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Abstract

Private vehicles are a significant source of air pollution in many areas of the United
States. Areas with already high levels of air pollution are required by the Clean Air Act
to take steps to reduce automobile use and the associated emissions. The behavioral
implications of many travel demand management techniques are poorly understood. In
this dissertation I focus on carpooling. Policy makers encourage commuters to carpool
through High Occupancy Vehicle (HOV) Lanes, free parking for carpoolers, attempts to
connect carpoolers, and casual carpoolers (often called slugging). Despite these efforts,
carpooling rates have been falling over time.

One reason for the decrease in carpooling rates, is that carpooling comes with an
additional set of personal costs. These costs include reduced route flexibility, assembly
costs, and a loss of privacy when another person shares the car. Encouraging carpooling
may not improve traffic conditions as much as advocates claim since new carpoolers
may be people who would otherwise not have driven. Encouraging carpooling does not
eliminate the root of all traffic problems: under- or un-priced road space.

Traditional travel demand models take carpool mode share as exogenous. In this
dissertation, I make the decision to carpool endogenous, and build a traffic equilibrium
model based on the micro-economic foundations of individual route choices. I then use
my model to evaluate High Occupancy Vehicle (HOV) lanes. T apply insights from these
studies to a particular policy in California that sought to allocate space on HOV lanes

to buyers of hybrid cars as an incentive to adopt this new technology.
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My dissertation is divided into four chapters. In Chapter 1, I review current
models of carpooling behavior and route choice. In Chapter 2, I develop my micro-
foundation model of carpooling behavior. In the Chapter 3, I apply and extend my
model to the study of HOV lanes. In Chapter 4, I use data from the used car market to
understand what happened when California allocated space in HOV lanes to hybrid car

owners.
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Chapter 1

Transportation Demand Models

In this chapter I discuss structural transportation models applied to carpooling and
congestion. In the next chapter I will present my own model of carpooling and congestion,
but before doing so I review transportation models and put my work into context with the
existing literature. In the first section of this chapter, I discuss engineering models that
model trip generation as an exogenous process. The next three sections discuss models
where carpooling and trips taken are endogenous to the model. I call these ‘economic
traffic models’. There are three types of economic traffic models: discrete choice models,

deterministic models of utility maximization, and cost minimization models.

1.1 Engineering Models of Transportation Demand

The workhorse of transportation demand modeling is the four step model (FSM). Plan-
ners and transportation engineers use the FSM to examine questions such as how many
lanes should a bridge have, what is the financial viability of a project, and what are
the potential environmental impacts of a project. The FSM dominates transportation
planning despite well known inadequacies in terms of realism and its inability to answer

many relevant policy questions (McNally, 2007; McNally and Recker, 1986).



The first step in the FSM is trip generation to determine the number of trips
taken from each trip origin and the number of trips attracted to each destination. The
models use demographic and land use information to generate origin-destination (O-D)
matrices which forecast the number and type of trips coming from and going to each area.
Trip generation is not modeled using economic fundamentals, and instead is based off of
historical associations between demographic variables and historical trips levels. Some
models include friction factors which express the reduction in trips taken with greater
travel times, but this is an aggregate measure. The FSM’s trip generation step might be
adequate for predicting future demand, but presents a problem in analyzing structural
changes such as an upgraded bus system, new transportation technologies, incentives for
carpooling or congestion pricing.

Step two in the FSM is trip distribution. This step uses a gravity model or
similar method to connect origins with destinations and hence load the demand generated
through the first step onto the transportation network. The next two steps are mode
choice and route choice. Mode choice determines the proportion of trips that travel
by each mode, where modes usually include transit, HOV2, HOV3, and driving alone.
Potential mode choices may include cycling, walking or not taking a trip at all. Route
choice allocates origin-destination pairs by a particular mode to a route. This step
relies on Wardrop’s principle of user equilibrium (equivalent to a Nash Equilibrium in
economics) that states each traveler chooses the path with the lowest travel time subject
to the decisions of all the other travelers. The FSM has a significant advantage over
other models in its ability to model large metropolitan areas and account for complicated
geography. Even with simplistic assumptions of trip generation and route choice, an FSM
model may take millions of of dollars to calibrate and weeks to converge.

