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Abstract—The equilibrium analyses under the classical growth 

framework mainly concern production processes so far and the 

utility-maximization of consumers is not considered sufficiently. 

Treating a consumer as a producer of labor or land-use right etc. 

with a utility parameter, this paper presents equilibrium 

formulas taking account of the utility-maximization of consumers, 

which may facilitate the analysis of dynamic general equilibrium 

involving both profit-maximizing firms and utility-maximizing 

consumers under the classical growth framework. For 

concreteness, some numerical examples with Cobb-Douglas 

production and utility functions are utilized to illustrate the 

method of the equilibrium analysis involving utility-maximizing 

consumers.  

Keywords-dynamic general equilibrium, utility, Sraffian system, 

von Neumann growth model, land rent 

I.  INTRODUCTION 

The economic table of Quesnay[1], the reproduction model 
of Marx[2], the input-output model of Leontief[3,4], the growth 
model of von Neumann[5] and the equilibrium analysis of 
Sraffa[6] represent typically the thoughts of classical 
economics[7,8], and they are essential parts of the classical 
growth framework. On the basis of the classical growth 
framework both the dynamic equilibrium analysis and the 
dynamic disequilibrium analysis can be conducted. 

Equilibrium paths under the classical growth framework are 
usually balanced growth paths, in which supplies of various 
commodities grow at the same rate. The equilibrium growth 
rate, the equilibrium price structure and the equilibrium output 
structure are all determined by technologies (or in other words, 
production functions) of sectors (or firms). Numerous issues 
related to equilibrium have been analyzed under the classical 
growth framework, such as the existence of equilibrium[9], the 
equilibrium exchange[10], the optimality of equilibrium[11-13], the 
perturbation of equilibrium[14] and so on. However, such 
equilibrium analyses mainly concern the production processes 
so far and the utility-maximization of consumers is not 
considered sufficiently. In this paper we try to present 
equilibrium formulas taking account of both profit-maximizing 
firms and utility-maximizing consumers. 

The paper is organized as follows. Section 2 discusses the 
equilibrium of an economy containing only profit-maximizing 
firms. Section 3 discusses the equilibrium of an economy 
containing both profit-maximizing firms and utility-
maximizing laborers. Section 4 discusses land rent. Section 5 
generalizes the previous equilibrium equations to a von 

Neumann-type equilibrium model taking account of the utility-
maximization of consumers. Section 6 is devoted to 
simulations. Section 7 contains some concluding remarks. 

II. EQUILIBRIUM EQUATIONS UNDER PROFIT-MAXIMIZING 

FIRMS 

As the works of Sraffa[6], von Neumann[5] and Hua[15] et al. 
show, the equilibrium paths under the classical growth 
framework usually are balanced growth paths. In an economy 
consisting of n firms producing distinct commodities with 
Leontief production functions, when an indecomposable 
nonnegative input coefficient matrix A is given an equilibrium 

output vector 
*

y  must be a right P-F (i.e. Perron-Frobenius) 

eigenvector of A, and an equilibrium price vector *
p  must be a 

left P-F eigenvector of A
[15]. The equilibrium growth rate is 

1 1    wherein   is the P-F eigenvalue of A. That is, the 

following equilibrium equations hold: 

 * *1

1

T T





p A p  

 * *1

1 



Ay y  

We will refer to (1) as the price equilibrium equation and 
refer to (2) as the output equilibrium equation. 

Until now the equilibrium analyses under the classical 
growth framework focus mainly on production processes and it 
seems that the utility-maximization of consumers hasn’t been 
considered sufficiently. In what follows we will show that the 
equilibrium equations above can be extended to deal with the 
utility-maximizing consumers as well when we treat a 
consumer as a producer of labor or land-use right etc. with a 
utility parameter. For concreteness, some numerical examples 
with CD production and utility functions will be utilized to 
illustrate the method of the equilibrium analysis involving 
utility-maximizing consumers. 

