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Abstract

The concept of diminishing marginal utility is a cornerstone of economic theory. The con-

sumption of a good typically creates satiation that diminishes the marginal utility of con-

suming more. Temporal satiation induces consumers to increase their stimulation level by

seeking variety and therefore substitute towards other goods (substitutability across time)

or other di¤erentiated versions (products) of the good (substitutability across products).

The literature on variety-seeking has developed along two strands, each focusing on only one

type of substitutability. I specify a demand model that attempts to link these two strands of

the literature. This issue is economically relevant because both types of substitutability are

important for retailers and manufacturers in designing intertemporal price discrimination

strategies. The consumer demand model speci�ed allows consumption to have an enduring

e¤ect and the marginal utility of the di¤erent products to vary over consumption occasions.

Consumers are assumed to make rational purchase decisions by taking into account, not only

current and future satiation levels, but also prices and product choices. I then use the model

to evaluate the demand implications of a major pricing policy change from hi-low pricing to

an everyday low pricing strategy. I �nd evidence that consumption has a lasting e¤ect on

utility that induces substitutability across time and that the median consumer has a taste

for variety in her product decisions. Consumers are found to be forward-looking with respect

to the duration since the last purchase, to price expectations and product choices. Pricing

policy simulations suggest that retailers may increase revenue by reducing the variance of

prices, but that lowering the everyday level of prices may be unpro�table.

�I would like to thank Peter Davis and John Van Reenen for their guidance and continuous help. I
would also like to thank David Bell for sharing the data and John Sutton, Stephan Seiler and Supachoke
Thawornkaiwong for helpful comments and suggestions. I gratefully acknowledge �nancial support from the
Fundação para a Ciência e a Tecnologia.



1 Introduction

"Rachel : Hi!

Chandler : Another cheesecake came! They delivered it to the wrong address again!

Rachel : So just bring it back downstairs, what�s the problem?

Chandler : I can�t seem to say goodbye.

Rachel : Are you serious?! Chandler, we ate an entire cheesecake two days ago and

you want more?"

Friends, Episode 7-11, The one with All The Cheesecakes

The concept of diminishing marginal utility is a cornerstone of economic theory. The

consumption of a good typically creates satiation that diminishes the marginal utility of

consuming more. The length of time that the marginal utility is diminished is likely to vary

across goods and, as Rachel and Chandler�s cheesecake episode illustrates, across consumers.

While it only took Chandler two days for his cheesecake marginal utility to return to pre-

consumption levels, Rachel seemed still satiated (suggesting that the utility provided by her

prior cheesecake consumption had not yet faded).

Temporal satiation induces consumers to increase their stimulation level by seeking va-

riety and therefore substitute towards other consumption alternatives. In this paper, I

de�ne a forward-looking dynamic discrete choice model of demand that, similarly to Hart-

mann (2006), allows consumption to have an intertemporal e¤ect: consuming produces a

consumption capital stock that provides utility over time until it gradually depreciates.

However, unlike Hartmann (2006), I consider a di¤erentiated products setting that allows

consumers to switch not only towards other goods, but also towards other di¤erentiated

versions (products) of the good.

In each shopping trip, consumers decide whether or not to purchase the good, and in

case they decide to purchase, which quantity and product to buy. Consumers are assumed

to make rational purchase decisions by taking into account, not only current and future

satiation levels, but also prices and product choices. Price expectations are an important

determinant of intertemporal substitution. If prices are expected to be higher in the future,

consumers may anticipate their purchase decisions and vice-versa. Another important feature

is consumer product choice. The marginal utility of di¤erent products is allowed to change

over consumption occasions, depending on the switching costs of the individual. Consumers

with low switching costs may exhibit shorter interpurchase durations than those that incur
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in high switching costs whenever they alter their product choice.

This paper relates to the literature on variety-seeking developed from Jeuland (1978) and

McAlister (1982). Jeuland (1978) explains variety-seeking behaviour by proposing that prior

experience with a good decreases the consumer�s utility for that good, which constitutes a

direct application of the diminishing marginal utility concept. This explanation is predictive

of the consumer�s tendency to switch away from the most recently consumed good. McAlister

(1982) then re�ned the explanation by proposing that prior experience with the attributes

of a good decreases the consumer�s utility for goods with similar attributes, which refocuses

the diminishing marginal utility concept over attributes rather than goods. These two ex-

planations have governed the subsequent development of an extensive literature centered on

the implications of switching costs for consumer choice (see, for example, Keane (1997)).

Recently, Hartmann (2006) extended the variety-seeking literature by allowing intertempo-

ral e¤ects of consumption, that is, by allowing consumption to have a lasting e¤ect that

diminishes the marginal utility of future consumption. However, the homogeneous nature of

the good studied, golf, did not allow him to focus on product switching.

This paper attempts to link the two strands of the literature on variety-seeking by allowing

consumers to substitute towards other goods (substitutability across time), as well as to

other di¤erentiated products of the same good (substitutability across products). This issue

is economically relevant because both types of substitutability are important for retailers

and manufacturers in designing intertemporal price discrimination strategies. I specify a

consumer demand model which allows consumption to have an enduring e¤ect and allows

the marginal utility of the di¤erent products to vary over consumption occasions. The main

contribution of the paper is to study how di¤erent pricing policies a¤ect consumer demand

for goods with such enduring e¤ects of consumption and that are characterized by a high

degree of di¤erentiation. The model can then be used to simulate the demand implications

of major pricing policy changes like a shift from hi-low pricing to everyday low pricing. To

my knowledge, there is only one study that structurally addresses consumer response to such

major policy changes, Erdem et al. (2003). However, they studied storable goods and do not

allow for switching costs. I �nd similar patterns deriving from an entirely di¤erent source of

dynamics, the stock of past consumption.

The state space implied by a dynamic problem where forward-looking consumers make

optimal decisions in light of current and future satiation levels, prices and product choices

is, in a di¤erentiated products setting, extremely large for practical estimation. In order

to reduce the dimensionality of the state space, I adopt a multi-stage budgeting approach

that decomposes the consumers decision into a quantity choice and a product choice (see
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Aguirregabiria (2002) and Hendel and Nevo (2006a) for similar dynamic applications of

Gorman (1971)�s approach). Under the set of assumptions discussed below, I show that the

consumer product choice conditional on the quantity purchased does not depend on dynamic

considerations. This simpli�es the estimation of many of the parameters of the demand

model, while the remaining ones are estimated solving a simpli�ed dynamic problem that

involves only quantity and timing decisions.

I estimate the di¤erent stages of the model by maximum-likelihood and solve the dynamic

programming problem by using value function parametric approximation with policy function

iteration in the lines of Benitez-Silva et al. (2000). In order to control for unobserved

heterogeneity, I incorporate a rich speci�cation. This is important since in both stages

unobserved consumer heterogeneity may confound the inference of true state-dependence

e¤ects. As Heckman (1981) points out, if households have di¤erent preferences "and if these

di¤erences are not properly controlled, previous experience may appear to be a determinant

(...) of future experience solely because it is a proxy for temporally persistent unobservables

that determine choices." The state dependence in the product decision arises because the

marginal utility of di¤erent products is allowed to change over consumption occasions, while

the state dependence in the quantity decision is induced by the consumption capital stock.

For reasons I discuss below, I incorporate observable heterogeneity in the product choice and

a continuous distribution of consumer heterogeneity in the quantity decision.

I apply the model to an indulgence good: ice cream (and related frozen desserts). The

reason is twofold. First, ice cream constitutes the textbook illustration of the diminishing

marginal utility concept and the industry is characterized by a high degree of product di¤er-

entiation. Second, the temptation nature of the good can (and in fact does, for the empirical

application considered) make stockpiling limited in relevance (and in particular duration).

This is important because in a context where temporary price promotions are a key marketing

tool, if consumers respond to temporary price cuts by accelerating (anticipating) purchases

and hold inventories for future consumption (i.e. stockpile), the separate identi�cation of

satiation and stockpiling would be somewhat problematic. I show below that, even though

consumers do anticipate purchases in response to temporary price promotions, they do not

stockpile, maybe because of the temptation feature of the good.

I �nd evidence that consumption has a lasting e¤ect on utility that induces substitutabil-

ity across time and that the median consumer has a taste for variety in her product decisions.

Consumers are found to be forward-looking with respect to the duration since the last pur-

chase, to price expectations and product choices. Pricing policy simulations suggest that

retailers may increase revenue by reducing the variance of prices, but that lowering the
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everyday level of prices may be unpro�table.

2 Data Description and Preliminary Analysis

I use Information Resources Inc. (IRI) scanner data collected from June 1991 to May 1993

in two separate submarkets of a large Midwest city. The dataset covers 24 di¤erent product

categories at both the store and household levels. The former includes weekly sales, prices,

and promotional activities for each universal product code (UPC) in nine supermarkets,

belonging to di¤erent chains, while the latter tracks the store visits of 548 households and

includes when and how much each household spent in her shopping trips.

I estimate the model for an indulgence good category: ice cream and related frozen

desserts. Frozen desserts are o¤ered in four segments: regular ice cream, diet ice cream,

frozen yoghurt and ice milk. Regular ice creams account for 67% of the volume purchased,

with diet ice creams and frozen yoghurt roughly splitting the remaining of the market. The

market share of ice milk is less than one percent. Ice creams come in a limited number of

package sizes, with the top four sizes accounting for more than 99% of the market: 64 oz:

(72:3%), 16 oz: (11:5%), 160 oz: (10:8%) and 32 oz: (4:8%). The choice set available to

the households is substantial. The average supermarket in the sample carries 170 di¤erent

frozen dessert products (from 20 brands) on a weekly basis. I de�ned a product as a segment-

brand-�avour combination so that, for example, Häagen-Dazs Vanilla Ice Cream, Häagen-

Dazs Chocolate Ice Cream, and Häagen-Dazs Vanilla Frozen Yoghurt are classi�ed as distinct

products.

Kemps is the dominant brand with 23% volume market share, followed by Breyers and

Wessanen�s Value Pack (both with 12%), Dreyer�s (10%) and Häagen-Dazs (6%). Store pri-

vate labels account for 3:5% of the market. The most popular �avours are vanilla (21%),

chocolate (9%), neapolitan (7%), strawberry (5%) and chocolate chip (5%), although a typi-

cal supermarket would carry an average of 84 di¤erent �avours, each week. In contrast with

the moderated brand and �avour concentration, there is substantial market fragmentation

at the product level. Breyers Vanilla Ice Cream is the market leader with a 2:6% volume

market share.

The median household has two members, an income between 25; 000 and 35; 000 dollars.

