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Abstract

We study the properties of foreign exchange risk premiums that can explain
the forward bias puzzle, defined as the tendency of high-interest rate currencies
to appreciate rather than depreciate. These risk premiums arise endogenously
from imposing the no-arbitrage condition on the relation between the term
structure of interest rates and exchange rates, and they compensate for both
currency risk and interest rate risk. In the empirical analysis, we estimate risk
premiums using an affine multi-currency term structure model and find that
model-implied risk premiums yield unbiased predictions for exchange rate ex-
cess returns. While interest rate risk affects the level of risk premiums, the time
variation in excess returns is almost entirely driven by currency risk. Further-
more, risk premiums are closely related to global risk aversion, countercyclical
to the state of the economy, and tightly linked to traditional exchange rate
fundamentals.
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1 Introduction

Uncovered interest rate parity (UIP) postulates that the expected exchange rate change
must equal the interest rate differential or (because covered interest parity holds) the
forward premium. UIP also forms the economic foundation for the forward unbiased-
ness hypothesis (FUH), stating that the forward exchange rate should be an unbiased
predictor of the future spot rate. The empirical observation that there is a negative as-
sociation between forward premiums and subsequent exchange rate returns, first noted in
Hansen and Hodrick (1980), Bilson (1981), and Fama (1984), implies a rejection of UIP
and the FUH. This stylized fact is often termed the ‘forward bias puzzle’. A large literature
has argued that risk premiums must be at the heart of this observation.

In this paper, we re-examine the relation between the term structure of interest rates
and exchange rates by expressing the link between forward and spot exchange rates from
the principle of no-arbitrage without assuming risk neutrality. This setting implies that
the forward exchange rate is the sum of the expected spot rate plus a time-varying risk
premium which compensates both for currency risk and interest rate risk. We start from
noting that forward rates are generally biased predictors of future spot exchange rates, and
expected spot rate changes comprise a time-varying risk premium in addition to the forward
premium. We refer to these general, model-free relations that extend the conventional FUH
and UIP - in that they are free of risk preferences and consistent with no-arbitrage - as
the ‘risk-adjusted FUH’ (RA-FUH) and as ‘risk-adjusted UIP’ (RA-UIP).

To work with the RA-UIP condition empirically, we put structure on the international
financial market with a model for interest rate risk and currency risk. We use an affine
multi-economy term structure model that relates two countries’ pricing kernels such that
arbitrage-free pricing is ensured. We employ latent factors to model the uncertainty under-
lying the international economy for two reasons. First, this approach gives us maximum
flexibility with respect to the statistical framework even with a relatively small number
of factors. Second, we do not have to rely on exogenous observable variables driving the

economy which are available only at low frequencies.! The design of our model follows the

'Such economic variables are typically available at quarterly or at best at monthly frequency. In our
context this is not feasible, as we are also interested in short horizons such as 1 day or 1 week, and our



pioneering work of Backus et al. (2001) but is more general in that it accounts for interest
rate risk arising from fluctuations in the bond market over multiple periods. It also accom-
modates the findings of Brennan and Xia (2006) and extends their work in that we do not
approximate the risk premium but derive the exact functional form of the term structure
of foreign exchange risk premiums in closed form. This allows us to jointly match the term
structures of interest rates and the term structure of foreign exchange risk premiums in
the estimation procedure. Using daily data for six major US dollar exchange rates over the
last 20 years, we generate model-implied exchange rate expectations and risk premiums
for horizons ranging from 1 day to 4 years.

The empirical results reveal that the RA-UIP model is capable of identifying time-
varying risk premiums that match observed exchange rate behavior. In particular, they
fulfill the two conditions established by Fama (1984) such that the omission of the risk
premium in conventional UIP tests results in a forward bias. We then show that the
model generates unbiased predictions for exchange rate excess returns. This implies that
accounting for risk premiums can be sufficient to resolve the forward bias puzzle without
additionally requiring departures from rational expectations. We also perform a variety of
predictive ability tests which, on the one hand, complement evidence that excess returns
are predictable, and, on the other hand, further confirm that the RA-UIP model fits the
exchange rate data substantially better than UIP and also better than a random walk.
Finally, we decompose the risk premium, and show that although there is a compensation
for interest rate risk, deviations from UIP and hence excess returns can almost entirely be
explained by the premium for currency risk.

We also provide empirical evidence that risk premiums are closely linked to economic
variables that proxy for global risk, the US business cycle, and traditional exchange rate
fundamentals. The results suggest that expected excess returns reflect flight-to-quality and
flight-to-liquidity considerations. Expected excess returns also depend on macroeconomic
variables (e.g. output growth, money supply growth, consumption growth) in a way that

risk premiums in dollar exchange rates are countercyclical to the US economy. Overall, a

model estimation is hence based on daily data. However, as discussed below, we relate the model-implied
risk premiums to observable economic variables later in the paper to refine our understanding of the drivers
of the latent factors.



large part of expected excess returns can be explained by fundamentals deemed relevant

in traditional exchange rate models.

Related Literature in More Detail Earlier papers that study the link be-
tween interest rates and exchange rates with term structure factor models include
Nielsen and Sad-Requejo (1993), Sad-Requejo (1994), Bakshi and Chen (1997), and Bansal
(1997). A pioneering paper is Backus et al. (2001), who adapt modern (affine) term struc-
ture theory to a multi-economy setting. They establish important theoretical relations
that must hold in the absence of arbitrage between the pricing kernels and the exchange
rate driving the international economy. In their discrete-time one-period setting, they
can replicate the puzzle under the following two alternative specifications: either, there is
a common-idiosyncratic factor structure and interest rates take on negative values with
positive probabilities, or global factors and state variables have asymmetric effects on
state prices in different countries. Motivated by the latter, related empirical studies, e.g.
Dewachter and Maes (2001), Ahn (2004), Inci and Lu (2004), Mosburger and Schneider
(2005), and Anderson et al. (2009), elaborate on the effects of local versus global factors
in an international economy.? Brandt and Santa-Clara (2002) and Anderson et al. (2009)
extend affine multi-country term structure models to account for market incompleteness
to investigate exchange rate excess volatility.

Brennan and Xia (2006) investigate the relations between the foreign exchange risk pre-
mium, exchange rate volatility, and the volatilities of the pricing kernels for the underlying
currencies, under the assumption of integrated capital markets. The continuous-time model
proposed by Brennan and Xia (2006) jointly determines the term structure of interest rates
and an approximation of the risk premium in a no-arbitrage setting. Their analysis sug-
gests that the volatility of exchange rates is associated with the estimated volatility of the
relevant pricing kernels, and risk premiums are significantly related to both the estimated
volatility of the pricing kernels and the volatility of exchange rates. The estimated risk

premiums mostly satisfy the Fama (1984) necessary conditions for explaining the forward

2Another recent related article is Leippold and Wu (2007). Instead of using an affine model, they
propose a class of multi-currency quadratic models.



bias puzzle, although the puzzle remains in several cases.?

The choice of variables and the results from our analysis of the economic drivers of for-
eign exchange risk premiums is consistent with recent research. Our evidence that expected
excess returns are (i) related to global risk aversion is consistent with the flight-to-quality
and flight-to-liquidity arguments in Lustig et al. (2010b) and Brunnermeier et al. (2008),
(ii) countercyclical to the state of the US economy is in line with e.g. Lustig and Verdelhan
(2007), De Santis and Fornari (2008), and Lustig et al. (2010b), and (iii) driven by tradi-
tional exchange rate fundamentals is supported by Engel and West (2005).

The remainder of the paper is set out as follows. Section 2 discusses the link between
interest rates and exchange rates in light of previous literature and elaborates the rela-
tion between forward and expected spot rates implied by no-arbitrage. We describe the
empirical model, the estimation procedure and the criteria applied to evaluate RA-UIP
in Section 3. We present the results in Section 4 and discuss extensions and robustness
checks in Section 5. Section 6 presents empirical evidence that financial and macroeco-
nomic variables are important drivers of the foreign exchange risk premium. Section 7
concludes. The Appendix provides technical details on derivations and some estimation
procedures. A separate Internet Appendix reports the parameter estimates in detail and

provides additional empirical results related to extensions and robustness checks.

2 Exchange Rates, Interest Rates and No-Arbitrage

This section defines the fundamental relations linking exchange rates and interest rates,
and shows the implications of imposing the no-arbitrage condition in this context. This

results in the risk-adjusted variants of UIP and FUH, which are shown to imply intuitive

3 There are many other papers that try to shed light on the puzzle from other angles than relating
the term structure of interest rates of two countries and their exchange rate. Explanations that build on
risk premium arguments - based, among others, on equilibrium models or consumption-based asset pric-
ing - include Frankel and Engel (1984), Domowitz and Hakkio (1985), Hodrick (1987), Cumby (1988),
Mark (1988), Backus et al. (1993), Bekaert and Hodrick (1993), Bansal et al. (1995), Bekaert (1996),
Bekaert et al. (1997), Lustig and Verdelhan (2007), Brunnermeier et al. (2008), Farhi and Gabaix (2008),
Jurek (2009), Lustig et al. (2010a), Verdelhan (2010), Bansal and Shaliastovich (2009), and Farhi et al.
(2009). Other recent papers look at the puzzle, for instance, in the context of incomplete information
processing, e.g. Bacchetta and van Wincoop (2009), differences in developed versus emerging markets,
e.g. Bansal and Dahlquist (2000) and Frankel and Poonawala (2010), and the profitability and economic
value of currency speculation, e.g. Burnside et al. (2010), and Della Corte et al. (2009).



properties for the foreign exchange risk premium.

2.1 Uncovered Interest Parity and Forward Unbiasedness

We express exchange rates as domestic currency prices per unity of foreign currency. Sy
denotes the spot exchange rate, F,r is the forward exchange rate for an exchange of
currencies at time 7' > ¢, s, and f;r are the corresponding log exchange rates. The
domestic and foreign T-period yields of the respective zero bonds are y,, = —logp, 1
and y;p = —logp; . Assuming risk-neutrality and rational expectations, UIP postulates
that the expected exchange rate change must equal the yield differential or equivalently,

because Covered Interest Parity (CIP) holds, the forward premium:

E?[Ast,ﬂ = ft,T =St =Y — yZTv

where As;r = sr — s; and E] denotes the conditional expectation under the physical
probability measure. UIP further implies that excess returns, rz,r = sy — fi.r, should be
unpredictable and it also forms the economic foundation for the FUH that the forward rate
should be an unbiased predictor of the future spot exchange rate, f; 7 = E! [sp]. Empirical

tests are usually performed by estimating the ‘Fama regressions’ (Fama, 1984)

Asyr = a+ BYr — Yir) + mr, (1)

reyr =+ YYur — Yir) T 0T (2)

where v = 3 — 1. The null hypotheses that UIP is valid holds if « = 0, 8 = 1, and n.r
is serially uncorrelated. Empirical research has consistently rejected UIP; for surveys see
Hodrick (1987), Froot and Thaler (1990), Engel (1996). It is now considered a stylized fact
that estimates of § are closer to minus unity than plus unity, implying that higher interest
rate currencies tend to appreciate when UIP predicts them to depreciate. This finding is
commonly referred to as the ‘forward bias puzzle’.

Fama (1984) argues that the forward bias may be caused by a time-varying risk premium

A\e.r that is priced in forward rates, f;r = E}[s7] + A 7. The omission of \; 7 in the Fama



regressions results in a negative 3 estimate if

Cov® [)\nT,EQP[Ast,T]] <0 )
3
|(Covp [)\t,T, Ef[AstT” ‘ > V¥ [Ef[Ast,T]] )
The first condition is that the risk premium’s covariance with expected exchange rate
changes is negative, the second is that the absolute value of this covariance is greater than

the variance of expected changes. However, attempts to explain the forward bias puzzle

using risk premiums have only had limited success so far.

2.2 Risk-Adjusted UIP and FUH under No-Arbitrage

We relax the assumption of risk-neutrality and derive risk-adjusted counterparts to the
conventional UIP and FUH that endogenize time-varying risk premiums in the spirit of
Fama (1984). Since the price of a forward contract changes over time due to both spot
rate and interest rate fluctuations, we investigate the relation between spot and forward
exchange rates in a no-arbitrage setting with stochastic interest rates. We choose p; 1 as
the numeraire where the associated probability measure is the T-forward measure Q.

Combining the no-arbitrage pricing equation with CIP gives

R =B [5r] = B | G250 ()

Hence, under no-arbitrage the forward rate is the expected spot rate under the T-forward
measure Qp and in general not under the risk neutral measure QQ associated with the bank
account By = elors s where r is the short rate of interest. Only in the case of deterministic
interest rates, the Radon-Nikodym derivative % = 1 and hence Q equals Qr. We term
the unbiasedness of the forward rate as a predictor for the expected spot rate under the

T-forward measure the risk-adjusted FUH (RA-FUH).

Under the assumption of rational expectations, taking conditional expectation yields

4See for example Bjork (2004, p. 355), or Mele (2009, p. 242).



the natural right-hand sides of predictive relations for log exchange rate returns

Asyp = ]EffP> [s7 — s¢| +err
= EItP [sT] — (log Fyr — (%,T - ?J;T)) +eur (5)

= v+ (Yor — Yir) T Eur

and excess returns

T = VyT + E4T (6)

with v, 7 = E} [log S7] — log E?T [S7]. Expression (5), which we term risk-adjusted UIP
(RA-UIP), shows that, in the absence of arbitrage exchange rate returns are governed by
the yield differential - as postulated by UIP - but additionally comprise a time-varying
component v, 7. This component v, p drives excess returns and since it is determined by
the difference in expectations of the (log) spot exchange rate under the physical and the
T-forward measure, it reflects risk adjustments. Hence RA-UIP explicitly identifies the
risk premium postulated by Fama (1984) as A\¢7 = —1yr. Forward exchange rates in
general deviate from future spot exchange rates unless interest rates are deterministic (i.e.

Qr = Q) and agents are risk-neutral (i.e. P = Q). To see this in more detail, note that
Ef (7] = B [s7] — (BP [s7] ~ Ef [s7] ) — (E¥" [s7] — B [s7] ) (7)

which allows us to decompose the risk premium A\, 7 = —v; 1 as

A = log EZF [Sy] — EF [s7]

— (R [sr] — Ef [s7] ) + (10g B [Sr] — EZ[sr] ) (8)
pure cul“:r;ncy risk impact of st:),chastic rates

The first term is a pure currency risk component which reflects corrections for risk aversion,

the second term takes into account the impact of interest rates’ stochastic nature on the

risk premium.b

SEven in this extreme case, the risk premium takes into account some mechanical Jensen’s type terms,
as then v 7 = E! [log St] — log EIE [S7] in Eq. (5). These Jensen terms are considered to be very small
in currency markets, though; see e.g. the survey of Engel (1996). For completeness and comparison, we
provide analogue derivations without logs in Appendix A.

6We provide a formal derivation of Eq. (8) in Appendix A.2.



3 The Empirical Model, Estimation and Evaluation
of RA-UIP

3.1 Affine Multi-Country Term Structure Model

The RA-FUH and RA-UIP expressions derived in the previous section are model-free
relations that extend the conventional FUH and UIP in that they are free of risk preferences
and consistent with no-arbitrage. To make these relations amenable for empirical work,
we employ a parametric framework that allows to evaluate expressions (5) and (8) in
closed form. We use a continuous-time, arbitrage-free dynamic multi-country affine term
structure model with four latent factors to model the international financial market.” The
design of the model is guided by the pioneering work of Backus et al. (2001) as well as
the insights of Brennan and Xia (2006). Our extended affine model is flexible enough to
meet the conditions formulated by Backus et al. (2001) for their completely affine model
(asymmetric effects of state variables on state prices in different countries or negative
nominal interest rates with positive probability) as well as the relations emphasized by
Brennan and Xia (2006) in their essentially affine model (association between volatilities
of pricing kernels, exchange rates, and risk premiums). We describe the details of the model
in the next subsection. However, two extensions deserve to be mentioned here. First, in
contrast to Backus et al. (2001), we use a multi-period setting to account for fluctuations
in the bond market; this allows us to disentangle pure currency risk from interest rate risk
as in the decomposition in Eq. (8). Second, while Brennan and Xia (2006) use a linear
first order approximation in time around the infinitesimal moments of the risk premium,
our model produces exact, horizon-dependent risk premiums. As a result, we can derive

the term structure of foreign exchange risk premiums in closed form.

7 It is well-established practice in the term structure literature to employ 3 factors
(Litterman and Scheinkman, 1991). For international markets Leippold and Wu (2007) recommend using
up to 7 factors. To keep the model as small as possible and focus on the economic ideas of this paper,
we do not estimate such a large model. We choose 4 factors to reflect the co-movement between yields in
different countries and to capture common factors in a parsimonious way.



3.1.1 A Continuous-Time Model for an International Economy

For the econometric analysis, to put structure on the coefficients and error terms appearing
in the predictive equation (5), we endow the international financial market with a model
for interest rate risk and currency risk. This section therefore engineers a continuous-time,
arbitrage-free dynamic term structure model for two economies, along with the exchange
rate. The workhorse for this exercise is the framework of affine diffusion processes.

We assume that the international economy is driven by a time-homogeneous, partially
observed Markov diffusion process, comprised of latent state variables X; and the observed
log exchange rate s;: Z = (Z4)i>020=20ep = (Xat, Xot, Xat, Xat, 5t) = (X3, s¢), living on
state space D = R3, x R3, where Ri; = {x € R: 2 > 0}. To reflect the co-movement
between yields in different countries and to capture common factors in a parsimonious way
we choose a latent four-factor setting for the international economy. To ensure arbitrage-
free markets, we start with a relation between the two countries’ pricing kernels that

ensures consistent pricing
My S M,

9)

Here, M is the global pricing kernel in domestic currency, and M™* is the global pricing
kernel in foreign currency. This relation has been established by Backus et al. (2001).
Graveline (2006) notes that it ensures that the foreign pricing kernel is the minimum-
variance (MV) kernel, provided the domestic kernel is the MV kernel. This condition puts
restrictions on the dynamic behavior of the pricing kernels and the spot exchange rate. It
will only be possible to specify the dynamics of two of the three constituents of (9), while
the third will be determined endogenously. Our dynamic specification builds on these
ideas. The general guideline is to maintain a tractable model with maximum flexibility.

We start with affine dynamics of the latent factors X,

dX; = (a" + 0" X,)dt + o (X,)dW], (10)



where

ot .0 0 0 X1
ab B bE, 0 0 X
F=| | =" , 0(X;) = diag * . (11)
a]g b]gl b]:};z b]zlj?) 0 V1+ 051X + B Xo
ajy Vi iy by by V1I+71Xy + Xy

and dWF = d(WE, ... ,WE)T. The constant coefficients in o(X;) are restricted to unity
for identification purposes. Factors X; and X, are square-root processes that drive con-
ditional variance. Factors X3 and X, are conditionally Gaussian to accommodate nega-
tive correlation between the state variables, which the yield data usually require; see e.g.
Dai and Singleton (2000). With a setting comprised only of square-root processes, correla-
tion would be constrained to be positive, both instantaneously and for a fixed time 7 > 0.

The dynamics of the domestic pricing kernel are

dM,

t

= —r,dt — N(X;)TdW], (12)

where A : R? | x R? — R* is the solution to

Az) =o(z)" (a" + 0"z — (a® + b%2)) , where (13)
a ¥Weoo 0 0
Q Q ;Q
a by; b 0 0
A I I (14)
0 bii by by O
0 bh i by b

To unambiguously determine the unconditional mean of the short rate, which is affected
by the constant factor loading ¢y and the unconditional means of X3 and X, in a very
similar way, we impose ag = a? = 0. The parameters a? and ag are identified through
the behavior of the square-root factors X; and X5, in particular near the boundary of the

state space. The market price of risk specification A follows Cheridito et al. (2007); it is

admissible if 2a] > 1,24} > 1 in addition to the admissibility conditions from Duffie et al.

10



(2003). For stationarity we impose b}, < 0,b5, < 0. We define r, = §, + 6, X; with
6, =

(011,019,013, 014). We also define the dynamics of the foreign pricing kernel as

dM*
Wf = —rfdt — (AMXy)" =X o(Xy))dW}, (15)
t

where the drift of X; under Q, (the foreign Q measure) solves®
a¥ +b% g =d" + b —o(x)(A2)" — Zo(z))". (16)

Computing the solution to Egs. (12) and (15) and using Eq. (9) we find that the foreign

exchange rate S; evolves according to

ds;

= = (r, — 17 + S o (Xy) A(Xy))dt + Lo (X;)dW,, (17)

where ¥ = (X4, 3,33, 24), and 77 = 0§ + 67X, with 67 = (7, 675,073, 97,). The corre-

sponding log dynamics of s; are then
1
ds; = (rt —rf+ Yo(X) AXy) — 5 o(Xy)o(Xy) " ET) dt + Yo (X;)dW}, (18)

which turn out to be affine in X,.?

The instantaneous covariance matrix of 7, = (X, s;) is singular (while o(x)o(z)" is
non-singular), since we have a 5-dimensional process with only 4 driving Brownian motions.
Nevertheless, Z; constitutes an affine Markov process under probability measures P, Q, and

Q,.'° For a fixed time horizon T > t it turns out that the conditional covariance matrix of

8In addition to the admissibility conditions, drifts (14) and (16) also satisfy 2a¥ > 1,2a¢ > 1, and
2a?* > 1,2a5* > 1 to ensure existence of the change of measure from P to Q as well as IP to Q,, respectively.
For stationarity b% <0, b% < 0and b%* <0, b% <0.

9 A natural way to look at the dynamics of the exchange rate would start from the assumption that
st is some twice differentiable function s(X;) of the state vector X; with diffusion matrix o(X;). One
could then apply Ito’s rule and conclude that the instantaneous volatility of s; is given by Vs(X;)o(Xy).
Unfortunately we do not know the function s(X;). No-arbitrage gives us relation (9), which is revealing
about the dynamics, but not the state of the exchange rate. What we can infer from this relation, but only
together with our specification (18), is that Vs(X;) = X. The assumed evolution of the foreign pricing
kernel in (15) is not the only choice for an admissible pricing kernel, but it is the only way of maintaining
affine dynamics of the exchange rate, which greatly improves tractability.

10For an introduction to affine models and a rigorous treatment of the existence of exponential and poly-
nomial moments, see Filipovi¢ and Mayerhofer (2009). In a recent paper Cuchiero et al. (2008) introduce

11



Zr|Z; is non-singular, in contrast to the instantaneous one. As a consequence of the affine
formulation we have that yields and spot predictions based on RA-UIP in Eq. (5) are all

affine in the state variables Z,

Yir = — (AT =)+ B(T 1) ), (19)
Jip = — (AT —t)+ B*(T —t) Zy),, (20)
Ef [s7] = AQ(T — t) + BQ(T —t) Z,, (21)

E(? o= iS00, Xsds oSt

log E?T [St] = log p
tT

=T —t,u) — AT —t)+ (Y(T —t,u) — B(T —1)) Z; (22)
= AT —-t)+B(T —-t) 4,
where a bar indicates ‘model-implied’. A(T —t), B(T —t) (and A*(T —t), B*(T —t)) in
Egs. (19) and (20) are the solutions (7' —t,0) and ¢(7 —t,0) from the ODE in (B.6) with
domestic (foreign) Q parameters respectively; see Appendix B.1 for details.!* Eq. (21) can

be computed using formula (B.3) with a selection vector F' with non-zero entry only for s,

and ¢ and ¢ in (22) solve the ODE in Eq. (B.6) with initial condition u = (0,0,0,0,1).

