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Abstract 

 
This paper presents an endogenous growth model in which the economy grows without either 

scale effects or population growth. The key mechanism is substitution between investments in 

capital and technology when firms face increasing uncompensated knowledge spillovers. The 

model indicates that, as population increases, firms invest more in capital than in technology 

because there are more uncompensated knowledge spillovers as a result of both 

Marshall-Arrow-Romer and Jacobs externalities. Consequently, scale effects asymptotically 

diminish as population increases and disappear at a sufficiently large population while the 

economy can grow without population growth. In present-day industrialized economies, 

therefore, both scale effects and population growth have little influence over economic growth. 
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1.  INTRODUCTION 
 

Scale effects have been a central issue in the study of endogenous growth. Early endogenous 

growth models (e.g. Romer, 1986, 1987; Lucas, 1988) commonly included scale effects. 

However, the existence of scale effects in present-day economies is not supported by empirical 

evidence (Jones, 1995a). The source of scale effects lies in the assumption of a linear relation 

between capital and technology. Given a Harrod-neutral production function such that 
αα −= 1

ttt kAy , the familiar optimal growth path is  
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rate in period t. In addition, θ is the rate of time preference, ε is the coefficient of relative risk 

aversion, and α is a constant. Hence, if ⎟⎟
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of consumption is constant; that is, the economy can proceed on a balanced growth path. 
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where φ1 is a constant. The simplest solution to construct a model that satisfies 
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is to assume that there is a linear relation between Kt and At and that 0=
t

t

L

L&
. Early endogenous 

growth models such as the familiar “AK” model adopted this strategy (e.g., Romer, 1990; 

Grossman and Helpman, 1991; Aghion and Howitt, 1992).1 Assuming a linear relation between 

At and ( )ttt LkK =  means that  
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where φ2 is a constant. Hence, Lt plays an important role for growth because, as Lt increases, 

t

t

c

c&
 also increases. This relationship is known as scale effects.  

 Jones (1995b) adopts a completely different strategy (see also Kortum, 1997; 

Segerstrom, 1998; Eicher and Turnovsky, 1999), which focuses on the relation between Lt and 

                                                           
1 Early human-capital-based endogenous growth models also belong to this category of models. 
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At instead of that between Kt and At. A linear relation between 
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is selected to be relevant because only this case simultaneously satisfies the relation 
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1=  and achieves a balanced growth path. This model can eliminate scale effects because 

there is no linear relation between Kt and At. Instead, the population growth rate 
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crucial role, as equation (1) clearly exhibits. In this sense, Jones’s (1995b) model still does not 

appear to be successful as a model of endogenous growth. 

 To eliminate the influence of population growth, Young (1998), Peretto (1998), 

Aghion and Howitt (1998), and Dinopoulos and Thompson (1998) propose a third approach. 

They assume a relation between 

t

t

A

A&
 and Lt such that 51

4

φ
t

t

t Lφ
A

A −=
&

, where φ4 and φ5 are 

constants. Hence,  
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if the relation 
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1=−  holds and the economy is on a balanced growth path. Therefore, 

if 15 =φ , the economy grows at the constant rate φ1φ4 even if 0=
t

t

L

L&
; that is, the influence of 

population growth and scale effects can both be eliminated. However, Jones (1999) shows that 

this model crucially depends on a very special assumption, that 15 =φ . 

 Peretto and Smulders (2002) take a fourth approach. They assume that AtLt and Kt are 

positively linked instead of At and Kt, and  
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where φ6 is a constant. Hence, 
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, and the scale effects asymptotically 

vanish. In addition, population growth is unnecessary for economic growth unlike in the 

non-scale model developed by Jones (1995b). 