I conduct the subsequent analysis using a subset of the sampled households selected based

on three criteria. First, I eliminated consumers recorded purchasing in supermarkets for

which no price data is available. An alternative approach could have been to include those
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Table 1

Volume Market Shares*

Household

Panel A: Product level All Subset Store

S CS S CS S CS

1 Wessanen�s Value Pack NY Vanilla IC 3.85 3.85 4.14 4.14 2.03 2.03

2 Wessanen�s Value Pack Vanilla IC 2.71 6.56 1.96 6.10 2.58 4.61

3 Wessanen�s Value Pack Neapolitan IC 2.06 8.62 2.59 8.69 1.78 6.39

4 Fieldcrest Vanilla IC 2.05 10.67 2.81 11.50 1.22 7.61

5 Kemps Vanilla FY 1.97 12.64 5.26 16.76 1.13 8.74

6 Kemps Vanilla IC 1.69 14.33 1.37 18.13 2.15 10.89

7 Breyers Vanilla IC 1.51 15.84 1.62 19.75 2.60 13.49

8 Wessanen�s Value Pack Chocolate IC 1.41 17.25 1.26 21.01 1.14 14.63

Household

Panel B: Brand level All Subset Store

S CS S CS S CS

1 Kemps 21.22 21.22 19.59 19.59 23.37 23.37

2 Wessanen�s Value Pack 13.69 34.91 12.71 32.30 11.73 35.10

3 Breyers 9.22 44.13 10.04 42.34 11.86 46.96

4 Dreyer�s 8.89 53.02 5.34 47.68 9.88 56.84

5 Sealtest 6.90 59.92 10.70 58.38 4.27 61.11

6 Fieldcrest 4.10 64.02 5.66 64.04 3.43 64.54

7 Dean Foods 3.75 67.77 3.85 67.89 2.71 67.25

8 Häagen-Dazs 3.62 71.39 1.53 69.42 5.81 73.06

Household

Panel C: Flavour level All Subset Store

S CS S CS S CS

1 Vanilla 22.20 22.20 26.38 26.42 21.10 21.10

2 Chocolate 8.00 30.02 9.04 35.46 8.59 29.69

3 Neapolitan 7.21 37.41 11.47 46.93 6.50 36.19

4 New York (NY) Vanilla 5.49 42.90 5.52 52.45 3.63 39.82

5 Strawberry 5.36 48.26 4.48 56.93 4.99 44.81

6 Butter Pecan 4.01 52.27 3.21 60.14 3.79 48.60

7 Chocolate Chip 2.69 54.96 2.59 62.73 4.63 53.23

8 Pistachio 2.39 57.35 2.94 65.67 1.31 54.54

* Columns labeled S denote market shares and columns labeled CS denote cumulative market shares. IQ stands for an ice
cream product and FY for a frozen yoghurt product.
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households and either (i) eliminate the purchases in unsampled stores as if they never hap-

pened, or (ii) assume some cross-store price pattern and generate price data to be imputed

for those purchases. All solutions potentially could introduce bias in the analysis. I opted for

the elimination after ensuring the subset sample was representative, an issue I discuss below.

Second, computational barriers compelled me to eliminate consumers that purchased more

than two items of ice cream in a shopping visit or bought non-representative package sizes.

Their inclusion would increase the dimensionality of the state space to a degree that made

the structural estimation computationally infeasible. Finally, I eliminated households that

made less than 10 purchases of ice creams over the total sample period since they are likely

to be either (i) not regularly in the market, or (ii) purchasing in alternative stores. This

reduced the sample size from 548 to 115 consumers, who made a total of 17; 899 supermarket

trips and 2; 822 ice-cream purchases.

An important question is obviously whether the subset sample is representative of the

whole population buying at these supermarkets. Table 1 addresses this question by reporting,

for the di¤erent samples, the top-8 products, brands and �avours in terms of their volume

market share. The simple comparison of the columns show that, with minor exceptions, the

product, brand and �avour market shares in the di¤erent samples are very similar, which is

suggestive that the subset sample is reasonably representative.

2.1 Substitutability Across Time

In this section, I examine the shopping behaviour of consumers and the frequency of their pur-

chasing patterns for the ice cream category as a whole. Table 2, Panel A presents summary

statistics for the consumers supermarket trips. Although there is evidence of substantial het-

erogeneity across consumers with regard to their shopping behaviour, the median consumer

in the sample visits a supermarket every three days to a total of 98 times over the observed

sample. This consumer shops in two di¤erent supermarkets, but concentrates her purchases

on a single one. In order to compute the consumers intertrip duration, I use the �rst six

months in the sample to generate an initial trip for each household. I will discuss below that

these �rst six months will also be instrumental in generating an initial product choice for

each consumer to avoid spurious switching.

Table 2, Panel B displays some summary statistics of households ice-cream purchasing

patterns. The results suggest substantial heterogeneity also at this level, with the median

consumer making a single-item purchase of 64 oz: of ice-cream every 16 days to a total of 13

purchases over the sample period.

7



Table 2

Consumer Category Purchasing Patterns*

Panel A: Supermarket trips

Mean Median Std Min Max

Number of Trips 114 98.0 59.9 36.0 317

Days from Previous Trip 4.75 3.00 5.05 0.00 75.0

Number of Stores Visited 1.95 2.00 0.79 1.00 4.00

Store HHI 0.86 1.00 0.20 0.36 1.00

Panel B: Ice cream purchases

Mean Median Std Min Max

Number of Purchases 17.7 13.0 15.0 3.00 126

Volume 63.3 64.0 31.5 16.0 160

Multiple-item Purchases 0.12 0.00 0.32 0.00 1.00

Days from Previous Purchases 30.0 16.0 37.8 0.00 311

* For Number of Trips, Number of Stores Visited and StoreHHI, an observation is a household. For
Days from Previous Trip, an observation is a trip instance. For all other statistics, an observation
is a purchase instance. Store HHI denote the household�s Her�ndahl-Hirschman index for ice-cream
volume purchases.

I now move on to examine the hypothesis that consumption has a lasting e¤ect that

diminishes the marginal utility of future consumption. If the magnitude of this e¤ect is

such that induces consumers to vary their choice of dessert, the probability of purchase

will be related to how long it has been since their last purchase. If, on the other hand,

the magnitude of the e¤ect is small, then the probability of purchase will not depend on

the interpurchase duration. Figure 1 displays the purchase hazard rate by no-purchase

spell duration in days. The hazard rate denotes here the probability that you purchase if

you have not purchased up to now. The pattern illustrated provides some support for the

duration dependence argument: there is evidence of a non-linear relationship between the

probability of purchase and the duration since the last purchase. The hazard rate is quite

low immediately after a purchase, then gradually increases until day 7, after what it exhibits

a gradual, although rather jagged, downward trend (an interesting aspect of this hazard rate

relates to its recurring spikes, an issue I address below). However, the downward trend of the

hazard rate suggests that, in contrast to the initial argument of this paper, the probability

of purchase seems to decrease (and not increase) with the duration since last purchase.

There are two possible explanations for this behaviour (and that illustrate the well known

problem that unobserved heterogeneity can be confounded with state-dependence). Either

the utility from consuming ice cream does in fact decrease with duration (positive state-

dependence), or alternatively, the utility increases with duration from last purchase (negative

state-dependence), but there exists a group of low-demand consumers who are more likely

to exhibit longer interpurchase durations (heterogeneity). In order to evaluate the degree

8



of consumer unobserved heterogeneity, I re-compute the hazard rate at the consumer-level.

The consumer-level hazard rate denotes here the probability that a consumer purchases if

she has not purchased up to now. Figure 2 displays, for each duration spell, the mean of the

probability of purchase across consumers, as well as the interval limited by that mean value

plus and minus one standard deviation (subject to a non-negativity constrain). The high

standard deviation around the mean indicates substantial heterogeneity across consumers,

which is suggestive of the importance of controlling for unobserved heterogeneity in the

structural estimation.

While the duration dependence of ice cream purchases implied by Figures 1 and 2 can be

consistent with variety-seeking behaviour induced by a diminishing marginal utility, it can

also be consistent with the main alternative theory: if consumers respond to temporary price

cuts by accelerating (anticipating) purchases and hold inventories for future consumption (i.e.

stockpile), the probability of purchase will also be duration-dependent. Temporary price

promotions are an important marketing tool in the pricing strategy of many nondurable

goods and ice creams are no exception. The ice cream prices in the sample display a classic

high-low pattern: products have a "regular (modal) level" that remains constant for long

periods of time with occasional temporary reductions. Figure 3 displays, as an illustration,

the price of Dreyer�s Vanilla Ice Cream 64 oz: over the sample weeks in a typical supermarket.

The price is at the "regular level" ($4:59) for 57% of the weeks. De�ning a sale to be a price

reduction of at least 5% (below the modal level), it is on sale for 31% of the time, with

the average price discount being $1:61. If we consider the sample as a whole, untabulated

statistics show that prices are, on average, 66% at the "regular level" and 26% on sale (with

an average discount of $0:70). In such an environment, consumers may respond to temporary

price cuts by accelerating (anticipating) purchases and stockpile.

Table 3 addresses the purchase acceleration e¤ect by comparing household level sale and

nonsale purchasing patterns. The �rst column displays averages during nonsale purchases.

The following columns examine the di¤erence towards a sale purchase, decomposing the total

di¤erence into a within and a between households e¤ects. As before, a sale is de�ned as any

price at least 5% below the model price of a store-UPC combination over the observed period.

I focus the analysis on the within column,2 that compares the household purchasing patterns

over time. The evidence seems to indicate that consumers do respond to temporary price

cuts. Unsurprisingly, the results suggest that households tend to shorten their duration from

2The results from the between column in Table 2:3 suggest substantial heterogeneity in how consumers
respond to temporary price cuts, with households that purchase more frequently on sale, buying larger
volumes and less frequently. This reinforces the need for the structural model to control for consumer
heterogeneity.
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Figure 1

Purchase Hazard

Figure 2

Consumer-level Purchase Hazard
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Figure 3

Price Example: Dreyer�s Vanilla Ice Cream

previous purchase (between 3-4 days) and to increase their volume purchases (by roughly

17%), when buying on sale.

The interesting question is whether this response by consumers translates into a consump-

tion e¤ect or merely represents a demand-anticipation e¤ect with households stockpiling for

future consumption. In order to examine this question, I follow Hendel and Nevo (2006a)

and examine households interpurchase duration to the next purchase. The idea here is that

if consumers do stockpile, then the duration to next purchase is expected to be longer for

large volume purchases (like purchases on sale). The results from Table 3 show that there

is no signi�cant di¤erence in the duration forward to next purchase between sale and non-

sale purchases. The comparison of the quantity and duration e¤ects seem to indicate that

stockpiling may not be a relevant feature of ice-cream demand and that the quantity ef-

fect induced by temporary price reduction substantiates a consumption e¤ect. In order to

examine the robustness of this conclusion, I also compared the duration forward to next

purchased when consumers buy an above average volume. The results of those regressions

(which are untabulated) are consistent with the above conclusion. The di¤erence in inter-

purchase duration is again not signi�cantly di¤erent from zero. The alternative theory that

state-dependence in the probability of purchase is due to stockpiling can not explain these

results. Furthermore, the analysis of how the additional quantity is bought is consistent with
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Table 3

Category Purchasing Patterns: Comparison between Sale and Nonsale*

Average Di¤erence during Sale

during Consumers Week

Nonsale Total Within Between F.E.

Volume (oz.) 57.7 (3.08) 11.8 (2.26) 9.91 (1.42) 23.3 (7.70) No

� 12.1 (2.30) 10.1 (1.51) 22.5 (12.7) Yes

Units 1.05 (0.01) 0.16 (0.02) 0.17 (0.02) 0.13 (0.04) No

� 0.16 (0.02) 0.17 (0.02) 0.07 (0.08) Yes

Average Package Size 56.1 (2.95) 2.27 (1.94) -0.31 (0.91) 14.3 (6.91) No

� 2.22 (1.97) -0.18 (0.90) 13.0 (12.2) Yes

Days from Previous Purchase 27.0 (2.40) 0.22 (1.83) -3.69 (1.54) 17.6 (7.04) No

� -0.13 (1.77) -4.00 (1.51) 19.8 (9.84) Yes

Days to Next Purchase 25.9 (2.31) 2.55 (1.65) -0.14 (1.39) 9.23 (7.03) No

� 2.59 (1.64) -0.14 (1.44) 28.3 (11.5) Yes

* An observation denotes a purchase instance. Standard errors clustered by household in parentheses (except
for the between analysis).

the variety-seeking theory. When purchasing on sale, consumers do not signi�cantly change

their average package size. Instead, they purchase more units of ice cream. This supports

the variety-seeking story since if the increased volume translates into increased consumption,

then purchasing multiple-items is a sensible strategy to deal with the diminishing marginal

utility from consumption.

