaR exemptions are separate and independent from one
another, i.e., no clustering of exemptions (independence), and (3) if there is clustering with
the proportion of VaR exemptions within allowable limits (conditional coverage). These

LRTs are indicators of a models’ degree of accuracy in predicting occurrences of loss.



Unconditional Coverage

The test for unconditional coverage tests if the number of VaR exemptions equal to the
assigned proportion of allowable VaR exemptions. To test the null hypothesis of 7 = p, where

r = proportion of VaR exemptions in a year, the test statistic is given below:

) AT .
LR, =2xlog (lﬂ)—TTlﬂT 0 x5 (xii)
(1-p) " p"

The ML estimate of the proportion is7, =7, /T, where T; = number of VaR exemptions

within a year, and 7 = number of trading days per year. Rejection of the hypothesis should
lead the researcher to refine or change his model for measuring market risk. Non-rejection
means that the model is able to keep in the allowable proportion of VaR exemptions. The
weakness of doing this test alone is that it does not account the possibility of clustering of
exemptions, which can be caused by volatile return series. The next test for independence

should be used to augment analysis on unconditional convergence.
Independence

The test for independence hypothesizes that the probability of an isolated VaR exemption is
equal to the probability of 2 consecutive VaR exemptions. In statistical terms, the null
hypothesis of the test is 7y = 7;, where 7y is the proportion of VaR exemptions preceded by
non-exemption and z; is the proportion of VaR exemptions preceded by another VaR
exemption. The test statistic for the hypothesis is shown below:

(1_7%0)% 7%0Tm (1_7%1 )Tm 7%1T11

A\To+To ATy +T;,
/A T

0 x2, (xiii)

The needed values for the LR statistic are listed below:
Too = number of two consecutive days without VaR exemption;
T1o= number of days without VaR exemption preceded by a day with VaR exemption;

T11 = number of two consecutive days with VaR exemptions



To; = number of days with VaR exemption preceded by a day without a VaR

exemption;
o= _ Lo = proportion of VaR exemptions preceded by non-VaR exemption;
T, +T,
1= _ I = proportion of two consecutive VaR exemptions.
T, + T
= Ty +1,, = pooled estimate for proportion of VaR exemptions
T + TE)I + Ti() + Til

0
If the null hypothesis is rejected, then the model is susceptible to clustering VaR exemptions
(i.e., an occurrence of a VaR exemption would tend to be followed by another VaR
exemption) and the model would be inefficient to high volatility clusters. Non-rejection of the
hypothesis would mean that the VaR model is not susceptible to VaR clustering, however the
probabilities 7y and 7; have to be tested if they are equal to the allowable proportion of VaR
exemptions p. The next test for conditional coverage covers this hypothesis and finalizes our

result in exceedance analysis.
Conditional Coverage

The conditional coverage test leads us to conclude if the two conditional VaR exemption
probabilities in independence test (i.e., the mp and 7;) are equal to the failure rate p (i.e., the
proportion of allowable VaR exemptions). It is a joint test of the two likelihood ratio tests
discussed earlier. The null statistical hypothesis of the test is that if my=m;=p. To test this

hypothesis, the test statistic that shall be used is written below:

LR, =LR, +LR,, U x5, (xiv)
Rejection of this hypothesis leads to conclude that the model is not adequate in maintaining
allowable VaR exemptions and is susceptible to VaR exceedance clustering. Non-rejection of

this hypothesis leads to be confident in the reliability of the VaR model in the aspect of

predicting events of losses.

Evaluating VaR models through Magnitudes




The occurrence of loss is important to be predicted definitely, but of more interest is the
magnitude of losses avoided. A VaR model should also be able predict huge losses that would
be incurred in holding an asset. Engel, J. and M. Gizycki (1999) described that an appropriate
VaR model should have three characteristics: (1) conservatism, (2) accuracy, and (3)
efficiency. A conservative model is a model that produces high measures of risks relative to
other models. A accurate model is a model that can par its measure with volatile price
movements. An efficient model is a model that can provide a conservative estimate of risk,
but not so high that it requires the bank a very high capital. The next series of measures were
selected from the paper of Engel and Gizycki (1999) and Basel (1996) as appropriate measure

of the three characteristics.