 The model developed in this paper employs this fourth approach, but the mechanism 

through which the relation 
6

lim
t

t t t
L

A L φ K
→∞

=  emerges is fundamentally different from that of 

Peretto and Smulders (2002). The key assumption in Peretto and Smulders (2002) is that 

uncompensated knowledge spillovers diminish as the number of firms (and thus the population) 
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increases. However, this assumption is problematic because the concepts of Marshall-Arrow- 
Romer (MAR) externalities (Marshall, 1890; Arrow, 1962; Romer, 1986) and Jacobs 

externalities (Jacobs, 1969) both predict that, if the number of firms increases, uncompensated 

knowledge spillovers will also increase. Hence, the key assumption of Peretto and Smulders 

(2002) contradicts the theory of knowledge spillover. This problem arises primarily because 

they neglect Jacobs externalities and focus only on the negative side of MAR externalities; that 

is, as the number of sectors increases, knowledge spillovers will work less effectively. Many 

empirical studies support the existence of Jacobs externalities (e.g., Glaeser et al., 1992; Chen, 

2002; Stel and Nieuwenhuijsen, 2002), and neglecting them will heavily bias the structure of 

model. 

 The model in this paper, in contrast to that of Peretto and Smulders (2002), is 

consistent with knowledge spillover theory because uncompensated knowledge spillovers are 

assumed to increase when the number of firms increases. This reversed direction of the effect of 

knowledge spillovers could potentially make scale effects much worse, but it does not because 

of substitution between investments in capital and technology. Firms will invest more in capital 

than in technology if returns on investing in technology become less attractive because of an 

increase in uncompensated knowledge spillovers arising from an increased number of firms. 

Decisions about whether to invest in capital or technology are made by firms that compare 

returns on investing in capital (

t
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) with those in technology (
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), where ψ is a variable 

that indicates the degree of uncompensated knowledge spillovers, that is, how much a firm that 

invests in technology can obtain from 

t
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 as the return on generating a new technology. By 

arbitrage, both returns are equalized such that 
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. If ψ is constant, familiar scale 

effects emerge. However, as mentioned above, the theory of knowledge spillover predicts that 

uncompensated knowledge spillovers and the number of firms are positively correlated. Hence, 

the theory indicates that ψ should not be constant but a function of the number of firms, and it 

decreases as the number of firms increases. The model in this paper explicitly incorporates this 

concept and exhibits the relation 
ttt

L
KφLA

t

6lim =
∞→

. As a result, the model can eliminate both 

scale effects and the influence of population growth.  

 The paper is organized as follows. In Section 2, the production of technology and 

uncompensated knowledge spillovers are examined, and an endogenous growth model that 

incorporates substitution between investments in capital and technology is constructed. 

Section 3 shows that scale effects asymptotically diminish as population increases and shows 

that population growth is unnecessary for economic growth in the model. Concluding remarks 

are offered in Section 4. 

 

2.  THE MODEL 
 

2.1  Production of technologies 
Outputs Yt are the sum of consumption Ct, the increase in capital

tK& , and the increase in 

technology
tA&  such that  
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where ( )0>ν  is a constant, and a unit of Kt and 1−ν  of a unit of At are equivalent; that is, they 

are produced using the same quantities of inputs (capital, labor, and technology). This means 

that technologies are produced with capital, labor, and technology in the same way as consumer 

goods and services and capital. Unlike most idea-based growth models, no special mechanism is 

required for the production of technology because endogenous balanced growth (i.e., constant 

t

t

k

A
) is not materialized by any special property of the production function of technology but by 

uncompensated knowledge spillovers and arbitrage between investments in capital and 

technology. 

 Because balanced growth paths are the focal point of this paper, Harrod-neutral 

technical progress is assumed.2 Hence, the production function is ( )αtt

α
tt LAKY
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; thus, 
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Population has an upper boundary and nt = 0 after some future period; thus, 0lim =
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lim , where L  is a positive constant. 

 

2.2  Substitution between investments in Kt and At 
For any period,  
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where Mt is the number of firms (which are assumed to be identical) and m (> 0) is a constant. 