Having addressed the issue of eventual stockpiling behaviour, I now move on to address

another somewhat problematic issue. In this paper, I model consumption to have a lasting

e¤ect that diminishes the marginal utility of future consumption. However, I do not observe

the actual time and magnitude of consumption. So, I am forced to infer it from purchase

choices. The results from Table 3, Panel A provide some evidence that, not only consumers

do not anticipate purchases to hold inventories for future consumption, as already discussed,

but also that utility does not depend on the stock of past consumption. If consumption did

create a stock, then duration to next purchase would increase with the size purchased, which

it does not. That said, following Table 3, the only relevant variable that may a¤ect the

marginal utility of future consumption is the timing of current consumption. As I discuss

below, due to the temptation nature of the good, assuming that the time of consumption

coincides with the time of purchase is not unreasonable. At least for most people, in line with

what Erdem et al. (2003) argue, ice creams are technologically, but not practically storable

over more than a few days. It may seem inconsistent to assume that consumption has a

lasting a¤ect that induces intertemporal substitution in purchases while assuming that the

good held in inventory has a temptation feature. These assumptions are however consistent
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Table 4

Category Purchasing Patterns: Seasonality*

Average Di¤erence during Summer

during Consumers

Nonsummer Total Within Between

Volume (oz.) 63.1 (0.78) 0.76 (1.74) 1.86 (1.25) 2.54 (18.7)

Units 1.12 (0.01) 0.00 (0.02) 0.00 (0.02) -0.17 (0.10)

Average Package Size 57.0 (0.63) 0.94 (1.39) 1.58 (0.86) 12.1 (16.4)

Days from Previous Purchase 27.0 (0.86) 0.74 (1.86) -0.72 (1.68) 28.8 (13.8)

Days to Next Purchase 27.1 (0.86) 0.09 (1.86) -1.01 (1.68) 15.2 (16.4)

* An observation denotes a purchase instance. Standard errors clustered by household in parentheses (except
for the between analysis).

with observed behaviour, since consumers seem to depreciate the costs of goods they have

in inventory (see Gourville and Soman (1998) and Prelec and Loewenstein (1997)).

I now move on to describe two other timing aspects of consumers ice cream category

purchasing patterns. I begin by addressing seasonality. If the decisions of consumers are

seasonal, then the structural model must re�ect this feature. Table 4 addresses this ques-

tion by comparing household level summer and nonsummer purchasing patterns. The �rst

column displays averages during nonsummer purchases while the following columns examine

the di¤erence towards a summer purchase, again decomposing the total di¤erence into a

within and a between consumers e¤ects. The results suggest that summer does not induce

a signi�cant di¤erence in the purchasing patterns of households, at any dimension: volume,

units, average package size, days from previous purchase or days to next purchase. This

holds both within and across consumers. In order to examine the robustness of this conclu-

sion, I replicated this analysis to compare the consumers purchasing patterns in winter and

nonwinter seasons. The results of those regressions (which are untabulated) are consistent

with the above conclusion. They show no signi�cant di¤erence in the associated purchasing

patterns. Surprisingly, seasonality does not seem therefore to be an important feature in the

purchasing decision of ice cream and related frozen desserts.

Another timing aspect of consumers ice cream category choice patterns relates to the

purchase day. If consumers are more likely to purchase on a particular day of the week or

weekend, then the structural model must somehow incorporate it. Untabulated statistics

show no evidence of a clear preference towards a given day of the week, when comparing

across consumers. However, Figure 1 illustrated an interesting pattern. The probability of

purchase spikes at every seven days (and exactly every seven days), which suggests that

even though no preference exists across consumers, each consumer seems to have a preferred

day of the week to purchase ice creams - maybe at their main weekly shopping trip. This
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Table 5

Consumer Product Choice Behaviour*

Panel A: Product level

Mean Median Std Min Max

CR1 0.38 0.33 0.19 0.11 0.95

CR5 0.83 0.84 0.16 0.46 1.00

HHI 0.26 0.20 0.17 0.07 0.91

Number of di¤erent products 8.27 8.00 4.18 2.00 26.00

Probability of successive product switching 0.77 0.82 0.22 0.15 1.00

Probability of product exploration switching 0.45 0.42 0.26 0.00 1.00

Panel B: Brand level

Mean Median Std Min Max

CR1 0.57 0.53 0.23 0.19 1.00

CR5 0.97 1.00 0.06 0.73 1.00

HHI 0.46 0.38 0.25 0.13 1.00

Number of di¤erent brands 4.43 4.00 2.10 1.00 11.00

Probability of successive brand switching 0.57 0.62 0.27 0.03 1.00

Probability of brand exploration switching 0.33 0.30 0.20 0.03 1.00

* An observation is a household. CRm and HHI denote the household�s m-product (brand) volume concentration

ratio, and Her�ndahl-Hirschman index, respectively.

constitutes a feature of consumer behaviour that must be incorporated into the structural

model.

2.2 Substitutability Across Products

Having described the shopping behaviour and purchasing patterns of consumers for the

ice cream category as a whole, I now move on to examine their product choice patterns.

Table 5 displays household-level concentration and variety-seeking measures for ice cream

product and brand choices. Table 5, Panel A displays the descriptive statistics for the

product level measures. The median consumer buys 8 di¤erent products over the sample

period and fragments her volume purchases considerably as the relatively low household-level

concentration ratios (CRm) and Her�ndahl-Hirschman index (HHI) suggest. Nevertheless,

there is evidence of substantial heterogeneity across consumers as indicated by the large

range intervals and standard deviation of the several concentration measures. So, although

some households show evidence of considerable product fragmentation, others concentrate

their purchases on a relatively small number of products.

Having examined product choice concentration, I now move on to examine a measure of

product switching, following Menon and Kahn (1995). The probability of successive product
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switching denotes the proportion of consumer purchases that involved switching, where a

switch is de�ned as occurring each time the product(s) chosen on a purchase occasion is dif-

ferent from those chosen on the immediately preceding purchase instance. This is consistent

with Faison (1977) and Venkatesan (1973). Counting switching from the beginning of the

sample period would generate spurious switching. Therefore, as discussed previously, I use

the �rst six months in the sample to generate an initial product choice for each consumer.

This approach is similar to Shum (2004) and Pozzi (2009). The descriptive statistics for

the probability of successive product switching suggest substantial heterogeneity across con-

sumers, with the median household switching from the immediately preceding products in

82% of her purchases.

An alternative approach would be to de�ne a switch as occurring each time the product

chosen on a purchase occasion is di¤erent from any of the preceding choices, following Faison

(1977) and Pessemier (1985). The two de�nitions di¤er in the idea of variety-seeking that

may capture. While the latter de�nition implicitly assumes that the level of stimulation of a

household can only be increased by exploring new products, i.e. products that the consumer

never tried before, the successive switching de�nition assumes that the level of stimulation of

a household can be increased by alternating from one product to another, even if the products

in the switching set are all familiar. A simple comparison of the probability of switching

according to the two de�nitions suggests that the proportion of switching involving familiar

products should not be neglected.

Table 5, Panel B presents descriptive statistics for the same concentration and variety-

seeking measures, but aggregated at the brand level. The purchases of the median consumer

show a higher degree of concentration and a lower probability of switching when compared

with her product choice patterns, which may be suggestive of the relative importance of

di¤erent �avours and product types in increasing the level of stimulation of a household.

One problem with inferring variety-seeking from product switching is that unobserved

heterogeneity can be confounded with product state-dependence. The identi�cation problem

arises because a consumer may exhibit high product switching by repeatedly alternating

products in her purchases either because of a weak unobserved, idiosyncratic preference

for the di¤erent products or because she has a taste for variety. In order to evaluate the

importance of product preferences, I examine the association between product switching

behaviour and product choice. The dependent variable is a product preference measure

in the lines of Simonson and Winer (1992). Each consumer purchase is associated with

a score equal to the volume market share of the corresponding product (or products in

15



Table 6

Product State-Dependence vs Product Preference*

(1) (2) (3) (4)

Product State-Dependence -0.28 -0.31 -0.17 -0.10

(0.06) (0.06) (0.03) (0.01)

Marketing-Mix

Price 0.04 0.07 0.01

(0.01) (0.01) (0.01)

Feature 0.05 0.07 0.01

(0.02) (0.02) (0.01)

Display -0.00 0.01 -0.02

(0.03) (0.02) (0.02)

Household F.E. No No Yes Yes

Product F.E. No No No Yes

R2 0.26 0.28 0.64 0.85

* An observation is a purchase instance by a household. Standard errors
clustered by households in parentheses.

case it is a multiple-item purchase) in the consumer�s shopping history.3 Products with

high consumer-level market shares are assumed to correspond to products for which the

consumer has a strong preference, given their weight in the household shopping basket.

This assumption is of course problematic, but it allows me to illustrate the high degree of

unobserved product heterogeneity. Table 6 presents the OLS results of regressing the product

preference score of each purchase on a product state-dependence variable that keeps track

of the number of product switches from the immediately preceding purchase instance. I

include marketing-mix variables as covariates: price and two types of promotional activities:

feature (de�ned as any type of retailer product advertising) and display (de�ned as any

type of special store display).4 The di¤erent speci�cations vary on the degree of controls

included. The results suggest a signi�cant negative association between product switching

and the product preference score, implying that consumers tend to switch more towards less

preferred products. This association weakens as additional heterogeneity is incorporated,

which is indicative of the importance of controlling for unobserved product heterogeneity in

the structural estimation.

A �nal problem with inferring variety-seeking from product switching is that product

3As an illustration consider the hypothetical example of a consumer that, over her shopping history,
purchases 100 oz: of product A, 50 oz: of product W and 50 oz: of product B. Each item purchase of product
A will receive a product preference score of 0:50 (100/200).

4The data includes several categories of feature and display. I aggregate across the di¤erent categories to
feature/no feature and display/no display.
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unavailability may generate spurious switching. In order to address this concern, I need to

separate true product switching from switching induced by product unavailability. However,

as the IRI dataset does not include information on product availability, I have to infer it from

store product sales. I consider that a product was available in a given week and supermarket

combination if the store sold at least one unit of the product in that week.5 I then compute,

for each consumer, the proportion of true product switching, i.e. switching that occurs

despite the products chosen on the immediately preceding purchase instance being available

(as measured by the proxy). This analysis (which is untabulated) seems to suggest that most

product switching is not induced by unavailability: the median proportion of true product

switching is 83%, the average is 80%, the 25th percentile is 66%, and the 75th percentile is

98%.

Having described the important features of the purchasing behaviour of consumers, I now

move on to specify the demand model and the proposed estimation procedure.

3 Demand Model

This section introduces the utility function and the assumptions of the model. I study the

demand for a temptation good in a setting similar to Hartmann (2006) where consumption

creates a stock that diminishes over time. This creates in the consumer an incentive to

variety-seek and thus intertemporal substitute consumption for the good. Unlike Hartmann

(2006), I extend the analysis to address the di¤erentiated nature of the good and examine

not only substitution across time, but also substitution across products. In order to do so, I

adapt Aguirregabiria (2002) and Hendel and Nevo (2006a) multi-stage budgeting approach.

3.1 The Setup

There are I consumers who are indexed by i. In each shopping trip t, consumer i chooses

whether or not to purchase the good, and in case she decides to purchase, which product and

size to buy. Let j = 1; : : : ; J index the inside product alternatives to the consumer, with each

product alternative being (possibly) o¤ered in a variety of di¤erent sizes x. Multiple-item

purchases are included by expanding the choice set to allow for bundles. If in a particular

trip a consumer buys, for example, both 64 oz: of Häagen-Dazs Vanilla Ice Cream and 16 oz:

of Häagen-Dazs Chocolate Ice Cream, the purchase size is given by x = 80 oz: and product

5The product availability proxy will obviously overestimate the induced product switching.
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j denotes the bundle of the two products. The no purchase choice (outside alternative) is

indexed by j = 0.

3.2 Consumer Flow Utility

The consumer �ow utility is expressed in terms of the indirect utility from each of the

available alternatives. I begin by specifying the indirect utility from not purchasing (the

outside option). I follow Hartmann (2006) and relax the common assumption of additively-

separable utility in consumption by considering a frequency of purchase model where past

choices a¤ect current utility. In particular, I assume the utility of the outside option to be

a function of the depreciated stock of past consumption:

ui0t (yit; "i0t) = zit + "i0t; (1)

where zit denotes the stock of past consumption of individual i at time t and "i0t is a

random shock to consumer choice. The depreciated stock of past consumption will, in full

generality, depend on both the time elapsed since the previous purchase and the size of past

purchases. However, because the stock of past consumption is intangible and unobservable,

I am required to infer it from (observed) past purchase choices. In order do so, I make the

following assumptions.

Assumption 1 Consumption takes place at the time of purchase.

