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Abstract

A growing body of literature reports evidence of social interaction
effects in survey expectations. In this note, we argue that evidence in
favor of social interaction effects should be treated with caution, or
could even be spurious. Utilizing a parsimonious stochastic model of
expectation formation and dynamics, we show that the existing sam-
ple sizes of survey expectations are about two orders of magnitude
too small to reasonably distinguish between noise and interaction ef-
fects. Moreover, we argue that the problem is compounded by the fact
that highly correlated responses among agents might not be caused
by interaction effects at all, but instead by model-consistent beliefs.
Ultimately, these results suggest that existing survey data cannot fa-
cilitate our understanding of the process of expectations formation.
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1 Introduction

Expectations play a central role in economic theory, yet we know rather lit-

tle about the actual process of expectation formation. A growing body of

literature emphasizes the importance of social interactions in the process of

expectation formation, and mostly finds empirical support for interaction ef-

fects in reported survey data. These survey expectations typically consist

of several hundred monthly responses by several hundred agents. Here we

consider a generic stochastic model of expectation dynamics that contains

both a social interaction component and an exogenous signal that represents

model-consistent beliefs. The purpose of this note is to show that it is es-

sentially not possible to disentangle the two effects in survey data, and that

even if social interactions were present, the required sample size to iden-

tify interaction effects is about two orders of magnitude larger than existing

sample sizes. Even if we are willing to make strong assumptions about the

structure of multidimensional responses, existing survey data will probably

remain a very fragile source for the identification of interaction effects or

model-consistent beliefs.

Modern macroeconomics assumes that agents know the ‘true’ model un-

derlying the macroeconomic laws of motion, and that their predictions of

the future are on average correct. In their extensive review, Pesaran and

Weale (2006) find little if any evidence that survey expectations are model-

consistent in this strong sense, which is hardly surprising given the complexity

of our macroscopic environment. Weaker forms of macroeconomic rationality

acknowledge that agents face model uncertainty and instead focus on learning

(see, e.g., Evans and Honkapohja, 2001; Milani, 2010), informational rigidi-

ties (see, e.g., Mankiw and Reis, 2002; Mankiw et al., 2004; Coibion and

Gorodnichenko, 2008), imperfect information (see, e.g., Woodford, 2001; Del

Negro and Eusepi, 2009), and ‘rational inattention’ (see, e.g., Sims, 2003).

While details of the forward-looking behavior of agents are crucial for the

qualitative differences among these approaches, neither of them considers

the actual process of expectations formation.

Recent econometric approaches are discussing the existence of heterogene-
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ity in the updating behavior of forecasters (see, e.g., Clements, 2010), and

laboratory experiments equally indicate heterogeneity in expectations (see,

e.g., Hommes, 2010). The focus on heterogeneity intersects with another

strand of research that emphasizes the importance of social interactions in

the process of expectations formation. Empirical work on social interactions

has traditionally employed discrete choice frameworks that allow for social

spillovers in agents’ utility (see, e.g., Brock and Durlauf, 2001), but this ap-

proach has been rather static in the sense that cross-sectional configurations

are viewed as self-consistent equilibria. The discrete choice framework has

also been investigated in the context of macroeconomic expectations forma-

tion, for instance by positing that agents choose between forming extrap-

olative expectations and (costly) rational expectations (see, e.g., Lines and

Westerhoff, 2010), which can lead to endogenous fluctuations in macroeco-

nomic variables.

Carroll (2003) suggests an alternative route to social interactions, hy-

pothesizing that the diffusion of news from professional forecasters to the rest

of the public leads to ‘stickyness’ in aggregate expectations. The diffusion

of expectations is also a defining characteristic in several recent contribu-

tions that place greater emphasis on social interactions than on individual

concepts of rationality in their study of (survey) expectations. These prob-

abilistic approaches by and large aim for positive models of expectations

formation, but yield mixed results so far. Bowden and McDonald (2008)

study the diffusion of information in various network structures and find a

trade-off between volatility in aggregate expectations and the speed at which

agents learn the correct state of the world. Secondly, they argue that cer-

tain network structures can lead to information cascades. This would be

consistent with the empirical results of Flieth and Foster (2002), who find

that survey expectations are characterized with protracted periods of inertia

punctuated by occasional switches from aggregate optimism to pessimism

or vice versa. They also calibrate a model of ‘interactive expectations’ with

multiple probabilistic equilibria from the data, which indicates that social in-

teractions would have become less important over time. Lux (2009) confirms

the empirical quality of survey expectations, with their pronounced swings
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in aggregate opinions, but he claims evidence in favor of strong interaction

effects. Since both consider German survey expectations and utilize simi-

lar probabilistic formalizations of the expectations process, the question why

they find conflicting results on the importance of interaction effects warrants

some attention.