3.2 Model Estimation

The model described above is formulated in terms of latent state variables. Relative to
the small number of these driving state variables, the set of observables that we need to
fit is large. Omne can therefore think of these driving state variables as a low-dimensional
representation of observed asset prices, very similar to factor reduction. Our estimation
procedure differs from those used in previous research on multi-country affine term struc-

ture models in both the methodology as well as in terms of the conceptual setup. First, our

the class of polynomial processes, of which affine diffusion processes are a subclass. For polynomial pro-
cesses, conditional polynomial moments map to polynomials in the state variables. They can be computed
in closed-form according to a formula which is reviewed in Appendix B.1.

UWriting the yield equations (19) and (20) in terms of the enlarged state vector Z instead of X is
just a matter of notational convenience as %‘(7) = 0 together with the initial condition Bs(0) = 0
imply a zero factor loading for any maturity 7. It is a tedious, yet rewarding exercise to check that
AT —t)+ AT —t)—A*(T—t)+ (B(T —t)+ B(T —t) — B*(T —t) Z;) = S; holds for any Z; (i.e. whether
CIP holds) by investigating the ODE (B.6).

12



methodological framework is Bayesian, which yields a posterior distribution of both latent
state variables and the parameters of the model. Employing Markov Chain Monte Carlo
(MCMC) methods, the Bayesian methodology allows us to perform parameter inference
without resorting to asymptotics, and it provides a very natural way to cope with latent
state variables by treating them as parameters.'? Second, we consider the joint dynamics
of the latent state variables with the exchange rate. The evolution of the exchange rate
therefore affects the distribution of the parameters. Third, in the estimation procedure
we do not only fit bond yields in the US and the foreign country but simultaneously also
match the predictive relation implied by RA-UIP derived in Eq. (5). In other words, we
jointly fit the domestic and foreign term structures of interest rates as well as the term
structure of foreign exchange risk premiums. Details of the estimation procedure can be

found in Appendix D.

3.3 Model Evaluation

In contrast to the standard formulation of UIP, the RA-UIP introduced in this paper
explicitly accounts for a time-varying risk premium that arises from the assumption of no-
arbitrage. This section describes how we assess whether the model is capable of identifying
the risk premium. The RA-UIP model predictions for exchange rate changes A%, and
excess returns 72, ; are obtained from Egs. (5) and (6) using the estimation procedure
outlined in the previous section.'?

As a first step, we check whether the model risk premium fulfills the conditions formu-
lated by Fama (1984), given in Eq. (3): first, the covariance between the model-implied
risk premium, /):th = —Vr, and expected exchange rate changes, A%, 7, is negative; sec-
ond, the absolute value of this covariance is greater than the variance of expected exchange

rate changes. If the model risk premium satisfies these conditions, its omission in the Fama

regression causes a negative 3 estimate.

12This is a non-negligable advantage over Maximum Likelihood estimation, where the state variables
are either integrated out, some prices are assumed to be observed without error to back out the state
variables, or filters are employed which are either expensive to evaluate, or approximations. For GMM
estimation similar constraints apply; see for instance the implied-state GMM approach in Pan (2002).

13To be precise, the expressions are evaluated at the multivariate median of the parameter posterior
distribution along with a smoothed estimate of the trajectory of the latent state variables.
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The next step is to analyze whether the risk premium allows for unbiased predictions
of excess returns and hence spot rate changes (or whether the risk premium just accounts
for part of the forward bias). We therefore regress observed excess returns on the RA-UIP

model predicted excess returns 7.7, ,
ragr =o' + 3 TT,p + 771/5,T (23)

and test whether o/ = 0 and whether the slope coefficients are statistically significant and
if 3/ = 1. If we cannot reject that o/ = 0 and ' = 1, this indicates that accounting for
the risk premium can be sufficient to resolve the forward bias puzzle without additionally
requiring departures from rational expectations.

Finally, we assess the predictive accuracy of the model by using four additional eval-
uation criteria: the hit-ratio (HR), an R2-measure, the test proposed by Clark and West
(2007) based on mean squared prediction errors (CW), and the Giacomini and White
(2006) test for conditional predictive ability (GW). The predictions are all in-sample pre-
dictions, because our focus is not to provide forecasting models but to evaluate departures
from UIP.!' In other words, we have a twofold motivation for applying these criteria: first,
we gain additional insight on the model’s goodness of fit as compared to only considering
the R? of regression (23). Second, we complement the evidence on the predictability of ex-
cess returns by assessing the predictive ability of the model per se as well as relative to the
benchmark predictions based on UIP and a random walk (RW) without drift. These results
will show whether empirical exchange rate dynamics are more adequately characterized by
RA-UIP, UIP or the RW.

We apply the four evaluation criteria to compare the accuracy of the RA-UIP model
predictions for excess returns, F@T, to predictions based on the benchmarks. The UIP
predicted exchange rate change is given by ASY/” = (y,, — y} ;) and the corresponding
excess return prediction is ?g?tU éP = 0. The RW predictions are A/s\f%v = 0 and Ffﬁ ITV =

—(Yyr — yrr). HR is calculated as the proportion of times the sign of the excess return is

M\ oreover, some recent research argues that it is not clear whether out-of-sample tests of predictability
are powerful enough to discriminate among competing predictive variables or models, showing that in-
sample tests can be more reliable under certain conditions (e.g. Campbell and Thompson (2008) and the
references therein).
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correctly predicted. The remaining criteria are defined as functions of squared prediction
errors of the model, SEM | and of the respective benchmark B, SE® (where B is either
UIP or RW); the respective means are denoted by MSE™ and MSE®. The R2 measure

of the model as compared to the benchmark is given by

MSEM
2=1— ——. 24
s MSEB (24)
Positive values indicate that the model performs better than the benchmark.
The C'W test statistic is defined as
N
CW =MSE? - MSEM + N~* Z (Amct’T — ArxtT) , (25)

n=1

where N is the number of observations in the sample. The CW test allows to compare
the predictive ability of the RA-UIP model as compared to that of the nested alterna-
tives. In contrast to other tests which are only based on the difference in M SFEs, e.g.
Diebold and Mariano (1995), the last term in Eq. (25) adjusts for the upward bias in
MSEM caused by parameter estimates in the larger model whose population values are
zero and just introduce noise. In the empirical analysis, we apply the block bootstrap
procedure described in Appendix E to obtain p-values for the CW test statistics.

To assess the conditional predictive ability of the RA-UIP model, we implement the
GW test for the full sample as follows.!> The predictions are based on the full time-¢
information set F;. Using an F;-measurable test function h;, we test the null hypothesis
that predictions based on the model and the benchmark predictions have equal conditional
predictive ability, Hyy : E[lALr] = 0. ALz denotes the differential in loss functions of
the two competing predictions at ¢ for time T'; for the case of the squared prediction error
loss function, ALy = SEE — SEM. The test function we use is hy = (1, AL;)". The GW

statistic is given by

N T N
GW = N (N-l > htALT> Oyt (N-l > htALT> (26)
n=1 n=1

15 Although the main focus of Giacomini and White (2006) is on rolling window methods, their results
also hold for a fixed estimation sample (p. 1548).
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where 5\2]’\,1 is a consistent estimate of the variance of hyALp.'% The empirical results will

be based on block-bootstrapped p-values for the GW test statistic.

4 Empirical Analysis

4.1 Data

Daily interest rate and spot exchange rate data are obtained from Datastream. Risk-
less zero-coupon yields are bootstrapped from money market (Libor) rates with matu-
rities of 1, 3, and 6 months and swap rates with maturities of 1, 2, 3 and 4 years.
Feldhiitter and Lando (2008) show that swap rates are the best parsimonious proxy for
riskless rates. The model estimation is performed on daily zero-yields and spot exchange
rates for the US dollar against the Australian dollar (AUD), Canadian dollar (CAD), Swiss
franc (CHF), the merged Deutsch mark and euro series (DEM-EUR), the British pound
(GBP) and Japanese yen (JPY). The sample periods are October 12, 1994 to October 10,
2008 for AUD; June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to
October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

To relate the model risk premiums to financial market and macroeconomic variables,
we also obtain daily data for the VIX S&P 500 implied volatility index. Data for industrial
production and narrow money supply are obtained from the OECD Main Economic Indica-
tors at the monthly frequency for all countries except industrial production in Australia and
Switzerland, which is only available quarterly. The sample periods match those mentioned
above with the exception of the VIX series which starts in January 1990. To measure
US consumption growth, we use consumption data (available quarterly), the consumer
price index, and population figures from the International Monetary Fund’s International

Financial Statistics database.

16To obtain a HAC consistent estimate for T — ¢ > 1 we use the weight function as in Newey and West
(1987) with the truncation lag being equal to T'— t — 1, as suggested by Giacomini and White (2006).
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4.2 Descriptive Statistics and Fama Regressions

The empirical analysis presented here is based on non-overlapping observations for pre-
diction horizons of 1 day, 1 week, and 1 month. For the longer horizons of 3 months, 1
year, and 4 years we choose a monthly frequency to maintain a reasonable number of data
points. Tables 1 and 2 report descriptive statistics for annualized exchange rate returns
and yield differentials.

As a preliminary exercise, we estimate the conventional Fama regression (1). The
results reported in Table 3 are consistent with the ‘forward bias’ documented in previous
research. While the estimates of the intercept o are in most cases small and statistically
insignificantly different from zero, the 3 estimates are generally negative and different
from the UIP theoretical value of unity for all currencies. For the GBP, estimates across
all six horizons are positive but only the 4-year (3 estimate is statistically significant at
conventional significance levels.!” As outlined in Section 2.1, the two Fama regressions in
Egs. (1) and (2) contain the same information because v = f—1. Since t[y = 0] = t[5 = 1]
the results are in line with previous evidence that excess returns are predictable on the

basis of the lagged interest differential (forward premium).

4.3 Model Estimation Results

In this section, we discuss results related to how well our model fits the US and foreign
term structures of interest rates and we give economic interpretations to the latent factors
that drive the international economy. Further estimation results (parameter estimates,
confidence intervals, and properties of market prices of risk) are reported in detail in the

Internet Appendix.

4.3.1 Yield Pricing Errors

In Table 4 we present results that show that the model fits the data reasonably well in that

the pricing errors for the term structures are satisfactory. The errors reported in Table 4

"These values are likely to reflect two major UIP reversions the GBP experienced in our sample: the
ERM crisis in 1992 and for the 4-year horizon also the impact of the current financial crisis on the UK
and its currency.
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are in the range of other recent studies, e.g. Brennan and Xia (2006) and Anderson et al.
(2009), even though the sample periods used in estimation are different. Since it is com-
putationally infeasible to estimate the US and all foreign term structures of interest rates
jointly with the corresponding exchange rates all at once, we estimate bilateral models for
country pairs following Backus et al. (2001) and Brandt and Santa-Clara (2002). More-
over we discuss how one can conceptually add more countries and present an example of a
three-country estimation in Section 5.2. We report the root mean squared pricing errors of
the domestic US yields (Panel A) and the respective foreign yields (Panel B) measured in
basis points for each of the six bilateral models. As an alternative, one could estimate single
currency term structure models (as in Brennan and Xia (2006)) and perform an ex-post
analysis of the currency implications. The advantage of this alternative is that one ensures
ex-ante that the US pricing kernel is unique, the disadvantage being that one disregards all
information available from currency forwards and the dynamics of the exchange rate. In
our context of foreign exchange risk premiums, we choose to estimate bilateral models and
then compare the US yields (and their pricing errors) implied by these models. Inspection
of the RMSE of US yields in Table 4 reveals a difference of maximally 2 basis points for the
longest maturity, while for shorter maturities the RMSEs are identical across estimations.
The exception is the JPY model, which exhibits larger RMSEs for US yields but smaller
for foreign yields as compared to the other models. We perform various additional tests
(e.g. pairwise regression of US yield pricing errors from the bilateral model estimations,
not reported) and cannot reject the null hypothesis that the implied US term structure
is the same across models. This means that the bilateral estimation effectively delivers a

unique US pricing kernel, although the uniqueness is not imposed in the model.

4.3.2 Interpretation of Latent Factors

While we examine the drivers of foreign exchange risk premiums later in Section 6, we now
perform a factor rotation to gain insights on the forces behind the state variables governing
the international economy. Collin-Dufresne et al. (2008) show that the latent factors un-
derlying single-country affine term structure models can be rotated into variables with un-

ambiguous economic interpretations. Building on the results of Litterman and Scheinkman
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(1991), they further show how to obtain model-independent estimates of the state vari-
ables, which allows to estimate their globally identifiable representation and facilitates the
interpretation of multi-factor models. We perform three rotations and compare the model-
implied processes to their corresponding model-free estimates. The results reported below
show that the factor dynamics are strongly related to the information in the US yield curve
and to the carry factor (i.e. the interest rate differential) between the US and the foreign
country. Technical details and resulting factor loadings are given in Appendix C.

With the first rotation, we investigate how the estimated factor dynamics are related to
the US term structure expressed in terms of the level of the instantaneous short rate, the
slope, and the quadratic variations of both. We start by rotating the third state variable
(the first Gaussian) into the level of the US short rate r, and subsequently define the slope
1 as the instantaneous drift of r,. The remaining two state variables are rotated into the
quadratic variations of the short rate and of the slope. As a result, we obtain an observable
representation of the model in terms of the instantaneous US short rate level (), slope

(t), short rate variance (V;), and slope variance (Uy),

dV; oy vy dyvy 0 0 Vi
dU; YU dpv vy 0 0 Uy
- + dt
dry Or 0 0 0 1 T4
th Pu ﬁuV 'lg,uU 19;” ﬁu Kt
cp ¢ 0 0 fo+ fiVi+ f2U; dWhy
d do 0 0 . 9o + 1 Vi + 92U, AWy
+ diag
011 012 013 014 Yo + 11 Vi + 12U AW,
01 02 03 04 20 + 21Vi + 22U, AWy

We also follow Collin-Dufresne et al. (2008) in estimating the model-free state variables.
We perform a principal components analysis (PCA) to obtain the first three principal
components of yield levels and express yield curve derivatives (i.e. level and slope) as
sums of derivatives of the PCA loading functions. Using maturities of up to one year, we

use lower-order polynomials to extrapolate the loading functions down to zero. We then

19



calculate the model-free estimates of the short rate level (L;) and slope (SI;) based on the
fitted polynomials.

Table 5 presents the correlations of the model-implied processes and their model-free
counterparts in columns labeled Rotation 1. The level correlations range from 98.5% to
99.9% across all countries. The slope correlations are between 82% and 86% for CHF,
DEM-EUR, and GBP, between 55% and 61% for AUD and CAD, and 26% for JPY. For
the first three, we also find high correlations for the variance processes, 66% to 68% for V;
and 45% to 54% for U,.'8 Overall, the results show that the information in the US yield
curve plays a fundamental role in the international economy, as one would expect for a
model of USD exchange rates.

In the second rotation, we again rotate the third state variable into the US short rate,
ry, and then rotate the fourth into the differential of the US and the foreign short rate,
r, — 1y, to obtain a carry factor. Our motivation to do so is twofold. First, the short
rate differential represents the expected instantaneous depreciation under the risk-neutral
measure. Second, research on the cross-section of foreign exchange excess returns suggests
that the riskiness of different currencies can be understood in terms of a dollar risk factor
and a carry risk factor; see e.g. Lustig et al. (2010a). V; and U; now represent the quadratic
variations of the US short rate level and the level differential. We obtain the model-free
estimates for the level differential analogously to those of the US level, and Table 5 reports
results in columns labeled Rotation 2. For all countries we consistently find again that we
match the US level. For CHF, DEM-EUR, GBP, and JPY we also find high correlations
of r, — r; with the model-free level differential (56% to 74%) and also the related variance
processes Uy and QVi[L — L*| (45% to 75%). For these countries, the foreign yield curve
contains valuable information not contained in the US curve and thus carry risk is an

important factor. For AUD and CAD, the information in the foreign term structure seems

18A lower correlation of p; with Sl; and the mixed variance results simply reflect that the estimated
model also has to match the term structures of foreign yields and foreign exchange risk premiums while
the model-free estimates are only based on the US yield curve. As a result, model-implied and model-free
estimates exhibit very different correlations to expected depreciation (EZ [ds]) and exchange rate variance
(QV;]ds]) and these covariations with exchange rate variables have an impact on and may overlay other
correlations. For instance, V; and U; also pick up exchange rate variance and are thus highly correlated
with QV;[ds| while there is no common pattern for their model-free counterparts. The covariations with
E? [ds] play a similar role, the extent of y; correlations can be explained analogously, and similar arguments
apply to the other rotations below.
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less relevant as compared to that in the US curve.

While the second rotation indicates that the short rate differential adds information
beyond the US curve, we now check whether the US term structure adds information when
the carry factor has been already accounted for. We do so because Lustig et al. (2010a)
find that the US risk factor essentially captures average excess returns across currencies.
In a setting like ours, the carry for each country potentially already incorporates this
information because of its bilateral nature. We thus modify the rotation in that we first
rotate the third state variable into r, — r; and subsequently the fourth into r,. Table 5
reports results in columns labeled Rotation 3. We find that the level differential has a
correlation of 84% for CAD and more than 96% for all other countries. The correlations of
the US level range from 1% to 17%, which suggests that the carry factor already comprises
most, but not all of the information contained in the US curve.

Fig. 1 plots the US risk factors and carry risk factors implied by the model and
their model-independent counterparts. Overall, the results show that both the US term
structure as well as the carry between the US and the foreign country are driving forces
behind the latent factor international economy. These results are consistent with recent
studies on the cross-section of currency returns; however, in our bilateral setting, the carry

factor conveys most of the information.

4.4 Model Evaluation

To evaluate the RA-UIP model we employ the criteria described in Section 3.3. The
empirical results reveal that the model predictions are unbiased and have higher accuracy

than the UIP and RW benchmarks.

4.4.1 Fama Conditions and Unbiasedness of Model Predictions

We first verify whether the model risk premium fulfills the conditions formulated by Fama
(1984), as described in Eq. (3), such that the omission of the risk premium causes a
negative § estimate. We report the covariances between the risk premium and expected
exchange rate changes and the variance of expected changes in Table 6. The results show

that both conditions are fulfilled for all currencies except the GBP. Specifically, for the
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GBP the first condition (negative covariance) is satisfied across all six horizons but the
second condition is not. However, the violation of the second condition is not surprising
as it is consistent with the positive 3 estimates for the GBP in Table 3. We rather view
this as a corroboration of the flexibility of the model.

Table 7 presents results for regression (23) by reporting parameter estimates along
with block-bootstrapped standard errors in parentheses as well as t-statistics for the null
hypothesis of unbiasedness 3 = 1.1 The table also reports the R? of the regressions but
we defer a detailed discussion of the model fit to the next subsection where we evaluate the
predictive ability criteria described in Section 3.3. In brief, we find strong evidence that
excess return predictions based on the model risk premium are unbiased. All estimates of
the intercept o are very small and not significantly different from zero. All estimates of
the slope coefficient 3’ are positive (except GBP at the 1-day horizon) and become closer
to unity and more significant as the prediction horizon increases. Parameter estimates are
significantly positive across all horizons for AUD, CAD, CHF, and DEM-EUR, for horizons
longer than 1 month for the JPY, and at the 4-year horizon for the GBP. At the same time
the estimates of (3’ are not statistically different from unity except at the 1-day horizon for
the CHF and horizons up to one month for the JPY. The less pronounced evidence for the
GBP is again consistent with the comparably smaller forward bias as judged by the Fama
regression results in Table 3.

To reiterate, the findings related to the Fama conditions and the unbiasedness of model
predictions are consistent with the notion that the time-varying risk premium accounts
for the forward bias puzzle. While results from the Fama conditions show that the risk
premium has the general properties to cause a downward bias in the [ estimate of the
Fama regression across horizons, the unbiasedness results strengthen this evidence as they
indicate that accounting for the risk premium can be sufficient to resolve the puzzle without

requiring departures from rational expectations.

19We calculate block-bootstrapped standard errors for all subsequent regressions. The block-bootstrap
procedure avoids the necessity to rely on asymptotic theory but still allows to handle serial correlation and
heteroskedasticity. We also calculate, but do not report, Newey and West (1987) standard errors with the
optimal truncation lag chosen as suggested by Andrews (1991). These standard errors are very similar or
slightly smaller than those obtained from the block-bootstrap procedure.
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4.4.2 Predictability of Excess Returns

In Table 8, we present results for the predictive ability criteria discussed in Section 3.3.
The HR, R2, CW, and GW measures allow us to gain insight on the model’s goodness of
fit as compared to only considering the R? of the predictive regression. Furthermore, we
complement previous evidence on the predictability of excess returns based on the model
per se and as compared to the benchmark predictions based on UIP and the RW.

The H R indicates that the model predictions have high directional accuracy: while the
HR is slightly above 50% for the 1-day horizon, it dramatically increases across horizons
for all currencies. The highest HR is achieved for the 1-year and 4-year horizons with
the largest values across currencies ranging from 63% to 97%.2° There is evidence that
the model fits the data very well in that it replicates the sign of excess returns, i.e. UIP
deviations.

The values reported for the R2-measure, as defined in Eq. (24), indicate that the model
outperforms both benchmarks. The R2s are positive for all currencies across all horizons
against the UIP benchmark. The R2s are also positive across currencies and horizons
against the RW benchmark with the exception of negative values at the short horizons
for the GBP (up to 1 week) and the JPY (up to 1 month). A common feature across all
currencies is that the highest R2 is reached for the longest horizons, ranging from 30%
to 79% against UIP and from 21% to 67% against the RW.?! In other words, the mean-
squared prediction errors of the model are much smaller than those of the benchmarks
providing another piece of evidence that the RA-UIP model fits the empirical behavior of
exchange rates better than UIP and the RW.

The results for the Clark and West (2007) test and the Giacomini and White (2006)
test for conditional predictive ability further support that the model predictions are more
accurate than those of the benchmarks. We report p-values for the test statistics which are
obtained from the block-bootstrap procedure described in Appendix E. The CW p-values

generally decrease with the prediction horizon and indicate that the model predictions

20The Pesaran and Timmermann (1992) test statistics for directional accuracy also suggest that most
of the H Rs are highly significant. Results are omitted to save space but available on request.