Assumption 1 is motivated by the temptation nature of the good. Since the data descrip-

tion analysis has shown that consumers do not anticipate purchases to hold inventories for

future consumption, inferring that individuals do consume their purchased ice cream before

their next purchase occasion is not unreasonable. However, the actual time of consump-

tion is unobserved. Due to the temptation nature of the good, I assume that the time of

consumption coincides with the time of purchase. At least for most people, in line with

what Erdem et al. (2003) argue, ice creams are technologically, but not practically storable

over more than a few days. As discussed above, it may seem inconsistent to assume that

consumption has a lasting a¤ect that induces intertemporal substitution in purchases while

assuming that the good held in inventory has a temptation feature. These assumptions are,

however, consistent with observed behaviour, since consumers seem to depreciate the costs of

goods they have in inventory (see Gourville and Soman (1998) and Prelec and Loewenstein

(1998)).
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Assumption 2 The stock of past consumption fully depreciates after a new consumption

occasion.

Assumption 2 implies that the stock of past consumption does not accumulate across mul-

tiple consumption occasions and that only the last consumption occasion is relevant. The

motivation behind this assumption is twofold. First, it signi�cantly reduces the state space

since, instead of keeping track of all past choices, only the (observable) last consumption is

relevant to the decision of consumers. An alternative approach would consist of constructing

an accumulated stock index, a strategy that would also have the advantage of a simpli�ed

state space. However, it carries a disadvantage related to the second justi�cation for As-

sumption 2. Under this assumption, the initial stock of past consumption is observable and

does not need to be inferred, which would not be true if I allowed the stock to accumulate

across multiple consumption occasions.

One concern with the simpli�cation implied by Assumption 2 is that it comes at a cost:

the stock of past consumption is measured with error. Although measurement error is a

potentially troublesome problem, it may not be too problematic here. The error introduced

will, at best, underestimate the incidence of intertemporal substitution, rather than falsely

induce �nding intertemporal substitution. In order to understand why this the case, note

that because the estimated stock of past consumption will not exceed the true stock of past

consumption, the utility of the outside option will be underestimated (in a setting where this

alternative is the most common choice made by consumers). As a consequence, intertemporal

substitution is underestimated.

Assumption 3 The stock of past consumption is independent of the quantity purchased.

Assumption 3 relates to a previous discussion since the descriptive analysis of the data has

shown that the consumer interpurchase duration is not a¤ected by the quantity purchased.

Even though consumers respond to price promotions by increasing their purchased size, the

e¤ect on the duration to the next purchase is not signi�cantly di¤erent from zero.

A consequence of Assumptions 1 to 3 is that only the time elapsed from the last purchase

is relevant to infer the depreciated stock of past consumption. The utility of the outside

option can then be speci�ed as:

ui0t (Hit; "i0t) = ' (Hit) + "i0t; (2)
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where Hit is the number of days since the last purchase occasion and ' (Hit) denotes the

function that allows me to infer the (unobserved) stock of past consumption from (observed)

past purchase choices.

I now move on to specify the indirect utility from choosing an inside alternative. I assume

the utility to individual i in time period t from choosing a product j of size x > 0 that belongs

to hit�1 is:

uijxt (pjxt; ajxt; hit�1; "ijxt) = �uijxt (pjxt; ajxt; hit�1) + "ijxt (3)

= ix + �ipjxt + �ijt + �iajxt + �imjxt + �iyijt�1 + "ijxt;

where hit�1 indicates the set of products purchased by consumer i in her previous purchase

event, ix denotes the (dis)utility from making a purchase of size x, which could be inter-

preted as a carrying cost associated with that particular purchase, pjxt is the price of product

j in size x, �ijt is consumer i taste for for product j that could be a function of product

characteristics (like, for example, size), ajxt denotes a vector of indicator variables that con-

trol for other promotional activities, mjxt is an indicator variable that takes the value 1 if

product j denotes a multiple-item purchase, and "ijxt is a random shock to consumer choice.

The variable yijt�1 keeps track of the number of products that do not belong to the set hit�1

if consumer i purchases product j in purchase event t.

The term �i accounts for state-dependence e¤ects. A positive �i implies that consumer

i has a taste for variety-seeking, since switching to products di¤erent from those included

in the hit�1 set increases the consumer�s utility (see McAlister and Pessemier (1982)). The

marketing literature provides several explanations for such variety seeking behaviour. Con-

sumers may have an internal desire for change due to satiation or need for stimulation,

or they may be balancing the di¤erent tastes within the household (see Kahn, 1995, for a

comprehensive review of the variety seeking literature). A negative �i, on the other hand,

implies consumer i incurs in a switching cost, since switching to products that do not belong

to the set hit�1 decreases the consumer�s utility (see Pollack (1970) and Spinnewyn (1981)).

Klemperer (1995) provides a number of possible reasons for switching costs. Consumers may

have shopping search costs and, therefore, do not reoptimize the set of products purchased

at every purchase occasion, or they may keep repurchasing the same product as part of a

learning process. I do not attempt to distinguish here between these alternative explana-

tions. Rather, I focus on whether state dependence in fact exists and can be identi�ed from

observed purchasing behaviour. This approach is similar to Osborne (2007).
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3.3 Consumer Dynamic Optimization Problem

Consumers in each period decide if or not to purchase, and in case they opt to purchase,

which product or products to choose. I make the following assumptions about how consumer

expectations of the future a¤ect current period decisions.

Assumption 4 Consumers are forward-looking with regard to their purchase decisions, but

myopic with respect to their product choices.

The myopic assumption implies that consumers maximize their per-period expected util-

ity when making their product choices and is motivated by solely pragmatism. A forward-

looking consumer, who experiences state-dependence in her choices of product, considers the

future consequences of those choices. The state space of the dynamic problem without this

assumption would be extremely large, making the structural estimation computationally in-

feasible. The development of a framework that incorporates such forward-looking behaviour

into a feasible computational estimation procedure is a very interesting potential area for

future research. That said, the myopic assumption seems a reasonable assumption about

consumer formation of expectations with regard to product choice. While some consumers

may plan the whole sequence of product decisions accounting for the consequence of state-

dependence in future periods, I tend to believe such forward-looking behaviour to be rare.

I should note, however, that Assumption 4 does not imply that dynamics are absent from

product choice. As I discuss below, current product choices impact the expected future �ow

utility of the di¤erent inside alternatives and, as a consequence, in�uence the purchase size

decision. In other words, even though consumers are myopic with regard to product choice,

their decisions have dynamic implications for current and future purchase size choices.

Assumption 4 implies a multi-stage budgeting approach to model the purchase and prod-

uct decisions of consumers (see Aguirregabiria (2002) and Hendel and Nevo (2006a) for

similar dynamic applications of Gorman (1971)�s approach). The consumer�s expected dis-

counted utility in purchase occasion t can therefore be represented as:

V (sit) = max
�i

1X

�=t

���tE

�X
x>0

max
�i

X
j
dix�dij=x�uijx� (pjx� ; ajx� ; hi��1; "ijx� ) (4)

+ di0�ui0� (Hi� ; "i0� ) jsit;�i;�i

�
;

where sit denotes the state at time t and � > 0 the discount factor. The state sit in each

period consists of the vector of current prices and promotional activities for all products and
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sizes, the set of of products purchased by consumer i in her previous purchase event, the

stock of past consumption as measured by the time since the last purchase, and the vector

of random shocks to consumer choices, sit � (pt; at; hit�1; Hit; "it). For convenience, I de�ne

also the state space s�t that consists only of the vector of current prices and promotional

activities for all products and sizes, and the set of of products purchased by consumer i in

her previous purchase event, s�it � (pt; at; hit�1).

�i and �i denote a set of decision rules mapping states, sit, to choices, dixt and dij=xt,

respectively, where dixt is an indicator variable equal to 1 if the choice of consumer i is a

purchase of size x (with x = 0 standing for no purchase) and dij=xt is an indicator variable

equal to 1 if consumer i chooses to buy product j when purchasing size x. The product of

the two indicator variables, dijxt = dixtdij=xt, denotes the purchase of product j and size x.

I assume that
P

x;j dijxt = 1.

At every state, sit, the consumer faces the same in�nite-horizon maximization problem.

The value function V (sit) de�ned in equation (4) above is, therefore, the solution to the

following Bellman�s equation:

V (sit) = max
dixt

�X
x>0

max
dij=xt

X
j
dixtdij=xtuijxt (pjxt; ajxt; hit�1; "ijxt) (5)

+ di0tui0t (Hit; "i0t) + �E
�
V (sit+1) jsit; dixt; dij=xt

��
:

In order to complete the speci�cation of the demand model, I make the following assump-

tions about the beliefs of consumers regarding the uncertain future prices (and promotional

activities) and future utility random shocks.

Assumption 5 Consumers have rational expectations.

The assumption of rational expectations implies that consumers take all available infor-

mation into account in forming expectations. Though expectations may turn out incorrect,

they will not be systematically wrong. In particular, Assumption 5 implies that consumers

know both the true transition probability of prices and promotional activities, and the true

distribution of the utility random shocks.

Assumption 6 The transition probability of prices and promotional activities are exogenous

from the point of view of consumers. Furthermore, they follow a �rst-order Markov process.
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Assumption 6 is consistent with the view that retailers inter-temporal price discriminate

by playing mixed strategies that are exogenous from the point of view of consumers (Conslik

et al. (1984), Sobel (1984), Varian (1980), Pesendorfer (2002)). This assumption implies

that, conditional on the control variables, price and promotional activities are independent

of the unobserved random shocks, which might be unreasonable if consumers stockpile and

inventories are not accounted for. If prices are persistent over time and consumers anticipate

purchases in order to hold inventories for future consumption, then unobserved inventories

will be correlated with current prices causing an endogeneity problem. Another concern with

this assumption might be seasonality. If the likelihood of a temporary promotion is a¤ected

by seasonality and it is not accounted for into the transition probability, then unobserved

random shocks will be correlated with current prices causing (again) an endogeneity problem.

However, as discussed in the previous section, both issues are probably not a concern here.

The �rst-order Markov process assumption reduces the state space and, although prob-

ably inconsistent with equilibrium prices, it is not unreasonable with regard with observed

consumers� memory and formation of expectations. The assumption can be relaxed to allow

higher order processes, with an increase in the associated computational burden.

Assumption 7 "ixjt is independently and identically distributed extreme value type 1 .

Assumption 7 is motivated by pragmatism as it signi�cantly reduces the computational

burden. The main concern with this type of assumption might be to preclude correlation

between products. This is not probably a concern here since the model accounts for product

heterogeneity and product state-dependence. Incorporating correlation between the unob-

served random shocks of di¤erent products can, in principle, be allowed, but at a signi�cant

increase in the computational costs of the estimation procedure.

4 Maximum Likelihood Estimation

This section presents the estimation details. I estimate the parameters of the model via

maximum likelihood. The standard approach would begin by specifying the probability of

observing consumer i�s choices at time t, with this probability being given by the following

likelihood function:

lit (ditjsit) =
Y

x;j
[Pr (dijxt = 1) jsit]

dijxt ; (6)
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where dit � fdijxtg denotes the vector of her choices. The likelihood of consumer i choices

across all time periods would then be:

Li (si1; : : : ; siT ; di1; : : : ; diT jsi0; di0) =

Z Y
t
lit (ditjsit) dF (sitjsit�1; dit�1) ; (7)

where si0 and di0 denote the initial conditions, which are observed, and F (sitjsit�1; dit�1) is

the transition probability.

The problem with the standard approach relates to the computation of Pr (dijxt = 1),

the probability of observing consumer i purchasing product j and size x in period t, due to

the dimensionality of the state space. In order to understand why this is the case, note that

given the extreme value assumption on the unobserved utility random shocks (Assumption

7) this probability can be de�ned as:

Pr (dijxt = 1jsit) =
exp

�
�uijxt (pjxt; ajxt; hit�1) + �E

�
V (sit+1) jsit; dixt; dij=xt

�	
P

y;k exp
�
�uikyt (pkyt; akyt; hit�1) + �E

�
V (sit+1) jsit; dixt; dij=xt

�	 ; (8)

where the summation is over all products from all sizes. The state space includes the vector

of current prices and promotional activities for all products and sizes, the set of products

purchased by consumer i in her previous purchase event, the stock of past consumption as

measured by the time since the last purchase, and the vector of random shocks to consumer

choices. Given the multitude of products and sizes available to consumers, the state space

is extremely large for practical estimation of Pr (dijxt = 1jsit).