The source of the different findings might, at least in part, be due to

the details of the probabilistic processes that the authors employ to model

expectations formation. Both approaches formalize changes in expectations

through transition probabilities that additively combine an autonomous and

an interactive element. Flieth and Foster (2002) use a three-state model that

can only be solved numerically, while Lux (2009) uses a two-state model that

exploits well-known results in Markov chain theory and allows for closed-form

solutions not only of the limiting distribution but, in principle, of the entire

time evolution of the expectations process. Yet irrespective of a model’s

probabilistic details, we want to argue here that these differences are likely to

originate from size limitations of existing surveys, because even if we knew the

details of the interaction mechanism, including the exact parameterization

of the expectations process and the network structure among agents, we

would still not be capable of distinguishing between interaction effects and

essentially random correlations in survey responses, nor would we be able to

distinguish model-consistent beliefs from social interactions.

We place a premium on analytical tractability and thus conduct our in-

vestigation in the probabilistic tradition employed by Lux (2009). A number

of results are known in this parsimonious modeling tradition, including (sta-

tistical) equilibrium properties for a wide range of model parameters and the

time evolution of the probability density of beliefs. Understanding how the

qualitative nature of the model changes with the parameters permits us to

isolate the behavioral details of the expectations process from the question

whether it is feasible to detect interaction and network effects from existing

survey data.
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2 Stochastic Model of Expectation Dynamics

The model utilized by Lux (2009) traces back to earlier contributions by

Weidlich and Haag (1983) and Weidlich (2006), and is very similar, both

formally and qualitatively, to the herding model of Kirman (1991, 1993). A

prototypical setup in this tradition considers a population of agents of size

N that is divided into two groups, say, X and Y of sizes n and N − n,

respectively. In the context of survey expectations, the two groups would

correspond to agents who have optimistic or pessimistic beliefs regarding the

future state of an economic or financial indicator.

The basic idea is that agents change state (i) because they follow an

exogenous signal, corresponding for instance to model-consistent beliefs, or

(ii) because of the social interaction with their neighbors, i.e. agents they are

communicating with during a given time period. The transition rate for an

agent i to switch from state X to state Y is

ρi(X → Y ) = ai + λi

∑

j 6=i

DY (i, j), (1)

where ai governs the possibility of self-conversion caused by model-consistent

beliefs, and the sum captures the influence of the neighbors. The parameter

λi governs the interaction strength between i and its neighbors, indexed by

j, while DY (i, j) is an indicator function serving to count the number of i’s

neighbors that are in state Y ,

DY (i, j) =

{

1 if j is a Y-neighbor of i,

0 otherwise.

Analogously the transition rates in the opposite direction, from a pessimistic

to an optimistic state, are given by

ρi(Y → X) = ai + λi

∑

j 6=i

DX(i, j) . (2)

Defining nY (i,J) =
∑

j 6=i DY (i, j) and nX(i,J) =
∑

j 6=i DX(i, j), where J
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denotes particular configurations of the neighbors, and using shorthands

π−
i = ρi(X → Y ) and π+

i = ρi(Y → X), equations (1) and (2) can be

written more compactly as

π−
i = ai + λinY (i,J), (3)

π+
i = ai + λinX(i,J). (4)

As a consequence of the interactions between neighboring agents, the

rates π±
i still depend on the particular configurations of neighbors J, making

it difficult to handle (3) and (4) analytically, but we can employ a mean-field

approximation in order to simplify the problem from a many-agent system

to one with a sum of agents who are independently acting in an “external

field” (see, e.g., Chap. 5 in Aoki, 1998) created by the opinions of other

agents. In other words, we assume that individual agents are influenced by

the average opinion of their neighbors, and that their behavioral parameters

can be aggregated by averaging over all agents.

On the individual level, the instantaneous probability for agent i to switch

from X to Y is given by (3). When the attitudes of i’s neighbors fluctuate,

π−
i fluctuates around its mean

〈

π−
i

〉

= ai + λi 〈nY (i)〉 , (5)

where the dependence on J gets lost if we assume that inhomogeneities among

the different configurations of neighbors are solely due to the fluctuations.