The alternative to FSMs is activity based modeling which shifts the unit of analy-
sis from trips to activities. Activity based modeling recognizes that the demand for travel

is derived from the demand to pursue activities that vary in both time and space. Activ-



ity based models can better incorporate observed travel behavior such as trip-chaining
and induced demand but require that the researcher collect travel diaries detailing all
activities pursued by an individual over the course of the day for a more holistic analysis
of travel behavior. These models are more difficult to categorize than FSMs. They allow
for a richer description of travel behavior, but do not necessarily have micro-economic
foundations. Activities may be chosen as a function of utility maximization (Ben-Akiva
and Bowman, 1998; Wen and Koppelman, 2000), but often trips are generated in ac-
tivity models through rule based decision making (Vause, 1997) or using a statistical
approach (Vaughn and Pas., 1997; Speckman, Vaughn, and Pas, 1997). Again, while
potentially useful for understanding travel behavior in the aggregate and for modeling
large metropolitan areas, approaches without micro-economic foundations may not cap-
ture the important aspects of travel demand and system behavior. In the next subsection,

I summarize a few transportation models that do not have micro-economic foundations.

1.1.1 Commuter Welfare Approach to High Occupancy Vehicle Lane

Evaluation: An Exploratory Analysis

By Fred Mannering and Mohammad Hamed, Transportation Research Part A, 1990.
Previous studies have evaluated HOV lane policies by comparing passengers per
mile, travel time, fuel consumption, distance traveled, pollution costs and parking costs.
Mannering and Hamed make the valid point that analysts should instead use welfare
criteria to evaluate HOV lane performance. While using a welfare metric should put
this work into the economic model section, the behavioral model is more similar to the
FSM. The authors examine a single origin/destination pair near Penn State University
but simply assume three levels of HOV percentages, 17%, 30%, and 40% for the traffic

simulation model.



1.1.2 The Effects of New High-Occupancy Vehicle Lanes on Travel and

Emissions

By Robert Johnston and Raju Ceerla, Transportation Research Part A, 1996.

The authors run a FSM with multiple feedback loops to understand the impact
of adding 206 new freeway lane-miles of HOV-only lanes to the Sacramento region. Their
model includes friction factors from a survey done in Seattle, Washington. These friction
factors attempt to model the reduction in commute trips that result from high travel
times. The friction factors are applied individually to each mode considered and thus do
not represent decisions to switch modes depending on travel time differentials between
HOV and general purpose lanes. The authors test many scenarios: not building anything
new, building an HOV lane, peak period tolls of $0.50/mile on freeways and $0.25 on
arterial roads, replacing a general purpose lane with an HOV lane, $0.30/mile citywide
tolls, light rail, transit oriented development and combinations of the above. The results
were sensitive to initial assumptions but the authors found that building a new HOV
lane increased vehicle miles travelled (VMT) but decreased delays relative to the no-
build scenario. Their results suggest that converting a general purpose lane to HOV also
increased VMT and increased vehicle delay substantially. While likely one of the more
realistic papers on the impacts of HOV lanes, this paper’s results cannot be generalized

outside of the Sacramento metropolitan area.

1.1.3 High Occupancy Vehicle Lanes: Not Always More Effective than

General Purpose Lanes

By Joy Dahlgren. Transportation Research Part A, 1998.
Dahlgren uses a bottleneck model to examine congestion, making the share of
HOV vehicles on the road an exogenous function of the time differentials between HOV

and general purpose lanes. I am classifying this as an engineering model of traffic conges-



tion because Dahlgren takes as exogenous the relationship between percentage of people
who carpool and the time savings to carpool.

Dahlgren does discuss the assumptions behind a behavioral model of HOV lane
performance, and this is one of the better papers on HOV lanes. However, Dahlgren’s

analysis falls short of modeling economic decision making on the part of commuters.

1.2 Discrete Choice Models

Discrete Choice models have a long history with the transportation literature, starting
with the additive random-utility model of McFadden (McFadden, 1974). In discrete
choice models, user n decides between alternatives j=1,...,J by choosing the alternative

with the highest utility given by:

UJ"”:V(ZJ'J,,S,,;B)—FEIL" (11)

Here V(-) is known as the systematic utility, z;, is a vector of alternative specific at-
tributes and s, is a vector of characteristics specific to the decision maker. The un-
observable part of the model captures idiosyncratic preferences and is represented by
€jn

An individual is said to choose alternative j if U; , > U; ,Vj # i.This can be rewrit-

ten as the probability that decision maker n chooses alternative j:

Pin =Pr(Ujn>Un¥j# i)
=Pr(Vip+€jn>Vip+€,Vj#1i) (1.2)

= Pr(EjJ, —&p> Vj,n - Vi,nvj # i)

The researcher can specify a functional form for V(-), an error structure for €;, and

estimate a model with direct applications to welfare analysis. This technique can be



used to model transportation demand and mode choice, with an example discussed in

the next subsection.