In order to simplify the estimation procedure, I propose a three-stage budgeting approach

in the lines of Aguirregabiria (2002) and Hendel and Nevo (2006a).

Step 1 Estimation of Product Preferences

I begin by noting that Pr (dijxt = 1jsit) can, in full generality, be decomposed into the

product of two components: the probability of choosing product j conditional on the size x

purchased and the probability of choosing a purchase of size x:

Pr (dijxt = 1jsit) = Pr
�
dij=xt = 1jsit; dixt

�
Pr (dixt = 1jsit) : (9)

The myopia of consumers with regard to product choice (Assumption 4), implies that con-

sumers maximize their per-period expected utility when making their product decisions. As a

consequence, Pr
�
dij=xt = 1jsit; dixt

�
can be computed without solving the full dynamic prob-

lem. Furthermore, given the extreme value assumption on the utility shocks (Assumption
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7), that probability can be de�ned as:

Pr
�
dij=xt = 1jsit; dixt

�
=

exp [�uijxt (pjxt; ajxt; hit�1)]P
k exp [�uikxt (pkxt; akxt; hit�1)]

(10)

=
exp

�
mi + �ipjxt + �ijt + �iajxt + �imjxt + �iyijt�1

�
P

k exp (
m
i + �ipkxt + �ikt + �iakxt + �imkxt + �iyikt�1)

= Pr
�
dij=xt = 1jpxt; axt; hit�1

�
;

where the summation is now only over the products of size x.

The parameters in �uijxt (pjxt; ajxt; hit�1) - with the exception of ix that cancels out - can

therefore be recovered by maximizing the likelihood of consumer product choice conditional

on the size purchased. Let Lstep1i

�
hi1; : : : ; hiT�1; dij=x1; : : : ; dij=xT jhi0

�
denote the likelihood

of consumer i�s conditional choices across all time periods:

L
step1
i

�
hi1; : : : ; hiT�1; dij=x1; : : : ; dij=xT jhi0

�
=
Y

t

Y
j=x

�
Pr
�
dij=xt = 1jpxt; axt; hit�1

��dij=xt ;

(11)

where hi0 denotes the initial set of products purchased by consumer i, which is observed.

Taking the product of this likelihood function across consumers yields the likelihood function

to be maximized in step 1:

L =
Y

i
L
step1
i

�
hi1; : : : ; hiT�1; dij=x1; : : : ; dij=xT jhi0

�
: (12)

In making the utility of choosing a given product state-dependent from the set of products

bought in the previous purchase occasion, hit�1, I introduce an identi�cation problem since

unobserved consumer heterogeneity may confound the inference of true state-dependence

e¤ects. As Heckman (1981) points out, if households have di¤erent preferences "and if these

di¤erences are not properly controlled, previous experience may appear to be a determinant

(...) of future experience solely because it is a proxy for temporally persistent unobservables

that determine choices."

State-dependence is usually identi�ed by testing the null hypothesis that the current

choice, after accounting for consumer-level heterogeneity, is independent of the previous

choice. One approach to introduce heterogeneity is to include observed consumer hetero-

geneity. This approach assumes the existence of a �nite number of types or segments, with

each type consisting of a set of consumers with identical overall choice preferences (Ka-

makura and Russell (1989)). As the number of types assumed increases, so will the degree

of heterogeneity accounted for under this approach. Goldfarb (2006) presents the extreme
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case where the number of types exactly coincides with the number of consumers. He makes

use of a rich dataset containing nearly 1; 000 observations per household to estimate a fully

�exible model of consumer preferences, by allowing for consumer-speci�c regressions.

Another approach is to introduce heterogeneity by considering consumer preferences to

be realizations of random variables. These random variables are assumed in the literature to

follow a multitude of distributional assumptions. For example, Chintagunta et al. (1991),

Gonul and Srinivasan (1993) and Keane (1997) consider preferences to follow a continuous

probability distribution, while Jain et al. (1994) consider a discrete probability distribu-

tion approximation. An intermediate assumption is presented by Dubé et al. (2006) that

considers a �exible semi-parametric, but continuous model of consumer heterogeneity.

The estimation procedure in step 1 can not allow for random e¤ects in the lines of

the latter approach. If consumer preferences are assumed to be realizations of random

variables that follow a probability distribution (either parametric or semi-parametric), then

computing Pr
�
dij=xt = 1jpxt; axt; hit�1

�
requires integration over the assumed distribution.

Although conditional on the type of consumer, this probability will still be independent

of the dynamic purchase decision, computing this probability unconditional on the type of

consumer requires integration over the distribution of types conditional on the size bought.

And working out this distribution requires solving the dynamic problem.

Consumer-level heterogeneity can, however, be allowed in the lines of the former ap-

proach: either by using observable household demographics to segment consumers into types

or, in the lines of Goldfarb (2006) and Hendel and Nevo (2006a), by considering household-

level product and state-dependence �xed e¤ects. One concern with the latter solution might

be the dimensionality of the parameters to estimate. However, since the likelihood function

in equation (12) is well behaved, the estimation of a considerable number of consumer-level

�xed e¤ects is feasible and involves very slight increases in computational costs. Furthermore,

the consumer-product �xed e¤ects need only to include those products that belong to each

consumer shopping history. Consumer-level product preferences can not be estimated for

products never purchased by the household. This reduces the number of consumer-product

�xed e¤ects substantially since each household typically purchases a relatively small number

of products when compared with the full supermarket assortment. Another concern might be

the standard incidental parameters problem. However, given the large number of consumer

shopping trips in the typical scanner panel datasets, this issue is probably not a concern and

therefore assuming T grows asymptotically is not unreasonable.

Step 2 Estimation of the Inclusive Values Transition Process
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Having outlined the procedure to estimate the probability of choosing product j condi-

tional on the size x purchased, I now move on to specify the two remaining steps required

to estimate the probability of choosing a purchase of size x.

The consumer decision with regard to purchase size (whether and what quantity to

purchase) is the solution to the dynamic problem characterized by Bellman�s equation (5).

However, instead of solving this problem, I follow Hendel and Nevo (2006a) and consider a

simpli�cation of the state space that makes use of the extreme value assumption on the utility

shocks (Assumption 7). This simpli�cation involves summarizing the consumer state space,

s�it � (pt; at; hit�1), into a single index per size, an index representing the utility expected

by the consumer, before seeing the realization of the utility shocks, from all products of

each size. Under Assumption 7, this expected utility is given by the inclusive value wixt

(McFadden (1981a)):

wixt = log
hX

k
exp (�ipkxt + �ikt + �iakxt + �imkxt + �iyikt�1)

i
; (13)

which can be computed with the parameter estimates from step 1.

In order to show that the original dynamic problem can be written in terms of the

simpli�ed state space, I make the following additional assumption, where wit denote the

vector of inclusive values at time t:

Assumption 8 F
�
witjs

�
t�1

�
can be summarized by F (witjwit�1).

Solving the consumer dynamic programming decision requires solving the associated Bell-

man�s equation, which in turn involves working out the expectation of the value function.

In order to compute such expectation, I need to specify the transition probabilities for the

di¤erent state variables. Assumption 8 simpli�es these processes. The motivation is twofold.

First, the transition probabilities of prices and promotional activities from a multitude of

di¤erent products of the same size are summarized into the transition probability of a single

index. Second, it also simpli�es the transition probabilities of product state-dependence.

Although consumer product choice is, by Assumption 4, myopic (which means that current

product choices do not impact future product choices), it does not mean that dynamics are

absent. Current product choices impact the expected future �ow utility of the di¤erent inside

alternatives and, as a consequence, impact the expected future inclusive values that in�uence

the purchase size decision. In other words, even though consumers are myopic with regard

to product choice, their decisions have dynamic implications for current and future purchase

size choices. Assumption 8 summarizes the transition probabilities regarding product choice
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into the inclusive values processes. Because product-choices are consumer-speci�c, the in-

clusive values and their transition processes will necessarily be consumer-speci�c, requiring

that the Bellman�s equation is solved separately for each consumer

One concern with Assumption 8 might be that shopping trips involving di¤erent prices,

promotional activities and/or previous period product choices can be re�ected in a same

inclusive value, which in turn yields the same future transition probabilities. This restriction

can, to some extent, be relaxed, although at a substantial computational cost.

Step 3 Estimation of the Intertemporal E¤ects of Consumption

Step 3 addresses the computation of the probability of choosing a purchase of a given

size x. Not by solving the dynamic problem characterized by Bellman�s equation (5), but

by solving a simpli�ed problem, where the consumer state space, s�it, is summarized into the

vector of single size indexes, wit. In this simpli�ed problem, the consumer observes only Hit

and wit and decides whether and how much to purchase.

I now move on to specify the details of this simpler problem. The utility of consumer i

in time period t is given by:

u
step3

i0t (Hit; "i0t) = ' (Hit) + "i0t; if x = 0 (14)

u
step3

ixt (wixt; "ixt) = ix + wixt + "ixt; if x > 0;

where, as before, x = 0 stands for no purchase. The consumer is assumed to be forward-

looking and, therefore, to maximize the expected discounted utility:

Vstep3 (Hit; wit; "it) = max
�
step3
i

1X

�=t

���tE
hX

x>0
dix�u

step3

ix� (wix� ; "ix� ) (15)

+ di0�u
step3

i0� (Hi� ; "i0� ) jHit; wit; "it;�
step3
i

i
;

where �step3i denotes a set of decision rules mapping states to choices, dixt. The Bellman�s

equation associated with the consumer�s simpler dynamic problem is given by:

Vstep3 (Hit; wit; "it) = max
dixt

nX
x>0

dixtu
step3

ixt (wixt; "ixt) + di0tu
step3

i0t (Hit; "i0t) (16)

+ �E [Vstep3 (Hit+1; wit+1; "it+1) jHit; wit; "it; dixt]
o
:

It remains to be shown that the probability of purchasing size x computed from the
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simpli�ed problem is equivalent to the one computed from the original problem. Establishing

this equivalence involves two steps. In the �rst step, I show that the Bellman�s equations

associated with the original and simpli�ed problems have the same solution. The second

step involves actually showing the equivalence of the probability of purchasing size x from

the two problems.

The two-step proof adapts the one presented in Hendel and Nevo (2006a) to this variety-

seeking framework.

Proposition 1 The Bellman�s equations associated with the original and simpli�ed problems

have the same solution.

Proof. I begin by addressing the original dynamic problem. The Bellman�s equation asso-

ciated with this problem is given in equation (5), reproduced here for convenience:

V (sit) = max
dixt

�X
x>0

max
dij=xt

X
j
dixtdij=xtuijxt (pjxt; ajxt; hit�1; "ijxt)

+ di0tui0t (Hit; "i0t) + �E
�
V (sit+1) jsit; dixt; dij=xt

��
:

Given Assumption 7, the expected value of V
�
sit+1jsit; dixt; dij=xt

�
will be a function of

Hit; s
�
it, dixt and dij=xt. Recall that s

�
it denotes the state space that consists only of the vector

of current prices and promotional activities for all products and sizes, and the set of of

products purchased by consumer i in her previous purchase event. Let V e (Hit; s
�
it) denote

such function to simplify notation: V e (Hit; s
�
it) = E

�
V (sit+1) jsit; dixt; dij=xt

�
.