First let’s extend (1) and (2) to deal with the equilibrium of 
an economy containing profit-maximizing firms with non-
Leontief production functions.  

Suppose there are 3 commodities produced respectively by 
3 firms. The production functions of firm 1, 2 and 3 are 



 

 

0.6 0.1 0.3

1 2 35x x x , 0.4 0.4 0.2

1 2 33x x x  and 0.2 0.7 0.1

1 2 3x x x  respectively. All these 

functions are homogeneous of degree one, that is, constant 
returns to scale hold. 

In this case the input coefficient matrix can be treated as a 
function of the price vector [16]. Given a price vector p, the 
input amounts (i.e. the input bundle) needed by each profit-
maximizing firm to produce one unit of commodity can be 
computed. The input bundles of 3 firms constitute the 
following input coefficient matrix: 

 (1) (2) (3)( ) ( ) ( ) ( )   A p a p a p a p  

wherein (1) ( )a p , (2) ( )a p  and (3) ( )a p  are as follows: 



0.4 0.30.1

32

1

0.9 0.30.6

(1) 31

2

0.70.6 0.1

1 2

3

1 0.6

5 0.1 0.3

1 0.1
( )

5 0.6 0.3

1 0.3

5 0.6 0.1

pp

p

pp

p

p p

p

           
     
 

               
                 

a p  



0.6 0.20.4

32

1

0.6 0.20.4

(2) 31

2

0.80.4 0.4

1 2

3

1 0.4

3 0.4 0.2

1 0.4
( )

3 0.4 0.2

1 0.2

3 0.4 0.4

pp

p

pp

p

p p

p

           
     
 

               
                 

a p  



0.8 0.10.7

32

1

0.3 0.10.2

(3) 31

2

0.90.2 0.7

1 2

3

0.2

0.7 0.1

0.7
( )

0.2 0.1

0.1

0.2 0.7

pp

p

pp

p

p p

p

           
     
 

               
                 

a p  

Let *
p  and *

y  denote respectively an equilibrium price 

vector and an equilibrium output vector in an equilibrium path, 

then the equilibrium input coefficient matrix is *( )A p . *
p  and 

*
y  must be a left P-F eigenvector and a right P-F eigenvector 

of *( )A p  respectively, hence we have the following 

equilibrium equations: 

 * * *1
( )

1

T T





p A p p  

 * * *1
( )

1 



A p y y   

By solving the price equilibrium equation (7), the unique 
normalized equilibrium price vector is computed to be 

* (0.1231,  0.2535,  0.6234)Tp , and the equilibrium growth 

rate is computed to be 16.49%  , which is the maximal 

balanced growth rate in this economy.  

Suppose the initial supply amount of commodity 3 is 100 
units. By solving the output equilibrium equation (8) the initial 
production processes in the equilibrium path turn out to be:  

TABLE I.  INPUT-OUTPUT PROCESSES 

 
Firm 1 Firm 2 Firm 3

Total

Inputs

Comm. 1 Inputs 607.72 303.86 101.29 1012.9

Comm. 2 Inputs 49.19 147.57 172.17 368.93

Comm. 3 Inputs 60 30 10 100 

Outputs  1179.8 429.75 116.49  

 

Among various methods of solving (7), a simple one is to 

resort to an iteration function ( 1) ( )G( )k k p p , in which ( 1)k
p  

is the normalized left P-F eigenvector of ( )( )k
A p . It’s not 

difficult to prove the convergence of this iteration function on 
the basis of Lyapunov’s second method[17] by investigating the 

P-F eigenvalue of 
( )( )k

A p . 

III. EQUILIBRIUM EQUATIONS UNDER PROFIT-MAXIMIZING 

FIRMS AND UTILITY-MAXIMIZING LABORERS 

Now let’s replace firm 3 of the economy in Section 2 by 
some homogeneous utility-maximizing laborers, and then study 
the equilibrium of the economy containing both profit-
maximizing firms and utility-maximizing laborers.  