Conservatism: Mean Relative Bias (MRB)

This is an average measure of relative size, and thus of average conservatism, of VaR models
from their mean model estimate. The larger the MRB, the more conservative the model is at
measuring risk. Suppose that N VaR models are being compared in a forecast period starting

from 1 to 7. The MRB statistic for the ith model is evaluated using the formula below:

" VaR, —VaR, 1Y
MRB, = ZV” VAR, ere VaR, ZNZVaR” (xv)
i=1

1
T t=1 VaRt
Accuracy: Average Quadratic Loss Function (AQLF)

This measure takes into account the occurrence and magnitude of loss and gives greater
penalty weights for models that are not able to predict large losses. The quadratic loss
function for the ith model at time t that is used in evaluating AQLF for long position VaR for

each model is shown below:

2
— )i P <VaR.
L(VaR,, Alog P) = 1+(Alog P —VaR, )" if Alog P, <VaR, (xvi)
0 otherwise

Efficiency: Market Risk Capital (MRC)



This measure assesses VaR model efficiency in the case of assigning the appropriate capital
given the expected risk of holding an asset susceptible to market forces. The formula below

derives the MRC:

60
MRC = max {kZVaR”,VaR”j (xvii)

i=1

The k in the maxima function is the scaling factor set by the Basel Committee depending on
the number of VaR exemptions a bank has incurred using internal models approach (See
Table 1). This measure is analyzed with the conservative and accuracy statistics to finally

assess its efficiency.

I11. Data Source and Methodology

The test data used in this paper was the return series of the daily weighted average of the
Philippine Peso-US Dollar (P-$) Exchange Rate (Figure 1). The weights for the formulation
of averages were based on the volume of currencies traded in the Philippine Dealings and
Exchanges Corporation. This data is released from the official website of the Bangko Sentral
ng Pilipinas, spanning January 1997-March 13, 2009 as gathered and managed by the Institute
for Development and Econometric Analysis, Inc., and by the researchers. Studying exchange
rates in financial econometrics is relevant especially in transactions for foreign financial
instruments, such as dollar bonds, dollar debts, and stock investments in US markets (BSP,

2008; BSP Memo Circ. 538 Attachment).
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Figure 1. The Time Plot of Log-Returns from the P-$ Exchange Rate
from January 1997 to March 2009

VaR Model Comparisons

In the paper, eleven models were considered for comparison between VaR methodologies: six
econometrics models [GARCH (1, 1), EGARCH (1, 1, 1), TARCH (1, 1, 1), GARCH(1, 1)-
in-M(Standard Deviation (Std. Dev.)), EGARCH(1, 1, 1)-in-M(Std. Dev), TARCH(1, 1, 1)-
in-M(Std. Dev)] and five EVT models [Static POT, AR(2)-EGARCH(1, 1, 1)-POT, and
TiVEx-POT, TiVEx-POT 2, TiVEx-POT 3, details of TiVEx models are in Table 2] for the
following forecast years: (1) 2001 [when local political and US crises occurred], (2) 2005
[non-crisis year], (3) 2008 [most current full year; inciting financial crisis], and (4) 2009 [a
continuing comparison of the models, studying the scenario of the global financial crisis].
Results of model parameters are preserved in the Appendix of the paper. Comparisons using
the VaR assessment methods were calculated for each model for each year. The threshold for
the static and TiVEx models is 1% percent change in exchange rate daily, while the AGPOT
model has a threshold of 2 standard units for the residuals. In the TiVEx model, the logarithm
link was used for the scale parameter and the identity link was used for shape to relate with
linear predictors for each parameter. All explanatory variables and some selected
permutations, which will be discussed later, were used in both scale and shape models. No
insignificant linear predictors or variables were removed after performing the first run for

each year and model, so as to maintain comparability through time comparisons.