Then we can replace the number of Y -neighbors around each agent i with the

average number of neighbors that agents are linked to, say, D and 〈nY (i)〉 =

DPY , with PY being the probability that an i-neighbor is in state Y , which

we can approximate with the unconditional fraction (N − n)/N of agents in

state Y , yielding
〈

π−
i

〉

= ai + λiD
N − n

N
, (6)

and the quantity
〈

π−
i

〉

becomes independent of the particular configuration

of neighbors. Symmetrically, the expression for agents currently in state Y
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becomes
〈

π+
i

〉

= ai + λiD
n

N
. (7)

Basically, the mean-field approximation reduces a complex system of het-

erogeneous interacting agents to a collection of independent agents who are

acting “in the field” that is created by other agents’ beliefs and their average

behavior.

On the aggregate level, we are interested in the probability of observing

a single switch on the system-wide level during some time interval ∆t, hence

we have to sum (7) over all agents in state Y in order to find the aggregate

probability that an agent is switching from state Y to state X during ∆t,

assuming that ∆t is small enough to constrain the switch to a single agent.

Summing (7), which is permissible since the agents are now independent, we

obtain

π+ = (N − n)

(

a+
λD

N
n

)

, (8)

for a switch from Y to X, and

π− = n

(

a+
λD

N
(N − n)

)

, (9)

for the reverse switch, where a, b are the mean values of ai, bi averaged over

all agents. It turns out that replacement of behavioral parameters by their

ensemble averages is only sensible if the network structure observes some

regularity conditions and if the fraction of agents with strictly positive bi is

very large, i.e. as long as the fraction of isolated nodes in the agent network

is very small (see Alfarano and Milaković, 2009, for details). We will return

to the implications of this point in the final scenario of Section 3.

For notational convenience, we set

b ≡ λD/N, (10)

while setting c ≡ λD would recover the original formulation of Kirman’s

ant model.1 The equilibrium concept associated with the generic transition

1It is well-known that the original formulation of the ant model suffers from the problem
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rates (8) and (9) is a statistical equilibrium outcome: at any time, the state of

the system refers to the concentration of agents in one of the two states. We

define the state of the system through the concentration z = n/N of agents

that are in state X. For large N , the concentration can be treated as a

continuous variable. Notice that none of the possible states of z ∈ [0, 1] is an

equilibrium in itself, nor are there multiple equilibria in the usual economic

meaning of the term.

The notion of equilibrium instead refers to a statistical distribution that

describes the proportion of time the system spends in each state. Utilizing

the Fokker-Planck equation, we can show that for large N the equilibrium

distribution of z is a beta distribution (see Alfarano et al., 2008, for details)

pe(z) =
1

B(ǫ, ǫ)
zǫ−1(1− z)ǫ−1, (11)

where B(ǫ, ǫ) = Γ(ǫ)2/Γ(2ǫ) is Euler’s beta function, while the shape param-

eter of the distribution is given by

ǫ = a/b = aN/λD. (12)

Since ǫ is a ratio of quantities that depend (i) on the time scale at which

the process operates (1/a and 1/λ), and (ii) on the spatial characteristics

of the underlying network (D and N), the parameter of the equilibrium

distribution is a well-defined dimensionless quantity. If ǫ < 1 the distribution

is bimodal, with probability mass having maxima at z = 0 and z = 1.

Conversely, if ǫ > 1 the distribution is unimodal, and in the “knife-edge”

scenario ǫ = 1 the distribution becomes uniform. The mean value of z,

E[z] = 1/2, is independent of ǫ, and intuitively follows from the difference of

the transition rates (8) and (9), a(N − 2n), showing that in equilibrium the

system approaches n = N/2.

Notice, nevertheless, that the system exhibits very different characteris-

tics depending on the modality of the distribution. In the bimodal case, the

of N -dependence (or ‘self-averaging’ in the jargon of Aoki), i.e. the fact that the system
converges to a unimodal equilibrium when the number of agents is enlarged while keeping
the number of neighbors constant.