Suppose the production functions of firm 1 and firm 2 are 

still 0.6 0.1 0.3

1 2 35x x x  and 0.4 0.4 0.2

1 2 33x x x , the utility function of each 

laborer is 0.2 0.7 0.1

1 2 3x x x , and each laborer supplies one unit of 

labor (i.e. commodity 3) in each period. 

In this case the input coefficient matrix can be treated as a 
function of the price vector p and the utility level  . The input 

coefficient matrix in this example may be written 

 (1) (2) (3)( , ) ( ) ( ) ( )    A p a p a p a p  

wherein (1) ( )a p , (2) ( )a p  and (3) ( )a p  are indicated by (4)-(6). 

Columns of the input coefficient matrix ( , )A p  indicate 

the inputs that a profit-maximizing firm needs to obtain one 



 

 

unit of output and the inputs that a utility-maximizing laborer 
needs to obtain   units of utility under the price vector p. 

Suppose the population of laborers and the supply amount 

of labor grow at an exogenous rate ( 1, )    , then the 

equilibrium growth rate must be   if there exists an 

equilibrium. In an equilibrium path the price vector and the 
utility level of laborers keep constant, while the outputs of 
firms and the supply of labor grow at the same rate. Hence in 
an equilibrium path the laborers can be regarded as the 

“producer” of labor with an equilibrium utility level * , and 

the last column of the input coefficient matrix is the input 
bundle needed to produce one unit of labor. 

Let *
p  and *

y  denote respectively an equilibrium price 

vector and an equilibrium output vector in an equilibrium path. 

Then * *( , )A p  is the equilibrium input coefficient matrix. 

Now we have the following equilibrium equations: 

 * * * *1
( , )

1

T T





p A p p  

 * * * *1
( , )

1






A p y y  

By solving the price equilibrium equation (10) we can 

obtain the equilibrium price vectors *
p  and the equilibrium 

utility level * . 

When the supply of labor keeps constant all the time (i.e. 
0  ), the unique normalized equilibrium price vector is 

computed to be 
* (0.0866,  0.1652,  0.7482)Tp . And the 

equilibrium utility level is * 1.9872  . The corresponding 

equilibrium input coefficient matrix is 

 * *

0.6 0.7631 1.7279

( , ) 0.0524 0.4 3.1699

0.0347 0.0442 0.1


 
   
  

A p  

Suppose further the supply of labor is 100 units all the time, 
by solving the output equilibrium equation (11) we find the 
production and consumption processes in the equilibrium path 
are as follows: 

TABLE II.  INPUT-OUTPUT PROCESSES ( 0  ) 

 
Firm 1 Firm 2 Laborers 

Total

Inputs

Comm. 1 Inputs 1036.7 518.36 172.79 1727.9

Comm. 2 Inputs 90.568 271.7 316.99 679.26

Labor Inputs 60 30 10 100 

Outputs  1727.9 679.26 100  

 

The consumption bundle of each laborer is 

(1.7279, 3.1699, 0.1)T . 

When the supply of labor grows at an exogenous growth 
rate 5% per period (i.e. 0.05  ), by solving the price 

equilibrium equation (10) we find the unique normalized 

equilibrium price vector is 
* (0.0977, 0.1909, 0.7114)Tp  and 

the equilibrium utility level is * 1.5954  .  

If the initial supply of labor is 100 units, by solving the 
output equilibrium equation (11) we find the production and 
consumption processes in the equilibrium path are as follows: 

TABLE III.  INPUT-OUTPUT PROCESSES ( 0.05  ) 

 
Firm 1 Firm 2 Laborers

Total

Inputs

Comm. 1 Inputs 873.97 436.99 145.66 1456.6

Comm. 2 Inputs 74.511 223.53 260.79 558.83

Labor Inputs 60 30 10 100 

Outputs  1529.5 586.77 105  

 

The consumption bundle of each laborer is 

(1.3873, 2.4837, 0.0952)T . The vector (1456.6, 558.83, 100)T
 

is referred to as an equilibrium input vector. 