Equation (2) presents a natural assumption that the population and number of firms are 

positively correlated. In addition, for any period,  
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is always kept, where ( )1>ϖ  and ( )10 <≤ ρρ  are constants. The parameter ρ describes the 

effect of uncompensated knowledge spillovers, and the parameter ϖ  indicates the effect of 

patent protection. With patents, incomes are distributed not only to capital and labor but also to 

                                                           
2 As is well known, only Harrod-neutral technological progress matches the stylized facts presented by Kaldor 

(1961). As Barro and Sala-i-Martin (1995) argue, technological progress must take the labor-augmenting form in the 

production function if the models are to display a steady state.  
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technology. For simplicity, the patent period is assumed to be indefinite, and no capital 

depreciation is assumed. An extended model with a finite patent period and capital depreciation 

is examined in Section 3.5.  

 Equations (3) and (4) indicate that returns on investing in capital and technology for 

the investing firm are kept equal. The driving force behind the equations is that firms exploit all 

opportunities and select the most profitable investments at all times. Through arbitrage, this 

behavior leads to equal returns on investments in capital and technology. With substitution 

between investments in capital and technology, the model exhibits endogenous balanced growth. 
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and (3), which lucidly indicates that 

t
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= constant, and the model can therefore show balanced 

endogenous growth. 

 

2.3  Uncompensated knowledge spillovers 
Equations (3) and (4) also indicate that the investing firm cannot obtain all the returns on its 

investment in technology. That is, although investment in technology increases Yt, the investing 

firm’s returns are only a fraction of the increase of Yt, such that ( )t

t

ρ
t νA
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knowledge spills over to other firms without compensation and other firms possess 

complementary technologies.  

 Broadly speaking, there are two types of uncompensated knowledge spillovers: 

intra-sectoral knowledge spillovers (MAR externalities; Marshall, 1890; Arrow, 1962; Romer, 

1986) and inter-sectoral knowledge spillovers (Jacobs externalities; Jacobs, 1969). MAR theory 

assumes that knowledge spillovers between homogenous firms are the most effective and that 

spillovers will primarily emerge within sectors. As a result, uncompensated knowledge 

spillovers will be more active if the number of firms within a sector is larger. On the other hand, 

Jacobs (1969) argues that knowledge spillovers are most effective among firms that practice 

different activities and that diversification (i.e., a variety of sectors) is more important in 

influencing spillovers. As a result, uncompensated knowledge spillovers will be more active if 

the number of sectors in the economy is larger. If all sectors have the same number of firms, an 

increase in the number of firms in the economy results in more knowledge spillovers in any case, 

as a result of either MAR or Jacobs externalities. 

 As uncompensated knowledge spillovers increase, the investing firm’s returns on 

investment in technology decrease. 

t

t

A

Y

∂
∂

 indicates the total increase in Yt in the economy by an 

increase in At, which consists of increases in both outputs of the firm that invested in the new 

technologies and outputs of other firms that utilize the newly invented technologies, regardless 

of whether the firms obtained the technologies by compensating the originating firm or through 

uncompensated knowledge spillovers. If the number of firms increases and uncompensated 

knowledge spillovers increase, the compensated fraction in 
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 that the investing firm can 

obtain becomes smaller, as do its returns on the investment in technology. The parameter ρ 
describes the magnitude of this effect. If ρ = 0, the investing firm’s returns are reduced at the 

same rate as the increase of the number of firms. 10 << ρ  indicates that the investing firm’s 

returns diminish as the number of firms increase but not to the same extent as when ρ = 0. 