21The increasing predictability with longer horizons does not result from a mechanical link between short-
and long-horizon predictions similar to the arguments of e.g. Cochrane (2001, p. 389) or Boudoukh et al.
(2006). Note that we have a different predictor and different dependent variable for each horizon.
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significantly outperform UIP predictions for 4 currencies at the 1-day and 1-week horizon
and for all 6 currencies at horizons of 1 month or longer. The results for the RW benchmark
generally follow the same pattern but exhibit more variability in terms of significance at
the shorter horizons. The GW results indicate that the model dominates UIP and RW also
in terms of conditional predictive ability. Again, the p-values exhibit some cross-currency
variability for shorter horizons, but they indicate significantly stronger predictive ability
of the model as compared to UIP at horizons beyond 1 month for AUD, CAD, CHF, and
DEM-EUR; for the GBP and JPY results are significant at the 1-year and 4-year horizons.
The results for the RW benchmark are very similar.

Overall, the predictions from the model dominate those based on the benchmarks,
thereby providing evidence that the empirical behavior of exchange rates is more accurately
characterized by RA-UIP as compared to UIP or the RW. The superior predictive ability
arises from the fact that the model-implied no-arbitrage conditions allow to identify the

risk premiums that drive (excess) returns.?

4.5 Decomposing Foreign Exchange Risk Premiums

Following the derivations of the RA-FUH and RA-UIP in Section 2.2, we show in Eq.
(8) that the foreign exchange risk premium can be decomposed into a pure currency risk
component and a second component that accounts for the fact that interest rates are
stochastic. Table 9 displays descriptive statistics for estimated risk premiums and their
components on an annualized basis.

The average premium for pure currency risk can be positive or negative. Consistent with
intuition, we find that compensation for bearing interest rate risk is strictly positive. The
average interest rate risk premium contributes, depending on the currency, a sizable level
to the overall risk premium. However, the standard deviations are very small compared to
those of the overall risk premiums.

These results suggest that the variation in foreign exchange risk premiums - and hence

deviations from UIP constituting the forward bias puzzle - are largely driven by the pure

22The finding that no-arbitrage improves predictions has similarly been documented in the term struc-
ture literature, see e.g. Ang and Piazzesi (2003), Christensen et al. (2010), Diez de los Rios (2009) and
Almeida and Vicente (2008).
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currency risk component. We redo the empirical model evaluation analysis in Section 4.4
based on model expectations comprising only the pure currency risk component. We find
that the results (not reported) are qualitatively identical to those above and that quanti-
tative differences are very small. Nevertheless, although the interest rate risk component
does not vary much, its sizable contribution to the average level of foreign exchange risk
premiums may be relevant in other contexts, for example assessing the profitability of

currency speculation, which we do not investigate in this paper.

5 Extensions and Robustness Checks

We perform various extensions and robustness checks to further validate the model and
to support the empirical findings. We first show that models with a smaller number of
latent factors are not capable of jointly matching the term structures of interest rates and
foreign exchange risk premiums. Second, we provide evidence from models for more than
two countries. We also show that extending the information set by currency options does
not qualitatively change the results, and finally that our conclusions are not affected by

the recent financial crisis. Detailed empirical results are given in the Internet Appendix.

5.1 Smaller Models with Two or Three Factors

In our setting, the international economy is driven by four latent factors. In this Section
we investigate smaller models and report pricing errors, predictive regression estimates,
and predictive ability statistics for models with three factors in Tables A.8 to A.10 and for
models with two factors in Tables A.11 to A.13.

We find that models with three factors also produce risk premiums that have predictive
ability but at the expense of substantially larger yield pricing errors. Furthermore, the
differences of the RMSEs of US yields across models (even across non-JPY models) are as
high as 36 basis points (this is 18 times the maximum RMSE difference in the four factor
model). This raises concerns about the ability to estimate a unique US pricing kernel. The
two factor model produces, as expected, less predictability, higher pricing errors, and the

RMSEs of US yields deviate by more than 170 basis points across models.
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The results illustrate that there is a substantial tradeoff between jointly fitting the
term structures of domestic and foreign interest rates and that of foreign exchange risk
premiums. As compared to the standard model with four factors, smaller models appear

to be overstrained in accomplishing this task.

5.2 Multiple Exchange Rates

As mentioned above, we estimate bilateral models for country pairs because it is compu-
tationally infeasible to estimate one model for the US and all foreign countries at once. As
a consequence, the latent process that implicitly prices the US term structure can change
across estimations. While the results in Section 4.3.1 suggest that differences are small, we
discuss here how to extend the framework to multiple exchange rates such that a unique
US pricing kernel is ensured ex-ante. As an example, we present a three-country model
estimation.

Indexing each foreign country with n = 1,..., N the bilateral relations and dynamics
established versus the US remain unchanged, but additionally consistent pricing between
all foreign economies has to be ensured. This means that RA-UIP does not only imply the
predictive relation in Eq. (5) for each country n against the US but also for changes in the
log cross-rates between all foreign countries. For the cross rate s/", expressed as currency

7 price per unit of currency n, the respective relation is given by
Asyp = Asiy = Asjp = Wiy = vip) + (i = Yir) + €ir (27)

which shows that cross-rate returns depend on the foreign countries’ yields and the differ-
ential of their USD risk premiums.

No-arbitrage requires that the relation defined in Eq. (9) holds for all foreign countries,
which allows to specify the dynamics of each foreign country’s pricing kernel and its USD
exchange rate as in Section 3.1.1. Consistent pricing across foreign economies additionally
requires to rule out triangular arbitrage between all countries

M}
M}
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where the term in [-] represents the cross-rate for exchanging currencies of countries n
and j. Taking logs and limits implies the arbitrage-free dynamics of the log cross-rate
ds)"= ds} — ds]. Since ds} and ds] are specified as ds; in Section 3.1.1 we can compute
the corresponding cross-rate predictions.

In estimation, one has to jointly match the term structure of interest rates in all coun-
tries, the term structure of USD foreign exchange risk premiums for each foreign country,
and the (implicit) term structure of risk premiums in cross-rates. That is, first, the pric-
ing equation has to be extended such that it comprises yields of all N foreign countries.
Second, the predictive relation for USD exchange rate returns in Eq. (5) has to be im-
plemented for all countries. Third, the predictive relation for the cross-rates in Eq. (27)
has to be matched for all combinations of foreign countries. With this extended setup, the
estimation procedure follows the routine described in Appendix D.

While the concept is straightforward, an empirical implementation of an N-country
model involves serious numerical and computational difficulties. The specification of our
two-country model is five-dimensional (four latent factors and the observed exchange rate)
and has 45 parameters. With each additional foreign economy the model grows at least
by one additional observed exchange rate. Since four factors are already a parsimonious
choice in the two-country setting, increasing the number of factors would be desirable
when adding countries. However, adding exchange rates and factors exacerbates the curse
of dimensionality, thereby impeding computational feasibility and eventually making an
empirical implementation virtually impossible.?3

We implement a six-dimensional three-country model (four latent factors and two ex-
change rates) and discuss two estimations involving the US and Switzerland. In the first
estimation we use the DEM-EUR (which behaves as judged by our estimation very similar
to the CHF) as the third currency and report results in Table A.14. The predictive regres-
sion and predictive accuracy results resemble the patterns of the bilateral setting but they

are less pronounced in terms of significance: we find that model-implied risk premiums are

230ur Markov-Chain Monte Carlo estimation requires billions of evaluations of matrix exponentials (see
formula (B.3)) and matrix inverses (for the transition density approximations and the predictive density).
As the size of the coefficients of these quantities grows faster than exponentially with the number of state
variables, even switching from six to seven would render the estimation procedure prohibitively slow.
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unbiased predictors and significantly different from zero for horizons of 3 months or longer
and that the model’s ability to predict excess returns is higher than that of the UIP and
RW benchmarks. The downside, however, is a sizeable increase in yield pricing errors. For
the US, where we have now imposed a unique pricing kernel ex-ante, the yield RMSEs
range from 7 basis points to 111 basis points, i.e. they are more than double the RMSEs
of the bilateral models at the short end and more than six times larger at the long end.
In the second estimation, we use the JPY (which appears to be more different from the
CHF than the other currencies) as the third currency and report results in Table A.15.
Again, the predictability results exhibit similar but less pronounced patterns and the yield
pricing errors are higher as compared to the bilateral models, in particular for the CHF.
Overall, the three-country results suggest that four factors are not enough, in this
multiple exchange rates setting, to jointly model three term structures of interest rates as
well as the two corresponding term structures of USD risk premiums. Given that larger
models are beyond computational feasibility, it appears reasonable to use bilateral models
that effectively deliver a unique pricing kernel (rather than impose it ex-ante) but fit yields
and exchange rate dynamics more accurately. However, for the purposes of this paper, it is
important to emphasize that the unbiasedness of model-implied risk premiums reported in

our core results is robust to using a larger model that imposes a unique US pricing kernel.

5.3 Information in Currency Options

One issue that has arisen in the literature on affine term structure models is that bonds
may be insufficient to span fixed income markets and that derivatives may be needed to
fully identify pricing kernels.?* In our model, exchange rate dynamics are driven by the
difference in the innovations of two pricing kernels. In the international economy there
is no source of risk that exclusively affects exchange rates and hence currency derivatives
combine the information embedded in domestic and foreign fixed income derivatives.?® To

analyze whether currency options convey additional information about foreign exchange

24Gee the work of Collin-Dufresne and Goldstein (2002) on unspanned stochastic volatility and the sub-
sequent literature building on their work.

25That is, since all factors affect exchange rate as well as domestic and foreign interest rate dynamics,
currency derivatives can be hedged/replicated using domestic and foreign fixed income derivatives.
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risk premiums we rely on the concept of model-free implied variance (MFIV).
Britten-Jones and Neuberger (2000) show that MFIV equals the expected realized vari-
ance under the risk neutral measure. MFIV is fully determined by current option prices

and defined as

2 Br p,or(K) > Cir(K)
MFIV,p = —— —— —dK + ———=dK
ot Tr—t [/0 pt,TK2 Fyr Pt,TK2

where P, r(K) and C; 7 (K) are the respective time-t¢ prices of T-period European put and
call options with strike K .26 To calculate MFIV we use daily currency option data obtained
from JP Morgan comprising 1-month implied volatilities for five points, which is standard
in currency markets (Carr and Wu, 2007): at-the-money forward (ATMF), 10-delta call,
10-delta put, 25-delta call, and 25-delta put.?” To calculate implied volatilities and option
prices for other strikes, we follow the suggestions of Jiang and Tian (2005).

To incorporate the information conveyed by MFIV, we augment the estimation proce-
dure to require that the model-implied expectation of realized variance matches MFIV. We
assess whether MFIV has additional information content for foreign exchange risk premi-
ums by comparing estimation results with and without currency options. For all currencies,
the sample period is January 24, 1996 to October 10, 2008, except for the DEM-EUR se-
ries, for which the sample starts on January 1, 1998. Our empirical analysis suggests that
conditioning on the information in currency options does not have a material effect on
how well the model matches foreign exchange risk premiums. In general, when we regress
realized excess returns on model predictions from both estimations, the slope coefficients
in Eq. (2) and the R?s are very similar; see Tables A.16 and A.18. The predictive accuracy
of both models as compared to the UIP and RW benchmarks is very similar as well; see
Tables A.17 and A.19. These results suggest that the specification of our model is flexible

enough to capture the variance dynamics of exchange rates and hence, for the purpose

26 Jiang and Tian (2005) discuss how to inter- and extrapolate when only a finite range of strike prices is
available and show that resulting approximation errors are small. They also demonstrate that the MFIV
concept is still valid if the underlying asset price process has jumps and they provide evidence that MFIV
contains more information than other volatility predictors. For a recent application of the MFIV concept
to foreign exchange markets see Della Corte et al. (2010).

2TSince the data provides implied volatilities and deltas, but not prices directly, we infer strike prices
from deltas and implied volatilities and calculate option prices using Garman and Kohlhagen (1983). Note
that in FX markets the convention is to multiply put deltas by -100 and call deltas by 100.
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of this paper, it is not necessary to additionally condition on the information in currency

options.

5.4 Sample excluding the Financial Crisis

As mentioned above, we bootstrap zero yields from money market and swap rates based
on the argument put forward by Feldhiitter and Lando (2008) that these are the best
parsimonious proxy for riskless rates. Due to the recent financial crisis this choice may
not be innocuous because the rates may be confounded with credit risk. We therefore
repeat the empirical analysis for a sample that excludes the financial crisis by only using
data until the end of 2006. We present yield errors, predictive regression estimates, and
predictive ability statistics in Tables A.20 to A.22. The results are quantitatively very

similar and qualitatively identical to those reported for the full sample.

6 Drivers of the Risk Premium

The above results provide strong empirical support for the existence of time-varying risk
premiums as stated by RA-UIP. In this section we show that the time variation in expected
excess returns is closely related to global risk measures and to macroeconomic variables.
Our proxy for global risk is based on the VIX S&P 500 implied volatility index traded
at the CBOE, which is highly correlated with similar volatility indexes in other countries;
see e.g. Lustig et al. (2010b). Furthermore, the VIX can also be viewed as a proxy for
funding liquidity constraints, noted in Brunnermeier et al. (2008). If the VIX captures
global risk appetite and funding liquidity constraints, expected currency excess returns
should be negatively related to the VIX multiplied by the sign of the yield differential,
sVIX, = VIX; x signly, — y7]: in times of global market uncertainty and higher funding
liquidity constraints, investors demand higher risk premiums on high yield currencies while
they accept lower (or more negative) risk premiums on low yield currencies, consistent with

‘flight-to-quality’ and ‘flight-to-liquidity’ arguments.?®

28We also use the TED spread (difference between the 3-month Eurodollar rate and the 3-month Treasury
rate) as an alternative proxy. The results are similar to those based on the VIX reported in the paper;
this is in line with Brunnermeier et al. (2008).
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Recent research suggests that risk premiums on US exchange rates are countercyclical to
the US economy, similar to risk premiums in other markets; see e.g. Lustig and Verdelhan
(2007), De Santis and Fornari (2008), and Lustig et al. (2010b). As proxies for the state of
the US economy, we use industrial production (I P,) as a measure of output, and M1 as a
measure for narrow money supply (VM,). Using monthly data, the growth rates AP, and
AN M, are defined as 1-year log changes. If the model risk premium is countercyclical, the
relation between expected excess returns and output growth should be negative, whereas
the relation with money growth should be positive.

Lustig and Verdelhan (2007) show that high interest rate currencies depreciate on aver-
age when domestic consumption growth is low while low interest rate currencies appreciate
under the same conditions. They argue that low interest rate currencies hence provide do-
mestic investors with a hedge against aggregate domestic consumption growth risk. We
construct a quarterly series of US consumption based on total private consumption de-
flated by the consumer price index and divided by population figures to obtain per capita
consumption. Consumption growth is defined as the 1-year log change. To account for
the asymmetric effect of low versus high interest rate currencies, we multiply consumption
growth by the sign of the yield differential. The findings of Lustig and Verdelhan (2007)
suggest that expected excess returns should be negatively related to signed consumption
growth sACO;.

Finally, we relate the risk premium to macroeconomic variables deemed relevant in tra-
ditional monetary models of the exchange rate. As a proxy for exchange rate fundamentals
we use the “observable fundamentals” as in Engel and West (2005), defined as the country
differential in money supply minus the country differential in output. We measure output
and money supply in the foreign countries analogously to the US variables and define the
change in observable fundamentals as AOF, = (ANM, — ANM}) — (AIP, — AIP}). Tra-
ditional exchange rate models suggest that the relation between these fundamentals and
expected excess returns should be positive.

Table 10 presents contemporaneous correlations of expected excess returns with the
variables described above; the significance indicated by the asterisks is judged by block

bootstrapped standard errors which are not reported to save space. The correlations
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strongly support our priors as all coefficients are signed correctly across currencies and
horizons, in most cases with a high level of significance. These results thus suggest that
foreign exchange risk premiums are driven by global risk perception and macroeconomic
variables in a way that is consistent with economic intuition.

We also run univariate regressions of expected excess returns on the signed VIX, signed
consumption growth, and the observable fundamentals, as well as multivariate regressions
on combinations of these variables. We report OLS estimates in Table 11. The univariate
results confirm the correlation analysis for the three proxies in terms of sign and statistical
significance of coefficients, in most cases accompanied with large explanatory power (as
judged by the R?). The signed VIX has lowest explanatory power for the GBP, but for
all other currencies it is substantial: at the 1-day horizon the R? ranges from 0.13 to
0.58, at the 1-year horizon it ranges from 0.31 to 0.62. The observable fundamentals have
similar explanatory power across currencies (except CHF) with the R? ranging between
0.32 and 0.51. The results for signed consumption growth exhibit the largest cross-currency
variability in terms of explanatory power, with R?s ranging from 0.08 to 0.14 for the GBP
and JPY, from 0.18 and to 0.29 for CHF, and from 0.54 to 0.61 for AUD, CAD, and
DEM-EUR.

In the multivariate regression analysis we combine the observable fundamentals with
either the signed VIX or signed consumption growth. Signs and significance of coefficients
are similar to the univariate regressions but the explanatory power can be substantially
larger. The R2s are lowest for the CHF with values between 0.23 and 0.34. For CAD and
JPY the specification with signed VIX fits the data somewhat better; e.g. for the CAD
the R2s are 0.83 (3 months) and 0.75 (1 year). In case of the AUD, the specification with
signed consumption growth fits better with an R? of around 0.72 for both horizons. The
results for DEM-EUR, (R?s of 0.64 and 0.67) and GBP (0.51 and 0.43) are very similar for
both specifications.

Overall, we find that the model risk premium is related to global risk aversion, counter-
cyclical to the US economy, and associated with traditional exchange rate fundamentals.
The few cases in which significance is less pronounced or explanatory power is lower may

even corroborate our results. For example, the absence of a strong relation between the
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GBP and the global risk proxy is consistent with the comparably smaller forward bias in
the GBP data set. Also, finding that the CHF’s link to observable fundamentals is weak
but that its link to global risk is strong seems consistent with Switzerland being viewed as

a ‘safe haven’ and primarily as a destination for flight-to-quality.

7 Conclusion

There is a large literature documenting the empirical failure of uncovered interest rate par-
ity and of the forward unbiasedness hypothesis: the forward premium is a biased predictor
for subsequent exchange rate changes, and the forward rate is a biased predictor for the
future spot exchange rate. In this paper we show from the principle of no-arbitrage that
currency forwards are in general biased predictors for spot exchange rates, because they
not only reflect expected spot rates but additionally comprise time-varying risk premiums
that compensate for both currency risk and interest rate risk. We develop an expression for
the risk premium and employ it in a prediction model resembling the Fama (1984) regres-
sion. Expected exchange rate returns are driven by the yield differential but additionally
comprise a time-varying risk premium (Fama’s omitted variable), which we estimate from
a multi-currency term structure model.

For the empirical analysis, we extend affine term structure models applied in a multi-
currency context to explicitly account for these properties of forward rates and embedded
risk premiums. We take the model to US exchange rate data and find that estimated
model expectations and risk premiums satisfy the necessary conditions for explaining the
forward bias puzzle. Moreover, the model is capable of producing unbiased predictions for
excess returns and hence we conclude that accounting for risk premiums can be sufficient
to resolve the forward bias puzzle without additionally requiring departures from rational
expectations.

Furthermore, we provide empirical evidence that risk premiums are closely linked to eco-
nomic variables that proxy for global risk, the US business cycle, and traditional exchange
rate fundamentals. Our results suggest that expected excess returns reflect flight-to-quality

and flight-to-liquidity considerations, and that they also depend on macroeconomic vari-
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ables (output growth, money supply growth, consumption growth) such that risk premiums
in dollar exchange rates are countercyclical to the US economy.

We disentangle the risk premiums into compensation for currency risk and interest
rate risk. We find that the time variation in expected excess returns is almost entirely
driven by currency risk. The premium for interest rate risk exhibits very little variation
but contributes substantially to the level of risk premiums for some currencies. Given
its sizable contribution to the overall level of compensation for risk in foreign exchange
markets, interest rate risk should be explicitly accounted for in future research, for instance,

when assessing the profitability and economic value of currency speculation.
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A Additional Derivations for RA-UIP and RA-FUH

A.1 Predictive relations without logarithms

Analogously to Egs. (5) and (6) we derive the predictive relations for changes of the
spot exchange rate and excess returns without taking logarithms. For the sake of easier
readability, we use the same notation for e, 7, v,r , and A p here for the case of no
logarithms as in the main text where we use logarithms.

Define AS;r = (St — S¢)/S:. Under the assumption of rational expectations, taking
conditional expectation yields the natural right-hand side of a predictive relation for the

exchange rate return

AS@T = Ef [ST] /St —1 + &,r
— (EF (0] /B [Sr] )elr i) — 142z (A1)

g *
=T+ e(yt,T yir) _ 1+ e,

with v, = (Ef [S7] /IE;QT [St] — 1>e(yivT_y;T). Hence, unless Q = P, i.e. under risk-
neutrality and deterministic short rates, there is a time-varying risk premium, A\, 7 = —v; 7.
Analogously, we find that excess returns defined as RX; 7 = (Sr — Fyr)/S; comprise the

time-varying risk premium

E; [S7] — EJ" [S7]

RXt,T = S + €T
t
P Q
_ Et [ST] - ]Et ' [ST] e(ymT*y;T) + gt T, (A2)
E [St] 7
= WT + €t7T.
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A.2 Decomposition of the risk premium

The relation in Eq. (7) is formally established from

" fr] = B | Tst]

aQ T

= E2 [s7] + Cov? [%, ST:|

T
— Ef {%ST} +(COU,(5@ [%,ST]

d dQT
— Ef [s7] + (Covf [d%’ ST:| + Cov;@ [%, ST:|

—EY [s7] + (B2 [s7] — B [s7]) + (E¥" [s7] - B [sr])

B Technical Details Related to the Model

B.1 Conditional Moments of Polynomial Processes

It is shown in Cuchiero et al. (2008) that affine processes such as the one used in the
present paper are a subclass of polynomial processes. Polynomial processes are particularly
attractive because their conditional moments are polynomials in the state variables. The
coefficients of the polynomial are determined by the parameters of the process and the
time horizon. To be more precise, consider a time-homogeneous (affine) Markov process
X = (X¢)t>0,x0=woep living on state space D C RY. Denote the finite dimensional vector
space of all polynomials of degree less than or equal to [ by Pol<;(D). An affine process X

induces the semigroup

P.f(z) = E[f(X,)|Xo = 2] € Poloy(D) for f € Poly(D), (B.1)

which maps polynomial moments to polynomials. For affine (X;) € R, x RN~ define

plr)=a+bx, V()=G+Hx=G+ Hyxy+ -+ Hxy, (B.2)
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where G is a N x N matrix and H is a N x N x N cube. Polynomial moments can be

computed using the semigroup’s infinitesimal generator

Af(e) = 23 Vi) SIS ) )

‘ - al‘j
Jil=1 Jj=1

Choose a basis F =< ey,...,e, > of Pol<x(D), where ¢ = dim Pol<;(D) = 2?20 (N_jl“),
and a selection vector ' =< fi,..., f, >. Conditional polynomial moments are then

computed according to

Pf=Fe4ET, (B.3)

where A = (a;j)i j=1,. 4 is defined implicitly through

q
Aei = Z Q;;€5. (B4)
j=1
For discounted exponential moments we have that

Y

E, [e- I So+0x X ds euXT] — S +h(ru) Xy (B.5)

where ¢(7,u) and ¢(7,u) solve a system of Riccati equations Filipovi¢ and Mayerhofer

(2009) with =T —t

d 1
¢EZT7 Y —0x + by (r,u) + SU(r, w)" Hy(r,u), ¢(0,u) =u
d(b(;— Y ; (B.6)
T — 6o+ aw(r ) + 50(r ) Golru), 6(0,u) =0,
For u = (0,0, ...,0) we recognize the bond price equation, for which we will suppress the

second argument in the coefficients.