8



system spends least of the time around the mean, mostly exhibiting very

pronounced herding in either of the extreme states, while mild fluctuations

around the mean characterize the unimodal case. The bimodal case is ap-

parently in line with the empirical finding of protracted periods of inertia

with sudden switches in aggregate opinion. Since in that case ǫ < 1 implies

b > a, the model would seem to suggest that social interactions on average

carry greater weight than idiosyncratic factors in the expectations formation

of agents. The model can also be extended to account for asymmetries in

the average aggregate state with the following transition rates

π+ = (N − n)(a1 + bn) and π− = n(a2 + b(N − n)), (13)

where the constants a1 and a2 now allow agents to have a ‘bias’ towards

either state, for instance if a1 > a2 they will exhibit more optimistic than

pessimistic beliefs on average. In this case (see Alfarano et al., 2005, for

details), the corresponding equilibrium distribution is the beta distribution

qe(z) =
1

B(ǫ1, ǫ2)
zǫ1−1 (1− z)ǫ2−1 , (14)

where B(ǫ1, ǫ2) = Γ(ǫ1)Γ(ǫ2)/Γ(ǫ1 + ǫ2) is again the beta function, while the

shape parameters are now given by

ǫ1 = a1/b and ǫ2 = a2/b. (15)

Figure 1 illustrates the flexibility in the shape of the beta distribution, with

unimodal and bimodal cases similar to the symmetric case (11) in the top

panel (a,b), but also including monotonically increasing or decreasing cases

in situations where agents have a strong idiosyncratic signal in one direction,

yet still exhibit a relatively pronounced herding tendency relative to the other

state, i.e. a1/b < 1 < a2/b or vice versa, as shown in the bottom panel (c,d).

In summary, the model provides quite a generic description of a stochastic

expectations formation process that contains only a few behavioral parame-

ters a1, a2, and b, yet allows for a large degree of agent heterogeneity. Despite
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Figure 1: Beta distribution for various parameter combinations.

its parsimony, the model produces a wide range of qualitatively different

statistical equilibria, including endogenous cycles in expectations caused by

herding or imitation, but also equilibria where the vast majority of agents

‘learns a correct state’ in spite of being surrounded by noise that is created

through the social interaction with neighboring agents. The qualitative fea-

tures of the process are also parsimoniously summarized by the ratios (12) or

(15), putting us in a position to isolate behavioral aspects from the question

whether it is feasible to identify the communication or network structure

among agents from survey data.

In the next section we argue that an ‘omniscient modeler’, endowed with

perfect knowledge of the behavioral parameters and network structure among

agents, would not be able to reliably recover this network structure based

merely on the correlations in survey responses. Perhaps more troubling, if

our knowledge is confined to the time evolution of survey responses, we will

not even be able to reliably detect whether survey correlations originate from
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social interactions or model-consistent beliefs.

3 Random Benchmark and Simulation

We start with a thought experiment, putting ourselves in the position of an

omniscient modeler (OM) who chooses a particular behavioral setup and net-

work structure for the model in Section 2. Utilizing the individual transition

rates (1) and (2), the OM simulates and records the time evolution of beliefs

for all N agents in the system. Afterwards, the OM presents us with data on

the individual histories of agents’ beliefs (or output for short), from which we

have to determine the network structure among agents based on correlations

in the time evolution of their beliefs.

In actual data on survey expectations, with typically two to three hundred

agents reporting monthly beliefs over roughly two hundred periods, we have

no intrinsic knowledge of the network structure whatsoever. So to make life

easier for us, the OM even informs us of the exact number Di of neighbors

for each agent i = 1, . . . , N . We then compute the Di highest correlations

for each agent from the output and report it back to the OM as our best

guess of the network structure in the output. In return, the OM checks our

guesses against the actual identity of neighbors and reveals the fraction of

correctly identified neighbors to us. The central question is: how many of the

Di neighbors do we expect to guess correctly by pure chance, i.e. irrespective

of the correlation among responses? This establishes a random benchmark

against which we have to judge the success of correlation-based procedures.2

In order to explain the random benchmark, it is instructive to consider a

simple urn model. Let us draw d (read: Di) colored balls without replacement

from an urn containing a total of N balls, m of which are white (read: the

true neighbors of agent i). The probability of drawing k ≤ m white balls in

2Instead of considering the time t correlation, we have conducted the subsequent analy-
sis with various sums of leads and lags in the autocorrelations of responses, yet the results
remain virtually unchanged.
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d draws from a total of N balls is given by the hypergeometric distribution

P [k] =

(

m

k

)(

N−m

d−k

)