The price equilibrium equation (10) can also be solved by 

an iteration function ( 1) ( )G ( )k k


 p p . Given 

( )k
p , 

( 1)k
p  is 

computed through the following steps: firstly find a positive 

real number ( )k  such that the P-F eigenvalue of 
( ) ( )( , )k kA p  

equals 1 (1 ) , then let ( 1)k
p  be the normalized left P-F 

eigenvector of ( ) ( )( , )k kA p . The convergence of this iteration 

function can be proved on the basis of Lyapunov’s second 

method[17] by investigating ( )k .  

Now let’s discuss the amount ratios of the same kind of 
inputs used by distinct agents in equilibrium. 

Let p̂  denote the diagonal matrix with the vector p as its 

main diagonal. Let 
* * *v p x  denote the equilibrium input 

value vector, i.e. the equilibrium input vector measured in 

currency, in which 
*

p  and 
*

x  are the equilibrium price vector 

and the equilibrium input vector (measured in physical unit) 
respectively.  

The exponents of agents’ CD production and utility 
functions constitute the following matrix C:  


0.6 0.4 0.2

0.1 0.4 0.7

0.3 0.2 0.1

 
   
  

C  

By the property of CD functions (i.e. the value ratios of 
distinct inputs of an agent keep constant under various price 



 

 

vectors), it’s easy to know *
v  must be a right P-F eigenvector 

of the matrix C and each row of 
*

Cv  indicates the amount 

ratios of the same kind of inputs used by distinct agents in 
equilibrium. For example, a right P-F eigenvector of the matrix 

C in (13) is * (4, 3, 2)Tv , and 

 *

2.4 1.2 0.4

0.4 1.2 1.4

1.2 0.6 0.2

 
   
  

Cv  

The third row of 
*

Cv  indicates the amount ratios of labor 

used by distinct agents in equilibrium are 1.2:0.6:0.2, i.e. 6:3:1. 

IV. LAND RENT 

Besides labor, the supply amounts of some other 
commodities such as land (or land-use right), mineral deposits 
etc. may also be exogenous, and land may be taken as a 
representative.  

The theory of land rent has been discussed by a number of 
authors [18-23]. Assuming simply that land is uniform in quality, 
here we attempt to explore a new method of computing the 
equilibrium land rent, that is, we’ll compute the equilibrium 
land rent by the equilibrium equations taking account of the 
utility-maximization of landowners. 

Now let’s suppose there are a firm, some homogeneous 
landowners and some homogeneous laborers in the economy. 

Suppose the production functions of the firm is 
0.6 0.1 0.3

1 2 3
5x x x , 

the utility function of each landowner is 0.4 0.4 0.2

1 2 33x x x , and the 

utility function of each laborer is 0.2 0.7 0.1

1 2 3
x x x . Each landowner 

supplies a unit of land-use right (or loosely speaking, land) per 
period. With a unit of land-use right, an agent may use a unit of 
land for one period. The price of a unit of land-use right is 
referred to as land rent. 

Now the input coefficient matrix is 

 (1) (2) (3)

1 2 2 1( , , ) ( ) ( ) ( )      A p a p a p a p  

Columns of the input coefficient matrix 1 2( , , ) A p  

indicate the inputs that a profit-maximizing firm needs to 
obtain one unit of output and the inputs that a utility-

maximizing laborer (or landowner) needs to obtain 1  (or 2 ) 

units of utility under the price vector p. 

Suppose the supplies of labor and land grow at an 
exogenous rate  . Then the equilibrium growth rate must be   

if there is an equilibrium. And we have the following 
equilibrium equations: 

 * * * * *

1 2

1
( , , )

1

T T 





p A p p  

 * * * * *

1 2

1
( , , )

1
 





A p y y  

Now we cannot find the equilibrium price vectors only by 
the price equilibrium equation (16). That is, to compute the 
equilibrium prices now we also need the output equilibrium 
equation (17). In addition, in the example here we need to 

know the supply ratio * *

2 3y y  (i.e. the supply ratio of land to 

labor). 