B.2 Second Moment of Forecast Errors

Assuming L < T we are interested in model-implied covariance structure of the error terms

from Eq. (5)
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Cov, [5t,T7 5t,L] = Cov, [ST, SL]
= E/ [srs1] — E/ [s7] E [s1]

=E/ [E] [s7]s1] —Ey [s7] B/ [s1]

1. II.

I1. can be computed according to Eq. (21). For I. we get
E; [EL [s7] s1] = EY [(AQ(T — L) + BQ(T — L)Zy) 5]
— AQ(T = 1) (AQ(L — 1) + BQL — 1) 7)) + BQ(T — L) B [Zys.)

The vector of cross-sectional moments E} [Z7s;] is a quadratic form in the state vari-

ables and can be computed using formula (B.3).

C Details Related to Factor Rotations

The dynamics of the latent factors (Xy;, Xo, X3, X4) are governed by two square root

and two Gaussian processes. In all rotations, the first step is to rotate X3; into

4
Ty = Ko + E K;ijt
j=1

where 7, is the US short rate in Rotations 1 and 2, i.e. k = ¢, and the short rate differential

in Rotation 3, i.e. Kk = 4§ — 0*. The 7; dynamics are

4
dﬂ't = (wo + W1X1t + CUQXQt + W3 T + W4X4t) dt —+ Z K’jUjdVVjt

=1
where o, denotes the j-th element of o(X;) and
4 4
Kabas .
w3 = + b33, Wy = Ki; — KoWws, w; = kibii — ksws for j = {1,2,4}.
K ;1: j ;j: iR { }

Given these 7; dynamics, we then rotate Xy; into process II; which either represents the

instantaneous slope of the US term structure, the level differential, or the US level:

Ht = QO + Qlet + QQXQt + Q37Tt -+ Q4X4t, where in
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e R1 (slope): Q = w, based on slope p; = wy + w1 X1; + waXop + wamy + wy Xy
e R2 (Tt — 7’2{): Qg = W3 — 5;/(53 and Qj =Wwj; — (5;( + ((5;/(53)(2 for j = {0, 1,2,4}

e R3 (T’t)i Qg = w3+ (5;/63 and Qj = Wj + (5; - ((5;/(53)53 for j = {0, 1,2,4}

The dynamics of II; are
4
dIT, = (Ao + M X1e + A Xoy + Asmy + MIL)dt + Y~ gjoydW,
j=1
where

Ao = ay + Qaas + Qzwo + Quag — Qo(Qs(wa/Q) + bag) + (bas/k3)(Qoks — Quko),
A1 = Qb1 + Qobor + Qzwy + Qubsr — Q1 (Q3(wa/ Q) + bag) + (baz/K3) (L1654 — Qukr),
Ao = Qabagy + Qgwa + Qubyy — Qo (Q3(wa /) + baa) + (baz/k3)(Qaks — Quka),

Az = Qawy — Q3(Q3(wa/Qa) + baa) + (bas/r3) (Qsk4 + Qa),

Ay = Q3(wa/Qs) + bag — (baz/K3)kKa,

03 = K383,

0; = (k5 + Q) for j ={1,2,4}.
Next, we compute the quadratic variation of m; and II; and define

Vi =co+ a1 Xy + o Xy U =do+ di Xy + da Xy

where
co = K2 + K2 do = 03 + 0]
¢; = K2+ K26 + Ky dj = 07 + 035; + 037 for j = {1,2}.

Note that lower bounds for the variances of 7; and II; are given by k2 + k% and p3 + p3

respectively. Solving for X; and X, we get

Cg(do—U)+d2(V—Co)

X = = fo+ iV + foU,
Cldg—Cle
U—dy)+d -V
X2=Cl< 0) 1 (% ) =go+nV + gU.
c1dy — cady
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From this, we compute the joint dynamics of (V,U), rewrite = and Il dynamics in terms

of V and U and finally obtain the dynamics of the observable system

vy 1 vi1 Y2 00 Vi
dUy V2 Yo1 U2 0 O U
- n dt
dmy ©3 U1 Us2 U3z Uss Tt
dIly 4 Vg1 Va2 V43 Uy IT;
ct c2 0 0 fo+ [iVi+ f2Uy AWy
d d2 0 0] . go + 1V + 92Uy dWay
+ diag
K1 K2 K3 K4 yo + 1 Vi + 12U AWy
01 02 03 04 20 + 21V + 22U AWy

where

o1 = c1(ar + bi1 fo) + ca2(az + bai fo + ba2go),
2 = di(a1 + bi1fo) + da(az + ba1 fo + b22g0),
3 = wo + w1 fo + wago — (wa/Q)(Qo + fol1 + gofle),

w4 = Ao + At fo + A2go,

V15 = c1bi1 fj + ca(bar fj + b22g;) for j = {1,2},
Vaj = dib11 fj + da(b21 f + b22g;) for j = {1,2},
O35 = w1 fj + wagj — (wa/Q) (£ + g;Q2) for j = {1,2},
Us3 = w3 — (wa/Q) s,

V34 = wy/Q,

Va5 = ALfj + Aag; for j = {1,2},
Vaj = \j for j = {3,4},

yo = 1+ B1fo + B2g0,
yj = B1fj + B2g; for j = {1,2},
20 = 1+ 71.fo + 7290,

zj =i + 729 for j = {1,2}.
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D Model Estimation

Let 0 = {a]lp, as, ..., 0%, 5f4} be the set of parameters governing the dynamics of the pro-
cesses driving the economy described in Section 3.1.1; in total we have 45 parameters. The
model ought to fit zero-coupon yields of the respective currencies, represent the joint evolu-
tion of the latent state variables with the foreign exchange rate, as well as predict changes in
the log spot rate. The observed data are seven US zero-yields y = {y, }, where y, = (y; ;1 1,
Ye443m> Ytgroms Y1y Yeeroy Yeersy yt,t+4y)TD and D = diag(12,---,1/4), seven foreign
zero-yields y* with the same maturities, and the log exchange rate s;. We assume that
the exchange rate is observed without error and that the yields are observed with cross-
sectionally and intertemporally i.i.d. errors g, ~ MVN(0,X,), and ¢f ~ MVN(0,X,),
respectively. Let § = {g,}, where §, = (Jyyp1ms--- Frssay) D, and §* = {g}, where
Ur = (Jrevrms - Ura Jr4y)TD denote the corresponding model-implied quantities from Egs.

(19)—(20). We assume that the pricing errors enter additively into the pricing equations

Yy =Yy + 0 (D.1)

i =9 + 0 (D.2)

For parsimony we assume that the covariance matrices of the errors are diagonal with
parameters ¢, and ¢*, where ¥, = diag({,--- ,(), and X, = diag(¢*,-- -, (*), respectively.
The predictive equation (5) is implemented for horizons of 1 day, 1 week, 1 month, 3
months, 1 year, and 4 years. With ¢, = (&1441d,- - - Et4+4y) We specify the covariance
matrix of the forecast errors Y., = V¥ [,] in the predictive regression such that it reflects
the cross-sectional covariance structure of the model. Appendix B.2 derives how it can be
computed as a function of state variables and the model parameters. We specify the errors
to be normally distributed with mean zero and these model-implied covariances.
Estimation is performed using Bayesian methodology where we employ the usual un-

informed prior
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146, admissible} 0, € R
71'((9@) XX ) (D_3>

1 o
{6; admissible}
O sdmivitle) g ¢ R,

We sample from the posterior distribution

p(X,0 | y,y%s) <ply,y* | Z,0)p(Z | 0)n(0) (D.4)

by in turn drawing from (Hammersley and Clifford, 1970)

p(X |y, vy, s,0) xply,y* | Z,0)p(Z|0)

and

p(0]y,y* s, X) xply,y* | Z,0)p(Z | 0)m(0)

using MCMC methods.? Denote with ¢(z;v,Q) the density of the multivariate normal
distribution with mean v and covariance 2. We approximate transition densities p(Z; |
Zy—1,0) with a normal distribution, which has been shown previously to perform well in

likelihood-based inference.?® With this approximation we obtain p(Z | §) in density (D.4)

N N
n=2 n=2
and also
N
Py | 2,0) = [ ¢ (Wi U So) & Wi 05 Sr) & (2050, 2c,) -
n=1

Due to the high-dimensional and nonlinear nature of the problem we sample the pa-
rameters and the latent states using Metropolis-Hastings steps with random walk proposal

densities. By construction this proposal yields autocorrelated draws. We therefore gener-

A comprehensive reference for MCMC methods in finance is Johannes and Polson (2009).

30We approximate p(Z; | Zi_1,0) =~ ¢(Z;EF [Z, | Zi 1], VY [Zy | Zi—1]), where mean EF [Z; | Z;_41] and
covariance V§ [Z; | Z;_1] are the first two (true) conditional moments, which are again computed using
formula (B.3) in Appendix B.1. An alternative likelihood approximation is developed in Ait-Sahalia (2008).
It has been used successfully in connection with affine term structure models in Ait-Sahalia and Kimmel
(2010) and with affine equity models in Alt-Sahalia and Kimmel (2007) within a maximum likelihood
context. An adaption of MCMC algorithms to use closed-form likelihood approximations within Bayesian
methodology is presented in Stramer et al. (2010).
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ate 10,000,000 samples of which we discard the first 5,000,000. From the remaining draws
we take every 1,000th draw to obtain (approximately) independent draws from the pos-
terior distribution. We report parameter estimates of the models in the separate Internet

Appendix in Section AA.

E Block Bootstrap Procedure

We use the tests proposed by Clark and West (2007) and Giacomini and White (2006) to
assess the predictive ability of the model. The null hypothesis of the C'W test is that the
nested models have equal (adjusted) mean squared errors; under the alternative hypothesis
the larger model exploits (additional) predictive information and has a lower mean squared
error. The null hypothesis of the GIW test is that the models have equal conditional predic-
tive ability; the test statistic is based on the series of squared prediction error differentials.
The bootstrap procedure described below computes how often an economy in which there
is no predictability would produce as much predictability as found in actual data.
Specifically, we impose a data generating process of no predictability. We consider
an overlapping block resampling scheme which can handle serial correlation and also
heteroscedasticity; see e.g. Kiinsch (1989), Hall et al. (1995), Politis and White (2004),
Patton et al. (2009). Let y; be the dependent variable and %, the prediction of that vari-

able, and proceed as follows:

1. Run the regression of form y; = a+ [y, +¢;, compute the CW and GW test-statistics,

and set y; = &;.

2. Form an artificial sample S} = (y;,y;) by randomly sampling, with replacement, b

overlapping blocks of length [ from the sample (7, ;).

3. Run the regression yf = o + §*y; + ¢;, and compute the CW™* and GW* test-

statistics.
4. Repeat steps 2 and 3 5,000 times.
5. Determine the one-sided p-values of the two test-statistics by computing the propor-

tional number of times that CW* > CW and GW* > GW.
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Table 1: Descriptive Statistics of Exchange Rate Changes

Log exchange rate returns are based on non-overlapping observations for horizons up to 1 month and on monthly
frequency for horizons of 3 months and beyond. All figures are annualized. N denotes the number of observations.
AC(T — t) denotes the autocorrelation for the lag being equal to the horizon. The sample periods are October 12,
1994 to October 10, 2008 for AUD; June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to October
10, 2008 for CHF, DEM-EUR, GBP, and JPY.

1 day 1 week 1 month 3 months 1 year 4 years
AUD
N 2632 527 120 120 120 120
Mean 0.0042 0.0061 0.0065 0.0025 0.0020 0.0089
Std Dev 0.1048 0.1012 0.0962 0.1009 0.1193 0.1311
Skewness —0.1745 —0.3243 —0.1458 —0.0555 0.0146 —0.1600
Kurtosis 6.3153 3.6681 2.9266 2.9369 2.5032 1.6528
AC(T —t) 0.0050 —0.0063 0.1390 0.0776 0.1909 —0.2202
CAD
N 2989 598 136 136 136 136
Mean 0.0049 0.0055 0.0045 0.0041 0.0077 0.0168
Std Dev 0.0592 0.0601 0.0586 0.0600 0.0607 0.0817
Skewness 0.1058 0.0807 0.2504 0.6931 0.7804 0.3879
Kurtosis 5.2707 3.7735 3.1555 3.9702 3.2926 1.5467
AC(T —t)  —0.0065 —0.0902 0.0951 0.0312 0.2476 0.3284
CHF
N 3954 791 180 180 180 180
Mean 0.0234 0.0230 0.0239 0.0222 0.0138 0.0122
Std Dev 0.1134 0.1151 0.1131 0.1174 0.1100 0.0929
Skewness 0.1323 —0.0520 —0.0506 —0.1887 0.0220 —0.3004
Kurtosis 4.8408 3.9049 3.4349 2.8253 2.2132 2.2479
AC(T —1t) 0.0098 —0.0370 0.0899 —0.0864 —0.0380 —0.5532
DEM-EUR
N 3954 791 180 180 180 180
Mean 0.0167 0.0165 0.0170 0.0151 0.0077 0.0072
Std Dev 0.1043 0.1061 0.1044 0.1109 0.1080 0.1042
Skewness 0.0218 —0.1681 —0.1188 —0.1078 0.1037 —0.1305
Kurtosis 4.6383 3.7138 3.6990 2.6264 2.0779 1.9378
AC(T —t) 0.0149 —0.0175 0.1361 —0.0764 0.0383 —0.4480
GBP
N 3954 791 180 180 180 180
Mean 0.0109 0.0105 0.0109 0.0114 0.0071 0.0067
Std Dev 0.0897 0.0960 0.0960 0.0983 0.0876 0.0693
Skewness —0.1615 —0.8473 —1.0329 —1.1814 —0.3579 —0.0093
Kurtosis 5.6681 8.8557 6.5192 8.1755 3.5891 1.9332
AC(T —t) 0.0587 0.0211 0.0772 —0.0528 —0.0481 —0.4144
JPY
N 3954 791 180 180 180 180
Mean 0.0209 0.0208 0.0222 0.0212 0.0207 0.0106
Std Dev 0.1103 0.1178 0.1118 0.1206 0.1054 0.0879
Skewness 0.5513 0.9126 0.4784 0.3244 —0.4827 0.2869
Kurtosis 7.5747 8.6013 4.0976 3.5989 2.5784 3.3482
AC(T —t) 0.0282 —0.0728 0.0927 —0.0405 0.0882 —0.6362
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Table 2: Descriptive Statistics of Yield Differentials

The results are based on non-overlapping observations for horizons up to 1 month and on monthly frequency for
horizons of 3 months and beyond. All figures are annualized. N denotes the number of observations. AC(T —t) denotes
the autocorrelation for the lag being equal to the horizon. The sample periods are October 12, 1994 to October 10,
2008 for AUD; June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF,
DEM-EUR, GBP, and JPY.

1 day 1 week 1 month 3 month 1 year 4 years
AUD
N 2632 527 120 120 120 120
Mean —0.0131 —0.0131 —0.0131 —0.0128 —0.0119 —0.0100
Std Dev 0.0010 0.0023 0.0048 0.0084 0.0162 0.0214
Skewness —0.3051 —0.3061 —0.3349 —0.3190 —0.2261 —0.0673
Kurtosis 1.7540 1.7549 1.7769 1.7445 1.6728 1.4826
AC(T —t) 0.9994 0.9969 0.9852 0.9630 0.7311 —0.7606
CAD
N 2989 598 136 136 136 136
Mean —0.0007 —0.0007 —0.0007 —0.0009 —0.0016 —0.0022
Std Dev 0.0007 0.0017 0.0035 0.0060 0.0110 0.0163
Skewness 0.3745 0.3753 0.3558 0.3259 0.2664 —0.2217
Kurtosis 2.4859 2.4823 2.5052 2.5196 2.5426 2.1107
AC(T —t) 0.9981 0.9929 0.9639 0.8690 0.4487 —0.5120
CHF
N 3954 791 180 180 180 180
Mean 0.0112 0.0112 0.0112 0.0113 0.0130 0.0184
Std Dev 0.0016 0.0035 0.0074 0.0125 0.0214 0.0247
Skewness —0.5354 —0.5367 —0.5466 —0.5492 —0.4674 —0.4514
Kurtosis 2.4617 2.4654 2.493 2.5214 2.5549 3.0721
AC(T —t) 0.9995 0.9978 0.9900 0.9650 0.7859 —0.4463
DEM-EUR
N 3954 791 180 180 180 180
Mean —0.0033 —0.0033 —0.0032 —0.0028 —0.0008 0.0034
Std Dev 0.0016 0.0035 0.0074 0.0125 0.0213 0.0235
Skewness —0.7088 —0.7087 —0.7178 —0.6905 —0.5951 —0.4391
Kurtosis 2.5272 2.5248 2.5444 2.5393 2.5838 2.9784
AC(T —t) 0.9998 0.9988 0.9936 0.9730 0.7332 —0.4389
GBP
N 3954 791 180 180 180 180
Mean —0.0239 —0.0239 —0.0238 —0.0235 —0.0209 —0.0134
Std Dev 0.0014 0.0031 0.0065 0.0109 0.0181 0.0228
Skewness —0.7826 —0.7731 —0.7769 —0.7799 —0.7458 —0.5988
Kurtosis 2.4733 2.4506 2.4422 2.4927 2.6521 2.8806
AC(T —t) 0.9991 0.9964 0.9859 0.9549 0.6958 —0.0064
JPY
N 3954 791 180 180 180 180
Mean 0.0262 0.0262 0.0263 0.0269 0.0292 0.0333
Std Dev 0.0015 0.0034 0.0071 0.0121 0.0221 0.0319
Skewness —0.1771 —0.1774 —0.1777 —0.1353 —0.0510 —0.1614
Kurtosis 1.7206 1.7215 1.7298 1.6821 1.6267 1.8823
AC(T —t) 0.9997 0.9981 0.9918 0.9745 0.7942 —0.1129
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Table 3: Fama Regressions

The table shows the results from estimating, by ordinary least squares, the Fama regression (1),
Asyr = a+ By, r — Yrr) + e, for the horizons indicated in the column headers. Values in parentheses are
asymptotic autocorrelation and heteroscedasticity consistent standard errors following Newey and West (1987).
t[8 = 1] is the t-statistic for testing 3 = 1. R? is the in-sample coefficient of determination. *, **, and *** indicate
significance at the 10%, 5%, and 1% levels, respectively. The results are based on non-overlapping observations for
horizons up to 1 month and on monthly frequency for horizons of 3 months and beyond. The sample periods are
October 12, 1994 to October 10, 2008 for AUD; June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989

to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

1 day 1 week 1 month 3 months 1 year 4 years
AUD
o —0.0003 —0.0013 —0.0057* —0.0176"*  —0.0582** 0.0052
se(a) (0.0002) (0.0008) (0.0032) (0.0069) (0.0269) (0.1364)
I} —5.5010"**  —5.6732*** —5.6021"** —5.5060"** —5.0384*** —0.7535
se(f) (1.9883) (1.9086) (1.7643) (1.8159) (1.3612) (1.2085)
t[p = 1] [-3.27] [-3.50] [-3.74] [-3.58] [-4.44] [-1.45]
R? 0.0029 0.0166 0.0787 0.2097 0.4709 0.0151
CAD
@ 0.0000 0.0001 0.0002 0.0004 0.0026 0.0635
se(«) (0.0001) (0.0003) (0.0015) (0.0035) (0.0102) (0.0765)
15} —3.4228**  —3.4443**  —2.8355"*  —2.9106""* —3.0959*** —0.4018
se(f) (1.4524) (1.4718) (1.4214) (1.0993) (0.9108) (1.2704)
t[p = 1] [-3.05] [-3.02] [-2.70] [-3.56] [-4.50] [-1.10]
R? 0.0019 0.0091 0.0288 0.0852 0.3144 0.0065
CHF
o 0.0002** 0.0008 0.0035 0.0098 0.032 0.1296***
se(a) (0.0001) (0.0006) (0.0027) (0.0086) (0.0273) (0.0423)
16 —1.4813 —1.419 —1.4412 —1.3672 —1.3929 —1.0922
se(() (1.1402) (1.1567) (1.1429) (1.2871) (1.0399) (0.7152)
t[p =1] [-2.18] [-2.09] [-2.14] [-1.84] [-2.30] [-2.93]
R? 0.0004 0.0019 0.0089 0.0211 0.0736 0.0845
DEM-EUR
@ 0.0001 0.0003 0.0012 0.0032 0.0064 0.0419
se(a) (0.0001) (0.0005) (0.0023) (0.0059) (0.0204) (0.0768)
Ié) —0.6817 —0.6919 —0.8104 —1.0400 —1.6348 —0.9614
se() (1.0521) (1.0695) (1.0568) (1.131) (1.1785) (0.8931)
t[p = 1] [-1.60] [-1.58] [-1.71] [-1.80] [-2.24] [-2.20]
R? 0.0001 0.0005 0.0033 0.0138 0.1035 0.0471
GBP
o 0.0001 0.0003 0.0013 0.0041 0.0131 0.1118*
se(a) (0.0001) (0.0007) (0.0031) (0.0068) (0.0245) (0.0632)
15} 0.2833 0.2496 0.1932 0.1842 0.2879 1.5835%**
se(() (1.0295) (1.1018) (1.1073) (1.5776) (1.3194) (0.4945)
t[p =1] [-0.70] [-0.68] [-0.73] [-0.52] [-0.54] [1.18]
R? 0.0000 0.0001 0.0002 0.0004 0.0036 0.2715
JPY
@ 0.0003 0.0014 0.0066* 0.0205** 0.0933*** 0.1764
se(a) (0.0002) (0.0009) (0.0036) (0.0082) (0.0155) (0.1174)
15} —1.9643* —1.9416 —2.0449* —2.152** —2.4908**  —1.0064*
se(3) (1.1533) (1.2303) (1.1661) (1.0076) (0.7335) (0.6056)
t[p = 1] [-2.57] [-2.39] [-2.61] [-3.13] [-4.76] [-3.31]
R? 0.0007 0.0031 0.017 0.0467 0.2731 0.1331
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Table 4: Yield Pricing Errors

The table reports annualized root mean squared errors in basis points for the domestic US T-period yields (Panel A)
and the respective foreign yields (Panel B). The rows indicate the model estimated, the column headers indicate the
yield maturities T. The results are based on daily observations for the sample periods October 12, 1994 to October
10, 2008 for AUD; June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF,
DEM-EUR, GBP, and JPY.