 Both types of externalities predict that uncompensated knowledge spillovers will 

increase as the number of firms increases, and scale effects have not actually been observed 



 7

(Jones, 1995a), which implies that scale effects are almost canceled out by the effects of MAR 

and Jacobs externalities. Thus, the value of ρ is quite likely to be very small. From the point of 

view of a firm’s behavior, a very small ρ appears to be quite natural. Because firms intrinsically 

seek profit opportunities, newly established firms work as hard as existing firms to profit from 

knowledge spillovers. An increase in the number of firms therefore indicates that more firms are 

trying to obtain the investing firm’s technologies. In addition, a larger number of firms indicates 

that firms are more specialized. More specialized and formerly neglected technologies may 

become valuable to the larger number of specialized firms. Hence, knowledge spillovers will 

increase. As a whole, competition over technologies will increase as the number of firms 

increases. Through more fierce competition, uncompensated knowledge spillovers will also 

increase, eventually to the point that they increase at the same rate as the increase in the number 

of firms. The investing firm’s fraction will thereby also be reduced at the same rate as the 

increase of the number of firms, which means that ρ will naturally decrease to zero as a result of 

firms’ profit-seeking behavior.  

 Complementary technologies also reduce the fraction of 
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 that the investing firm 

can obtain. If a new technology is effective only if it is combined with other technologies, the 

returns on investment in the new technology will belong not only to the investing firm but also 

to the firms that possess the other technologies. For example, an innovation in computer 

software technology generated by a software company increases the sales and profits of 

computer hardware companies. The economy’s productivity increases because of the innovation 

but the increased incomes are attributed not only to the firm that generated the innovation but 

also to the firms that possess complementary technologies. A part of 

t

t

A

Y

∂
∂

 leaks to these firms, 

and the leaked income is a kind of rent revenue that unexpectedly became obtainable because of 

the original firm’s innovation. Most new technologies will have complementary technologies. 

Because of both complementary technologies and uncompensated knowledge spillovers, the 

fraction of 
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 that an investing firm can obtain on average will be very small; that is, ϖ  

will be far smaller than Mt except when Mt is very small.3 
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3 If Mt is very small, the value of ϖ  will be far smaller than that for sufficiently large Mt because the number of 

firms that can benefit from an innovation is constrained owing to the very small Mt. The very small number of firms 

indicates that the economy is not sufficiently sophisticated, and thereby the benefit of an innovation cannot be fully 

realized. This constraint can be modeled as =ϖ ( )[ ]tM1~11~ −−− ϖϖ , where ( )1~ ≥ϖ  is a constant. Nevertheless, 

for sufficiently large Mt (i.e., in sufficiently sophisticated economies), the constraint is removed such that 
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 As a whole, the optimization problem of the representative household is to maximize 

the expected utility 
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subject to equation (5) where u(�) is a constant relative risk aversion (CRRA) utility function 

and E is the expectation operator. 
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tλ is a costate variable. The optimality conditions for the optimization problem shown in 

the previous section are  
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Hence, by equations (6) and (10), the growth rate of consumption is 
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3.2  Balanced growth path 
There is a balanced growth path on which all the optimality conditions are satisfied.  

 

Lemma: If and only if 

t

t

t
t

t

t k

k

c

c &&
∞→∞→

= limlim , all the conditions (equations [5]–[8]) are satisfied. 

Proof: (Step 1) 
( )

( ) ( )
⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧
−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+−

−
= −

−
∞→

∞→∞→

−
∞→

−

−

∞→
θα

νm

αL

αLαLm

αLm
ε

c

c α

α

ρ

ρ
t

t

ρ
t

t
t

t

ρ

t
t

ρ

t

t

t
1

lim

lim1lim

1lim
lim

11

1

1
ϖ

ϖ
&

. 

Because population has an upper boundary and LLt
t

=
∞→

lim , 

t

t

t c

c&
∞→

lim = constant. On the other 

hand, 
( )

( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+−

−
=

∞→

−
−
∞→

∞→∞→

−
∞→

−

∞→
t

t

t

α

α

ρ

ρ
t

t

ρ
t

t
t

t

ρ

t
t

ρ

t

t

t k

cα
νm

αL

αLαLm

αLm

k

k
lim1

lim

lim1lim

1lim
lim

11

1 ϖ

ϖ

&
. 