Computing the expected value of V (sit) conditional on the information available at time

t� 1 yields:

V e
�
Hit�1; s

�

it�1

�
=

Z �
max
dixt

�X
x>0

max
dij=xt

X
j
dixtdij=xtuijxt (pjxt; ajxt; hit�1; "ijxt)

�

+ di0tui0t (Hit; "i0t) + �V
e (Hit; s

�

it)

�
dF (sitjsit�1; dit�1) :

The myopic assumption with regard to consumer product choice together with the extreme-

value assumption allows this expected value to be re-written in terms of the inclusive values

de�ned in equation (13):

V e
�
Hit�1; s

�

it�1

�
=

Z
log
nX

x>0
exp (ix + wixt + �V

e (Hit; s
�

it))

+ exp [' (Hit) + �V
e (Hit; s

�

it)]
o
dF
�
s�itjs

�

it�1; dit�1
�
:
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where the expression inside the integral represents integration over the vector of random

utility shocks. From the analysis of the above equation, it is possible to conclude that

V e
�
Hit�1; s

�
it�1

�
can, under Assumption 8, be iterated using the following Bellman�s equation

rewritten in terms of wt instead of s
�
it�1:

V e (Hit�1; wit�1) =

Z
log
nX

x>0
exp [ix + wixt + �V

e (Hit; wit)]

+ exp [' (Hit) + �V
e (Hit; wit)]

o
dF (witjwit�1; dit�1) :

I now address the simpli�ed problem. The Bellman�s equation associated with this prob-

lem is given in equation (16). After substituting for u
step3

i0� (Hit; "i0t) and u
step3

ixt (wixt; "ixt)

yields:

Vstep3 (Hit; wit; "it) = max
dixt

nX
x>0

dixt (ix + wixt + "ixt) + di0t [' (Hit) + "0t]

+ �E [Vstep3 (Hit+1; wit+1; "it+1) jHit; wit; "it; dixt]
o
:

Taking expectations given the information available at time t � 1 and integrating out the

utility random shocks making use of the extreme-value assumption (Assumption 7) allows

me to write the expected value, V estep3 (Hit�1; wit�1), as:

V estep3 (Hit�1; wit�1) =

Z
log
nX

x>0
exp [ix + wixt + �V

e (Hit+1; wit+1)]

+ exp [' (Hit) + �V
e (Hit; wit)]

o
dF (witjwit�1; dit�1) :

Thus, as the proposition claims, the solution to the Bellman�s equations associated with

the original and simpli�ed problems is the same.

I now address the second step of the proof, showing the equivalence between the prob-

ability of purchasing size x computed from the original problem to the one computed from

the simpli�ed problem.

Proposition 2 Pr (dixt = 1jHit; s
�
it) = Pr (dixt = 1jHit; wit) :

Proof. The probability of purchasing size x computed from the simpli�ed problem is given

by:

Pr (dixt = 1jHit; wit) =
exp [ix + wixt + �V

e (Hit+1; wit+1)]

Mi0t +
P

y>0 exp
�
iy + wiyt + �V

e (Hit+1; wit+1)
� ;

where for notational simplicity Mi0t = exp [' (Hit) + �V
e (Hit; wit)]. If, on the other hand,
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this probability is computed from the original problem, it is given by:

Pr (dixt = 1jHit; s
�

it) =

P
j exp

�
�uijxt (s

�
it) + �V

e
�
Hit+1; s

�
it+1

�	

M�
i0t +

P
y;k exp

�
�uikyt (s�it) + �V

e
�
Hit+1; s

�
it+1

�	 ;

where M�
i0t = exp [' (Hit) + �V

e (Hit; s
�
it)]. The summation in the numerator is over all

products of size x, and the summation in the denominator is over all products of all sizes.

As discussed in Proposition 1, V e
�
Hit+1; s

�
it+1

�
can, under Assumption 8, be re-written in

terms of wit+1 instead of s
�
it+1. This implies that the expected value function depends on the

purchase size chosen, but not on the particular product choice. Furthermore, Mi0t = M
�
i0t.

As a consequence, the above probability can be decomposed and simpli�ed as follows:

Pr (dixt = 1jHit; s
�

it) =

=
Mixt

P
j exp

�
�ipjxt + �ijt + �iajxt + �imjxt + �iyijt�1

�

Mi0t +
P

y>0Miyt

P
k exp

�
�ipkyt + �ikt + �iakyt + �imkyt + �iy

e
ikt�1

�

=
Mixt exp

n
log
hP

j exp
�
�ipjxt + �ijt + �iajxt + �imjxt + �iyijt�1

�io

Mi0t +
P

y>0Miyt exp
�
log
�P

k exp
�
�ipkyt + �ikt + �iakyt + �imkyt + �iy

e
ikt�1

��	

=
exp (wixt +Mixt)

Mi0t +
P

y>0 exp (wiyt +Miyt)

=
exp [ix + wixt + �V

e (Hit+1; wit+1)]

Mi0t +
P

y>0 exp
�
iy + wiyt + �V

e (Hit+1; wit+1)
�

= Pr (dixt = 1jHit; wit) ;

where Mx = exp [ix + �V
e (Hit+1; wit+1)].

Thus, as the proposition claims, the probabilities computed from the original and sim-

pli�ed problems are equivalent.

Having established the equivalence of the probability of a purchase of size x between

the two problems, I move on to specify the estimation procedure. I estimate the remaining

parameters by maximizing the likelihood of consumer purchase choices. Let the likelihood

of consumer i�s purchase choices across all time periods be denoted by:

L
step3
i (Hi1; : : : ; HiT ; dix1; : : : ; dixT jHi0) =

Y
t

Y
x
[Pr (dixt = 1jHit; wit)]

dixt dF (witjwit�1; dit�1) ;

(17)

where Hi0 denotes the initial stock of past consumption as measured by the time since the

initial purchase.

In making the utility of purchasing a given size state-dependent from the duration since
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the last purchase, I introduce an identi�cation problem similar to the one discussed previ-

ously for product switching: unobserved consumer heterogeneity may confound the infer-

ence of true state-dependence e¤ects. The identi�cation problem arises from the fact the

interpurchase duration may be long either due to a low taste for the good or a strong state-

dependence e¤ect. In order to control for unobserved heterogeneity, I assume preferences

vary across consumers using a random e¤ects speci�cation:

�i = �+ �vi; (18)

where �i denotes the vector of the remaining parameters to be estimated (and includes the

duration dependence and the size-speci�c (dis)utilities parameters) and vi is a independently

and identically distributed standard normal. The vector � denotes the mean values of the

di¤erent coe¢cients, while � denotes the Cholesky decomposition of the variance-covariance

matrix, �, which for computational simplicity is assumed diagonal.

I should note that although one may argue that consumer-speci�c inclusive-values already

control for unobserved consumer heterogeneity in their taste for the good, a random e¤ects

speci�cation for the size-speci�c (dis)utilities is required in practice. The justi�cation relates

to an unfortunate property of the conditional logit model used in step 1. The model is

not able to estimate an intercept since it plays no role in determining the product-choice

probability conditional on the size purchased. As a consequence, in order to estimate the

consumer-level product preferences in step 1, a normalization is required for each consumer

and size (since including dummy variables for all products in the conditional choice would

amount to estimate a size-speci�c intercept). The random e¤ects speci�cation for the size-

speci�c (dis)utilities in step 3 is instrumental in making the inclusive values across sizes and

consumers, each estimated using a di¤erent normalization, comparable.

With the introduction of the random e¤ects, the likelihood of consumer i�s purchase

choices across all time periods is now given by:

L
step3
i (Hi; dixjHi0) =

Z Y
t

Y
x
[Pr (dixt = 1jHit; wit; vi)]

dixt dF (vi) dF (witjwit�1; dit�1) :

(19)

I follow Pakes (1986), Pakes and Pollard (1989), and McFadden (1989) and draw ns pseudo-

random consumers to approximate the integral using a (smooth) simulator estimator:

L
step3
i (Hi; dixjHi0) =

Z Y
t

Y
x

�
1

ns

X
s
Pr (dixt = 1jHit; wit; vs)

�dixt
dF (vi) dF (witjwit�1; dit�1) :

(20)

32



Taking the product of this likelihood function across consumers yields the likelihood function

to be maximized in step 3:

L =
Y

i
L
step3
i (Hi; dixjHi0) : (21)

4.1 Bellman�s Equation Solution

The structural estimation is based on Rust (1987)� s algorithm that nests the solution of the

consumer�s dynamic programming within the estimation parameter search. In this section,

I address the computational details of the strategy used to solve the functional equation

(16) associated with the consumer�s simpler dynamic problem. One strategy to solve dy-

namic programming problems is by discrete approximation: In this type of approach, the

value function is solved for numerically by discretizing continuous state spaces into a �nite

number of n grid points. However, in high-dimensional problems, discretization results in

a curse of dimensionality, since n increases exponentially fast in the dimension of the state

space. Another approach is to solve dynamic programming problems by parametric approx-

imation, where the value function is approximated by a smooth parametric function with k

unknown parameters. The latter approach is superior to the former whenever the number

of parameters k required to obtain a good global approximation (according to some metric)

under parametric approximation is smaller than the value n of grid points required to obtain

a comparable �t by discrete approximation.

I follow Hendel and Nevo (2006a) and solve the functional equation (16) by using value

function parametric approximation with policy function iteration in the lines of Benitez-

Silva et al. (2000). Policy function iteration consists of an alternating sequence of policy

improvement and policy valuation steps:

Policy Valuation

The policy valuation step computes the value function, Vstep3 (Hit; wit; "it), for a given

initial guess of the consumer decision, dit. Under a parametric approximation approach, the

value function is approximated by a linear combination of k basis functions (�1; : : : ; �k):

Vstep3 (Hit; wit; "it) '
X

k
�k�k (Hit; wit; "it) : (22)

Substituting Vstep3 (Hit; wit; "it) in functional equation (16) by the polynomial approximation
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yields a linear equation of k unknown parameters �:

X
k
�k�k (Hit; wit; "it) =

X
x
dixtu

step3

ixt (wixt; "ixt) + di0tu
step3

i0t (Hit; "i0t) (23)

+ �

Z X
k
�k�k (Hit+1; wit+1; "it+1) dF ("it+1) dF (wit+1jwit; dit) :

This can be solved by ordinary least squares when evaluated at a �nite set of m � k sample

points in the state space (Hit; wit; "it). In order to understand why this is the case, de�ne

the (m� k) matrices r and Er, as well as the (m� 1) vector u with the following elements:

rmk = �k (Hm; wm; "m) (24)

Ermk =

Z
�k (Hm+1; wm+1; "m+1) dF ("m+1) dF (wm+1jwm; dm)

um =
X

x
dxmu

step3

xm (wxm; "xm) + d0mu
step3

0m (Hm; "0m) :

Equation (23) can then be re-written as a system of linear equations: u = X�, where

X = (r � �Er). The solution to this system of equations, which is given by �̂ = (X 0X)�1X 0u,

can then be used to evaluate the approximated value function.

Policy Improvement

The policy improvement step updates the guess of the consumer decision, dit, using the

value function approximation from the policy valuation step. The updated consumer decision

(purchase size) can be performed analytically by maximizing the sum, evaluated at the same

m sample points, of current utility and the expected discounted value of the value function:

dxm = argmax
nX

x>0
dxmu

step3

xm (wxm; "xm) + d0mu
step3

0m (Hm; "0m) (25)

+ �

Z X
k
�̂k�k (Hm+1; wm+1; "m+1) dF ("m+1) dF (wm+1jwm; dm)

�
:

The two steps are then iterated until convergence of the parameters of the value function

approximation. The consumer decision that it converges to, and the corresponding value

functions are approximated solutions to the Bellman�s equation. See Puterman and Shin

(1978) for su¢cient conditions for policy iteration to converge in continuous state spaces.
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4.2 Identi�cation

In this section, I provide an informal discussion of identi�cation. I begin by addressing the

identi�cation of step 1 parameters. The identi�cation of the non-dynamic product preference

parameters is standard, with the coe¢cients being identi�ed through the e¤ect of current

period�s variation in those exogenous variables on current period�s probability of choosing

a given product. Temporary price and non-price promotions provide variation to identify

sensitiveness to price and other promotional activities. The (dis)utility from multiple-item

purchasing is identi�ed by the share of multiple-item purchases across trips. Consumer-level

product e¤ects are identi�ed from variations in consumer shares across products.