Panel A: US Yields

1 month 3 months 6 months 1 year 2 years 3 years 4 years

Model AUD 3 3 6 10 10 12 19
Model CAD 3 3 6 10 9 12 17
Model CHF 3 3 ) 10 9 11 17
Model DEM-EUR 3 3 5 11 10 11 18
Model GBP 3 3 ) 11 11 11 19
Model JPY 9 11 10 15 34 51 66

Panel B: Foreign Yields

1 month 3 months 6 months 1 year 2 years 3 years 4 years

Model AUD 6 7 8 15 17 24 37
Model CAD 7 8 9 16 23 35 54
Model CHF 7 8 8 12 25 37 49
Model DEM-EUR 8 10 10 15 33 47 64
Model GBP 9 9 10 23 34 50 74
Model JPY 4 3 4 10 12 11 19

52



Table 5: Interpretation of Latent State Variables: US Risk Factors and Carry Risk Factors

The table reports results related to the three factor rotations discussed in Section 4.3.2. For each rotation, we report
the correlation (in percentage points) of the model-implied variables to the respective model-independent estimates in
blocks of four columns each: the first two columns report results for the US short rate level (r;), the slope (), and the
level differential (r; —r}) implied from the model. V; and U; are the corresponding quadratic variations. In the rows, L,
denotes the model-free estimate of the US short rate level, Si; the estimate for the slope, and L; — L} for the short rate
differential. QV;[-] denotes the respective quadratic variation. In the last two rows and columns we report correlations
to Q-expected depreciation (EZ [ds]) and to the model-implied variance of the exchange rate (QV;[ds]). Coefficients
of 100% represent correlations greater than 99.5% for space reasons indicate The results are based on parameter and
states variable estimates of the model using daily data from October 12, 1994 to October 10, 2008 for AUD; June
1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

Rotation 1 Rotation 2 Rotation 3

T it Vi Uy T re —Tf Vi U re —1f Tt Vi Ut ]E(t@ [ds]  QVilds]
AUD
L+ 99.7 -5.0 49.4 58.5 99.7 -38.7 49.4 42.2 82.7 15.8 30.1 29.9 83.0 33.6
Sl -11.5 55.8 32.6 38.2 -8.7 22.6
Ly — L} 84.6 -9.2 15.8 1.6 97.0 13.0 -17.3 -17.7 97.4 -12.3
QVi[L] 28.5 28.1 20.6 42.4 28.5 32.6 20.6 6.5 43.1 2.8 -14.0 -144 43.2 -8.5
QVi[5]] 44.5 31.3 52.0 57.4 40.5 33.3
QVi[L — L*] 45.5 -3.8 -6.8 -19.9 60.0 1.6 -36.1 -36.4 60.1 -32.1
]E(? [ds] 83.8 -11.0 13.9 42.3 83.8 -6.7 13.9 -0.1 100.0 -2.4 -18.8  -19.1 100.0 -13.9
QVi[ds] 32.2 57.1 92.7 68.8 32.2 -7.3 92.7 98.2 -13.4 -2.8 99.8 99.7 -13.9 100.0
CAD
Lt 99.7 -3.5 -66.3  -72.8 99.7 -55.0 -66.3 -73.3 54.0 11.8 -73.3 -73.3 58.7 -72.9
Sl+ -12.7  61.3 -16.5 -31.7 1.3 -26.5
Ly — L} 64.0 0.6 -93.3  -T4.7 84.1 9.3 -75.0 -74.8 90.2 -80.7
QV:[L] 31.6 19.3  -21.3 -34.2 31.6 -8.4 -21.3  -32.2 12.7 2.5 -32.0 -32.1 13.5 -30.0
QVi[5]] 50.1 27.1  -28.5 -50.8 16.0 -43.3
QVi[L — L*] 34.6 -43.7 4.7 -5.1 -4.8 2.6 -5.0 -5.1 -4.7 -2.8
]E? [ds] 59.0 8.4 -89.2  -63.0 59.0 13.8 -89.2  -70.6 98.9 -27.5  -71.0 -70.7 100.0 -76.6
QVi[ds] -72.8 -53.5 94.5 97.4 | -72.8 -12.7 94.5 99.4 -71.4 -10.4  99.5 99.4 -76.6 100.0
CHF
Ly 99.9 -15.1 25.6 10.8 99.9 -49.6 25.6 22.8 20.9 8.7 32.8 33.1 20.6 29.1
Slt -22.6  86.2 -32.7 -38.8 20.8 -31.0
Ly — Ly 22.8 64.5 -87.6 -88.9 99.0 -4.6 -83.8 -83.6 99.1 -85.9
QVi[L] 27.2 -6.3 65.8 60.5 27.2 -60.2 65.8 64.9 -51.0 7.8 67.7 67.7 -51.1 66.8
QV:[S] 26.1 -5.5 59.4 54.3 -45.6 60.3
QVi[L — L*] 41.8 -74.9 74.2 73.1 -53.0 12.6 76.6 76.7 -53.2 75.5
]E? [ds] 20.8 172 -89.0 -93.8 20.8 66.7 -89.0 -90.2 100.0 -11.1 -85.2 -85.1 100.0 -87.2
QVi[ds] 29.0 -23.5 99.9 97.3 29.0 -89.1 99.9 99.7 -86.9 7.3 99.9 99.9 -87.2 100.0
DEM-EUR
L+ 99.8 -9.2 33.5 -5.4 99.8 -36.0 33.5 15.1 40.2 6.6 32.5 36.3 40.0 21.9
Sl -22.3 823 -24.2 -36.8 19.3 -28.8
Ly — L} 43.6 57.7 -67.9 -81.1 98.5 -8.5 -68.7 -65.4 98.6 -76.8
QVi[L] 27.3 -4.5 68.7 56.7 27.3 -55.3 68.7 64.4 -44.4 11.8 68.5 69.1 -44.6 66.3
QVi[5]] 26.3 -4.4 62.7 51.3 -39.9 60.4
QVi[L — L*] 12.8 -63.4 75.1 74.4 -60.7 14.8 75.2 74.8 -60.8 75.1
]E? [ds] 40.0 194 -71.2 -92.8 | 40.0 62.1 -71.2  -84.0 100.0 -15.3  -72.1 -68.8 100.0 -79.9
QVi[ds] 22.0 -18.6 98.9 94.6 22.0 -85.2 98.9 99.7 -79.5 11.3 99.1 98.3 -79.9 100.0
GBP
Lt 99.8  -26.5 42.2 17.2 99.8 -66.7 42.2 36.6 -9.1 1.1 37.9 38.1 -10.2 32.5
Slt -21.0 825 -329 -51.2 45.8 -41.2
Ly — L} -11.3 73.8 -91.9 -94.8 96.3 -4.3 -94.2  -94.1 97.4 -96.3
QV:[L] 26.0 2.8 67.0 52.8 26.0 -49.4 67.0 64.8 -50.9 5.1 65.4 65.4 -51.9 62.7
QVi[5]] 25.0 3.8 58.4 44.7 -43.9 54.1
QVi[L — L*] 4.5 -24.8 46.3 45.3 -38.1 1.7 45.6 45.6 -38.9 44.2
]E? [ds] -8.5 38.2  -90.5 -98.3 -8.5 75.1 -90.5  -93.7 99.8 -19.2  -93.1 -93.0 100.0 -95.5
QVids] 31.0 -32.7 98.7 97.3 31.0 -82.0 98.7 99.8 -94.1 3.2 99.6 99.6 -95.5 100.0
JPY
Ly 98.5  -65.1 72.8 63.5 98.5 -60.8 72.8 81.8 30.2 17.5 93.6 88.6 30.3 86.1
Slt -10.7  26.0 134  -10.2 27.8 9.9
Ly — L} 31.6 56.1 84.3 -15.2 98.6 -64.7  26.2 1.9 98.6 67.9
QVi[L] 28.5 -6.8 -19.4  56.0 28.5 -80.7 -19.4  45.7 -50.8 64.6 23.5 37.3 -50.7 -5.1
QV:[S]] 27.6 -9.9 -16.6  50.3 -45.6 -3.7
QVi[L — L*] 31.5 -83.4 -18.5 53.1 -52.1 70.1 29.3 44.3 -51.9 -2.3
]E? [ds] 34.4 -55.4 86.4  -41.2 34.4 55.3 86.4  -11.7 100.0 -66.2  29.8 5.6 100.0 70.8
QVids] 89.2 -64.8 96.3 32.4 89.2 -16.0 96.3 60.0 70.8 -13.2  87.8 73.2 70.8 100.0
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Table 6: Fama Conditions

The table shows the relevant covariances (Cov®) and variances (VF) for the Fama-conditions, Eq. (3). The values
are annualized and multiplied by 10,000. Xt’T is the model-implied risk premium, AS; r denotes the model predicted
exchange rate return. The results are based on non-overlapping observations for horizons up to 1 month and on
monthly frequency for horizons of 3 months and beyond. The sample periods are October 12, 1994 to October 10,
2008 for AUD; June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF,
DEM-EUR, GBP, and JPY.

1 day 1 week 1 month 3 months 1 year 4 years

AUD

Cov® @T, A@,TJ —0.83 —3.32 ~11.39 —29.02 —77.58 —70.87

VP (A5, 1] 0.76 2.99 9.96 25.07 66.02 61.27
CAD

Cov® [N, ASyr|  —019 —0.55 —2.17 —5.80 ~16.97  —34.68

VP (A5, 1] 0.17 0.45 1.73 4.62 13.84 31.49
CHF

Covf [N, ASr|  —037 —1.37 —4.79 —12.34 ~31.07  —25.40

VP [AS,1] 0.33 1.19 4.00 9.98 23.18 17.11
DEM-EUR

Cov® @,T, A@,TJ —0.24 ~1.17 —4.70 ~12.98 —36.80 —36.85

VF A5 7] 0.19 0.93 3.70 10.10 28.15 28.26
GBP

Cov® [N, ASr|  —0.06 —0.30 —1.17 —3.24 ~12.79 —23.47

VP (A5 1] 0.08 0.40 1.52 4.04 14.97 30.92
JPY

Cou® @,T, A@,TJ —0.40 —1.92 —7.33 —18.77 —49.27 —64.57

VP (A, 1] 0.33 1.57 5.80 14.43 36.90 52.87
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Table 7: Regressions of Excess Returns on Expected Excess Returns

The table shows the results from estimating, by ordinary least squares, the regression (23), ER, 1+ = o/ + ' E]\%tyT +7}£7T,
for the horizons indicated in the column headers. Values in parentheses are block-bootstrapped standard errors.

t[B" = 1] is the t-statistic for testing 3’ = 1. R? is the in-sample coefficient of determination. *, ** and *** indicate

significance at the 10%, 5%, and 1% levels, respectively. The results are based on non-overlapping observations for
horizons up to 1 month and on monthly frequency for horizons of 3 months and beyond. The sample periods are
October 12, 1994 to October 10, 2008 for AUD; June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989
to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

1 day 1 week 1 month 3 months 1 year 4 years
AUD
o 0.0000 0.0001 0.0006 —0.0002 —0.0022 —0.0008
se(a) (0.0001) (0.0005) (0.0020) (0.0056) (0.0199) (0.0768)
e 0.6991*** 0.7899*** 0.8429*** 0.9949*** 1.0710*** 0.9674***
se(d) (0.2205) (0.2321) (0.2410) (0.2557) (0.2696) (0.3398)
t[p =1] [-1.36] [-0.91] [-0.65] [-0.02] [0.26] [-0.10]
R? 0.0040 0.0225 0.0974 0.3024 0.6115 0.4348
CAD
o 0.0000 0.0000 —0.0002 —0.0005 0.0006 —0.0033
se(a) (0.0001) (0.0003) (0.0012) (0.0032) (0.0075) (0.0325)
o4 0.6147** 1.0648** 0.9415%** 0.9376™** 1.1202%* 1.0536**
se() (0.2775) (0.2748) (0.2897) (0.2723) (0.1904) (0.2182)
t[g = 1] [-1.39] [0.24] [-0.20] [-0.23] [0.63] [0.25]
R? 0.0023 0.0211 0.0687 0.1680 0.5861 0.6246
CHF
o 0.0000 0.0002 0.0008 0.0015 —0.0032 0.0079
se(a) (0.0001) (0.0006) (0.0022) (0.0061) (0.0179) (0.0347)
e 0.5346™* 0.6430** 0.6969** 0.9428*** 0.8991*** 0.9614***
se(d) (0.2601) (0.3070) (0.3003) (0.2702) (0.3120) (0.2878)
t[p =1] [-1.79] [-1.16] [-1.01] [-0.21] [-0.32] [-0.13]
R? 0.0010 0.0052 0.0228 0.1004 0.2545 0.3457
DEM-EUR
o 0.0001 0.0005 0.0021 0.0051 0.0031 0.0118
se(a) (0.0001) (0.0005) (0.0021) (0.0059) (0.0170) (0.0458)
o4 0.5342* 0.5285* 0.6591** 0.8313*** 0.8960*** 0.8595***
se() (0.2996) (0.3071) (0.3004) (0.2830) (0.3048) (0.2930)
t[e = 1] [-1.55] [-1.54] [-1.13] [-0.60] [-0.34] [-0.48]
R? 0.0008 0.0038 0.0246 0.0941 0.2949 0.3018
GBP
o 0.0001 0.0006 0.0022 0.0051 0.0164 0.0185
se(a) (0.0001) (0.0006) (0.0023) (0.0063) (0.0146) (0.0351)
e —0.0149 0.2083 0.4410 0.6531 0.5146 0.7822%**
se(d) (0.7139) (0.7057) (0.6928) (0.6235) (0.4889) (0.2461)
t[p =1] [-1.42] [-1.12] [-0.81] [-0.56] [-0.99] [-0.88]
R? 0.0000 0.0001 0.0026 0.0157 0.0470 0.3362
JPY
o 0.0000 0.0000 0.0008 0.0027 0.0021 —0.0055
se(a) (0.0001) (0.0006) (0.0023) (0.0054) (0.0175) (0.0231)
e 0.0194 0.1862 0.3990 0.6050*** 0.9421*** 0.9678***
se() (0.2869) (0.2739) (0.2708) (0.2293) (0.2110) (0.1356)
t[e = 1] [-3.42] [-2.97] [-2.22] [-1.72] [-0.27] [-0.24]
R? 0.0000 0.0006 0.0117 0.0587 0.4191 0.7516
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Table 8: Ability to Predict Excess Returns

The table reports results related to the predictive ability of the model as compared to the UIP and RW benchmarks. Hit-ratios (HR) are calculated as the
proportion of times the sign of the excess return is correctly predicted by the model. R2 = 1 — MSEy /MSEp where MSE); denotes the mean squared
prediction error of the model and M SEp that of the benchmark. CW and GW denote the test-statistics of Clark and West (2007) and Giacomini and White
(2006) as described in Section 3.3. The one-sided p-values of the test-statistics in square brackets are obtained from the block bootstrap procedure described
in Appendix E which accounts for autocorrelation and heteroscedasticity. The results are based on non-overlapping observations for horizons up to 1 month
and on monthly frequency for horizons of 3 months and beyond. The sample periods are October 12, 1994 to October 10, 2008 for AUD; June 1, 1993 to
October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

Model vs. UIP Model vs. RW
1d 1w 1m 3m ly 4y 1d 1w 1m 3m ly 4y
AUD
HR 0.5410 0.5769  0.6417 0.7250 0.8333  0.7667 | 0.5410 0.5769  0.6417 0.7250 0.8333  0.7667
R2 0.0041  0.0231  0.1005 0.3062 0.6159 0.4760 | 0.0029  0.0163 0.0701 0.2445 0.5318  0.4080

p-value[CW] | [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] | [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01]
p-value|GW] | [0.152]  [0.051]  [0.027] [<0.01] [<0.01] [<0.01] | [0.228] [0.075] [0.051] [<0.01] [<0.01] [<0.01]

CAD
HR 0.5433  0.5585  0.5662  0.5882  0.7500  0.6250 | 0.5433  0.5585  0.5662  0.5882  0.7500  0.6250
R2 0.0024 0.0213  0.0693 0.1694 0.5939 0.6879 | 0.0011  0.0153  0.0469 0.1120 0.4966  0.6559

p-value[CW] | [0.025] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] | [0.091] [<0.01] [0.015] [0.010] [<0.01] [<0.01]
p-value[GW] | [0.460] [0.173]  [0.216] [0.043] [0.014] [<0.01] | [0.633] [0.254] [0.321] [0.079] [0.039] [<0.01]

CHF
HR 0.5311  0.5373  0.5889  0.6500  0.8167 0.7778 | 0.5311  0.5373  0.5889  0.6500  0.8167  0.7778
R2 0.0010  0.0054 0.0238 0.1023 0.2546 0.3551 | 0.0003 0.0024 0.0104 0.0711 0.1608  0.2505

p-value[CW] | [0.028] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] | [0.090] [0.033] [0.032] [<0.01] [<0.01] [<0.01]
p-value[GW] | [0.414] [0.242] [0.108] [0.021] [0.010] [<0.01] | [0.482] [0.229] [0.223]  [0.038] [0.030] [<0.01]

DEM-EUR
HR 0.5387  0.5626  0.5722  0.6222  0.7889  0.7667 | 0.5387  0.5626  0.5722  0.6222 0.7889  0.7667
R2 0.0010  0.0045 0.0277  0.1000  0.2987  0.3049 | 0.0004  0.0016 0.0141  0.0631 0.1826  0.2127

p-value[CW] | [0.011]  [0.013] [<0.01] [<0.01] [<0.01] [<0.01] | [0.052] [0.056] [0.018] [<0.01] [<0.01] [<0.01]
p-value[GW] | [0.340] [0.211] [0.037] [<0.01] [<0.01] [<0.01] | [0.368] [0.239] [0.072] [0.015] [0.024] [<0.01]

GBP
HR 0.5187  0.5196 0.5444  0.6056  0.6667  0.6778 | 0.5187 0.5196  0.5444  0.6056  0.6667  0.6778
R2 0.0006  0.0027  0.0138  0.0468 0.1346  0.5397 | -0.0000 -0.0001 0.0009 0.0116 0.0361  0.5102

p-value[CW] | [0.174]  [0.104]  [0.062]  [0.029] [0.029] [<0.01] | [0.214] [0.133] [0.107] [0.023] [<0.01] [<0.01]
p-value[GW] | [0.103]  [0.405] [0.261]  [0.126] [0.104] [<0.01] | [0.037] [0.340] [0.332] [0.128] [0.041] [<0.01]

JPY
HR 0.5228  0.5221  0.5556  0.6333  0.7611  0.9722 | 0.5228 0.5221 0.5556  0.6333  0.7611  0.9722
R2 0.0000  0.0006 0.0118 0.0593 0.4221 0.7917 | -0.0008 -0.0029 -0.0053 0.0164 0.2936  0.6725

p-value[CW] | [0.419] [0.206]  [0.048] [<0.01] [<0.01] [<0.01] | [0.916] [0.715] [0.345] [0.073] [<0.01] [<0.01]
p-value|GW] | [0.541] [0.263] [0.124] [0.137] [<0.01] [<0.01] | [0.149] [0.145] [0.181] [0.224] [<0.01] [<0.01]




Table 9: Decomposing Foreign Exchange Risk Premiums

This table reports means and standard deviations (in parentheses) of annualized foreign exchange risk premiums and
their components, i.e. the pure currency risk component and the component that accounts for the fact that interest rates
are stochastic; for the decomposition see Section 2.2, in particular Eq. (8). The descriptives are calculated from daily
model estimates of the risk premiums. The sample periods are October 12, 1994 to October 10, 2008 for AUD; June
1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

1 day 1 week 1 month 3 months 1 year 4 years

AUD
Risk Premium —0.0167 —0.0172 —0.0174 —0.0170 —0.0153 —0.0198
(0.1521) (0.1338) (0.1185) (0.1127) (0.0951) (0.0460)
- Pure currency risk —0.0229 —0.0234 —0.0235 —0.0230 —0.0217 —0.0268
(0.1519) (0.1337) (0.1184) (0.1125) (0.0949) (0.0458)
- Impact of stochastic rates 0.0062 0.0062 0.0060 0.0061 0.0064 0.0070
(0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011)

CAD
Risk Premium —0.0083 —0.0080 —0.0074 —0.0071 —0.0076 —0.0188
(0.0746) (0.0592) (0.0550) (0.0524) (0.0455) (0.0315)
- Pure currency risk —0.0101 —0.0098 —0.0092 —0.0089 —0.0095 —0.0211
(0.0750) (0.0597) (0.0556) (0.0529) (0.0460) (0.0317)
- Impact of stochastic rates 0.0019 0.0019 0.0018 0.0018 0.0019 0.0022
(0.0007) (0.0007) (0.0006) (0.0006) (0.0005) (0.0004)

CHF
Risk Premium —0.0066 —0.0061 —0.0055 —0.0059 —0.0049 0.0083
(0.1045) (0.0921) (0.0837) (0.0790) (0.0662) (0.0316)
- Pure currency risk —0.0149 —0.0144 —0.0135 —0.0139 —0.0130 0.0001
(0.1062) (0.0941) (0.0858) (0.0812) (0.0685) (0.0330)
- Impact of stochastic rates 0.0082 0.0083 0.0080 0.0079 0.0081 0.0082
(0.0046) (0.0046) (0.0044) (0.0043) (0.0039) (0.0026)

DEM-EUR

Risk Premium 0.0082 0.0074 0.0050 0.0014 —0.0067 —0.0012
(0.0886) (0.0882) (0.0850) (0.0819) (0.0705) (0.0356)
- Pure currency risk 0.0023 0.0015 —0.0007 —0.0043 —0.0124 —0.0068
(0.0898) (0.0894) (0.0861) (0.0830) (0.0715) (0.0359)
- Impact of stochastic rates 0.0059 0.0059 0.0057 0.0056 0.0057 0.0056
(0.0026) (0.0026) (0.0025) (0.0024) (0.0022) (0.0016)

GBP
Risk Premium —0.0187 —0.0191 —0.0211 —0.0239 —0.0230 —0.0200
(0.0396) (0.0393) (0.0374) (0.0371) (0.0371) (0.0222)
- Pure currency risk —0.0229 —0.0233 —0.0252 —0.0279 —0.0268 —0.0233
(0.0394) (0.0391) (0.0374) (0.0371) (0.0370) (0.0217)
- Impact of stochastic rates 0.0042 0.0042 0.0041 0.0040 0.0039 0.0033
(0.0020) (0.0019) (0.0019) (0.0018) (0.0016) (0.0010)

JPY
Risk Premium 0.0397 0.0386 0.0343 0.0272 0.0112 0.0220
(0.1116) (0.1102) (0.1031) (0.0970) (0.0814) (0.0465)
- Pure currency risk 0.0316 0.0305 0.0264 0.0192 0.0021 0.0104
(0.1095) (0.1080) (0.1010) (0.0948) (0.0796) (0.0467)
- Impact of stochastic rates 0.0081 0.0081 0.0079 0.0080 0.0090 0.0115
(0.0036) (0.0035) (0.0033) (0.0033) (0.0032) (0.0025)
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Table 10: Correlations of Expected Excess Returns with Financial and Fundamental Variables

The table presents contemporaneous correlations of expected excess returns with the VIX signed by the yield differential
(sVIXy), the l-year log changes in US industrial production (AIP,) and US narrow money supply (ANDM,), the
observable fundamentals, AOF; = (ANM, — ANM}) — (AIP, — AIPY}), and the 1-year log change in CPI deflated
private consumption per capita in the US (sACO;). *, **, and *** indicate significance at the 10%, 5%, and 1% levels,
respectively. The significance is judged by block-bootstrapped standard errors which are not reported. The results are
based on non-overlapping observations for horizons up to 1 month and on monthly frequency for horizons of 3 months
and beyond. The sample periods are October 12, 1994 to October 10, 2008 for AUD; June 1, 1993 to October 10, 2008
for CAD; and September 18, 1989 to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY. Analysis involving the
VIX start in January 1990.