Suppose the supply of land is 60 units all the time, and the 

supply of labor is 100 units all the time, that is, *

2
60y   and 

*

3 100y  . Then the unique normalized equilibrium price vector 

is computed to be * (0.0572, 0.6734, 0.2694)Tp .  

Note that the ratio between the equilibrium total values of 
land and labor is 3/2, and the supply amounts of land and labor 
are 60 units and 100 units respectively, hence the equilibrium 
ratio between land rent and labor price (i.e. wage rate) must be 

3 2

60 100

   
   
   

, i.e. 2.5, which is independent of the exogenous 

growth rate  . 

The production and consumption processes in the 
equilibrium path are as follows: 

TABLE IV.  INPUT-OUTPUT PROCESSES ( 0  ) 

 
Firm

Land- 

owners 
Laborers

Total

Inputs

Comm. 1 Inputs 565.18 282.59 94.197 941.97

Land Inputs 8 24 28 60 

Labor Inputs 60 30 10 100 

Outputs 941.97 60 100  

 

When the utility function of each landowner is 0.2 0.7 0.1

1 2 3x x x  

instead of 0.4 0.4 0.2

1 2 33x x x  and other conditions keep unchanged, 

the unique normalized equilibrium price vector is computed to 

be * (0.0404, 0.7997, 0.1599)Tp , hence we see that the 

equilibrium price vector is related to the utility function of 
landowners. Now the equilibrium ratio between land rent and 
labor price is 5. 

The production and consumption processes in the 
equilibrium path are as follows: 

TABLE V.  INPUT-OUTPUT PROCESSES ( 0  ) 

 
Firm

Land- 

owners 
Laborers

Total

Inputs

Comm. 1 Inputs 475.26 237.63 79.21 792.1

Land Inputs 4 42 14 60 

Labor Inputs 60 30 10 100 

Outputs 792.1 60 100  



 

 

Now let’s return to the original example and suppose the 
exogenous growth rate   is 5%, then the unique normalized 

equilibrium price vector is computed to be 
* (0.0641, 0.6685, 0.2674)Tp . And the initial production and 

consumption processes in the equilibrium path are as follows: 

TABLE VI.  INPUT-OUTPUT PROCESSES ( 0.05  ) 

 
Firm 

Land- 

owners 
Laborers 

Total

Inputs

Comm. 1 Inputs 500.28 250.14 83.381 833.81

Land Inputs 8 24 28 60 

Labor Inputs 60 30 10 100 

Outputs 875.5 63 105  

 

V. A VON NEUMANN-TYPE EQUILIBRIUM MODEL WITH 

CONSUMPTION AND UTILITY-MAXIMIZATION 

As the traditional von Neumann-type equilibrium models 
show, when joint production is taken into account the 
equilibrium formulas will be inequalities instead of equations, 
and there will be an output coefficient matrix B in addition to 
an input coefficient matrix A[5, 9, 19]. Moreover, A and B may be 
non-square matrices. The output vector y will also be 
substituted by a semipositive activity level vector z.  

In order to build a von Neumann-type equilibrium model 
with consumption and utility-maximization, here we shall:  

(i) Treat the input and output coefficient matrices A and B 
as functions (sometimes multivalued functions) of the 
semipositive price vector p and utilities. Now a column of A 
and a corresponding column of B usually stand for 
technologies of a firm or some homogeneous consumers rather 
than a single technology as in the traditional von Neumann-
type equilibrium models. 

(ii) Treat the consumption processes of laborers and 
landowners et al. in a manner formally analogous to the 
production processes of firms, that is, treat a consumer as a 
producer of labor or land-use right etc. with a utility parameter. 
And some components of the activity level vector z will be 
exogenous to stand for the exogenous supply amounts of labor 
and land etc. 