1.2.1 The Models and Economics of Carpools

By Hai-Jun Huang, Hai Yang and Michael Bell Annals of Regional Science, 2000.
This paper presents both a deterministic model of carpooling behavior and a dis-
crete choice model. The deterministic model has commuters deciding between carpooling

or driving alone by picking the mode with the lowest cost, where costs are:

cx=Pr(v) +(f+a)/2
¢y =Pr(v)+f

(1.3)

The cost of carpooling, cy, is the value of time, B, times the amount of time spent on
the line haul portion of the trip, plus fuel costs, f, divided by two, and assembly costs,
a, divided by two. The costs of driving alone, ¢y, is simply the time costs of driving
Bv(z) plus fuel costs, f. The problem with this model is that everyone either drives or
everyone carpools. The authors add realism by turning it into a simple discrete choice
model. Agents have two options, to carpool or drive alone. The receive a generalized
utility from carpooling and driving alone as such:

Uy=U—c +E&, (1.4)

U=U—-cy+0+§&
where U is a constant representing the utility receiving through a trip,c, is the monetary
cost of carpooling and ¢y is the generalized cost of driving, while &, and &, both rep-
resent the random utility components from carpooling and driving alone. The variable
¢ represents the summation of attitudinal or psychological factos that make commuters
have a subjective preference for driving alone. The authors derive optimality conditions

but do not calibrate their model to data or explore HOV lanes.



1.2.2 Differentiated Road Pricing, Express Lanes and Carpools: Ex-

ploiting Hetereogeneous Preferences in Policy Design

By Small, Winston and Yan, 2006, Working Paper.

This paper uses a survey of travelers along State Route 91 in Southern California
to estimate an empirical model of route choice where travelers have a choice between
driving alone on general lanes or paying a toll to use the HOT lane, and secondly whether
or not to carpool, where carpoolers receive a 50% discount on tolls if they have three
or more people in their car. After exploring the value of time and commuters’ value for
reliability, the authors then run a simulation to understand changes in consumer surplus
that result from changes in route and toll structure.

The authors estimate a nested logit. Since a transponder is required to drive
on the express lane the decision to acquire a transponder is estimated separately. Car-
occupancy rates are modeled in the second stage along with the choice on whether or
not to drive on the express lane conditional on having obtained a transponder. To
estimate travel demand, the authors integrate the nested-logit probability formula over
the distribution of the random parameters and obtain the demand for each alternative

as:

Dj = ZWnSj,n (1'5)

Here D; is demand for alternative j, w, is the number of people represented by motorist
n, and S;, is the share of type n commuter in transportation mode j. Traffic volume
on route j is thus V; = D;/0; where O; is the occupancy of route j. Travel delays are
thus proportional to the fourth power of the volume-capacity ration with capacity set at
2,000 vehicles per hour per lane.

Small, Winston and Yan find that HOV lanes provide improvements for both
carpoolers and non-carpoolers by doubling the share of people who choose to carpool

(travel times go from 20 minutes in the base case scenario to 18.8 minutes on the general



lane and 11.8 minutes on the HOV lane). They also find that HOV lanes induce people
who were not traveling on the corridor to travel on the corridor. They demonstrate that
discrete choice models can be used to explore the efficiency considerations and create
a behavioral explanation of carpooling behavior. Additional papers explore carpooling

and HOV lanes using discrete choice models, they including:

e “Choice of Route, Occupancy, and Time-of-Day with Value Priced Tolls”, by Yan,

Small and Sullivan, 2001, Working Paper.

e “When Should Carpool Lanes Be Introduced in a Multi-Lane Highway?”, by Hai

Yang, 2010, Journal of Advanced Transportation.