1 day 1 week 1 month 3 months 1 year 4 years

AUD
sVIX, —0.5660"**  —0.6286"**  —0.6920"** —0.7630*** —0.7652***  —0.7294***
AIP, —0.4781**  —0.4893***  —0.5140"** —0.5685***
ANM, 0.5938*** 0.6333** 0.6676** 0.7798***
sACO, —0.7786***  —0.7745***  —0.7205"**
AOF; 0.6842*** 0.6917*** 0.6874***
CAD
sVIX, —0.6124**  —0.8098"**  —0.7999***  —0.8228***  —0.7873*** —0.6773"**
AIP, —0.4795**  —0.5106***  —0.5637*** —0.5963***
ANM, 0.7905%** 0.7866*** 0.7638*** 0.6802***
SACO, —0.7759***  —0.7456***  —0.6507"**
AOF; 0.6792*** 0.7169*** 0.6691*** 0.5499***
CHF
sVIX, —0.3596"**  —0.3803**  —0.4101**  —0.4660**  —0.5536"*  —0.5375"*
AIP, —0.3064**  —0.3661**  —0.4571*** —0.5114***
ANM, 0.7553*** 0.8150*** 0.8727*** 0.8781***
SACOy —0.4251**  —0.5357***  —0.5795"**
AOF; 0.3212 0.3740* 0.3400
DEM-EUR
sVIX, —0.7623***  —0.7666""*  —0.7344***  —0.7632***  —0.7838"** —0.7780"**
AIP, —0.3703***  —0.4055"**  —0.4306™** —0.4414***
ANM, 0.8243*** 0.8471*** 0.8625*** 0.8393***
sACO, —0.7359***  —0.7575***  —0.7771***
AOF; 0.6314*** 0.6793*** 0.6948*** 0.6471***
GBP
sVIX, —0.1359 —0.1489 —0.0979 —0.1888 —0.2985 —0.1588
AIP, —0.2387 —0.3201* —0.3439**  —0.1180
ANM, 0.6558*** 0.7111*** 0.6389*** 0.3176*
sACOy —0.2767 —0.3706***  —0.4078***
AOF; 0.6656*** 0.7138*** 0.6161*** 0.3726**
JPY
sVIX, —0.5929***  —0.5915"**  —0.5715"*" —0.5963* —0.6547**  —0.7079
AIP, —0.5746***  —0.5796***  —0.5794***  —0.5071***
AN M, 0.6986*** 0.7472%** 0.6938*** 0.3707**
sACOq —0.3126" —0.3256**  —0.2732
AOF; 0.5626*** 0.6124*** 0.6548*** 0.6039***
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Table 11: Regressions of Expected Excess Returns on Financial and Fundamental Variables

The table presents results of regressing expected excess returns on the proxies for global risk (VIX signed with the yield differential, sV I1X}), exchange rate fundamentals (observable
fundamentals, AOF, = (ANM, — ANM}) — (AIP,— AIP})), US consumption growth (sACO;), and combinations thereof. Numbers in parentheses are block bootstrapped standard

errors. R? is the in-sample coefficient of determination. *,

* kok

, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. The results are based on non-overlapping

observations for horizons up to 1 month and on quarterly frequency for horizons of 3 months and beyond. The sample periods are October 12, 1994 to October 10, 2008 for AUD;
June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY. Analysis involving the VIX start in January 1990.

Global Risk FX Fundamentals Global Risk and FX Fundamentals Cons. Growth Cons. Growth and FX Fundamentals
1 day 1 month 3 months 1 year 1 month 3 months 1 year 1 month 3 months 1 year 3 months 1 year 3 months 1 year
sVIXy sVIXy sVIXy sVIX; AOF} AOF; AOF; sVIXy AOF, sVIXy AOF; sVIX; AOF; sACO¢ SACO; SACO; AOF: sACOq AOF;
AUD
coeff | —0.0113***—0.0329*** —0.1018*** —0.3340**" 0.2317*** 0.7662** —0.0754™** 0.1398**£(0.2457*** 0.4667**1 —1.0633***—3.4601**1 —0.8508*** 0.1638**£2.7508*** 0.5468***
se (0.0028)  (0.0026) (0.0240)  (0.0827) (0.0883)  (0.2924) (0.0178) (0.0410) (0.0583) (0.1332) (0.2749)  (0.9684) (0.1610) (0.0372) (0.5943) (0.1244)
R2 0.3204 0.4789 0.5822 0.5855 0.4681 0.4784 0.7134  0.7134 0.7221 0.7221 0.6062 0.5998 0.8161 0.8161 0.8183  0.8183
CAD
coeff | —0.0060***—0.0178*** —0.0523*** —0.1685"**" 0.0592***  0.1916*** 0.6020**1 —0.0139*** 0.0364***0.0399*** 0.1170***£0.1307*** 0.3580**1 —0.4978***—1.6104**1 —0.4005*** 0.1141***%1.3173*** 0.3438***
o 5@ (0.0010)  (0.0012) (0.0107)  (0.0394) (0.0130) (0.0532)  (0.2042) (0.0025) (0.0080) (0.0072) (0.0295) (0.0305) (0.1199) (0.1580)  (0.5296) (0.0977) (0.0265) (0.4168) (0.1178)
> R? 0.3750 0.6399 0.6770 0.6199 0.4613 0.5139 0.4477 0.7830 0.7830 0.8308 0.8308 0.7469  0.7469 0.6020 0.5559 0.7798 0.7798  0.6983  0.6983
CHF
coeff | —0.0057** —0.0164*** —0.0527** —0.2076™* 0.0683 0.2622 —0.0449* 0.0278 —0.1816** 0.0938 —0.5555** —2.3086**% —0.4766** 0.0472 —2.0195*** 0.1727
se (0.0026)  (0.0028) (0.0244)  (0.0957) (0.0519)  (0.1821) (0.0240) (0.0457) (0.0854) (0.1407) (0.2294)  (0.7005) (0.2069) (0.0479) (0.6075) (0.1596)
R? 0.1293 0.1681 0.2172 0.3065 0.1032 0.1399 0.2298 0.2298 0.3196  0.3196 0.1807 0.2870 0.2263 0.2263  0.3431 0.3431
DEM-EUR
coeff | —0.0088***—0.0256*** —0.0768*** —0.2649**" 0.0807***  0.2502*** 0.8567**1 —0.0185™** 0.0381**20.0539*** 0.1194**—0.1888*** 0.3969** | —0.7927***—2.7320** —0.5827*** 0.1292**—2.0155** 0.4411**
se (0.0014)  (0.0017) (0.0112)  (0.0422) (0.0129) (0.0433)  (0.1511) (0.0053) (0.0147) (0.0151) (0.0560) (0.0507) (0.1781) (0.1055)  (0.3528) (0.1347) (0.0529) (0.4161) (0.1749)
R2 0.5810 0.5393 0.5824 0.6144 0.3986 0.4615 0.4827 0.5907  0.5907 0.6385 0.6385 0.6694  0.6694 0.5415 0.5738 0.6307 0.6307  0.6664  0.6664
GBP
coeff | —0.0011 —0.0023 —0.0135  —0.0837 0.0228***  0.0749*** 0.2519**1 —0.0012  0.0216***0.0114  0.0730***£0.0765  0.2428**%1 —0.1557 —0.8123**| —0.1614* 0.0640***0.8308*** 0.2093***
se (0.0014)  (0.0016) (0.0227)  (0.0735) (0.0035) (0.0176)  (0.0713) (0.0032) (0.0034) (0.0139) (0.0153) (0.0568) (0.0542) (0.1262)  (0.3829) (0.0839) (0.0160) (0.2613) (0.0606)
R? 0.0185 0.0096 0.0357 0.0891 0.4430 0.5095 0.3796 0.4105 0.4105 0.5137 0.5137  0.4337  0.4337 0.0766 0.1373 0.5023 0.5023  0.4378  0.4378
JPY
coeff | —0.0132***—0.0345*** —0.1033* —0.3734* 0.0540***  0.1664** 0.5885** | —0.0228** 0.0357**%0.0656  0.1135**—0.2468  0.3809** | —0.7193** —2.4775**| —0.5591** 0.1393* —1.8981** 0.5036™
se (0.0043)  (0.0040) (0.0615)  (0.2009) (0.0151) (0.0778)  (0.2672) (0.0113) (0.0133) (0.0606) (0.0572) (0.1931) (0.1903) (0.3490)  (1.1041) (0.2820) (0.0778) (0.8525) (0.2688)
R? 0.3515 0.3266 0.3556 0.4287 0.3165 0.3750 0.4288 0.4245 04245 04785 0.4785  0.5565  0.5565 0.0977 0.1060 0.3741 0.3741 0.4365 0.4365




Figure 1: Interpretation of Latent State Variables: US Risk Factors and Carry Risk Factors

The figure plots the US risk factors and Carry risk factors as described in Section 4.3.2. The solid (black) lines represent model-implied
estimates obtained through factor rotations. The dashed lines (red) are the corresponding model-independent estimates. The first column
plots the US short rate level from Rotations 1 and 2, the second the US slope from Rotation 1, the third the carry factor from Rotation 2,
and the fourth the carry factor from Rotation 3. Estimations are based on daily data from October 12, 1994 to October 10, 2008 for AUD;
June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

US Level Factor US Slope Factor Carry Factor Carry Factor
(Rotations 1 & 2) (Rotation 1) (Rotation 2) (Rotation 3)
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Internet Appendix for

“Properties of Foreign Exchange Risk Premiums”
(not for publication)

This separate Internet Appendix first reports and discusses detailed empirical results
related to parameter estimations. We then present a number of Tables which are discussed

and referenced in the main text but are not included in the paper.

AA Details Related to Model Estimation Results

We present the parameter estimates for the two-country models of the US and the six
foreign countries estimated using the zero yields of the two countries and the respective
spot exchange rate applying the procedure described in Section 3.2. Tables A.1 to A.6
report point estimates and corresponding 95 percent confidence intervals. Point estimates
are computed as the draw from the posterior distribution with minimal L1 distance to the
other draws. Confidence intervals are computed from the empirical posterior distribution.
All confidence intervals are fairly tight, only for 9 of the 264 parameters we report the
confidence interval includes zero and most of these are significant at the 10 percent level.

We conduct further checks to validate the accuracy of the estimation results. At first
sight, some of the stochastic volatility parameters (5 and 7) appear large and as an addi-
tional plausibility check we compare model-implied quadratic variations of the short rate
and the instantaneous exchange rate return to their empirical counterparts. The results
in Panel A of Table A.7 reveal that the levels of implied and observed variations are very
similar.

We also show that the properties of model-implied US bond risk premiums are con-
sistent with those reported in other studies. Duffee (2002) demonstrates that affine term
structure models can replicate observed term structure characteristics only if the speci-
fication of the market price of risk is flexible enough. A first check reveals that the risk
premiums implied by the model change signs and are highly variable, a necessary condition
to match the observed data. Following Duffee (2002), we assess the specification of the

market price of risk by analyzing whether the model is capable to replicate the empirical
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relation between expected returns and the slope of the yield curve. We generate yield pre-
dictions for maturities of 6 months, 2 years, and 4 years (the longest maturity in our data
set) at prediction horizons of 3 months, 6 months, and 1 year, and regress the prediction
errors on the slope defined as the 4-year minus the 3-month yield. Panel B of Table A.7
shows that the t-statistics are small with only a few exceptions which implies that the
model captures the information contained in the slope. Overall, the results suggest that
the market price of risk specification is indeed consistent with the prevailing literature on

US term structure risk premiums.
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Table A.1: AUD Model Parameters

The table shows parameter estimates for the AUD data set. Point estimates are computed as the draw from
the posterior distribution with minimal L1 distance to the other draws. Confidence intervals are computed
from the empirical posterior distribution.

Parameter Point Estimate 2.5% quantile 97.5% quantile
¢ 0.0009 0.0008 0.0009

¢ 0.0015 0.0015 0.0015

5 3945.8700 1064.9200 5327.0700

fBa 7218.8000 6402.5400 8345.5400

Y 124.9850 16.1548 1976.2000

Y2 94173.0000 91804.1000 95765.3000

% —0.0054 —0.0061 —0.0050

Yo —0.0000 —0.0007 0.0008

Y3 0.0000 0.0000 0.0000

¥, —0.0000 —0.0000 —0.0000

ab 0.6289 0.5062 1.1658

ah 0.6526 0.5073 1.5410

al ~193.6010 —215.1030 ~174.1270

aly —101.8440 ~131.1690 —67.1335

bh, —0.0049 —0.0581 —0.0005

b5, 0.7347 0.5389 1.0467

b5, —0.2674 —0.3727 ~0.2017

by, —257.3190 —288.8670 —245.2310

bly 93.0770 88.7177 105.7550

bls —0.3096 —0.3570 —0.2367

by, —168.6240 —212.0130 —148.0130

by 22.5160 14.2609 34.0064

by 12.7164 12.2719 13.4160

by —76.8625 —79.7563 —74.9951

al 17.8304 17.4561 18.8995

ag 0.5334 0.5008 0.5918

b2 —0.7539 —0.7913 —0.7338

b3, 0.1902 0.1718 0.2058

b —0.0138 —0.0188 —0.0094

b3 219.0930 214.0410 220.3490

b3, —43.1930 —43.7912 —42.1947
b —0.5065 —0.5188 —0.4870

b3 14.2100 9.2637 14.1644

b, 5.1591 2.9440 6.3413
by 10.0722 9.7209 10.5316
b, —66.5951 —66.8218 —66.5717

5o L.OTE—04 6.74E—06 6.28E—04
5, ~1.33E-03  —1.40E-03  —1.286—03
5y 8.15E—04 7.96E—04 8.55 E—04
Oy 8.67E—06 8.55E—06 8.71E—06
5 2.21E—04 5.82E—06 7.77TE—04
5t ~1.27TE-03  —1.30E—03  —1.23E-03
53 1.18E—03 1.17E—03 1.22E-03
o} 1.55E—05 1.52E—-05 1.56 E—05
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Table A.2: CAD Model Parameters

The table shows parameter estimates for the CAD data set. Point estimates are computed as the draw from
the posterior distribution with minimal L1 distance to the other draws. Confidence intervals are computed
from the empirical posterior distribution.

Parameter Point Estimate 2.5% quantile 97.5% quantile

¢ 0.0008 0.0008 0.0008
¢* 0.0019 0.0019 0.0020
B 8.8785 7.3745 10.9926
Bs 9.1753 6.6249 11.3678
Y 56999.7000 56461.6000 57182.7000
Y2 15979.8000 15840.0000 17406.1000
N 0.0008 —0.0008 0.0012
DI —0.0066 —0.0071 —0.0052
A 0.0017 0.0016 0.0020
¥y —0.0001 —0.0001 —0.0001
ay 4.1751 3.6036 5.2474
ah 5.8534 4.4874 6.9351
ay —108.8080 —114.4710 —99.2117
aly 65.7446 54.3099 72.2453
bE, —0.5467 —0.7063 —0.4303
b5, 0.0213 0.0008 0.0767
b5, ~1.3170 —1.4719 —1.0494
b5, —1.0493 —1.9556 0.1114
b5, 16.1108 14.5503 17.5721
bE, —0.1661 —0.2292 —0.1007
by, 147.9280 146.2700 200.2120
by 163.0730 143.6460 171.8130
b, 447.1020 435.8450 464.9060
b, —220.3550 —227.3720 —212.8180
al 3.1116 3.0477 3.2396
ad 1.3518 1.2708 1.3920
bY —0.5245 —0.5438 —0.5161
b3 0.0014 0.0000 0.0035
b3, —0.1073 —0.1142 —0.1016
b3 —12.1488 —12.1899 —11.7413
bY, 2.8612 2.6061 2.9571
b —0.7100 —0.7265 —0.6883
b3 —29.4461 —30.3831 ~17.0176
bd, —45.9201 —49.5772 —44.1277
b 367.3170 363.1390 370.3030
by, —191.1730 —191.7990 —187.4800
5 9.76 E—02 9.71E—02 9.92E—02
5, ~3.03E-05  —1.26E—04 6.62E—05
5y 945E—05  —2.13E—05 1.76 E—04
55 4.07E—04 4.04E—04 4.22 E—04
5 5.39F—02 5.33E—02 5.55E—02
5t 2.16E—-03 2.05E—-03 2.24E-03
83 4.15E—03 4.05E—03 4.45E—03
o 1.86 E—04 1.84E—04 1.93E—04
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Table A.3: CHF Model Parameters

The table shows parameter estimates for the CHF data set. Point estimates are computed as the draw from
the posterior distribution with minimal L1 distance to the other draws. Confidence intervals are computed
from the empirical posterior distribution.

Parameter Point Estimate 2.5% quantile 97.5% quantile

¢ 0.0008 0.0008 0.0008
¢* 0.0019 0.0019 0.0019
B 1089.9000 1019.6000 1595.0700
Ba 774.9630 492.9500 880.3900
Y 84422.8000 83847.2000 85020.9000
Y2 113087.0000  112107.0000  113172.0000
5 0.0104 0.0087 0.0115
Sy 0.0010 —0.0008 0.0021
A 0.0003 0.0003 0.0003
%y —0.0001 —0.0001 —0.0001
ay 9.4311 7.8729 11.1957
ah 2.7025 1.5711 4.3386
al —881.0210 —917.5050 —856.4220
aly 402.4230 392.9370 419.1870
bE, —0.9812 ~1.1133 —0.8642
b5, 0.0068 0.0002 0.0259
b5, —0.4022 —0.5408 —0.2992
b5, —140.0270 —148.4500 ~130.9710
bl 84.9015 77.2622 88.2037
bE, —1.4743 —1.5142 ~1.3515
by, 188.7960 181.1880 198.8390
by —222.9010 —237.4920 —214.3050
by 66.8164 65.5973 69.7816
by, —106.5780 —111.6860 —105.0680
al 5.8042 5.7219 5.9142
ad 4.8991 4.6643 5.0358
bY —0.6038 ~0.6107 —0.5987
b3, 0.0010 0.0000 0.0016
b, —0.2122 —0.2154 —0.2103
b3 —140.5590 —142.6140 —139.4780
b3, 75.0871 74.5818 79.1018
b —0.9140 —0.9249 —0.9064
b3 17.7682 16.4450 19.0031
bY —12.6246 —14.5794 —10.5460
b 60.2569 59.2545 60.8944
by, —97.8089 —98.6446 —97.5368
5 7.54E—02 7.48E—02 7.64E—02
5, 776E—06  —4.38E—05 3.97E—05
5y —2.83E-04  —3.02E—-04  —2.68E—04
55 3.35E—05 3.34E—05 3.36 505
5 2.37TE—05 5.55E—07 8.38E—05
57 1.63E—-03 1.60E—03 1.65E—03
53 1.45E—03 1.42E—03 1.55E—03
53 2.07E—05 2.04E—05 2.09E—05
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Table A.4: DEM-EUR Model Parameters

The table shows parameter estimates for the DEM-EUR data set. Point estimates are computed as the
draw from the posterior distribution with minimal L1 distance to the other draws. Confidence intervals are
computed from the empirical posterior distribution.

Parameter Point Estimate 2.5% quantile 97.5% quantile

¢ 0.0009 0.0008 0.0009
¢* 0.0024 0.0023 0.0024
B 882.5680 459.1370 934.3260
Bs 1074.9200 991.9040 1337.9900
Y 84726.4000 83971.7000 84942.0000
Y2 114691.0000  114280.0000  115001.0000
¥ 0.0154 0.0145 0.0169
Sy 0.0050 0.0043 0.0070
A 0.0002 0.0002 0.0002
%y —0.0001 —0.0001 —0.0000
af 3.5550 2.3926 3.9369
ah 0.9073 0.5428 1.8332
al —670.3850 —679.2770 —644.4510
aly 318.5340 311.0800 324.4080
bE, —1.0044 —1.0937 —0.8944
b5, 0.0021 0.0001 0.0156
b5, —0.0018 —0.0164 —0.0001
b5, —56.5448 —62.3560 —44.9247
b5, 44.1639 41.0341 48.0625
bE, —0.9645 —1.0206 —0.8544
by, 179.8400 162.2240 200.5020
by —193.4750 —201.6950 ~180.5390
by 59.7758 55.1904 60.9749
by, —88.6530 —91.1689 —83.5696
al 4.4062 4.3022 4.4802
ad 4.1133 3.9891 4.2511
bY —0.6916 —0.6966 —0.6831
b3, 0.0003 0.0000 0.0011
b —0.0976 —0.0996 —0.0940
b3 —120.9930 —121.8150 —120.0630
b, 57.8475 56.1198 58.7773
b —1.0489 ~1.0551 ~1.0290
b3 17.3027 16.4805 19.3163
bY 0.2710 —2.1334 1.6969
b 56.5762 54.4855 57.1519
by, —89.6759 —89.8414 —89.2115
5 5.25E—02 5.25E—02 5.33E—02
5, —1.60E—04  —2.18E—04  —1.36E—04
8y 1.25E—05  —1.75E—05 1.79E—05
55 3.27TE—05 3.24E—05 3.30E—05
5 1.49E—05 2.70E—07 7.78E—05
57 2.69E—03 2.64E—03 2.75E—03
83 1.41E—03 1.38E—03 1.44E—03
53 1.97E—05 1.95E—05 2.03E—05
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Table A.5: GBP Model Parameters

The table shows parameter estimates for the GBP data set. Point estimates are computed as the draw from
the posterior distribution with minimal L1 distance to the other draws. Confidence intervals are computed
from the empirical posterior distribution.