(

N

d

) , (16)

where the notation on the right hand side refers to binomial coefficients. In

other words, (16) characterizes the distribution of the number of white balls

drawn from the urn in d extractions. The mean value of the hypergeometric

distribution is

E[k] =
dm

N
, (17)

from which we can compute the random benchmark since d = m in our OM

setup.3 The standard deviation of the hypergeometric distribution is

σ[k] =

√

dm(N −m)(N − d)

(N − 1)N2
. (18)

To keep our simulations in line with available survey data (for instance

from the ZEW for German ‘financial experts’, or from the FRB Philadelphia

for US ‘professional forecasters’), we set the number of agents to N = 250;

the available length of periods for individual agent IDs is on average between

one and two hundred, while the number of questions per survey is typically

between thirty and sixty. It will be a sobering experience to recall these

figures when we present the simulation results.

3.1 Simulation setup

Regarding the network structure in our simulations, we consider three proto-

typical setups: random graphs in the Erdös-Renyi tradition, scale-free net-

works in the Barabasi-Albert tradition, and regular lattice structures.4 To

keep matters simple, we set the number of neighbors equal to twenty in the

3Notice that choosing a different number of extractions does not change any of the
qualitative features in the following results, yet the approach immediately translates into
quantitative prescriptions for measuring different benchmarks.

4The review article by Newman (2003) provides the historical background and a com-
prehensive summary of the many mathematical details of these graphs.
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lattice, and tune the parameters of the scale-free and random networks such

that we obtain adjacency matrices with an average number of twenty neigh-

bors as well.5 Given these numbers and (17) and (18), it is straightforward

to compute that the fraction of correct answers we would expect purely by

chance corresponds to E[k] = 1.6 with σ[k] = 1.16, or normalized with re-

spect to the number of extractions E[k]/d = 0.08 and σ[k]/d = 0.058.

In the subsequent figures, we use the mean plus one standard deviation,

E[k] + σ[k] = 2.76, to illustrate the statistical significance of the OM experi-

ment. We can compute the probability of such an event from the cumulative

hypergeometric distribution: since the hypergeometric distribution is defined

for positive integer values of k, we have to consider P (k ≤ 2) = 0.79 and

P (k ≤ 3) = 0.94. Hence the range 0 < E[k] + σ[k] < 3 delivers a rather con-

servative confidence interval in accord with the usual econometric standards.

In line with (1), (2) and (13), the OM implements the transition proba-

bilities φi for each agent i as

φ
(±)
i = ρ

(±)
i ∆t = [a(1,2) + bD

(∓)
i ] ∆t with ∆t = 1/(amax + bN), (19)

where the notation D
(∓)
i refers to the number of i-neighbors that are in the

opposite state, and amax = max{a1, a2}. The choice of ∆t ensures both that

0 < φi ≤ 1 and that all agents act on the same time scale.

The OM then confronts us with the output of the N time series of agents’

beliefs, from which we compute N(N−1)/2 correlation coefficients. For every

i, the OM also informs us of the actual number Di of neighbors, and in turn

we extract the Di highest correlation coefficients from the output. Intuitively

assuming that the highest correlation coefficients correspond to the neighbors

of agent i, we construct the adjacency matrix of the agent network and report

it to the OM who compares it with the actual adjacency matrix, and informs

us of the fraction of correctly identified neighbors for each i. To aggregate

and visualize the results for each of the following three scenarios, we average

5It turns out that changing the number of neighbors in the OM setup has virtually
no influence on the subsequent results. We chose twenty neighbors because this figure
does not appear to be entirely unrealistic. If anything, the communication with twenty
neighbors already takes considerable time and effort in most professions.
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Figure 2: Average fraction of correctly identified neighbors vs length of in-
dividual agents’ time series for a single question. We chose a bimodal simu-
lation setup with parameters ε1 = ε2 = .5 and b = 1, i.e. a strong behavioral
component relative to symmetric exogenous signals in either direction.

the correctly identified percentages for each agent over the entire pool of

agents.

The following scenarios basically consider in how far we can recover the

correct network structure (i) depending on the length of agent histories and

(ii) depending on the number of simultaneous survey answers per agent, i.e.

the volume of survey coverage. The final scenario (iii) takes up a more funda-

mental issue and examines what happens when correlation clusters are caused

by model-consistent beliefs instead of social interactions. Put differently, is

a correlation-based approach capable of distinguishing between clusters that

are caused by either behavioral extreme?
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Figure 3: Average fraction of correctly identified neighbors vs length of in-
dividual agents’ time series for a single question. Here we chose a unimodal
simulation setup with parameters ε1 = ε2 = 2 and b = 1, i.e. a relatively
strong exogenous signal compared to the behavioral component.