The limitation of this literature is that the discrete choice models uncover reduced form
relationships between route choice and hence do not model efficiency changes as a func-
tion of the structural aspects of the route. Arnott, De Palma, and Lindsey (1993a,b) call
for a structural model to explain congestion, which is what I present in the next chapter.
In Small, Winston and Yan, it is unclear which drivers are choosing to drive on the newly
added HOV lane, and how passenger choices get transmitted into travel time which again
feeds back into passenger choices. Another limitation is that discrete choice models have
the particular feature of increasing in total welfare as a result of adding an alternative
(in these cases an HOV lane) because of the idiosyncratic structure of the errors. In the
case of Small, Winston and Yan, the model is estimated only for parameters representing

SR-91, and it is not clear whether or not the results apply to all HOV lanes.

1.3 Deterministic Models of Route Choice: Utility Maxi-

mization

Deterministic models of route choice typically model travel demand for trips, as a con-

strained utility maximization, a demand system or a cost minimization problem. The



first theoretical framework we examine comes from Becker’s (Becker, 1965) model of

utility maximization subject to budget and time constraints:

max UG, T,,{T;
6T, {Ti) (G- T {Ti})
s.t. G+YP <wl,+Y (1.6)
K
T<T,+YTx
K

In this model, utility U depends on consumption of goods, G, time spent at work, T,,, and
times spend in k other activities T;. The budget constraint ensures that expenditures
remain under exogenous income, Y and wage income, wT,, where w is the wage rate
and the price of goods is normalized to one. In addition to the budget constraint there
is a time constraint where the total amount of time available, T must be greater than
time spent working, T,,, and the sum of time spend on activities %Tk. The model can
be extended to represent variable commuting times, constraints on work hours, home
production, psychological biases and general equilibrium effects as described in (Small

and Verhoef, 2007).

1.4 Deterministic Models of Route Choice: Cost Mini-

mization

Additionally, many researchers predict travel behavior based on cost minimization be-
havior (Konishi and Mun, 2010; de Palma, Kilani, and Lindsey, 2008; Arnott, De Palma,
and Lindsey, 1993a,b; Vickrey, 1969). The most prominent of these models is the bottle-
neck model first conceptualized by Vickery (1969) and formalized by Arnott, De Palma,
and Lindsey (1993a,b). The Arnott et al. framework is reviewed below; additionally a

number of papers have been written using cost minimization to explain route choice.
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1.4.1 A Structural Model of Peak-Period Congestion: A Traffic Bot-

tleneck with Elastic Demand

By Richard Arnott, Andre de Palma and Robin Lindsey, 1993, American FEconomic
Review.

This paper models the trade-off between getting to work at an inconvenient time
(earlier or later than the starting date) versus waiting in traffic. In the model, N identical
agents travel from home to work along a road where traffic is uncongested except at a
bottleneck where only s cars can pass through at a time. If the arrival rate at the
bottleneck exceeds s, then a queue forms. Travel time from home to work is composed of
a fixed time component and variable travel time which is a function of ¢, the departure
time from home:

T(t)=T+T"(t) (1.7)

Without impacting the results, the authors set 7/ = 0. The number of cars in the queue

is denoted D(t) and thus the variable amount of time spend waiting in the queue is:
T'(t) = —~ (1.8)

Let 7 be the most recent time without a queue, and let r(t) be the departure rate from

home. Thus the queue length is:

D)= [ ' (u)du—s(t — 7). (1.9)

Agents perceive early and late arrival costs as costly, so the authors model private costs

as linear in travel time and schedule delay:

C(t) = aT"(t) + P(time early) +y(time late) (1.10)
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where a is the cost of travel time, B is the unit cost of arriving early at work and v is the
unit cost of arriving late. Commuters cross the bottleneck in the same order as they left
home. The authors discuss various toll and no-toll equilibria as well as situations with
heterogeneous agents. For brevity I discuss the no-toll equilibrium only, but I use the
same notation as the paper and the reader should look at the original paper to see the
extensions.