Parameter Point Estimate 2.5% quantile 97.5% quantile

¢ 0.0009 0.0008 0.0009
¢ 0.0026 0.0026 0.0026
3 183.4170 20.9248 650.3200
Bs 633.9690 515.4800 751.1730
Y 57912.7000 57391.9000 58294.4000
Y2 74981.2000 74400.8000 75048.4000
¥ 0.0120 0.0106 0.0129
¥y 0.0044 0.0040 0.0051
A 0.0001 0.0001 0.0001
%y —0.0000 —0.0000 —0.0000
af 5.4736 4.8151 5.9215
ah 0.5409 0.5068 1.3256
al —683.4750 —710.9810 —672.9920
aly —291.8470 —315.4370 —271.6110
bE, —1.4459 ~1.5097 —1.3147
b5, 3.8638 3.5038 4.4227
b5, ~1.3794 ~1.5159 —1.2520
b5, —161.5000 —169.3630 —148.2510
b, 77.2220 70.1285 82.8690
bE, —0.7799 —0.8441 —0.6852
be, 291.5330 275.6010 301.0580
by —185.7750 —191.5280 —174.5420
b, 94.4833 89.8578 97.1711
by, —183.5080 —190.4420 —178.7140
al 3.3095 3.1992 3.4611
ad 6.0921 5.7417 6.3318
bY —0.6272 —0.6433 —0.6156
b3 0.0096 0.0006 0.0412
b —0.2516 —0.2572 —0.2441
b3 —130.3660 —131.7770 —128.7370
bY 47.8954 46.0986 48.9368
be, —0.6362 —0.6462 —0.6163
b3 22.3227 17.2650 24.0451
bY —23.7638 —28.5961 —20.5912
b 91.5406 86.4298 92.3040
b2, —181.2760 —181.4790 —180.9580
5 5.10E—02 4.94E—02 5.20E—02
5, —2.62E—-04  —2.80E—04  —1.59E—04
8y —212E-04  —244E—-04  —1.89E—04
85 3.44E—05 3.42E—-05 3.45E—05
5 2.69E—02 2.58FE—02 2.74E—02
57 2.30E—03 2.22E—03 2.41E—-03
83 5.47TE—04 4.96 E—04 5.86 £—04
53 5.80E—05 5.72E—05 6.10E—05
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Table A.6: JPY Model Parameters

The table shows parameter estimates for the JPY data set. Point estimates are computed as the draw from
the posterior distribution with minimal L1 distance to the other draws. Confidence intervals are computed
from the empirical posterior distribution.

Parameter Point Estimate 2.5% quantile 97.5% quantile

¢ 0.0025 0.0024 0.0025
¢ 0.0009 0.0009 0.0009
3 4.1424 2.7331 4.9026
Bs 11.7506 10.4242 12.4701
Y 8.4781 7.0951 10.2487
Y2 28.1971 24.8945 30.9722
¥ —0.0114 —0.0130 —0.0103
Sy 0.0083 0.0079 0.0096
Y3 —0.0039 —0.0043 —0.0035
%y —0.0035 —0.0035 —0.0034
af 0.5231 0.5005 0.5782
ah 0.5192 0.5008 0.6168
al —56.3956 —58.3480 ~51.0532
al 29.0699 24.4765 31.9081
bE, —0.2277 —0.2972 —0.1854
b5, 0.0103 0.0005 0.0748
b5, —0.6423 —0.6896 ~0.6059
be, —1.4762 —1.8189 ~1.1673
bl 0.5269 0.2286 0.6306
bE, ~0.0019 ~0.0176 0.0000
be, —~111.1620 ~113.7310 —108.6060
b —61.9570 —62.9497 —60.9826
by 21.9912 21.6463 22.4145
by, —8.6476 —8.7531 —8.5571
al 2.8375 2.7935 2.8690
ad 9.8192 9.7005 9.9073
b2 —0.0008 —0.0029 —0.0000
bY 0.0170 0.0137 0.0222
b3, —0.2741 —0.2772 —0.2709
by 4.9797 4.9220 5.0458
by, 1.7195 1.6984 1.7344
b —0.6353 —0.6424 —0.6270
b3 —111.1400 ~111.6350 ~110.2580
bY, —59.6544 —59.9086 —58.9453
by 21.1715 20.9889 21.2557
by, —7.9357 —7.9568 —7.8205
5 2.58E—06 2.67TE—07 3.74E—05
5, 3.29E—04 3.20E—04 3.39E—04
5y 1.05E—03 1.05E—03 1.06E—03
55 1.57E—04 1.55E—04 1.58E—04
5 1.00E—03 9.83E—-04 1.03E—03
57 1.80E—03 1.79E—03 1.80E—03
53 ~758E-05  —7.61E—05  —7.41E—05
A 1.10E—04 1.10E—04 1.11E—04
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Table A.7: Summary of Additional Checks Related to Estimation Results

Panel A compares the means of the model-implied quadratic variation of the short rate and the instantaneous
exchange rate return to their empirical counterparts.

Panel B reports the results of regressing errors of model-generated yield predictions on the slope of the term
structure. The yield maturities are given in the first column, the prediction horizon in the second. The slope
is defined as the 4-year yield (the longest maturity in our data set) minus the 3-month yield. The ¢-statistics in
brackets are calculated using Newey and West (1987) standard errors with the optimal truncation lag chosen
as suggested by Andrews (1991).

For both Panels, the sample periods are October 12, 1994 to October 10, 2008 for AUD; June 1, 1993 to
October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF, DEM-EUR, GBP, and
JPY.

Panel A: Model Implied vs. Observed Quadratic Variations

QV of Short Rate QV of FX Returns
Model Implied  Observed | Model Implied  Observed
AUD 0.0110 0.0048 0.1102 0.1048
CAD 0.0044 0.0050 0.0607 0.0592
CHF 0.0056 0.0062 0.1268 0.1134
DEM-EUR 0.0055 0.0062 0.1087 0.1043
GBP 0.0053 0.0062 0.0914 0.0897
JPY 0.0058 0.0062 0.1265 0.1103

Panel B: Relation Between Yield Prediction Errors and Slope

Maturity Horizon  AUD CAD CHF DEM-EUR  GBP JPY
6 months 3 -0.0459 -0.0256 -0.2670 -0.1943 -0.2298 -0.1153
[-0.23]  [-0.15]  [-2.24] [-1.54] [-1.65]  [-0.79]
2 years 3 -0.1336  -0.0378 -0.4823 -0.3722 -0.4279 -0.1618
[-0.32]  [-0.08] [-1.61] [-1.13] [-1.16]  [-0.44]
4 years 3 -0.2138 -0.0148 -0.6695 -0.5488 -0.6032 -0.1189
[-0.17]  [-0.01]  [-0.97] [-0.78] [-0.98]  [-0.18]
6 months 6 -0.1417 -0.0426 -0.2921 -0.2540 -0.2852  -0.0268
[-0.64] [-0.21]  [-2.02] [-1.67] [-1.34]  [-0.16]
2 years 6 -0.3553 -0.1246 -0.5450 -0.4914 -0.5187 -0.1785
[-0.95]  [-0.21]  [-1.77] [-1.35] [-1.24]  [-0.51]
4 years 6 -0.5811 -0.2652 -0.7799 -0.7363 -0.7176  -0.2890
[-0.70]  [-0.28]  [-1.28] [-1.15] [-1.27]  [-0.52]
6 months 12 -0.1418 -0.0299 -0.2638 -0.2442 -0.2416  0.0434
[-0.66]  [-0.14]  [-1.87] [-1.63] [-1.00] [0.31]
2 years 12 -0.3771  -0.1341 -0.4989 -0.4774 -0.4637 -0.1452
[-1.19]  [-0.24]  [-1.55] [-1.41] [-1.25]  [-0.57]
4 years 12 -0.6450 -0.3229 -0.7408 -0.7419 -0.6698 -0.3417
[-1.50]  [-0.49]  [-1.77] [-1.60] [-1.52]  [-1.04]
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Table A.8: Yield Pricing Errors: Model with Three Factors

The table reports annualized root mean squared errors in basis points for the domestic US T-period yields
(Panel A) and the respective foreign yields (Panel B). The rows indicate the model estimated, the column
headers indicate the yield maturities 7". The results are based on daily observations for the sample periods
October 12, 1994 to October 10, 2008 for AUD; June 1, 1993 to October 10, 2008 for CAD; and September
18, 1989 to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

Panel A: US Yields
1 month 3 monthy 6 months 1 year 2 years 3 years 4 years

AUD 10 13 13 17 37 o7 75
CAD 10 13 12 18 45 67 87
CHF 12 15 15 20 40 64 88
DEM-EUR 11 15 18 28 54 83 111
GBP 13 16 15 23 49 7 102
JPY 14 20 24 28 50 88 128

Panel B: Foreign Yields
1 month 3 monthy 6 months 1 year 2 years 3 years 4 years

AUD 13 16 15 17 38 58 83
CAD 16 21 22 21 37 61 89
CHF 8 11 12 15 31 50 66
DEM-EUR 11 14 13 19 41 59 7
GBP 17 22 22 28 47 72 104
JPY 8 10 12 19 32 56 88
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Table A.9: Regressions of Excess Returns on Expected Excess Returns: Model with Three Factors

The table

shows the results from estimating,

by ordinary least

squares,

the regression

(23),

ERip = o + B'ERir + n; 7, for the horizons indicated in the column headers. Values in parenthe-
ses are block-bootstrapped standard errors. t[3’ = 1] is the t-statistic for testing 3’ = 1. R? is the in-sample

coefficient of determination. *, **

, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

The results are based on non-overlapping observations for horizons up to 1 month and on monthly frequency
for horizons of 3 months and beyond. The sample periods are October 12, 1994 to October 10, 2008 for
AUD; June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF,
DEM-EUR, GBP, and JPY.

1 day 1 week 1 month 3 months 1 year 4 years
AUD
o 0.0000 0.0001 0.0007 0.0003 —0.0021 —0.0055
se(a) (0.0001) (0.0006) (0.0023) (0.0074) (0.0233) (0.0821)
o4 0.3371%** 0.4496*** 0.6816%** 0.9922%** 1.1123% 0.9888**
se(d) (0.0787) (0.1222) (0.2349) (0.3124) (0.2991) (0.3904)
t[8 = 1] [-8.42] [-4.51] [-1.36] [-0.02] [0.38] [-0.03]
R? 0.0056 0.0211 0.0804 0.2909 0.5409 0.4621
CAD
o 0.0000 —0.0000 —0.0003 —0.0007 0.0010 0.0008
se(a) (0.0001) (0.0003) (0.0012) (0.0033) (0.0080) (0.0329)
e 0.3067 0.7001*** 0.8483*** 0.8837*** 1.0394** 0.9991***
se(3) (0.1893) (0.2193) (0.2565) (0.2560) (0.1806) (0.2184)
t[p =1] [-3.66] [-1.37] [-0.59] [-0.45] [0.22] [-0.00]
R? 0.0010 0.0168 0.0745 0.1895 0.6030 0.6388
CHF
o 0.0002** 0.0008 0.0030 0.0075 0.0085 —0.0026
se(a) (0.0001) (0.0006) (0.0025) (0.0071) (0.0235) (0.0465)
o4 1.2685"** 1.07017* 0.9294** 1.0224** 1.4033** 1.0769"**
se(d) (0.3299) (0.3521) (0.3807) (0.4121) (0.6147) (0.4045)
t[8 = 1] [0.81] [0.20] [-0.19] [0.05] [0.66] [0.19]
R? 0.0023 0.0078 0.0225 0.0570 0.2141 0.2508
DEM-EUR
o 0.0000 0.0001 0.0008 0.0023 0.0006 0.0025
se(a) (0.0001) (0.0005) (0.0023) (0.0064) (0.0201) (0.0520)
e 0.8955%** 0.7215** 0.5804* 0.5556* 0.7896** 0.7821***
se(3) (0.3181) (0.2893) (0.2978) (0.3108) (0.3585) (0.2939)
t[p =1] [-0.33] [-0.96] [-1.41] [-1.43] [-0.59] [-0.74]
R? 0.0036 0.0111 0.0284 0.0576 0.2490 0.3003
GBP
o 0.0001 0.0005 0.0023 0.0081 0.0133 0.0013
se(a) (0.0001) (0.0004) (0.0019) (0.0072) (0.0206) (0.0392)
o4 0.1106 0.1760 0.3369 0.1876 0.7897 0.9221%**
se(d) (0.1327) (0.2344) (0.5209) (1.1003) (0.7584) (0.2728)
t[8 = 1] [-6.70] [-3.52] [-1.27] [-0.74] [-0.28] [-0.29]
R? 0.0008 0.0015 0.0019 0.0007 0.0499 0.3342
JPY
o —0.0000 —0.0001 —0.0002 0.0017 0.0087 —0.0271
se(a) (0.0001) (0.0007) (0.0026) (0.0054) (0.0169) (0.0476)
o4 0.1143**  —0.0104 0.1630 0.8783*** 1.0931%** 0.7604***
se(3) (0.0500) (0.1690) (0.3405) (0.2791) (0.2377) (0.1983)
t[p =1] [-17.73] [-5.98] [-2.46] [-0.44] [0.39] [-1.21]
R? 0.0012 0.0000 0.0015 0.0819 0.4373 0.4723
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Table A.10: Ability to Predict Excess Returns: Model with Three Factors

The table reports results related to the predictive ability of the model as compared to the UIP and RW benchmarks. Hit-ratios (HR) are calculated as the
proportion of times the sign of the excess return is correctly predicted by the model. R2 = 1 — MSEy /MSEp where MSE); denotes the mean squared
prediction error of the model and M SEp that of the benchmark. CW and GW denote the test-statistics of Clark and West (2007) and Giacomini and White
(2006) as described in Section 3.3. The one-sided p-values of the test-statistics in square brackets are obtained from the block bootstrap procedure described
in Appendix E which accounts for autocorrelation and heteroscedasticity. The results are based on non-overlapping observations for horizons up to 1 month
and on monthly frequency for horizons of 3 months and beyond. The sample periods are October 12, 1994 to October 10, 2008 for AUD; June 1, 1993 to
October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

Model vs. UIP Model vs. RW
1d 1w 1m 3m ly 4y 1d 1w 1m 3m ly 4y
AUD
HR 0.5547  0.5882  0.6583  0.6917  0.7750  0.7750 | 0.5547  0.5882  0.6583  0.6917  0.7750  0.7750
R2 0.0057  0.0218 0.0836  0.2947 0.5461  0.5014 | 0.0044  0.0150 0.0526 0.2321  0.4467 0.4366

p-value[CW] | [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] | [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01]
p-value[GW] | [0.119]  [0.044] [0.031] [<0.01] [<0.01] [<0.01] | [0.180] [0.084] [0.068] [<0.01] [0.016] [<0.01]

CAD
HR 0.5279  0.5669  0.6029  0.5515 0.7353 0.6985 | 0.5279  0.5669  0.6029  0.5515 0.7353  0.6985
R2 0.0011  0.0170  0.0752  0.1909  0.6104  0.6997 | -0.0002 0.0110  0.0529 0.1350 0.5171  0.6689

p-value[CW] | [0.078] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] | [0.188] [0.017] [0.012] [0.011] [<0.01] [<0.01]
p-value[GW] | [0.321] [0.234] [0.199] [0.053] [0.014] [<0.01] | [0.304] [0.323] [0.265] [0.096] [0.039] [<0.01]

CHF
HR 0.5306  0.5272  0.5667  0.5889  0.7778  0.4944 | 0.5306  0.5272  0.5667  0.5889  0.7778  0.4944
R2 0.0024  0.0080 0.0235 0.0590 0.2141  0.2615 | 0.0017  0.0049 0.0101  0.0262 0.1152  0.1417

p-value[CW] | [<0.01] [<0.01] [0.030] [0.014] [<0.01] [<0.01] | [<0.01] [0.040] [0.166] [0.095] [<0.01] [<0.01]
p-value[GW] | [0.192]  [0.075] [0.153] [0.044] [0.033] [<0.01] | [0.197] [0.099] [0.198] [0.070] [0.078] [<0.01]

DEM-EUR
HR 0.5425  0.5740  0.5556  0.6111  0.7556  0.7778 | 0.5425  0.5740 0.5556  0.6111  0.7556  0.7778
R2 0.0038  0.0118 0.0315 0.0638 0.2530 0.3034 | 0.0032 0.0089 0.0179  0.0254 0.1293  0.2110

p-value[CW] | [<0.01] [<0.01] [0.011] [<0.01] [<0.01] [<0.01] | [<0.01] [<0.01] [0.058] [0.064] [<0.01] [<0.01]
p-value[GW] | [0.107]  [0.100]  [0.079] [0.024] [0.010] [<0.01] | [0.066] [0.056] [0.113] [0.053] [0.038] [<0.01]

GBP
HR 0.5230  0.5474  0.5222  0.5333 0.6167 0.6944 | 0.5230 0.5474  0.5222  0.5333  0.6167  0.6944
R2 0.0014  0.0040 0.0131  0.0322 0.1372  0.5384 | 0.0008  0.0012  0.0002 -0.0035 0.0390  0.5087

p-value[CW] | [0.046] [0.121] [0.125]  [0.131] [0.023] [<0.01] | [0.071] [0.178] [0.241] [0.193] [<0.01] [<0.01]
p-value|GW] | [<0.01] [0.256] [0.395] [0.242]  [0.099] [<0.01] | [0.011] [0.381] [0.469] [0.254] [0.045] [<0.01]

JPY
HR 0.5144 0.5032 0.5556  0.6722 0.7944 0.7889 | 0.5144 0.5032  0.5556  0.6722  0.7944  0.7889
R2 0.0012  0.0000 0.0016  0.0824  0.4402 0.5574 | 0.0004 -0.0035 -0.0157 0.0406  0.3157  0.3042

p-value[CW] | [0.022] [0.464] [0.245] [<0.01] [<0.01] [<0.01] | [0.025] [0.629] [0.702] [<0.01] [<0.01] [<0.01]
p-value[GW] | [0.130] [0.163] [0.334] [0.063] [<0.01] [<0.01] | [0.170] [0.190] [0.215]  [0.090] [<0.01] [0.016]




Table A.11: Yield Pricing Errors: Model with Two Factors

The table reports annualized root mean squared errors in basis points for the domestic US T-period yields
(Panel A) and the respective foreign yields (Panel B). The rows indicate the model estimated, the column
headers indicate the yield maturities 7". The results are based on daily observations for the sample periods
October 12, 1994 to October 10, 2008 for AUD; June 1, 1993 to October 10, 2008 for CAD; and September
18, 1989 to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

Panel A: US Yields
1 month 3 monthy 6 months 1 year 2 years 3 years 4 years

AUD 11 14 15 17 35 56 73
CAD 12 16 16 19 39 60 80
CHF 51 88 122 163 204 227 250
DEM-EUR 12 16 17 22 35 60 87
GBP 41 71 99 133 166 192 223
JPY 53 91 127 170 215 242 268

Panel B: Foreign Yields
1 month 3 monthy 6 months 1 year 2 years 3 years 4 years

AUD 25 45 66 99 142 172 206
CAD 27 44 61 80 119 149 175
CHF 7 11 12 14 27 41 54
DEM-EUR 64 109 148 186 242 266 280
GBP 15 19 18 25 48 76 108
JPY 8 12 14 20 28 53 89
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Table A.12: Regressions of Excess Returns on Expected Excess Returns: Model with Two Factors

The table (23),
ERip = o + B'ERir + n; 7, for the horizons indicated in the column headers. Values in parenthe-
ses are block-bootstrapped standard errors. t[3’ = 1] is the t-statistic for testing 3’ = 1. R? is the in-sample
coefficient of determination. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
The results are based on non-overlapping observations for horizons up to 1 month and on monthly frequency
for horizons of 3 months and beyond. The sample periods are October 12, 1994 to October 10, 2008 for
AUD; June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF,

DEM-EUR, GBP, and JPY.

shows the results from estimating, by ordinary least squares, the regression

1 day 1 week 1 month 3 months 1 year 4 years
AUD
o 0.0000 0.0002 0.0006 0.0002 —0.0018 0.0096
se(a) (0.0001) (0.0006) (0.0025) (0.0075) (0.0230) (0.0800)
o4 0.3742* 0.6022%** 0.7650*** 0.9456*** 0.9972%** 0.9994**
se() (0.2118) (0.1776) (0.2256) (0.2552) (0.2414) (0.3902)
t[g = 1] [-2.95] [-2.24] [-1.04] [-0.21] [-0.01] [-0.00]
R? 0.0013 0.0157 0.0907 0.2922 0.5287 0.4564
CAD
o 0.0000 0.0002 0.0006 0.0018 0.0062 —0.0067
se(a) (0.0001) (0.0003) (0.0015) (0.0043) (0.0114) (0.0346)
e 0.1413 0.4709** 0.5806** 0.6425** 0.8001*** 1.1422***
se(3) (0.1983) (0.1993) (0.2559) (0.2835) (0.2209) (0.2628)
t[p =1] [-4.33] [-2.66] [-1.64] [-1.26] [-0.90] [0.54]
R? 0.0002 0.0091 0.0489 0.1438 0.4941 0.6238
CHF
o/ 0.0002 0.0007 0.0013 0.0040 0.0018 —0.0245
se(a) (0.0002) (0.0008) (0.0028) (0.0079) (0.0251) (0.0548)
e 0.0933*** 0.2136** 0.1061 0.6615 0.6311 0.7357
se() (0.0360) (0.0951) (0.2591) (0.5645) (0.9380) (0.8102)
t[g = 1] [-25.18] [-8.27] [-3.45] [-0.60] [-0.39] [-0.33]
R? 0.0105 0.0142 0.0008 0.0106 0.0132 0.0383
DEM-EUR
o 0.0001 0.0004 0.0016 0.0038 0.0005 —0.0172
se(a) (0.0001) (0.0006) (0.0026) (0.0075) (0.0248) (0.0683)
e 0.0145 0.0417 0.3150 0.7166 1.4695* 1.5042*
se(3) (0.0317) (0.0718) (0.3176) (0.7526) (0.8492) (0.8787)
t[s =1] [-31.05] [-13.34] [-2.16] [-0.38] [0.55] [0.57]
R? 0.0000 0.0003 0.0048 0.0161 0.1113 0.1459
GBP
o 0.0002** 0.0009** 0.0036 0.0111 0.0153 —1.0082
se(a) (0.0001) (0.0004) (0.0036) (0.0202) (0.0923) (0.7068)
o4 —2.3075**  —1.6457 —0.7420 —0.6750 0.7247 8.6550
se() (0.8252) (1.0596) (2.5434) (4.9694) (4.5353) (5.5053)
t[g = 1] [-4.01] [-2.50] [-0.68] [-0.34] [-0.06] [1.39]
R? 0.0046 0.0047 0.0008 0.0012 0.0037 0.2887
JPY
o —0.0000 —0.0002 —0.0011 —0.0031 —0.0004 0.0424
se(a) (0.0001) (0.0006) (0.0027) (0.0079) (0.0246) (0.0877)
o4 —0.0852 0.7226** 0.5436 0.6216 1.1548** 1.9730**
se((') (0.1576) (0.3058) (0.3631) (0.4858) (0.5606) (0.7784)
t[s =1] [-6.89] [-0.91] [-1.26] [-0.78] [0.28] [1.25]
R? 0.0001 0.0084 0.0131 0.0314 0.1490 0.5432
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Table A.13: Ability to Predict Excess Returns: Model with Two Factors

The table reports results related to the predictive ability of the model as compared to the UIP and RW benchmarks. Hit-ratios (HR) are calculated as the
proportion of times the sign of the excess return is correctly predicted by the model. R2 = 1 — MSEy /MSEp where MSE); denotes the mean squared
prediction error of the model and M SEp that of the benchmark. CW and GW denote the test-statistics of Clark and West (2007) and Giacomini and White
(2006) as described in Section 3.3. The one-sided p-values of the test-statistics in square brackets are obtained from the block bootstrap procedure described
in Appendix E which accounts for autocorrelation and heteroscedasticity. The results are based on non-overlapping observations for horizons up to 1 month
and on monthly frequency for horizons of 3 months and beyond. The sample periods are October 12, 1994 to October 10, 2008 for AUD; June 1, 1993 to
October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