3.2 Scenario I: Single indicator histories

Suppose when agents answer questions regarding rather distant areas of ex-

pertise (e.g. international equity indices vs bonds vs GDP growth vs inflation

etc.), they utilize different networks to form their expectations. So if we use

histories for a single indicator in the OM experiment, what is the required

number of observations per agent (or sample size for short) that is necessary

to discriminate between some genuine network structure and random noise?

We consider both a bi- and a unimodal setup to control for behavioral

biases, and display summary results under different network structures in

Figures 2 and 3. The figures illustrate that there is little difference between

random and scale-free setups, while it is easier to identify neighbors when
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they are all arranged in a regular lattice. Regular networks, however, are

the least suitable representation of observed social networks, which tend to

interpolate between random and scale-free structures (see, e.g., Newman,

2003, and the references therein). This is also the reason why we focus our

attention on random graphs in the coming scenarios.

As one would intuitively suspect, the identification of interaction effects

is somewhat facilitated in the bimodal case, i.e. when herding or imitation

dominate the expectations formation process. According to Figures 2 and 3,

however, this aspect has merely second-order effects. Up to a sample size of

around one thousand periods, we are not able to distinguish between noise

and network effects if our knowledge is restricted to the time evolution of

univariate histories. Hence this also implies that we do not have a sufficient

number of empirical survey data at our disposal to reliably identify the social

interaction component. Viewed from this perspective, any cluster we identify

based on the cross-correlations of answers is essentially pure noise. If we

consider the confidence interval in Figures 2 and 3, the first scenario suggests

that it is entirely unrealistic to identify even a rudimentary communication

structure unless we increase the frequency of survey responses by one order

of magnitude, i.e. from monthly to roughly twice per week. In addition, if we

are indeed facing irregular network structures, the length of single indicator

histories that is necessary to correctly identify about half the neighbors turns

out to be two orders of magnitude larger than empirical sample sizes.6

3.3 Scenario II: Multiple indicator histories

Can we improve the identification of communication structures if we make

the strong assumption that behavioral parameters in the expectations for-

mation process of agents do not change across multiple questions, and that

their network structure remains unchanged as well? And how many questions

would be necessary in that case? To tackle this issue, we keep the parame-

terizations of the previous scenario and simulate the expectations formation

process on a random network, fixing the length of single question histories

6Simulation results upon request.
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Figure 4: Increasing the number of questions and averaging over them im-
proves the identification of interaction effects compared to the previous uni-
variate scenario. The model parameterizations remain the same as before,
and we utilize a random network whose structure remains fixed as well. The
underlying univariate responses have a length of two hundred periods.

to two hundred while successively increasing the number of questions. Es-

sentially, this means that the correlation coefficients are averaged both over

agents and over questions. To operationalize this procedure, we fix the pa-

rameterization and underlying network structure of social interactions and

run K independent simulations of the model for two hundred periods. For

each single run of length two hundred, we perform the estimation procedure

outlined in the previous scenario, and then average over the K questions.

The results both for uni- and bimodal setups, along with the random

benchmark, are displayed in Figure 4 and show that a multivariate correlation-

based procedure performs better than in the previous univariate scenario. As

expected, a bimodal environment with strong interactions again somewhat

facilitates the identification of the network structure, but the more appealing
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feature of this scenario is that the rate at which we discover actual links is

markedly higher than in the univariate case. On the downside, however, the

overall accuracy of the correlation-based procedure remains low. Keeping in

mind that the empirical volume of survey coverage includes roughly thirty to

sixty questions, correlation-based estimates of the interaction structure are

almost not significantly different from pure noise, and certainly very low to

begin with: we recover merely twenty percent of the actual network struc-

ture, and the fraction of correctly identified neighbors increases very slowly

with the number of questions.

3.4 Scenario III: Exogenously switching signal

In both of the preceding scenarios we have assumed that all agents have a

strictly positive interaction parameter, which we conveniently set to b = 1.

But what happens if some agents are not socially interacting at all (b = 0) and

instead form model-consistent beliefs from exogenous signals a1, a2 that we

can think of as transmitting the correct state of the world? In principle, these

‘rational’ agents should exhibit highly correlated responses over time if the

exogenous signal is sufficiently strong relative to the interaction parameter.