TiVEx Model Explanatory Variables

Scale Shape

TiVEx-POT Intercept, GARCH(1,1)-QMLE, Annual | Intercept, Annual Trend, Quarterly
Trend, Quarterly Dummies, Holiday-Weekend | Dummies, Holiday-Weekend
TiVEx-POT 2 | Intercept, GARCH(1,1)-QMLE, Annual | Intercept, GARCH(1,1)-QMLE,
Trend, Quarterly Dummies Annual Trend, Quarterly Dummies
TiVEx-POT 3 | Intercept, GARCH(1,1)-QMLE Intercept

Table 2. List of Explanatory Variables for TiVEx-POT Models

Descriptive Analysis of Test Series

From Figure 1, the return series is observed to have volatility clustering, in which large
changes are followed by large changes and small changes are followed by small changes, such
as in the years 1997-1999 and 2000-2001, when major crises occurred in the financial

economy. Considering the measure of volatility is needed in modeling the exchange rate risk.

The distribution of the return series is highly leptokurtic, with kurtosis statistic equal 54 (see
Figure 2). Fitting a normal error distribution is incorrect for this series; the t distribution was

considered as a distribution for econometric VaR models. The sample mean is very small but

still significantly different from zero, with Wald Chi-square statistic [}? /SE(X )Tequal to

3.16, with p-value of 0.0753. The distribution of returns is closely symmetric, thus a

symmetric error distribution may be assumed, such as in this paper is the t distribution.

1400
Series: RETURN
1200 4 Sample 1/02/1997 3/13/2009
Observations 3041
1000 -
Mean 0.000201
8004 Median 5.86e-05
Maximum 0.086039
6004 Minimum -0.101501
Std. Dev. 0.006232
4004 Skewness 0.005896
Kurtosis 54.15361
200+ Jarque-Bera  331556.6
. Probability 0.000000
-0.I1 0 -0.|05 0.00 0.65

Figure 2. Histogram and Statistics of the Test Return Series

Explanatory Variables




The explanatory variables used for the TiVEx-POT model were the following: (1) annual
deterministic trend, which is equal to year-1992 for the dataset, (2) GARCH (1, 1)-Quasi-

MLE conditional variances, and (3) quarterly dummies.

Annual trend takes into account any trend in the changes of scale and shape in the distribution
of returns with respect to the start of the data series. A positive or negative trend leads to
conclude a slowly increasing or decreasing volatility respectively every year. A positive or
negative trend in shape leads to conclude a slowly thickening or thinning of the tails

respectively every year.

GARCH volatilities are used as implied quantitative indices which may be used as proxy
variable of volatility in the series, as suggested by Tsay (2005) in his example of TiVEx-POT.
Quasi-MLE was used as it assumes no distribution, but uses an altered version of the normal
distribution to derive estimates. The Table 3 below shows the coefficients for the equations of

the GARCH (1, 1)-QMLE for each forecast year.

In date variables, quarterly dummies were used. Quarterly dummy variables were used to
account any seasonality in the data series. The first quarter was held as a baseline time.
Holiday-weekend variables account for the effect of the number of holidays and weekends
that pass before the trading day on the scale and shape of the distribution. Recent laws have
changed in the policy of assigning holidays (RA 9492), and thus the effect of holidays on

exchange rate volatility is being explored, such as the paper of Ariel (1990) on stock returns.

2001 2005 2008 2009
C 1.20E-05 5.30E-06  3.70E-06 3.47E-06
resid(-1) 0.467367* 0.391562* 0.289287*  0.272183*
GARCH(-1) 0.459857* 0.52233*  0.601821*  0.623452*

Table 3. GARCH(1, 1)-QMLE Model Coefficients for Volatility Index

IV. Results and Discussion



The VaR models’ conservatism, accuracy, and efficiency were assessed using the measures of
backtesting and numerical indices expressed above. Results from these analyses and

subsequent tables are drawn and explained below.