Product choice state-dependence is identi�ed, as argued by Chamberlain (1985), through

the e¤ect of previous period�s variation in exogenous variables on current period�s probability

of choosing a given product. If a temporary promotion for product j at time t� 1 decreases

the probability of a given consumer choosing product j at time t, then the consumer may

be a variety-seeker. If, on the other hand, such promotion increases that probability, the

consumer may incur in switching costs. Given a long enough consumer-level price (and

other promotional activities) time series, variation in previous period�s promotions identi�es

product-choice state-dependence.

Step 2 parameters are identi�ed through the e¤ect of previous period�s variation in each

consumer inclusive values on her current period�s inclusive values.

I now move on to address the identi�cation of step 3 parameters. The purchase size coef-

�cients help �t the infrequent incidence of purchase across observed trips and are naturally

identi�ed from each consumer�s propensity to purchase the di¤erent sizes. The intertemporal

e¤ect of purchasing on the utility of the outside alternative is identi�ed by each consumer�s

interpurchase duration in days. Because in a discrete choice demand model only the relative

utilities are identi�able, an identifying normalization is required. I normalize the utility of

the outside option to zero when Hit � 1. Finally, I note that in this frequency of purchase

model, the discount factor is not identi�able. I assume it to equal 0:995.
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5 Empirical Analysis

5.1 Step 1: Estimation of Product Preferences

Step 1 estimates product preferences by maximizing the likelihood of observing the sequence

of household product choices, conditional on the size purchased. Therefore, the choice set

includes only products of the same size as the actual purchase. Table 7 presents the results

of this analysis, with the di¤erent columns reporting distinct speci�cations that vary on the

covariates included. Speci�cation (1) includes as explanatory variables price and a multiple-

item purchase dummy variable. The price coe¢cient is of the expected sign and statistically

signi�cant suggesting that the average household is price sensitive. The multiple-item coe¢-

cient is not statistically di¤erent from zero which seems to indicate that consumers product

choice pattern when purchasing a single-item does not signi�cantly di¤er from when they

purchase multiple-items. Speci�cation (2) controls for promotional activities by including

feature and display dummy variables as additional covariates. The coe¢cients on these

controls are positive and statistically signi�cant suggesting that consumers do respond to

promotional activities. However, the comparison of the price coe¢cient in the two speci�ca-

tions is suggestive of an endogeneity issue. Prices are negatively correlated with promotional

activities since promoted products sell at lower prices and, as a consequence, not including

these controls will overestimate consumer price sensitiveness. In speci�cation (3), I include

product dummy variables in order to control for market-level unobserved product character-

istics. The product dummy variables are interacted with size so that the preference for each

speci�c product is proportional to the package size purchased. The e¤ect of including these

controls on the price coe¢cient is again suggestive of an endogeneity issue. Products with

higher unobserved characteristics sell at higher prices inducing a positive correlation that

will underestimate consumer price sensitiveness if not accounted for.

Speci�cation (4) addresses the question of whether household have switching costs or are

variety-seeking by including as covariate the number of products that, in each alternative

choice, do not belong to the set of products bought in her previous purchase event. The

coe¢cient is negative and statistically signi�cant suggesting that the average consumer in-

curs in a cost when switching products in successive purchase occasions. The problem with

this speci�cation is that unobserved household heterogeneity will confound the inference of

true state-dependence e¤ects. The identi�cation problem arises because a consumer may re-

peatedly purchase a particular product either because of a strong unobserved, idiosyncratic

preference for it or because she dislikes switching. In order to identify true state dependence,
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Table 7

Step 1: Estimation of Product Preferences*

(1) (2) (3) (4) (5) (6) (7)

Price -0.67 -0.56 -0.67 -0.66 -0.54 -0.54 -0.54

(0.06) (0.07) (0.08) (0.08) (0.12) (0.12) (0.12)

Price � Single -0.06 -0.06 -0.07

(0.16) (0.16) (0.16)

Price � Children 0.01 0.01 0.01

(0.16) (0.16) (0.17)

Feature 0.54 0.52 0.54 0.78 0.78 0.79

(0.13) (0.13) (0.12) (0.15) (0.15) (0.16)

Display 0.61 0.63 0.63 0.72 0.73 0.76

(0.15) (0.15) (0.15) (0.16) (0.16) (0.17)

Multiple-Item -0.47 -0.73 -1.17 -1.06 -3.51 -3.50 -3.94

(0.40) (0.45) (0.57) (0.56) (1.00) (0.99) (1.18)

Multiple-Item � Single 2.71 2.74 2.88

(1.30) (1.30) (1.55)

Multiple-Item � Children 2.65 2.62 3.01

(1.20) (1.21) (1.39)

Product State-Dependence -0.39 0.22 0.21

(0.08) (0.09) (0.11)

Product State-Dependence � Single -0.07

(0.21)

Product State-Dependence � Children 0.16

(0.18)

HH Product State-Dependence Dummy Variables yes

Product Dummy Variables yes yes

HH Product Dummy Variables yes yes yes

Pseudo R2 0.04 0.05 0.15 0.15 0.24 0.24 0.26

* An observation is a purchase instance by a household. Standard errors clustered by households in parentheses.
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I control for household heterogeneity in speci�cation (5). I introduce heterogeneity in two

ways. First, I interact price and multiple-item covariates with two observable household de-

mographics: a dummy variable that takes the value 1 if the household is of a single person,

and another if children under the age of 18 are present in the household.6 Second, I introduce

household-level product dummy variables. I assume, as before, preference for each speci�c

product to be proportional to the package size purchased. No dimensionality problem arises

with this introduction because (i) I only consider the products that belong to each household

shopping history (I can not expect to estimate household product preferences for products

never purchased by the household), (ii) each household buys a relatively small number of

products, and (iii) has a relatively long time sequence of purchases. Most demographic

interactions are statistically insigni�cant suggesting observable characteristics are not im-

portant in explaining price sensitiveness or taste for multiple-item purchases.7 In contrast,

most household product dummy variables are statistically signi�cant. The introduction of

household-level product heterogeneity generates substantial changes in the state-dependence

coe¢cient. Households are now estimated to have an average positive taste for variety-

seeking. These results seem to indicate that controlling for household heterogeneity matters.

Speci�cation (6) and (7) introduce heterogeneity in the variety-seeking/switching cost coef-

�cient. In speci�cation (6), I interact it with observable household demographics, with the

interactions being statistically insigni�cant, while in speci�cation (7) I allow for full house-

hold heterogeneity in the coe¢cient by interacting it with household-level dummy variables.

Except for three households, all coe¢cients are statistically signi�cant. Figure 4 plots the

coe¢cient frequency distribution. Most of the households have a taste for variety, but the

magnitude is relatively small. Approximately 18% of the consumers actually incurs in a

cost when switching products in successive purchase occasions, while approximately 21% are

heavily variety-seeking.

5.2 Step 2: Estimation of the Inclusive Values Transition Process

Step 2 estimates the transition process for the inclusive values, which were computed for

the purchase sizes observed in the data (16 oz:, 32 oz:, 64 oz:, 80 oz:, 128 oz: and 160 oz:)

using step 1�s estimates from speci�cation (7) above. I follow Hendel and Nevo (2006a) and

assume the following �rst-order Markov process for the transition probability of the inclusive

6I also estimated several speci�cations that included interactions with household income. Since the results
were never signi�cant, I do not consider them here.

7The only exception being, surprisingly, that one person households have a higher taste for multiple-item
purchases.
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Figure 4

Frequency Distribution for Product State-Dependence Coe¢cient

values:

wixt = �ix0 +
X

s2=
�ixswist�1 + & ixt; (26)

where the summation is over the set of package sizes = =(16 oz:, 32 oz:, 64 oz:, 160 oz:)

and & ixt is distributed normal with mean zero and standard deviation �ix. Multicollinearity

precludes the transition process of being de�ned over the set of all possible purchase sizes

(since consumers that are observed purchasing 80 oz: and 128 oz:, do so by buying multiple

items: 80 oz: = 16 oz: + 64 oz: while 128 oz: = 64 oz: + 64 oz:). Finally, the transition

process parameters are index by i because the inclusive values are consumer-speci�c.

The assumption that the inclusive values are normally distributed may seem somewhat

problematic given the evolution of the state variables they summarize. In order to test this

assumption, I performed the Shapiro-Wilk W test for normality on the di¤erent consumer-

level inclusive values. In the untabulated tests, the null hypothesis that the inclusive values

are distributed normal is accepted only for a small fraction of consumers: 16 oz: (3%), 32

oz: (3%), 64 oz: (17%), 80 oz: (3%), 128 oz: (13%) and 160 oz: (1%). This assumption can

be relaxed, although with a substantial increase in the computational burden.

Table 8 reports the estimated transition probabilities. Table 8, Panel A presents the

point estimates (and associated standard errors) under the constraint that all consumers
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Table 8

Step 2: Estimation of the Inclusive Values Transition Process*

Panel A Panel B

Same Process for All Consumers Consumer-Level Process

!16t�1 !32t�1 !64t�1 !160t�1 !16t�1 !32t�1 !64t�1 !160t�1
!16t 0.97 0.14 -0.05 0.54 0.21 -0.19 -0.20 0.36

(0.09) (0.06) (0.03) (0.08) (0.34) (2.61) (6.51) (3.20)

!32t 0.02 1.08 -0.09 0.15 0.31 0.08 0.08 0.11

(0.11) (0.07) (0.04) (0.10) (1.06) (0.21) (5.30) (4.25)

!64 0.60 -0.27 0.96 0.00 -0.02 -0.01 0.25 0.01

(0.08) (0.05) (0.03) (0.07) (0.43) (0.11) (0.26) (0.06)

!80t 2.21 -0.46 0.48 0.27 0.17 -0.19 -0.05 0.39

(0.12) (0.07) (0.04) (0.10) (0.56) (2.61) (6.56) (3.41)

!128t 0.63 -0.28 1.76 0.16 -0.03 -0.02 0.45 0.02

(0.08) (0.05) (0.03) (0.07) (0.43) (0.20) (0.47) (0.13)

!160t 0.33 -0.10 -0.03 1.24 -0.00 0.00 0.12 0.11

(0.07) (0.04) (0.02) (0.06) (0.00) (0.01) (5.98) (0.25)

* An observation is a shppping trip instance by a household. Also included are a constant and size
indicator variables to control for unavailability of a package size at a given shopping trip. Panel A
displays point estimates and standard errors in parentheses. Panel B displays the mean and standard
deviation across the di¤erent consumer estimates.

face the same transition probabilities. The results suggest that the lagged inclusive value of

own size (or of the two own sizes for those cases that involve multiple-item purchases) is the

most important in predicting its future variation. In Table 8, Panel B the estimated transi-

tion probabilities are consumer-speci�c, with the results displaying the mean and standard

deviation across the di¤erent consumer-level estimates. There is evidence of substantial het-

erogeneity across consumers, as suggested by the large standard deviations, which supports

the option for the individual-level transition processes.

5.3 Step 3: Estimation of the Intertemporal E¤ects of Consump-

tion

Step 3 maximizes the likelihood of observing the sequence of consumer purchase choices

after solving the consumer-speci�c Bellman�s equations associated with the simpli�ed dy-

namic programming problem. Even though I solved the Bellman�s equation separately for

each consumer, the random e¤ects speci�cation for the parameters allowed me to pool the

likelihoods across consumers. As discussed previously, I approximated the value function

by a linear combination of k basis functions (�1; : : : ; �k), with the approximation basis used

being a polynomial in the natural logarithm of the duration in days since the consumer�s
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last purchase and in the levels of the remaining state variables.

In order to estimate the model, I have to specify a functional form for ' (Hit). I assume

the following:

' (Hit) = �0 ln (Hit) + �1H7it;

where H7it denotes an indicator variable that takes the value 1 if the shopping trip at time

t corresponds to the consumer seven days cycle as suggested by the purchase hazard rate.