(Step 2) If 

t

t

t
t

t

t c

c

k

k &&

∞→∞→
> limlim , then 

t

t

k

c
 diminishes as time passes because 

t

t

t c

c&
∞→

lim = constant by 

(Step 1) while 

t

t

t k

k&

∞→
lim  increases by (Step 1). Thus, eventually 

t

t

k

c
 diminishes to zero, and as 

shown in Section 3.1, transversality condition (9) is not satisfied. 

 If 

t

t

t
t

t

t c

c

k

k &&

∞→∞→
< limlim , then 

t

t

k

c
 increases indefinitely as time passes because 

t

t

t c

c&
∞→

lim = 

constant by (Step 1) while 

t

t

t k

k&

∞→
lim  diminishes and eventually becomes negative by (Step 1). 

Hence, 
tk decreases and eventually equation (8) is violated because 0≥tk . 
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 On the other hand, if 

t

t

t
t

t

t k

k

c

c &&

∞→∞→
= limlim , then 

t

t

t k

c

∞→
lim  is constant; thus, 

t

t

t k

k&

∞→
lim  and 

t

t

t c

c&

∞→
lim  are identical and constant because 

t

t

t c

c&
∞→

lim = constant by (Step 1).               ■ 

 

 Rational households will set an initial consumption that leads to the growth path that 

satisfies all the conditions. The Lemma therefore indicates that, given an initial A0 and k0, 

rational households will set the initial consumption c0 so as to achieve the growth path that 

satisfies 

t

t

t
t

t

t k

k

c

c &&
∞→∞→

= limlim , while firms will adjust kt so as to achieve ( )t

t

ρ
tt

t

νA
Y

MK

Y

∂
∂

=
∂
∂

−1

ϖ
.4 With 

this household behavior, the growth rates of technology, per capita output, consumption, and 

capital converge at the same rate.  

 

Proposition: If all of the optimality conditions (equations [5]–[8]) are satisfied, 

 

 

t

t

t
t

t

t
t

t

t
t

t

t k

k

c

c

A

A

y

y &&&&

∞→∞→∞→∞→
=== limlimlimlim  . 

 

Proof: Because 
α

t

α
tt kAy

−= 1
, ( ) ⎥

⎦

⎤
⎢
⎣

⎡
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= t

t

t
t

α

t

t
t A

A

kαkα
k

A
y &&& 1 . Since ⎟

⎠
⎞

⎜
⎝
⎛

−
= − α

α
k

νm

L
A tρ

ρ
t

t
11

&& ϖ
, 

then ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

t

t

ρ

ρ
t

α

t

t
tt

A

k

ανm

αLα
k

A
ky

1
1

1

2ϖ&& ; thus, =
t

t

y

y&
 ( ) ( ) ⎥

⎦

⎤
⎢
⎣

⎡
−

+− −
t

t

ρ

ρ
t

t

t

A

k

ανm

αLα
k

k

1
1

1

2ϖ&
. 

Since 
( ) tρ

ρ
t

t k
ανm

αL
A

−
= − 11

ϖ
, ( )[ ]

t

t

t

t

t

t

k

kαα
k

k

y

y &&&
=+−= 1 . Therefore, 

t

t

t
t

t

t
t

t

t k

k

c

c

y

y &&&
∞→∞→∞→

== limlimlim . In 

addition, since 
( )

⎥
⎦

⎤
⎢
⎣

⎡
+

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

t

t

ρ
t

ρα

t

t
tt

A

kα
αL

ανm

k

A
Ay

ϖ

21 1&&  by 
α

t

α
tt kAy

−= 1
 and 

( ) tρ

ρ
t

t k
ανm

αL
A &&

−
= − 11

ϖ
, 

then 
( )

t

t

ρ
t

ρ

t

t

t

t

A

Aα
αL

ανm

k

A

y

y &&&
+

−
=

−

ϖ

21 1
. Because 

( ) tρ

ρ
t

t k
ανm

αL
A &&

−
= − 11

ϖ
, then ( )

t

t

t

t

t

t

A

Aα
k

kα
y

y &&&
+−= 1 . 