If the state of the world does not change over time, the rational agents will

all converge to the correct state, making it almost trivial to identify them

from correlation-based procedures. In order to maintain an empirically more

relevant scenario, we thus assume that the correct state of the world changes

every now and then, i.e. the parameters a1, a2 are no longer constant but

change over time.7

In this scenario, we keep the total number of agents at N = 250 in our

simulations, and the underlying network remains a random graph with an

average degree of twenty neighbors. The values of ã1 = ã2 = b̃ = 1 are

constant over time for the majority Ñ = 200 of agents, while a smaller group

of fifty ‘rational’ agents exhibits time-varying idiosyncratic coefficients, say

a1(t) and a2(t), which essentially measure the speed at which rational agents

7From a mathematical point of view, this would correspond to a so-called switching

diffusion process.
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Figure 5: Fraction of correctly identified rational agents who follow a time-
varying exogenous signal that is increasingly biased in either direction (de-
noted by an increasing value of amax) vs their interaction strength b. At low
values of b, the identification generally performs very well, while higher val-
ues of b might prevent a reliable detection, depending on the relative value
of amax.

learn the true state of the world. The time-varying coefficients take on values

in the set {1, amax}, where amax = max{a1(t), a2(t)}. Suppose for instance

that amax = 10 and that the currently ‘true’ state is such that a1(0) = 1 and

a2(0) = 10, i.e. we are in an optimistic regime today. When the true state

changes to pessimism, say in period τ , the parameters change to a1(τ) = 10

and a2(τ) = 1. As far as the switching probability in our simulations is

concerned, we assume that the probability to switch is five percent, drawn

randomly from a uniform distribution. In other words, an exogenous switch

in the signal occurs on average every twenty months in our simulations.

The matter in question now concerns the fraction of rational agents that

we can correctly identify if the true state of the world changes over time, as it
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certainly does in reality. (Notice that we have to adapt the error band since

now d = m = 50.) None the less, we would expect the value of b to also have

an influence on our ability to identify the rational agents: when b increases,

the noise generated through the social interactions with the other agents

should make it more difficult to identify rational agents correctly. On the

other hand, when rational agents are not part of the social network (b = 0),

and thus do not take possibly non-rational opinons into account, it should

become easier to correctly identify them with correlation-based procedures.

Figure 5 plots the fraction of correctly identified rational agents for a

given amax when the interaction parameter b takes on values in [0, 1]. The

different plots in Figure 5 refer to increasing values of amax in the simulations.

As expected, our ability to correctly identify the group of rational agents

depends inversely on their interaction parameter b, possibly approaching the

noise level as b approaches the value common to the other Ñ agents. On the

other hand, when b approaches zero, we are in an increasingly comfortable

position regarding the identification of rational agents. Finally, the faster the

signal processing ability amax, the easier it becomes to correctly identify the

group of rational agents, asymptotically reaching the value of one hundred

percent independently of b.

4 Discussion and Conclusions

All computations in the preceding scenarios have been performed under the

assumption that the OM informs us of the actual number Di of neighbors

for each agent. Clearly, this is a most unrealistic assumption in the context

of empirical applications to survey data, where we simply have no way of

knowing whether agents interact socially in the first place, much less to whom

they are linked to in case they do. Viewed from this perspective, our results

are if anything overly optimistic to begin with.

Yet the third scenario delivers maybe the most fatal blow to any hopes

that survey data could settle the question whether interaction effects are

present in the expectations formation process of respondents or not. Our

preferred way to read Figure 5 is that we can achieve any desired accuracy in
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the identification of network structure through an appropriate combination

of b and a time-varying exogenous signal amax. The other side of that coin

is that we have no way of distinguishing between interaction effects and

model-consistent beliefs, even if we identify relatively strong patterns in the

correlations of a subset of agents.

Ultimately, these results suggest that existing survey data cannot facil-

itate our understanding of the process of expectations formation, which is

particularly troubling in light of its central importance for modern macroe-

conomic theory. To end on a more constructive note, we would like to point

out once more that our thought experiment presumed that we merely have

data on the time evolution of agents’ beliefs. In order to investigate whether

interaction effects are indeed present in the data, it would be enormously

helpful if surveys contained questions that refer directly to the presence of

interaction effects.
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