(iii) Assume that the supplies of labor and all types of land 
grow at an exogenous rate  , and labor is always 

indispensable for the economy. Since technology progress is 
excluded and all profits are assumed to be put into reproduction, 
the equilibrium growth rate and the equilibrium profit rate must 
equal the exogenous supply growth rate of labor. 

For simplicity, here let’s make the following assumptions: 

(i) Labor is homogeneous, and each laborer supplies one 
unit of labor per period. All laborers have the same degree one 
homogeneous utility function. 

(ii) There are k types of land, and each landowner owns 
only one type and one unit of land. All landowners of the same 

type of land have the same degree one homogeneous utility 
function. 

(iii) Labor is indispensable for the production of each 
commodity with endogenous supply, and each non-zero 
consumption bundle of laborers and landowners contains at 
least one kind of commodity with endogenous supply. 

Now the utility of each laborer (i.e. 1 ) and the utilities of 

landowners (i.e. 2 1, ,
k

     ) constitute a utility vector υ . Let 

  denotes the subsistence utility level of laborers. Let   

denote the wage rate, which is a component of p. Then we have 
the following von Neumann-type equilibrium model: 

 * * * * * *1
( , ) ( , )

1

T T





p A p υ p B p υ  

 * * * * * *1
( , ) ( , )

1 



A p υ z B p υ z  

 * * * * * * * *1
( , ) ( , )

1

T T





p A p υ z p B p υ z  

 *

1
0    * 0   

(18) and (19) imply (20), and (20) may be omitted[9]. 

Here let’s simply illustrate the model above by two 
numerical examples. 

First let’s look at a Leontief-type numerical example. 

Suppose there are 5 commodities, i.e. a commodity with 
endogenous supply, labor and 3 types of land. All laborers and 
landowners have the same Leontief utility functions (see the 
following input coefficient matrix). There are 3 firms 
producing the same commodity with distinct Leontief 
production functions. The supply of labor is 150 units all the 
time. The supply of each type of land is 60 units all the time. 

That is, 0   and 1 2 3( ,  , , 150,  60, 60, 60)T
z z zz . Let   be 

0.1. The input and output coefficient matrices are 



1 2 3 4

1 2 3 4

0.3   0.6   0.8   0.3    0.3    0.3    0.3

0.1   0.2   0.4   0.1    0.1    0.1    0.1

( ) 0.2    0      0       0          0          0          0

 0     0.4    0       0          0          0

   
   

A υ
          0

 0      0     0.6     0          0          0          0

 
 
 
 
 
 
 
 





1  1  1  0  0  0  0

0  0  0  1  0  0  0

0  0  0  0  1  0  0

0  0  0  0  0  1  0

0  0  0  0  0  0  1

 
 
 
 
 
 
  

B  



 

 

There are multiple normalized equilibrium price vectors in 
this example. A normalized equilibrium price vector is 

* (0.1818, 0.1222, 0.5753, 0.1207, 0)Tp . The corresponding 

equilibrium utility vector is * (1.8301, 8.6166, 1.8083, 0)Tυ . 

And the unique equilibrium activity level vector is 
* (300, 150, 0, 150, 60, 60, 60)Tz .  

If the supply of labor is 300 units instead of 150 units, by 
computation we see that labor is in excess supply. That is, both 
the “equilibrium” wage rate and “equilibrium” utility level of 
each laborer equal 0, or in other words, there is no equilibrium 
according to our definition. 

Next let’s look at a Cobb-Douglas-type numerical example. 

Suppose there are 4 commodities, i.e. a commodity with 
endogenous supply, labor and 2 types of land. All laborers and 

landowners have the same CD utility functions 0.2 0.7 0.1

1 2 3x x x . 