Number of Exemptions Average Quadratic Loss Function
Model 2001 2005 2008 2009 2001 2005 2008 2009
GARCH 2 0 0 0 0.008 0 0 0
GARCH-in-M 2 0 0 0 0.008 0 0 0
EGARCH 2 0 0 0 0.00802 0 0 0
EGARCH-in-M 0 0 0 0 0 0 0 0
TARCH 2 0 0 0 0.008 0 0 0
TARCH-in-M 2 0 0 0 0.008 0 0 0
Static POT 3 0 0 0 0.012024 0 0 0
A-G-POT 18 0 3 0 0.072039 0 0.0121953 0
TiVEx-POT 8 0 3 0/ 0.032032 0 0.0121952 0
TiVEx-POT 2 6 0 2 0] 0.024027 0  0.008130 0
TiVEx-POT 3 2 0 2 0] 0.008016 0 0.008130 0

Table 4. VaR Exemptions and Average Quadratic Loss of Models for each Year

VaR Exemptions

Based from the number of VaR exemptions on Table 4, the econometric models performed
across all years, even registering a green status in crisis period 2001. EGARCH-in-M was the
top-performing model in the group with no exemptions in all years. Static POT is seen to be at
par with econometric models registering only 3 exemptions for crisis period 2001 and none in
other years. For time-dependent POT models, the simpler TiVEx-POT 3 outperforms the
time-dependent models with lesser exemptions in the crisis period 2001, with 2 exemptions in
2001 and in 2008. TiVEx-POT 3 was the only time-dependent EVT model to sustain a green

status in all years.

Likelihood Ratio Test Analysis

Similar to the analysis of the VaR exemptions in the section above, the likelihood ratio tests

leads us to same conclusions. The GARCH models were performing better than the POTs, all

of them either not rejecting the null hypothesis or testing for proportion is not necessary. In



the POT models, though Static POT was the best-performing even under inciting crisis, it is
seen to be susceptible to volatility clustering that is common in crisis situations. TiVEx-POT
3 model was better-performing than most of the time-dependent models, and is better than

Static POT for 2001.

GARCH GARCH-in-M EGARCH EGARCH-in-M
UC IND CC UC IND CC UC IND CC UC IND CC
2000A  INC - A INC - A INC - - - -
2005 - - - - - - - - - -
2008 - - - - - - - - - -
2009 - - - - - - - - - -
TARCH TARCH-in-M Static POT A-G-POT
2000A  INC - A INC - A R - R - -
2005 - - - - - - - - - -
2008 - - - - - - - - A INC -
2009 - - - - - - - - - -
TiVEx-POT TiVEx-POT 2 TiVEx-POT 3
2000R - - A R - A INC -
2005 - - ] ) ) } } ]
2008A  INC - A INC - A INC -
2009 - - ] ) ) } } ]

R=Reject; A=Accept; INC =inconclusive, model shows proportions but cannot be tested;

[T

=cannot be tested.

Table 5. LRT Results for VaR Models for each Year

Conservatism: MRB Analysis

Table 6 below shows the results of the MRB statistics for the VaR models for each year. The
EGARCH-in-M model is the highest in all models for every year, even reaching 580% MRB
for crisis period 2001 and inciting crisis 2008 with 37.69% MRB. It is problematic for the
EGARCH-in-M that in non-crisis 2005, it allots its highest MRB of 632%; meaning that the
model may be exaggerative in giving VaR measures when no high risk of investment is felt.
For the POTs, Static was the best performing with the highest of all years in MRB. For time-
dependent POTs, TiVEx models are more conservative than the AGPOT with the former
having higher MRB than the latter.



Mean Relative Bias Market Risk Capital
Model 2001 2005 2008 2009 2001 2005 2008 2009
GARCH -0.6464  -0.7910 0.0215 0.0317 0.0725 0.0340 0.0555 0.0711
GARCH-in-M -0.6062  -0.7703  0.0778 0.0751 0.0811  0.0371 0.0588 0.0751
TARCH -0.6534  -0.7964  0.0509 0.0333 0.0710  0.0334 0.0574 0.0722
TARCH-in-M -0.6205 -0.7810 0.0795 0.0736 0.0781  0.0358 0.0590 0.0746
EGARCH -0.6418  -0.7052 0.1426 0.3822 0.0662  0.0492 0.0565 0.0841
EGARCH-in-M 6.9456 7.5168  0.4297 0.4131 1.5603 1.4212 0.0731 0.1017
A-G-POT -0.9160 -0.8597 -0.3276  -0.3027 0.0738  0.0607 0.0528 0.0523
Static POT -0.5772  -0.6109 0.0673  -0.0452 0.0212  0.0226 0.0331 0.0462
TiVEx-POT -0.7852  -0.7291 -0.2395 -0.1807 0.0457 0.0418 0.0379 0.0424
TiVEx-POT 2 -0.7857  -0.7290 -0.1135 -0.2340 0.0378 0.0423 0.0446 0.0427
TiVEx-POT 3 -0.7132  -0.7442 -0.1886  -0.2465 0.0512  0.0400 0.0408 0.0424