The authors use a Nash equilibrium solution whereby no commuter can reduce
their time costs by changing their arrival time. The first commuter and the last com-
muter must be equally well off in equilibrium. Thus the equal trip price condition for a

commuter who arrives early is:

p=al’(t)+B[t"—t—T"(1)] (1.11)

and for the commuter who arrives late, the equal price condition is:

B=al"(t) -+t +T"(t) — 1. (1.12)

Differentiating Equation 1.11, we find:

arr@) B
= —7. 1.13
dt o—p (1.13)
Solving and differentiating Equation 1.9, yields:
D
ddft) — r(t) —s. (1.14)

Let t, be the beginning of the rush hour, and #; be the end of the rush hour, and 7 be the

departure time for on-time arrival [f =¢* —7"(¢)]. Combining Equations 1.13 and 1.14
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with Equation 1.8, we can write that:

r(t):—s for tet,,7). (1.15)

r(t) = Y for te i ty]. (1.16)
The time between the first and the last commuters departures must be N/s, thus:

N
— =ty —1ly. (1.17)
N

The last commuter and the first commuter do not wait in the queue, but their equilibrium

costs remain equal:

B(t" —t,) =y(ty —17). (1.18)

Combining these two equations we can write the beginning and the end of the rush hour

) ty=1— N
ty =1* <<ZE1>> g (1.19)

The cost of time spent in traffic for those arriving at t* is equivalent to the time cost for
those arriving early or late. The commuter who arrives exactly on time only faces travel
time costs:

ol () = a(t* 7). (1.20)
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Cumulative Departures and Arrivals

Figure 1.1: The No Toll Equilibrium, Arnott et al 1993

Using the equilibrium condition we can set the costs of the traveller who arrives

at t* equal to the costs of the first commuter and solve for 7:

ot —7)=Pr* —B <f* - <By+y> f) (1.21)

()5

Using these expressions the authors trace out the solution which is reproduced
in Figure 1.1. The length of the queue is the vertical distance between cumulative
departures and cumulative arrivals, while the travel time is the horizontal difference.
The queue builds up starting at #, until 7 until it ends at time ;. The total travel costs
can be seen as o times area ABCA and the schedule delay cost is B times AFGA plus y

times area CFHC.
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The authors develop many extensions to this model, including elastic demand
for trips, tolling regimes, heterogeneous users, optimal capacity and the potential for
self-financing roads. In the 1990 paper they compare total costs of commuting between
tolling regimes, while in the 1993 paper the authors present the case of elastic demand
by specifying demand as a function of generalized price and then comparing consumer
surplus across toll regimes. Additional work has been done with bottleneck models,

including (Yang and Huang, 1997).

1.4.2 Carpooling and Congestion Pricing: HOV and HOT Lanes

By Hideo Konishi and Se-il Mun, 2010, Regional Science and Urban Economics.

The authors develop a model similar to what I will present in Chapter 2, but
with some important distinctions. They use a cost minimization framework, and allow
assembly costs, but not time costs, to vary over individuals. They also assume inelastic
transportation demand, thus leaving out induced demand. Consumer cost is modeled as
a function of the commute cost which is a function of congestion C(g;), plus an assembly
cost, t that varies across commuters according to the distribution function F : R — [0,1],

and finally a toll T that varies by lane and carpooling decision.

C(gi)+et+1f (1.22)

The variable e is an indicator variable that denotes the commuter’s carpooling decision,
e = 0 if not carpooling and e = 1 if the commuter does carpool. Tolls and congestion
have a subscript to denote which lane the commuter drives in, general purpose, HOV or
HOT.

The authors make minimal assumptions about the shape of C(g;) and solve for a
social cost function as the integral of costs over users and lanes with congestion deter-

mined endogenously. They allow for commuters to choose 2, 3, 4 or 5 person carpools
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with the caveat that all carpoolers much choose the same occupancy level, and thus there
cannot be a mix of 2 and 3 person carpools. Another way this model differs from the
model presented in this dissertation is by the focus on time costs and a total neglect of
operating costs. While the operating costs of driving relative to time may be small in
areas such as New York City or congested Los Angeles, I believe this omission fails to
capture an important aspect of carpooling. Empirically, people carpool even in areas
without differential tolls for carpoolers, HOV lanes or HOT lanes. One of the reasons
why is that carpoolers save on the monetary costs of driving and this is likely one of the
drivers of the decline in carpool rates, as well as an explanation for higher carpooling
rates in newly arrived immigrant communities where incomes are lower (Blumenberg and
Smart, 2010).

Konishi and Mun find HOV lanes can be an improvement over general purpose
lanes only under certain sets of parameters, but can aggravate congestion in other cases.
HOV lanes encourage car-pooling and reduce total traffic, but cause distortions by creat-
ing different levels of congestion between general purpose and HOV lanes. HOT lanes can
mitigate this by allowing solo-drivers on HOV lanes, but they also discourage car-pooling
thus a conversion of HOV to HOT lanes may decrease congestion in this particular model
set up. This conclusion highlights the failing of this model to include different values of
time. As Verhoef and Small (Verhoef and Small, 2004) argue, ignoring heterogeneity can
underestimate the benefits of congestion policy.