Thereby, ( )
t

t

t

t

t

t

t

t

A

Aα
k

kα
k

k

y

y &&&&
+−== 1  and 

t

t

t
t

t

t
t

t

t A

A

A

A

k

k &&&

∞→∞→∞→
== limlimlim = constant. Hence, by the 

Lemma, 

t

t

t
t

t

t
t

t

t
t

t

t k

k

c

c

A

A

y

y &&&&
∞→∞→∞→∞→

=== limlimlimlim  if all the optimality conditions are satisfied.    ■ 

 

This balanced growth path can be seen as a natural extension of the steady state in the 

conventional Ramsey growth model with exogenous technology.  

 

                                                           

4 Arbitrage conditions (3) and (4) indicate that until 
( ) tρ

ρ
t

t k
ανm

αL
A

−
= − 11

ϖ  is achieved, no investment is made in 

technology if 

( ) 010
1

k
ανm

αL
A ρ

ρ
t

−
> −

ϖ  and in capital if 

( ) 010
1

k
ανm

αL
A ρ

ρ
t

−
< −

ϖ .  
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3.3  Growth without population increase 

The model indicates that population growth is not necessary for economic growth. If 0=tn  for 

any period,  

 

( )
( ) ( )

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−
−

= −
−−

−
− θα

νm

αL

αLαLm

αLmε
c

c α
α

ρ

ρ
t

ρ
tt

ρ
t

ρ

t

t 1
1

1
11

1
1 ϖ

ϖ
&

= constant 

 

because Lt = constant. Clearly, 

t

t

c

c&
 is irrelevant to nt and is positive even though nt = 0.5 This 

result is important because it indicates that the economy can grow endogenously and 

indefinitely at a constant rate without population growth, which contrasts with the non-scale 

model shown in Jones (1995b). 

 

3.4  Asymptotically diminishing scale effects 
The model also indicates that scale effects asymptotically diminish as population increases. 

Scale effects are measured by 

 

 ( ) θ
c

cεLS
t

t
t +=

&
 ; 

 

that is, by the population related part of 

t

t

c

c&
. In the model, 

 

 ( ) ( )
( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−
−

= −
−−

−

t

α
α

ρ

ρ
t

ρ
tt

ρ
t

ρ

t nα
νm

αL

αLαLm

αLm
LS 1

1

1
11

1 ϖ
ϖ

 .            (11) 

 

If 
( )

0>
t

t

dL

LdS
, scale effects exist, and if 

( )
0=

t

t

dL

LdS
, no scale effect exists. Equation (11) 

indicates that scale effects depend on the value of ( )10 <≤ ρρ  and the population.  

 If ρ = 0, scale effects vanish asymptotically as population increases. When the 

population is small, 

 

 ( ) ( )
( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−⎟

⎠
⎞

⎜
⎝
⎛

+−
−

= −
− t

α
α

ρ
tt

t
t nα

νm

α
αLαmL

αmL
LS 1

1

1
1

ϖ
ϖ

 . 

 

Hence 
( )

0>
t

t

dL

LdS
 and scale effects exist. However,  

 

 ( ) ( ) α
α

ρt
LLL

α
νm

α
LS

t

−
−→∞→

−⎟
⎠
⎞

⎜
⎝
⎛= 1limlim

1

ϖ
 ,                   (12) 

                                                           

5 As mentioned above, usually ( ) 01
1

>−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
− t

α
α

ρ

ρ
t nα
νm

αLϖ , so this is the only case examined in this paper. 
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because 
( )

( ) 1
1

1
limlim

1

1

=
+−
−

−

−

→∞→ αLαLm

αLm
ρ
tt

ρ
t

ρ

LLL t ϖ
 and 0lim =

→ t
LL

n
t

. Hence,  

 

 
( )

0limlim =
→∞→

t

t

LLL dL

LdS

t

 . 

 

As the population increases, scale effects asymptotically disappear. An economy with a 

sufficiently large population therefore can grow without scale effects. 