Table 6. Mean Relative Bias and Market Risk Capital for VaR Models for each Year

Accuracy: AQLF Results

For crisis year 2001, TiVEx-POT 3 model had accuracy comparable to the econometric
models, better than the static POT model. EGARCH was still seen as a best-performing in
covering losses in exchange rate risk. Simple TiVEx models 2 and 3 had smaller accuracy
problems than their other time-dependent counterparts, generating only 0.008 of AQLF
compared to 0.012 from TiVEx-POT and AGPOT.

Efficiency: Average MRC Results

In Table 6 of the paper, the Static POT model had the lowest MRC for almost all years except
2009, where TiVEx-POT had the lowest. Given that the Static POT had low to no exemptions
in the forecast years, Static POT was the most efficient model for exchange rate risk.
EGARCH-in-M had the same problem as outlined in the MRB, which is highly inflated risk
capital for non crisis period 2005. For the time-dependent EVT model groups, TiVEx-POT
models were better than the AGPOT model, since the latter has the highest MRC than the
former, and still it is less-performing than the TiVEx models. Between the TiVEx models, the

first of the three had a low risk capital for crisis situations yet is less-performing than the



three. TIVEx-POT 3, though had high risk capital for 2001, was relatively stable for inciting

crisis 2008-2009 and had only 2 exemptions in 2008. This shows that the principle of

parsimony may be at play even in TiVEx modeling philosophy.

V. Conclusions and Recommendations

In closing, the following generalizations were made by the research:

¢

Econometric models are, in general, are conservative, accurate, and efficient in
predicting exchange rate losses through the VaR methodology. These models have
lower exemptions and relatively lower capital to assign for risk, except EGARCH-in-
M which exaggerates levels of risk and capital in non-crisis situations.

In POT models, the Static method is seen as the best model than the time-dependent
POTs and the econometric models in predicting and evaluating exchange rate risks.
The Static POT has lower exemptions augmented with lower assigned capital and
relatively high upward bias thus giving it conservatism, accuracy, and efficiency.
Between time-dependent POT models, a parsimonious TiVEx model is the better
model to account time dynamics since the model was able to show lower losses, lower
exemptions, relatively high bias, and lower capital requirement than the AGPOT. The
TiVEX is also more reliable especially in crisis situations since the TiVEx adjusts itself
more flexibly using explanatory variables.

A parsimonious or simple TiVEx model has potential to be a viable VaR methodology
since it has kept its exemption status on the green side, and fear for extreme losses is

little since a simple TiVEx model generated low AQLF values.

In lieu of this research, the following footsteps for further research are expressed:

¢

A problem surfaced in the MLE procedure for the TiVEX in the forecast year of 2001;
an estimator reported negative variance and thus had no standard error reported. The
researcher left alone the problem and used the estimate anyway, since this “Heywood
case” for the covariance matrix of estimators cannot be resolved up to now. An
expansion of the algorithm in MLE procedure to restrict variances would be of great

help in the continuance of the research.



¢+ As a conservative methodology, only stationary series were suggested as possible
explanatory variables for TiVEx modeling since little or no literature exists that
observes the plausibility of using non-stationary or co-integrating series. The
properties and implications of using such series may be further studied in future
researches which could better improve TiVEx methodology.