Additional papers have been used to explore traffic demand using cost minimiza-

tion, they include:

e “Peak-Looad Pricing of a Transportation Route with an Unpriced Substitute”, by

Ralph Braid, 1996, Journal of Urban Economics.

e “The Merits of Separating Cars and Trucks”, by Andre De Palma, Robin Lindsey,

and Moez Kilani, 2008, Journal of Urban Economics.
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e “The Car Pooling Problem: Heuristic Algorithms Based on Savings Functions”, by
Emilio Ferrari, Riccardo Manzini, Arrigo Pareschi, Alessandro Persona, Alberto

Regattieri, 2003, Journal of Advanced Transportation.

1.5 Deterministic Models of Route Choice: Demand as a

Function of Generalized Price

These models are a bridge between utility maximization models and cost minimization
models, but are generally used as a way to model induced demand. Small and Verhoef
(2007) model transportation demand on a single road with an inverse demand function

d(V), an average variable cost function, ¢(V), and a toll T
dV)=p=c(V)+1 (1.23)
Thus the average benefit from road use is the value of travel to users:
1%
B :/ d(v)dv. (1.24)
0

Holding capacity fixed, total cost in the short run is:

C=Ve(V)+pK (1.25)

where pK is the annualized cost of capital expenditures K. Social surplus is defined as W
and is defined as total benefit minus total cost, W = B—C. The model is then developed
to explore the alternatives to various tolling regimes, multiple bottlenecks, the value of
information in route choice and the value of capacity. Papers that describe an inverse

demand function to describe travel behavior include:
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e “Product Differentiation on Roads”, by Erik Verhoef and Kenneth Small, 2004,

Journal of Transport Economics and Policy.

e “The Value of ‘Value Pricing’ of Roads: Second-Best Pricing and Product Differ-

entiation”, by Ken Small and Jia Yang, 2008, RFF' Discussion Paper.

1.6 Equivalence Between Cost Minimization and Utility

Maximization

Under some circumstances constrained maximization of utility under a budget constraint
and cost minimizing behavior can be shown as equivalent. To show the equivalence
between a cost minimization approach and a utility maximization approach I return to
the problem stated in 1.6 with a simplified choice set that allows commuters to choose
between consumption, G, and leisure, I, where leisure is denoted as the total amount of
time available minus time spent at work and in travel, I =T —T,, — T, and T is the time
cost of commuting. Since consumers are choosing between modes, users choose a mode
with a time costs and an associated monetary cost . subject to a time constraint and
a full income constraint. Mode choice is discrete, users choose whether to not drive,
carpool or drive alone.

max U(G,T,)
G,lLy,t

s.t. G+vy<wl,+Y (1.26)
T<T,+1l+7

(t.w) € {(%,0), (¢ +a,M/2),(1,M)}

In the most general case, I solve 1.26 for the utility maximizing quantity of
other goods, G*, and the optimal amount of time spend working, T;, as a function

of the exogenous parameters as well as T, and y. This results in G*(t,y : w,Y,T),and
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T (t,y: w,Y,T), which can be plugged back into U, to arrive a utility function that
relied on T and y: V(t,y:w,Y,T). Commuters choose the set of (T,y) that result in the

highest value of V. A commuter will take transit if:

V(k,0:wY,T)>V(t+a,M/2:w,Y,T)

(1.27)
V(k,0:w,Y,T)>V(t,M:wY,T)
A commuter will carpool if:
V(t+a,M/2:w,Y,T)>V(k0:wY,T)
(1.28)
V(t+a,M/2:wY,T)>V(t,M:wY,T)
A commuter will drive alone if:
V(t,M:w,Y,T)>V(k0:wY,T)
(1.29)

V(M :wY,T)>V(+a,M/2:wY,T)