 Nevertheless, if ρ ≠ 0, scale effects continue to influence growth to some extent even 

though the population is sufficiently large because, if 10 << ρ ,  

 

 ( ) ( ) α
α

ρ

ρ

t
LLL

α
νm

αL
LS

t

−
−→∞→

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 1limlim

1

ϖ
 ; 

 

thus, 
( )

0limlim >
→∞→

t

t

LLL dL

LdS

t

. As ρ becomes closer to unity, the effect of scale becomes more 

clearly observable. However, as argued in Section 2.3, the value of ρ is probably very small and 

scale effects are not actually observed (Jones, 1995a) because they are almost canceled out by 

the effects of MAR and Jacobs externalities. Because of firms’ profit-seeking behavior, ρ will 

naturally decrease to zero. Therefore, as equation (12) shows, scale effects will become 

asymptotically negligible as the population becomes sufficiently large.  

 Equations (11) and (12) indicate that scale effects are economically important if the 

size of population is very small (i.e., the number of firms is very small), which implies that scale 

effects played a crucial role in early human history. Conversely, in present-day industrialized 

economies, scale effects have been observed to have no influence on growth (Jones, 1995a) 

because these economies are integrated with the world economy and have a large total 

population. 

 

3.5  Extension to a finite patent period 
In the previous sections, for simplicity, an indefinite patent period was assumed and capital 

depreciation was not taken into consideration. In this section, these assumptions are relaxed. Let 

( )0>χ  be the length of the patent period and ( )0>δ  be the rate of capital depreciation. After 

the patent period of a technology ends, the price of the technology is zero and the returns on 

investment in that technology are also zero indefinitely. Thereby, after the end of patent period, 

the increased income generated by use of the technology is only distributed to owners of capital 

and labor, not to the owner of the technology. Hence, the total return on investment in 

technology to the investing firm during the patent period is  

 

 

t

t

ρ

ρ
t

A

y

νm

Lχ
∂
∂

−1

ϖ
 . 

 

Next, because capital depreciates by δ every period, the total return on investment in capital to 

the investing firm during the entire period is 

 

 

t

tδs

t

t

k

yδdse
k

y

∂
∂

=
∂
∂ −∞ −∫ 1

0

 . 
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Through the arbitrage between investments in capital and technology,  

 

 

t

t

ρ

ρ
t

t

t

A

y

νm

Lχ
k

yδ
∂
∂

=
∂
∂

−
−

1

1 ϖ
 ; 

 

thus, 

 

 

t

t

ρ

ρ
t

t

t

A

y

νm

Lχδ
k

y

∂
∂

=
∂
∂

−1

ϖ
 .                          (13) 

 

Therefore, in an economy with a finite patent period and capital depreciation, equation (4) is 

replaced with equation (13). Equation (13) clearly shows that the original model’s conclusion 

still holds with a finite patent period and capital depreciation. In many countries, the patent 

period is 20 or more years (i.e., χ ≥ 20), and the useful life of capital is usually about 20 years (a 

depreciation rate of about 0.05). For χ = 20 and δ = 0.05, δχ = 1, which means that equation (4) 

and (13) will be practically identical for reasonable patent periods and depreciation rates. In this 

situation, it appears reasonable to assume for simplicity that the patent period is indefinite and 

the rate of capital depreciation is zero.  

 Although 20 years have been used as the patent period in many countries, there may 

be other possibilities. Because 

 

 ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

−
−

→∞→
θδα

νm

αLχδε
c

c α
α

ρ

ρ
t

t

t

LLL t

1limlim
1

1 ϖ&
 , 

 

as the patent period χ increases, the growth rate of consumption increases if the population is 

sufficiently large. This result suggests that the patent period should be indefinite. However, this 

is not the case because  

 

 
( )

( ) ( )
ε
θθnδα

νm

αLχδ
αLχδαLm

αLmε
c

c
t

α
α

ρ

ρ
t

ρ
tt

ρ
t

ρ

χ
t

t

χ
−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−
−

= −
−−

−
−

∞→∞→
1

1

1
limlim

11

1
1 ϖ

ϖ
&

  

 

for ∞<L . If the patent period is very long, the growth rate of consumption becomes negative 

because firms will restrain their accumulation of capital because investments in technology will 

be much more lucrative as compared with those in capital. Equation (13) indicates that, as χ → 

∞, firms will become extremely tempted to invest in technology rather than in capital and 

eventually no investment in capital will be made. Therefore, the patent period should be finite to 

achieve high growth rates. 