¢+ This paper would like to serve as a stepping stone to explore more explanatory
variables to valuate VaR through TiVEx. Not all variables used in this research were
significant in contributing information on the dynamics of the test series, and more
variables can still be used. TiVEx introduces a regression-style methodology in

valuating VaR which can be refined through active research.
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APPENDIX II

Static  A-G-POT Ti¥Ez-POT Ti¥Ex-POT Ti¥Ex-POT Static A-G-POT Ti¥Ex-POT Ti¥Ex-POT Ti¥Ez-POT

200 2001 2001 220Mm 3 20m 2005 200% 2005 2 2005 3 2005
Series Original Fezidual Original Original Original Original  Residual Original Original Original
Threshold o 2 0.01 om om 0.01 2 0.01 o 0.01
Ercesdances on
Estimation Period 3] 1 3] -] 3] T3 28 T3 T T
Exceedance Rate [basze:
250 per year) 16.7EETER  27HETAI 16.FEETED 15.766TES 16.FEETED 9084121 3484321 9.084121 9.084121 9.084121
Seale 0L00ES5E" 0400001 - 0.00E5TE"  0ETOTIE"
Shape 0139614 0642785 - 0231236 0607727
Scale Model [lag link)
Log Scale Intercept 0.844974" 1B22700 -0.ETaa04 -0.739582" 0.278460 -0.414749
Trend -0E2419E" 0423703 - -0.029255" 0033361 -
Haliday 0.024711° - 0.070823" -
second Guarter 0.0420104 -0.03380 0.003580 -0A7E3EY
Third Guarter -0.413130° -0643272 0.426825" 0.236042
Fourth Guarter 069148 1035105 0743805 0399822
Ln(GARCH(1,1)-GMLE] [IN R 0410398 0435393 041297 05268200 0503428
Shape Model [identity link]
Shape Intereept -0ERSHE" 0302121 01350 -0.155454" -0.033520 0133020
Trend 01512507 0103308 - 0.0926492° 0025332 -
Haliday -0.2aToaet - RIAL=LT -
second Guarker 0343779~ -0.013551 0104404 0062188
Third Gluarter 0339039 0.053350 -0.59z2218" 08812
Fourth Guarter 0790364 07381200 0.844682° 0171541
LoGARCH(1)-GMLE] 0033575 - 00THEE -

“zignificant at 0.1 alpha

“reported negative variance in estimate

Appendix Table 2. Estimates of the EVT models for 2001 and 2005

Static A-G-POT Ti¥Ex-PDT Ti¥Ezx-POT Ti¥Ex-POT Static A-G-PODT Ti¥Ex-POT Ti¥Ex-POT Ti¥Ez-FOT

2008 2008 2008 2 2008 3 2008 2009 2009 2009 22009 3 2009
Series Original Residual Qriginal Original Original Original  Residual Orriginal Original Original
Threshold oo 2 0.0 0.0 0.0 oo 2 0.m 0.0 oo
Enceedances on
Eztimation Period Ta 48 Ta Ta Ta az 313 az a1 a3
Enceedance Rate [base:
280 peer year) TAN3E2E 4371585 TARE2E TA03E2E TA03E2E EA3748 4537125 E.937474 EA3T474 B.937473
Seale 000625 0023969° 0008043 0E30F" -
Shape 0.286787"  -0.012644" 0.283760% 0348615 -
Scale Model [log link)
Liog Scale Intercept - - 0262175 0268069 -0.4573458 - - -.3arrn” -1.099470” -0L46E412
Trend - - 0025911 -0.001976 - - - -0.0021558" 0035701 -
Haliday - - 0.003882° - - - 0230847 - -
second Guarter - - 04735817 05TEEOT - - 0308492 -0.1515497 -
Third Quarter - - -0.234834 0025024 - - 0.443711° 0.545356" -
Fuaurth Guarter - - -0.27aTe 0622162 - - 0112294 -0.325224 -
Ln[GARCH(1,1)-GMLE) - - 0526382 0545232 0496498 - - 0494745 0.378084° 0453218"
Shape Model [identity link]
Shape Intercept - - 0473661 -0.484651 01Em - - ENYAEE 023593 0094593
Trend - - 0024261 0056794 - - - LR b 0023401 -
Haliday - - 0134358 - - - ST - -
second Guarter - - -0.TR4ER2" -0LG324TE - - 0433604 0,083 -
Third Quarter - - 0105778 -0.239432 - - -0ETIR2Y -0.A137EE -
Fuaurth Guarter - - 0034594 04eg232 - - 0359829 0207896 -
Ln[GARCH(1,1)-GMLE) - - o0lezge - - 0L0E353E" -

“zignifizant at 0.1 alpha

Appendix Table 3. Estimates of the EVT models for 2008 and 2009