In the case of CES, Leontief, Linear, Cobb-Douglas, Log Cobb-Douglas and Stone Geary
functions, the value function is monotonically increasing in full income. The way the
full income constraints have been written in 1.26, full income is Tw —tw+Y — . Since
T,w and Y are exogenous variables, maximizing full income is equivalent to minimizing
wT+ VY, or choosing from the set of (t,y) € {(x,0),(t+a,M/2),(r,M)} that results in the

smallest generalized costs.
1.6.1 Cost Minimization and Utility Maximization with Cobb-Douglas
Utility

In the Cobb-Douglas case where utility is U(G,T,,) = G°I-°, we can solve for the actual

value function:
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wl-9+Y-y wl'+Y t/w vy
2w 2yw 2 2w

Agents choose the T and y that maximizes their value function. Thus for com-

VT y:wY,T) = (1.30)

muters who choose transit, their value function is V(k,0: w, Y, T), commuters who choose
carpooling have the value function V(+a,M /2 : w,Y,T), and commuters who choose to
drive alone have the value function V(¢,M : w,Y,T). If we allow the wage rate to vary
across individuals, w;, then we can solve for the number of transit riders, carpoolers and

commuters by finding the critical values of w; where commuters are indifferent between

modes:
wlT—l—Y_V\/wl_w1T+Y_(t+a)«/w1_ M (131)
2 /w1 2 2 ywr 2 4\/wi ‘
W2T—|—Y_(t+a)\/W2_ M _WzT—l—Y_l\/Wz_ M (1 32)
N 2 4wy 2w 2 2w ‘
These two conditions can be rearranged to:
M
Vwy = (t(v) +a)w; + > (1.33)
M
(tV)+awr+ = =t(v)wa +M (1.34)

2

These are identical to the equations found from the cost minimization problem we will

see in Chapter 2, with the one exception being that ; is replaced with w;.

1.7 Conclusion

In this chapter I discussed various methods of modeling transportation demand. In the
next chapter I will develop a cost-minimization approach to look at the the efficiency

impacts of HOV lanes using a simple theoretical model.
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Chapter 2

A Structural Model of Carpooling

Behavior

2.1 Introduction

The United States has built over 2,300 lane-miles' of HOV lanes. While the purpose of
these lanes is to reduce vehicle-trips by encouraging more people to carpool, the effective-
ness of HOV lanes is questionable (Kwon and Varaiya, 2008; Dahlgren, 1998; Johnston
and Ceerla, 1996). Even with the 2,300 lane-miles of HOV lanes?, the percentage of
commuters who carpool has been dropping over the years from 14.1% in 1985 to 8.7% in
2003.2 Plausible explanations for the decline in carpooling include higher rates of auto-
mobile ownership, higher wages, changes in the real price of gasoline, a possible decline
in social capital, and the growth of suburbs. Understanding these connections and how

they impact congestion and energy policy is not straight-forward.? Despite the billions

Ihttp://www.metro.net/projects_studies/hov/fags.htm

2In addition there are matching programs for carpools and vanpools, preferential (or free) parking
spaces for carpools, direct subsidies for carpooling and other carpooling incentive programs

3U.S. Department of Housing and Urban Development, American Housing Survey for the United
States: 2003, http://www.census.gov/hhes/www/ahs.html and summarized http://www.bts.gov/
publications/national_transportation_statistics/2005/html/table_01_38.html

4For a review of carpool trends from 1970-1990 see (Ferguson, 1997).
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invested in carpooling incentives, and the millions of Americans who carpool to work,
we know relatively little about carpooling behavior and HOV lanes. This chapter of my
dissertation models carpooling behavior as a cost minimization problem and applies that
model to the analysis of high occupancy vehicle lanes.

Carpooling is one of many mode choices. It allows commuters to split the mon-
etary costs of driving by sharing rides to and from work. Carpoolers sacrifice time,
route and schedule flexibility to save on the monetary costs of driving. Sharing a car
with another commuter may increase or decrease utility compared to driving alone or
taking transit, and some consumers may or may not prefer to share driving responsi-
bilities (Lee, 1984). Transportation policy experts have typically grouped carpools into
family members driving to work together ‘fam-pools’, co-workers, friends or strangers
meeting through word-of-mouth and formal matching programs, van-pools, and casual
carpools®(??). Carpooling generally involves spending more time on each end of the
journey picking up and dropping off other members. I model this as an assembly cost,
and to keep the model simple, I include in this assembly cost the time costs of scheduling
carpools, finding carpool partners, and the utility /disutility of companionship and the
sharing of driving duties. In the absence of preferential treatment for carpools, these
assembly costs will make carpooling take longer than driving alone. While carpooling
generally requires an increased time cost (in the absence of HOV lanes), carpoolers enjoy
a decreased monetary cost because they share vehicle, toll and fuel costs.