 The optimal length of the patent period depends on the parameter values. In addition, 

technological obsolescence may also have to be considered because, in many industrial 

countries, a technology is often replaced with other technologies or demands shift to other 

goods and services that use other technologies in a period that is shorter than the patent period. 

If we also consider obsolescence, equation (13) can be replaced with  

 

 ( )∫ −
∂
∂

=
∂
∂− χ

t

t

t

t dtμt
A

y

mνk

yδ
0

1 exp
ϖ

 ; 
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thus 

 

 ( )[ ]
t

t

t

t

A

y

mν
χμ

μ
δ

k

y

∂
∂

−−=
∂
∂ ϖ

exp1  , 

 

 

where μ is the obsolescence rate. For example, if μ = 0.1, then ( )[ ]χμμ −−− exp11 = 8.65 for χ = 

20, 9.50 for χ = 30 and 9.82 for χ = 40. If μ = 0.15, then ( )[ ]χμμ −−− exp11 = 9.50 for χ = 20, 

9.89 for χ = 30 and 9.98 for χ = 40. Hence, the value of ( )[ ]χμμ −−− exp11  is almost identical 

if χ > 20, which implies that an approximate 20-year patent period is sufficiently long and 

practically reasonable. 

 

4.  CONCLUDING REMARKS 
 

Early endogenous growth models (e.g. Romer, 1986, 1987; Lucas, 1988) employed scale effects. 

Jones (1995b) presents a different type of endogenous growth model that eliminates scale 

effects, but the population growth rate plays a crucial role for economic growth. Models 

developed by Young (1998), Peretto (1998), Aghion and Howitt (1998), and Dinopoulos and 

Thompson (1998) eliminate the influence of population growth as well as scale effects, but 

Jones (1999) argues that those models crucially depend on a very special assumption. Using a 

fourth approach, Peretto and Smulders (2002) assume that AtLt (instead of At) and Kt are 

positively linked and 
ttt

L
KφLA

t

6lim =
∞→

; thus, scale effects asymptotically vanish. 

 The model developed in this paper employs this fourth approach, but the mechanism 

through which the relation 
ttt

L
KφLA

t

6lim =
∞→

 emerges is fundamentally different from that of 

Peretto and Smulders (2002). The concepts of MAR and Jacobs externalities both predict 

uncompensated knowledge spillovers will increase as the number of firms increases, and to be 

consistent with the theory of knowledge spillover, uncompensated knowledge spillovers 

increase when the number of firms increases in the model presented in this paper. Even though 

the direction of the effect of knowledge spillovers is reversed, scale effects still asymptotically 

diminish as they do in Peretto and Smulders’ (2002) model because of substitution between 

investments in capital and technology. Firms invest more in capital than in technology when 

returns on investment in technology become less attractive because of an increase in 

uncompensated knowledge spillovers. As a result, the relation 
ttt

L
KφLA

t

6lim =
∞→

 also emerges. 

By combining the theory of knowledge spillover and substitution between investments in capital 

and technology, a new asymptotically non-scale endogenous growth model that can eliminate 

both scale effects and the influence of population growth was constructed.  

 Asymptotically diminishing scale effects indicate that, if a population is very small, 

scale effects greatly influence growth, but if it is sufficiently large, scale effects vanish. This 

result suggests that scale effects were a crucial factor for economic growth in the early history 

of civilizations, but they are no longer important in present-day industrialized economies.  
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