There are 2 firms producing the same commodity with distinct 

CD production functions, i.e. 
0.6 0.1 0.3

1 2 3
5x x x  and 

0.6 0.1 0.3

1 2 4
3x x x  

respectively. The supply of labor is 150 units all the time. The 
supply of each type of land is 60 units all the time. That is, 

0   and 1 2( ,  , 150,  60, 60)T
z zz . Let   be 0.1. Here let’s 

assume that the price vector is positive. The input coefficient 
matrix can be computed on the basis of the production and 
utility functions. The output coefficient matrix is 



1  1  0  0  0

0  0  1  0  0

0  0  0  1  0

0  0  0  0  1

 
 
 
 
 
 

B  

The computation results are as follows.  

The unique positive normalized equilibrium price vector is 
* (0.0662, 0.5094, 0.3591, 0.0654)Tp . The corresponding 

equilibrium utility vector is * (0.6986, 0.4925, 0.0897)Tυ , 

and the corresponding equilibrium activity level vector is 
* (572.1, 197.7, 150, 60, 60)Tz . The equilibrium input 

coefficient matrix is 

 *

   0.6        0.6     1.5396  1.0853  0.1977

0.0130  0.0130      0.7    0.4934  0.0899
( , )

0.0553       0      0.1419     0.1     0.0182

     0      0.3035       0          0           0

 
 
 
 
 
 

*
A p υ 

Analogous to the equilibrium equations (7) and (8), when 
consumption is excluded the utility vector υ  and (21) will 

disappear from the model, and   will become endogenous. 

VI. SIMULATIONS 

In this section let’s use a structural growth model, i.e. the 
model (19a)-(19c) in [24], to simulate the dynamics of the 

economy with 0 growth rate in Section 3, in which the supply 
of labor is 100 units all the time. Here we use the following 
price adjustment function instead of the original one: 

 ( 1) ( ) ( )0.7+0.3t t t p u p  

Now the input coefficient matrix in the model is ( , )A p , 

and the value of   may be computed after each exchange 

process. Note that the value of   doesn’t affect the exchange 

process in essence, that is, it doesn’t affect the purchase and 
sales bundles of each agent, hence   may be always set to 1 in 

an exchange process.  

The initial values (0)
p  and (0)

u  are set equal to (1, 1, 1)T , 

and (0)
z  is set equal to (1, 1, 100)T . 

The simulation results are shown in Fig. 1 to 3.  

 

Figure 1.  Prices in period 1 to 100. 

 

Figure 2.  Outputs in period 1 to 100. 

 

Figure 3.  Utility of each laborer in period 1 to 100. 

Recall that the normalized equilibrium price vector is 

(0.0866,  0.1652,  0.7482)T , Fig. 1 shows that the normalized 

 



 

 

prices of all commodities converge to the normalized 
equilibrium prices.  

Recall that the equilibrium output vector is 
* (1727.9,  679.26, 100)Ty , Fig. 2 shows that the outputs of 

commodity 1 and commodity 2 converge to the equilibrium 
output levels. 

Fig. 3 shows that the utility of each laborer converges to the 
equilibrium utility level 1.9872 . 

For other Cobb-Douglas-type numerical examples in this 
paper the simulation results are similar. 

VII. CONCLUDING REMARKS 

For dynamic economic models, equilibrium is usually 
defined as a special kind of paths, e.g. the balanced growth 
paths with the maximal growth rate or the paths with ever-
clearing markets. In various economic models different 
conditions are utilized to define equilibrium, and the equilibria 
defined by different conditions may correspond to the similar 
path sets or the same path set (e.g. the balanced growth path 
set). The equilibria investigated by Sraffa are essentially 
balanced growth paths[6]. In the von Neumann growth model 
the equilibrium conditions differ from those of Sraffa, but the 
equilibria are also balanced growth paths[5].  

Centering on balanced growth paths, the equilibrium 
analyses under the classical growth framework mainly concern 
production processes so far and the utility-maximization of 
consumers is not considered sufficiently. Treating a consumer 
as a producer with a utility parameter, this paper presents 
equilibrium formulas taking account of the utility-
maximization of consumers, which may facilitate the analysis 
of dynamic general equilibrium involving both profit-
maximizing firms and utility-maximizing consumers under the 
classical growth framework. 
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