Public transportation is both a substitute and a complement for carpooling.
Price-rationed commuters who may not drive a single-occupant vehicle to work, may
choose to split the monetary costs with another commuter and carpool. If a commuter
has a variable schedule, he or she may choose to carpool to work with the knowledge

that he or she can take transit home if conditions change. Carpooling has other impacts

5A casual carpool is when drivers and passengers meet at a designated place (for instance the Berkeley
BART station) to drive to a central business district (in this case downtown San Francisco) without
making prior arrangements.



22

on the transportation system, fewer people will trip chain when carpooling, and if two
carpoolers leave one of their cars behind, other members of the household may still use
that car (Johnston and Ceerla, 1996).

As discussed in the previous chapter, currently carpooling is modeled in four-
step transportation models by exogenously assuming a rate of carpooling. Academics in
engineering and policy schools typically assume an exogenous rate of carpooling and run
traffic simulations to understand the impact of carpooling (Dahlgren, 1998; Johnston
and Ceerla, 1996) although a few economic models of carpooling allow carpooling to be
determined endogenously as a function of monetary costs, time costs and the utility or
disutility of companionship (Lee, 1984; Yang and Huang, 1999; Huang, Yang, and Bell,
2000; Ben-Akiva and Atheron, 1977). Lee (1984) discusses the economics of carpooling
includes a cost of companionship which could be positive or negative depending on how
a passenger feels about the other passengers, but does not incorporate congestion or
the idea that the time and gasoline costs of the long haul depend on congestion created
by other agents. Yang and Huang (1999) build a simple model of carpool formation
as a cost-minimization program, making congestion an endogenous part of the model.
Endogenizing congestion is an essential component to examining the impact of carpool
lanes and the impact of carpooling on traffic, but Huang and Yang’s model does not
allow for the impact of induced demand or heterogeneous agents. The only way that
traffic increases in Yang and Huang’s model is if fewer people carpool, and the only way
traffic decreases is if more people carpool. Users do not make more or fewer trips and
they cannot switch to transit or non-motorized trips. This severely limits the usefulness
of Yang and Huang’s model.

The impact of induced demand is an important mechanism in Dahlgren’s analysis
of HOV lanes (Dahlgren, 1998). Other studies have found that when capacity expands,
the number of trips increases in response (Duranton and Turner, 2009). If HOV lanes

really increase the capacity of a road, it is important to incorporate induced demand
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responses into models of HOV effectiveness. I build upon Huang and Yang’s initial
analysis of modeling carpooling as a cost-minimization problem, but I add a third option
corresponding to transit, off-peak or no trip to capture induced demand. I also allow
for some heterogeneity in agents’ values of time. Omitting heterogeneity results in a
razor’s edge situation where either everyone carpools or nobody carpools as in Huang
and Yang’s model. If time savings are a way to induce carpools to form, users with
a higher value of time may choose to carpool; accounting for this heterogeneity is an
important part of Small and Yan’s welfare analysis of HOV lanes (Small and Yan, 2008).
It is my hypothesis that induced demand and heterogeneity can drastically change the

social welfare benefits of a project.

2.2 Theoretical Model

This section introduces the theoretical model underlying carpooling decisions. I assume
cost minimizing agents following work by Vickrey (1969) and Arnott, De Palma, and
Lindsey (1993b) to model congestion along two lanes on a line haul where congestion is
determined endogenously. In this section the two lanes are general purpose lane. Traffic
is assumed to be assigned evenly between the lanes. Further in the paper, one lane will
be a general purpose lane while the other lane will be an HOV lane. In this section,
I solve for the decentralized solution, in the next section section I look at the traffic
planner’s equilibrium, I then examine ride-sharing incentives and HOV lanes.
Commuters will carpool if the cost of carpooling, C,, is less than the cost of
driving alone, C;, where the cost of commuting is a function of monetary costs such
as fuel, insurance, depreciation of the car, parking and tolls, and time costs in the line
haul and assembly portions of the trip. To incorporate induced demand, we add a
third group of people, those that choose transit, non-motorized transportation, off-peak

travel or work from home/refrain from travel. I refer to t