Table 9 reports the results for di¤erent speci�cations of step 3. In speci�cation (1) I do

not allow for heterogeneity or forward-looking behaviour. The state-dependence results sug-

gest that the utility of the outside option decreases with the duration since the last purchase,

which supports the intertemporal substitution argument. This result should not come as a

surprise, despite the opposite suggestion from the raw data (recall the slight downward trend

of the hazard rate), because the consumer-speci�c inclusive values do control in some ex-

tent for unobserved heterogeneity. The coe¢cient on the indicator variable H7it is negative,

which suggests that once every 7 days, the value of the outside option decreases. I interpret

this result as illustrating potentially reduced transaction costs of consumers purchasing in

their main shopping trip. The estimates for the size-speci�c e¤ects are statistically signif-

icant at standard signi�cance levels. Econometrically, they help �t each size frequency of

purchase. However, as discussed previously, the magnitude and ordering of these estimates

can not be directly interpreted as they capture the di¤erent normalizations required for step

1 estimation.

Speci�cation (2) introduces dynamic considerations into the consumers decisions, with

this introduction substantively reducing state-dependence. The reason is that the static

speci�cation omits price expectations from the consumers purchase decisions. When facing

a price promotion, the typical consumer expectation is that the price will go up in the

future. This induces her, as I discussed in the descriptive analysis section, to typically take

advantage of the price promotion by anticipating purchases. The static speci�cation, by

omitting price expectations, bias the results since it interprets this shorter interpurchase

durations as stronger state-dependence. The addition of the forward-looking behaviour also

impacts the coe¢cient on the indicator variable, which becomes (signi�cantly) positive. This

result is unexpected and hard to interpret. The estimates for the size-speci�c e¤ects maintain

the same ordering and magnitude.

Finally, speci�cation (3) estimates the version of the model described in the previous

sections that allows for both heterogeneity (via random coe¢cients) and forward-looking

behaviour. The results for the mean estimates do not change substantively. However, the

41



Table 9

Step 3: Estimation of the Intertemporal E¤ects of Consumption*

Static Dynamic

Standard Standard Random Coe¢cients

Logit Logit Mean Standard

Estimate Estimate Estimate Deviation

(1) (2) (3)

No Purchase (Outside Alternative)

�0 -2.42 -1.63 -1.83 4.57

(0.00) (0.00) (0.02) (0.03)

�1 -2.37 0.43 -0.22 0.26

(0.02) (0.02) (0.19) (0.15)

Purchase Size

16 oz: -36.87 -36.84 -38.14 8.76

(0.02) (0.02) (0.34) (0.18)

32 oz: -40.52 -40.27 -40.56 6.08

(0.02) (0.02) (0.22) (0.12)

64 oz: -25.56 -25.25 -35.88 13.95

(0.01) (0.01) (0.29) (0.21)

80 oz: -43.39 -41.57 -41.61 4.29

(0.20) (0.04) (0.27) (0.43)

128 oz: -49.43 -49.60 -42.89 6.09

(0.02) (0.02) (0.13) (0.08)

160 oz: -39.42 -39.48 -39.52 5.42

(0.05) (0.05) (0.26) (0.40)

Log-likelihood -45,501 -36,294 -14,244

* An observation is a shopping trip instance by a household. Standard errors in parentheses.

�t of the model, as measured by the log-likelihood, increases signi�cantly. This illustrates

the importance of accounting for heterogeneity, not only to control for di¤erent degrees of

state-dependence (the results suggest substantial heterogeneity at this level), but also to

control for the di¤erent consumer-size normalizations required for step 1 estimation.

5.4 Simulation Algorithm and Goodness of Fit

In this section, I present an algorithm to simulate the several dimensions of the model and

examine its �t. The need to specify a simulation algorithm arises because the estimation

algorithm decomposes the likelihood of the consumer choices into two components: the

choice of whether to purchase (and what size) and the decision of which product to buy

if purchasing a positive amount. However, the choice of product in�uences the purchase
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decision and vice-versa. In order to address this issue, I propose the following consumer-

level algorithm:

1. Solve the simpli�ed dynamic programming problem and simulate the sequence of pur-

chase decisions (whether to purchase and not, and what size if they decide to purchase)

conditional on the observed inclusive values.

2. For each shopping trip that the consumer decides to purchase a positive amount,

simulate her product choice(s).

3. Using the sequence of simulated product choices, I then simulate the corresponding

inclusive values and update the associated transition probabilities.

4. Iterate the previous steps until convergence of the coe¢cients of the inclusive values

transition processes.

I do not provide here a covergence proof for this algorithm. I note, however, that conver-

gence was, in practice, achieved for all consumers after a small number of iterations. The

remaining section examines several dimensions of the �t between the simulated and observed

sequence of consumer choices.

The simulated probability that a consumer makes a purchase in any given week is 13:65%,

which �ts the observed probability (15:55%) reasonably well. Figure 5 analyzes how the

model �ts the purchase decision dynamics, by comparing the simulated and observed distri-

bution of inter-purchase duration in days. Overall, the �t is very good, although it slightly

underestimates the frequency of purchases for duration spells between 3 and 4 days, at the

expense of slightly overestimating the frequency of purchases for durations of 7 days. Other

than that, the model is quite accurate in simulating this interpurchase duration. Figure 6

examines the hazard rate of purchasing by duration in days from the last purchase, i.e. the

probability that the consumer purchases a positive amount given that she has not purchased

up to now. Again, the model predicts the pattern of the hazard rate quite accurately only

very slightly underestimating the purchase probabilities for longer durations of no purchase

spells, due to the low frequency of purchases with such duration.

Having addressed the purchase decision dynamics, I now move one to examine how the

model �ts the product switching decision dynamics. The simulated probability that a con-

sumer exhibits a product switch from a purchase instance to the next is 63:79%, which only

slightly underestimates the observed probability (72:81%). Figure 7 presents the distribution

of purchases with regard to product switching. Although there is a slight underestimation

of product switching, the �t is reasonably good.
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Figure 5

Observed and Simulated Interpurchase Duration Distribution

Figure 2.6

Observed and Simulated Purchase Hazard
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Figure 7

Observed and Simulated Product Switching Distribution

6 Policy Implications

The pricing decision is one of the most critical for retailers. In this section, I discuss the

implications of a major pricing policy change from hi-low pricing strategy to everyday low

pricing (EDLP). In a pure EDLP policy, retailers charge a constant everyday price with

no temporary price discounts. In contrast, in a hi-low pricing policy, prices have a higher

regular level that remains constant for long periods of time, but then retailers run frequent

promotions that lower the price below the EDLP level. In practice, however, pure EDLP

strategies rarely exist (see Information Resources, Inc. (1993)). EDLP retailers typically

charge lower prices on an everyday basis, but do engage in some temporary price discounts.

The pricing policy choice is an empirical question. Hi-low pricing policies have been

prevalent in the industry since it allows retailers to price discriminate between consumers that

are heterogenous in their price sensitiveness (Pigou (1920)), the degree of price information

(Varian (1980)), the level of inventory costs (Blattberg et al. (1981), Jeuland and Narasimhan

(1985)), or the extent of store loyalty (Narasimhan (1988)), just to mention a few dimensions.

However, the success of retailers like Wal-Mart, Home Depot and Toys R Us has increased

the popularity of EDLP policies. There are various rationales for adopting EDLP. On the

supply side, EDLP is assume to lower operating costs through (i) better inventory control,

45



Table 10

Simulated E¤ects of Pricing Policy Changes *

Panel A: 0% Price Reduction Variance Reduction

25% 50% 75%

Average Interpurchase Duration (Days) -0.02 -0.13 -0.25

Proportion of Product Switching -0.24 -1.35 -1.25

Total Volume Purchased -0.07 -0.33 -0.43

Total Revenue 1.84 2.95 4.07

Panel B: 5% Price Reduction Variance Reduction

25% 50% 75%

Average Interpurchase Duration (Days) -0.28 -0.73 -0.77

Proportion of Product Switching -0.30 -1.22 -1.48

Total Volume Purchased 0.14 0.45 0.62

Total Revenue 0.83 1.12 1.82

Panel C: 10% Price Reduction Variance Reduction

25% 50% 75%

Average Interpurchase Duration (Days) -0.47 -1.14 -1.31

Proportion of Product Switching -0.36 -1.30 -1.30

Total Volume Purchased 0.35 1.01 1.22

Total Revenue -0.17 -0.57 -1.31

* The table reports the percentage changes implied by the di¤erent policy changes
when compared to the actual pricing strategy.

warehouse handling and lower in-store personnel costs due to less variability in demand,

and (ii) lower advertising expenses due to a focus on image rather than price. On the

demand side, EDLP is assumed is to restore price credibility with consumers disenchanted

with constant changing prices.

Table 10 examines this empirical question. I evaluate the demand implications of various

degrees of a policy change from high-low pricing towards EDLP in four dimensions: the

average interpurchase duration, the proportion of product switching, total volume purchased

and total revenue. I should note that I do not compute market equilibrium prices, which

is beyond the scope of this paper (although providing such a framework constitutes a very

interesting potential area for future research). I consider only ad-hoc changes in the observed

pricing strategy. The table reports the percentage changes implied by di¤erent policy changes

when compared to the actual pricing strategy.

Table 10, Panel A addresses the implications of changing only the extent of the hi-low

pricing policy by simulating a reduction in price variance, while keeping the mean price

for each supermarket-product-size combination constant. The results suggest that a pricing

policy that exhibits lower price variance slightly decreases the average interpurchase duration.
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This is the outcome of two opposite e¤ects. On one hand, the magnitude of the promotion

price cuts is now smaller, which reduces the response and purchase acceleration of consumers.

On the other hand, reducing price variance around the same mean price also decreases

its regular level and consumers respond by increasing the frequency of purchases. In this

particular case, the latter e¤ect dominates the former, which induces a slight decrease in the

average interpurchase duration.

The results also suggest that the proportion of product switching decreases. This is

an expected outcome since lower price variance implies worst price deals, that reduce the

promotional induced switching. Finally, the results also suggest that total volume sold drops

while revenues increase. This is the outcome of a pricing policy that reduces price deals.

Before, a proportional large share of the total volume sold was purchased in promotion.

Under the new pricing policy, the attractiveness of temporary price promotions is reduced,

which decreases the share of volume sold in promotion. The net e¤ect is a decrease in the

quantity sold, but an increase in revenues.

Table 10, Panels B and C address the implications of changing not only the extent of the

hi-low pricing policy, but also the mean price o¤ered. Here I simulate prices that have both

a lower mean level and variance. The results with regard to average interpurchase duration

and proportion of product switching are qualitatively similar to the ones in Panel A. Total

volume sold increases, as expected, in response to the reduction in the mean prices. However

this positive impact on quantity is not enough to compensate the drop in price, inducing a

decrease in revenues when compared with Panel A pricing experiment.

In sum, the results suggest that the demand pro�tability of a major pricing policy change

from hi-low towards EDLP is questionable, which supports the view that retailers are already

maximizing pro�ts. There is evidence that changing the extent of the hi-low pricing policy

(by only reducing price variance, while keeping the mean price constant) may be revenue-

increasing. However, not knowing the cost function, I can�t determine the general impact on

pro�ts.

7 Conclusions

In this paper, I attempt to link two strands of the literature on variety-seeking: one focusing

on substitutability across time and another on substitutability across products. This issue

is economically relevant because both types of substitutability are important for retailers

and manufacturers in designing intertemporal price discrimination strategies. I specify a
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consumer demand model which allows consumption to have an enduring e¤ect and allows

the marginal utility of the di¤erent products to vary over consumption occasions. I then use

the model to evaluate the demand implications of a major pricing policy change from hi-low

pricing to a everyday low pricing.

I �nd evidence that consumption has a lasting e¤ect on utility that induces substitutabil-

ity across time and that the median consumer has a taste for variety in her product decisions.

Consumers are found to be forward-looking with respect to the duration since the last pur-

chase, to price expectations and product choices. Pricing policy simulations suggest that

retailers may increase revenue by reducing the variance of prices, but that lowering the

everyday level of prices may be unpro�table.

This paper leaves many estimation issues yet to be explored. The development of a frame-

work that allows consumers to be forward-looking in their product choice or incorporates

the supply side of the market to derive equilibrium pricing strategies seem very interesting

potential areas for future research.
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