Model vs. UIP Model vs. RW
1d 1w 1m 3m ly 4y 1d 1w 1m 3m ly 4y
AUD
HR 0.5148  0.5598  0.6333  0.7000 0.7833  0.7833 | 0.5148  0.5598 0.6333 0.7000 0.7833  0.7833
R2 0.0014 0.0164 0.0939 0.2961 0.5340 0.4960 | 0.0002  0.0096 0.0633 0.2336 0.4320 0.4306

p-value[CW] | [0.044] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] | [0.108] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01]
p-value[GW] | [0.377] [0.177] [0.034] [<0.01] [<0.01] [<0.01] | [0.549] [0.281] [0.073] [<0.01] [0.017] [<0.01]

CAD
HR 0.5243  0.5619  0.5441 0.5221 0.6838 0.6176 | 0.5243  0.5619  0.5441  0.5221  0.6838  0.6176
R2 0.0002  0.0094 0.0495 0.1452 0.5036  0.6872 | -0.0010 0.0033  0.0266  0.0861  0.3847  0.6551

p-value[CW] | [0.313] [0.025] [0.014] [<0.01] [<0.01] [<0.01] | [0.522] [0.073] [0.043] [0.030] [<0.01] [<0.01]
p-value[GW] | [0.346]  [0.266] [0.274]  [0.140]  [0.050] [<0.01] | [0.154] [0.206] [0.338]  [0.231] [0.119] [<0.01]

CHF
HR 0.5453  0.5411 0.4944  0.5222 0.5056  0.5056 | 0.5453  0.5411 0.4944 0.5222  0.5056  0.5056
R2 0.0105 0.0144 0.0018 0.0127 0.0132  0.0521 | 0.0099 0.0114 -0.0118 -0.0216 -0.1109 -0.1017

p-value[CW] | [<0.01] [<0.01] [0.353] [0.170] [0.397] [0.035] | [<0.01] [<0.01] [0.355] [0.510] [0.975]  [0.351]
p-value[GW] | [<0.01] [0.060] [0.196] [0.258] [0.272]  [0.029] | [<0.01] [0.121] [0.195] [0.168] [0.096]  [0.012]

DEM-EUR
HR 0.5025  0.5006  0.4889  0.5667  0.6167  0.5722 | 0.5025 0.5006  0.4889  0.5667  0.6167  0.5722
R2 0.0002  0.0009 0.0080 0.0225 0.1161  0.1496 | -0.0004 -0.0019 -0.0060 -0.0176 -0.0303  0.0368

p-value[CW] | [0.438] [0.381] [0.232] [0.058] [<0.01] [0.012] | [0.474] [0.454] [0.433] [0.426] [0.266]  [0.220]
p-value[GW] | [0.362] [0.269] [0.257] [0.176] [0.057] [<0.01] | [0.437] [0.322] [0.176] [0.241] [0.168]  [0.013]

GBP
HR 0.4954 0.4905 0.5111  0.5167  0.5667  0.6833 | 0.4954 0.4905 0.5111  0.5167  0.5667  0.6833
R2 0.00561  0.0072  0.0120 0.0326  0.0953  0.5068 | 0.0045  0.0044 -0.0009 -0.0030 -0.0077 0.4751

p-value[CW] | [0.999] [0.862] [0.221] [0.062] [0.025] [<0.01] | [0.997] [0.802] [0.431] [0.379] [0.130] [<0.01]
p-value[GW] | [0.069] [0.200] [0.460] [0.273] [0.118] [<0.01] | [0.090] [0.351] [0.537] [0.358] [0.186] [<0.01]

JPY
HR 0.5192  0.5259 0.5944  0.6278  0.6833 0.9556 | 0.5192  0.5259  0.5944  0.6278  0.6833  0.9556
R2 0.0001  0.0084 0.0132 0.0319 0.1533 0.6169 | -0.0007 0.0049 -0.0039 -0.0122 -0.0349 0.3976

p-value[CW] | [0.622] [<0.01] [0.028] [0.010] [<0.01] [<0.01] | [0.700] [0.023] [0.142] [0.150] [0.343]  [0.086]
p-value[GW] | [0.315] [0.139]  [0.209] [0.184] [0.078] [<0.01] | [0.147] [0.328] [0.439] [0.397] [0.189]  [0.021]




Table A.14: Results of Three-Country Estimation: USD, CHF, and DEM-EUR

The sample period is September 18, 1989 to October 10, 2008. The results in Panel A are based on daily
data, those in Panels B and C on non-overlapping observations for horizons up to 1 month and on monthly
frequency for horizons of 3 months and beyond.

Panel A reports annualized root mean squared errors in basis points for the domestic US T-period yields and
the respective foreign yields of the CHF and DEM-EUR. The results are based on daily observations.

Panel B shows the results from estimating, by ordinary least squares, the regression (23), ER; 7 = o +
o4 El\%t’T —&-77£’T7 for the horizons indicated in the column headers. Values in parentheses are block-bootstrapped
standard errors. t[3’ = 1] is the t-statistic for testing ' = 1. R? is the in-sample coefficient of determination.
*, %% and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

Panel C reports results related to the predictive ability of the model as compared to the UIP and RW
benchmarks. Hit-ratios (HR) are calculated as the proportion of times the sign of the excess return is
correctly predicted by the model. R2 = 1 — MSEy/MSEp where MSE); denotes the mean squared
prediction error of the model and M SEp that of the benchmark. CW and GW denote the test-statistics
of Clark and West (2007) and Giacomini and White (2006) as described in Section 3.3. The one-sided p-
values of the test-statistics in square brackets are obtained from the block bootstrap procedure described in
Appendix E which accounts for autocorrelation and heteroscedasticity.

Panel A: Yield Pricing Errors
1 month 3 monthy 6 months 1 year 2 years 3 years 4 years

USD 7 7 11 31 71 94 113
CHF 16 24 34 51 82 100 115
DEM-EUR 20 29 37 49 81 106 131

Panel B: Regressions of Excess Returns on Expected Excess Returns

1 day 1 week 1 month 3 months 1 year 4 years

CHF

o 0.0000 0.0002 0.0009 0.0019 0.0045 0.0112

se(a’) (0.0001) (0.0007) (0.0026) (0.0068) (0.0204) (0.0394)

Ic4 0.1020 —0.0380 0.3269 0.7236** 0.8974*** 1.0545%**

se(8') (0.2873) (0.3406) (0.3328) (0.2933) (0.3342) (0.3824)

t[B = 1] [-3.13] [-3.05] [-2.02] [-0.94] [-0.31] [0.14)

R? 0.0000 0.0000 0.0058 0.0656 0.2155 0.2613

DEM-EUR

o 0.0001 0.0003 0.0010 0.0018 0.0025 0.0123

se(a’) (0.0001) (0.0006) (0.0024) (0.0063) (0.0195) (0.0495)

c4 0.2147 0.1266 0.4632 0.7469** 1.0139*** 1.2367***

se(8") (0.2586) (0.2987) (0.3235) (0.3131) (0.3735) (0.4215)

t[p =1] [-3.04] [-2.92] [-1.66] [-0.81] [0.04] [0.56]

R? 0.0002 0.0003 0.0136 0.0767 0.2694 0.3018

Panel C: Ability to Predict Excess Returns
Model vs. UIP Model vs. RW
1d 1w 1m 3m ly 4y 1d 1w 1m 3m ly 4y

CHF
HR 0.5172  0.5424  0.6056  0.6667 0.7611 0.7778 0.5172 0.5424 0.6056  0.6667  0.7611 0.7778
R2 0.0001  0.0002 0.0069  0.0676 0.2155 0.2720 | -0.0006 -0.0028 -0.0067 0.0352  0.1168 0.1538
p-value[CW] | [0.429] [0.600] [0.198] [<0.01] [<0.01] [<0.01] [0.796] [0.920] [0.536] [0.049] [<0.01] [<0.01]
p-value[GW] | [0.535]  [0.443] [0.163]  [0.053] [0.011]  [<0.01] [0.275] [0.221] [0.228]  [0.105]  [0.032] [<0.01]
DEM-EUR
HR 0.5346  0.5638  0.5833 0.6722 0.7667 0.7722 0.5346 0.5638 0.5833 0.6722 0.7667 0.7722
R2 0.0003  0.0009 0.0167  0.0827 0.2734 0.3049 | -0.0003 -0.0019 0.0029 0.0451  0.1530 0.2127
p-value[CW] | [0.197] [0.307] [0.073] [<0.01] [<0.01] [<0.01] [0.573] [0.749] [0.292]  [0.029] [<0.01] [<0.01]
p-value[GW] | [0.472] [0.434] [0.075] [0.017] [<0.01] [<0.01] [0.345] [0.308] [0.087]  [0.034] [0.034] [<0.01]

76



Table A.15: Results of Three-Country Estimation: USD, CHF, and JPY

The sample period is September 18, 1989 to October 10, 2008. The results in Panel A are based on daily
data, those in Panels B and C on non-overlapping observations for horizons up to 1 month and on monthly
frequency for horizons of 3 months and beyond.

Panel A reports annualized root mean squared errors in basis points for the domestic US T-period yields and
the respective foreign yields of the CHF and JPY. The results are based on daily observations.

Panel B shows the results from estimating, by ordinary least squares, the regression (23), ER; 7 = o +
o4 El\%t’T —&-77£’T7 for the horizons indicated in the column headers. Values in parentheses are block-bootstrapped
standard errors. t[3’ = 1] is the t-statistic for testing ' = 1. R? is the in-sample coefficient of determination.
*, %% and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

Panel C reports results related to the predictive ability of the model as compared to the UIP and RW
benchmarks. Hit-ratios (HR) are calculated as the proportion of times the sign of the excess return is
correctly predicted by the model. R2 = 1 — MSEy/MSEp where MSE); denotes the mean squared
prediction error of the model and M SEp that of the benchmark. CW and GW denote the test-statistics
of Clark and West (2007) and Giacomini and White (2006) as described in Section 3.3. The one-sided p-
values of the test-statistics in square brackets are obtained from the block bootstrap procedure described in
Appendix E which accounts for autocorrelation and heteroscedasticity.

Panel A: Yield Pricing Errors
1 month 3 monthy 6 months 1 year 2 years 3 years 4 years

USD 9 13 16 27 45 62 7
CHF 30 50 66 86 114 139 166
JPY 11 16 21 26 29 47 80

Panel B: Regressions of Excess Returns on Expected Excess Returns

1 day 1 week 1 month 3 months 1 year 4 years

CHF

o 0.0000 0.0003 0.0015 0.0046 0.0094 0.0009

se(a’) (0.0001) (0.0006) (0.0025) (0.0066) (0.0203) (0.0411)

Ic4 —0.0907 0.0484 0.3397 0.6150** 1.0054*** 0.9061*

se(8') (0.1365) (0.1850) (0.2864) (0.3113) (0.3025) (0.5072)

{8 = 1] [-7.99] [-5.14] [-2.31] [-1.24] (0.02] [-0.19]

R? 0.0002 0.0001 0.0050 0.0311 0.1884 0.1834

JPY

o —0.0001 —0.0002 —0.0004 —0.0011 0.0044 —0.0125

se(a’) (0.0001) (0.0007) (0.0028) (0.0069) (0.0174) (0.0482)

Ic4 0.0578** 0.0648 0.0177 0.3868** 1.0183*** 0.8909***

se(B') (0.0279) (0.0594) (0.1169) (0.1856) (0.2252) (0.2137)

t[p =1] [-33.71] [-15.75] [-8.40] [-3.30] [0.08] [-0.51]

R? 0.0025 0.0038 0.0001 0.0316 0.4014 0.5641

Panel C: Ability to Predict Excess Returns
Model vs. UIP Model vs. RW
1d 1w 1m 3m ly 4y 1d 1w 1m 3m ly 4y

CHF
HR 0.5149  0.5272  0.5833  0.6000 0.7444 0.7722 0.5149 0.5272 0.5833 0.6000 0.7444 0.7722
R2 0.0002  0.0003 0.0061  0.0331 0.1884 0.1951 | -0.0004 -0.0028 -0.0075 -0.0005  0.0863 0.0645
p-value[CW] [0.666]  [0.218] [0.108]  [0.016] [<0.01] [<0.01] [0.784] [0.402] [0.409] [0.153]  [<0.01]  [0.028]
p-value[GW] [0.293]  [0.481] [0.254]  [0.025] [<0.01] [<0.01] [0.297] [0.376] [0.319] (0.102] [0.045]  [<0.01]
JPY
HR 0.5086 0.5411  0.5111 0.6167 0.7889 0.9389 0.5086 0.5411 0.5111 0.6167 0.7889 0.9389
R2 0.0025  0.0038 0.0002  0.0321 0.4045 0.6344 0.0017 0.0003  -0.0171 -0.0120 0.2721 0.4251
p-value[CW] | [<0.01] [0.125] [0.573] [<0.01] [<0.01] [<0.01] | [<0.01] [0.136] [0.751] [0.150]  [<0.01]  [0.024]
p-value[GW] [0.221]  [0.186] [0.330] [0.154] [<0.01] [<0.01] [0.276] [0.163] [0.202] [0.302] [<0.01]  [0.018]
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Table A.16: Regressions of Excess Returns on Expected Excess Returns: Sample 01/1996 to 10/2008

The table shows the results from estimating,

by ordinary least

squares,

the regression

(23),

ERip = o + B'ERir + n; 7, for the horizons indicated in the column headers. Values in parenthe-
ses are block-bootstrapped standard errors. t[3’ = 1] is the t-statistic for testing 3’ = 1. R? is the in-sample

coefficient of determination. *, **

, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

The results are based on non-overlapping observations for horizons up to 1 month and on monthly frequency
for horizons of 3 months and beyond. The sample periods are January 24, 1996 to October 10, 2008 for
AUD, CAD, CHF, GBP, and JPY. For DEM-EUR the sample period is January 1, 1998 to October 10, 2008.

1 day 1 week 1 month 3 months 1 year 4 years
AUD
o 0.0001 0.0003 0.0012 0.0026 0.0011 0.0064
se(a) (0.0001) (0.0005) (0.0029) (0.0077) (0.0233) (0.0963)
o4 0.7261*** 0.8357*** 1.0245*** 1.0313*** 1.0901*** 0.9526™**
se() (0.2349) (0.2428) (0.3043) (0.3118) (0.2652) (0.3439)
t[g = 1] [-1.17] [-0.68] [0.08] [0.10] [0.34] [-0.14]
R? 0.0042 0.0240 0.1301 0.3152 0.6360 0.4240
CAD
o 0.0001 0.0002 0.0008 0.0015 0.0007 0.0003
se(a) (0.0001) (0.0003) (0.0013) (0.0035) (0.0079) (0.0334)
e 0.1503 0.8019*** 1.0462%** 1.0350*** 1.0555*** 1.0222***
se() (0.2145) (0.3022) (0.2827) (0.2516) (0.1503) (0.1313)
t[s =1] [-3.96] [-0.66] [0.16] [0.14] [0.37] [0.17]
R? 0.0002 0.0162 0.1101 0.2750 0.7415 0.7596
CHF
o/ —0.0000 —0.0001 0.0002 0.0016 0.0007 —0.0030
se(a) (0.0002) (0.0007) (0.0027) (0.0079) (0.0174) (0.0423)
o4 0.3789* 0.4834*** 0.6959** 0.9280*** 1.0777* 0.9830***
se() (0.1947) (0.1652) (0.2815) (0.2868) (0.2201) (0.1940)
t[g = 1] [-3.19] [-3.13] [-1.08] [-0.25] [0.35] [-0.09]
R? 0.0029 0.0106 0.0516 0.1910 0.5782 0.5321
DEM-EUR
o 0.0001 0.0004 0.0022 0.0058 —0.0065 0.0073
se(a) (0.0002) (0.0007) (0.0027) (0.0074) (0.0086) (0.0648)
o4 0.2149 0.5708*** 0.6283*** 0.7359*** 1.0743%** 0.9155***
se() (0.2185) (0.2212) (0.2188) (0.1886) (0.0742) (0.2359)
t[s =1] [-3.59] [-1.94] [-1.70] [-1.40] [1.00] [-0.36]
R? 0.0008 0.0198 0.0811 0.2421 0.8373 0.5997
GBP
o 0.0001 0.0005 0.0011 0.0023 0.0044 0.0056
se(a) (0.0001) (0.0004) (0.0014) (0.0045) (0.0163) (0.0402)
o4 0.1824* 0.3815™* 0.8514*** 0.9699*** 0.9266™** 0.9392***
se() (0.1098) (0.1715) (0.2178) (0.1989) (0.2302) (0.1534)
t[p =1] [-7.45] [-3.61] [-0.68] [-0.15] [-0.32] [-0.40]
R? 0.0007 0.0043 0.0612 0.2285 0.4901 0.5703
JPY
o 0.0002 0.0008 0.0014 0.0004 —0.0153 —0.0711*
se(a) (0.0002) (0.0010) (0.0032) (0.0065) (0.0255) (0.0376)
o4 1.4600*** 1.5081*** 1.1789** 1.1704** 1.2898** 0.5786™*
se() (0.5018) (0.5177) (0.4824) (0.5731) (0.6333) (0.2443)
t[s =1] [0.92] [0.98] [0.37] [0.30] [0.46] [-1.72]
R? 0.0030 0.0168 0.0382 0.0754 0.1846 0.2989
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6.

The table reports results related to the predictive ability of the model as compared to the UIP and RW benchmarks. Hit-ratios (HR) are calculated as the
proportion of times the sign of the excess return is correctly predicted by the model. R2 = 1 — MSEy /MSEp where MSE); denotes the mean squared
prediction error of the model and M SEp that of the benchmark. CW and GW denote the test-statistics of Clark and West (2007) and Giacomini and White
(2006) as described in Section 3.3. The one-sided p-values of the test-statistics in square brackets are obtained from the block bootstrap procedure described
in Appendix E which accounts for autocorrelation and heteroscedasticity. The results are based on non-overlapping observations for horizons up to 1 month
and on monthly frequency for horizons of 3 months and beyond. The sample periods are January 24, 1996 to October 10, 2008 for AUD, CAD, CHF, GBP,

Table A.17: Ability to Predict Excess Returns: Sample 01/1996 to 10/2008

and JPY. For DEM-EUR the sample period is January 1, 1998 to October 10, 2008.

Model vs. UIP Model vs. RW
1d 1w 1m 3m ly 4y 1d 1w 1m 3m ly 4y

AUD

HR 0.5525  0.6022  0.6857 0.7238 0.8762 0.7905 | 0.5525  0.6022  0.6857 0.7238 0.8762  0.7905
R2 0.0043  0.0247 0.1326  0.3187 0.6370  0.4835 | 0.0029 0.0173 0.1043 0.2574 0.5602  0.3965
p-value[CW] | [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] | [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01]
p-value[GW] | [0.169] [0.063] [0.039] [<0.01] [<0.01] [<0.01] | [0.255] [0.089] [0.054] [<0.01] [<0.01] [<0.01]
CAD

HR 0.5381  0.5739  0.6476  0.5905 0.8857 0.7333 | 0.5381  0.5739 0.6476 0.5905 0.8857  0.7333
R2 0.0004 0.0172  0.1148 0.2823  0.7475 0.8228 | -0.0009 0.0102 0.0873  0.2211 0.6794  0.7999
p-value[CW] | [0.406] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] | [0.645] [0.040] [0.012] [<0.01] [<0.01] [<0.01]
p-value[GW] | [0.454] [0.273] [0.172] [0.042] [<0.01] [<0.01] | [0.206] [0.407] [0.235] [0.073] [<0.01] [<0.01]
CHF

HR 0.5403  0.5630 0.6476  0.7524  0.8667  0.9143 | 0.5403 0.5630 0.6476  0.7524  0.8667  0.9143
R2 0.0031  0.0116  0.0550  0.1996  0.5980  0.5398 | 0.0019  0.0054 0.0298  0.1407 0.4876  0.5037
p-value[CW] | [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] | [0.018] [0.035] [0.016] [<0.01] [<0.01] [<0.01]
p-value[GW] | [0.212] [0.284] [0.228] [0.016] [<0.01] [<0.01] | [0.326] [0.429] [0.379] [0.031] [<0.01] [<0.01]
DEM-EUR

HR 0.5355  0.5766  0.6463 0.6463 0.8780  0.8902 | 0.5355  0.5766  0.6463  0.6463 0.8780  0.8902
R2 0.0009  0.0206  0.0854 0.2522  0.8390  0.7251 | -0.0001  0.0157 0.0642 0.2039 0.8025 0.7374
p-value[CW] | [0.157] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] | [0.288] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01]
p-value[GW] | [0.297] [0.074] [0.130] [<0.01] [<0.01] [<0.01] | [0.306] [0.105] [0.175] [0.012] [<0.01] [<0.01]
GBP

HR 0.5350  0.5522  0.6000 0.7048  0.7238 0.8190 | 0.5350  0.5522  0.6000 0.7048  0.7238  0.8190
R2 0.0015  0.0092  0.0867 0.2878  0.5742  0.7129 | 0.0004 0.0031  0.0567 0.2088 0.4335 0.6554
p-value[CW] | [0.145] [0.028] [<0.01] [<0.01] [<0.01] [<0.01] | [0.214] [0.079] [<0.01] [<0.01] [<0.01] [<0.01]
p-value[GW] | [0.262] [0.022] [0.173] [0.022] [0.016] [<0.01] | [0.341] [0.097] [0.218] [0.034] [0.026] [<0.01]
JPY

HR 0.5407  0.6000  0.5905 0.6952  0.6952  1.0000 | 0.5407  0.6000 0.5905 0.6952  0.6952  1.0000
R2 0.0034 0.0188 0.0465 0.0979 0.2751 0.8639 | 0.0025 0.0143 0.0256  0.0395 0.0357  0.1591
p-value[CW] | [<0.01] [<0.01] [0.025] [0.018] [0.015] [<0.01] | [<0.01] [<0.01] [0.073] [0.067] [0.051] [<0.01]
p-value[GW] | [0.153] [0.080] [0.293] [0.145] [0.071] [<0.01] | [0.150] [0.078] [0.243] [0.146] [0.068] [<0.01]




Table A.18: Regressions of Excess Returns on Expected Excess Returns: Sample 01/1996 to 10/2008
including Currency Options

The table shows the results from estimating, by ordinary least squares, the regression (23),
ERyr = o + 6’EE@T + n;.p, for the horizons indicated in the column headers. Values in parenthe-
ses are block-bootstrapped standard errors. t[3 = 1] is the t-statistic for testing 3’ = 1. R? is the in-sample
coefficient of determination. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
The results are based on non-overlapping observations for horizons up to 1 month and on monthly frequency
for horizons of 3 months and beyond. The sample periods are January 24, 1996 to October 10, 2008 for
AUD, CAD, CHF, GBP, and JPY. For DEM-EUR the sample period isJanuary 1, 1998 to October 10, 2008.

1 day 1 week 1 month 3 months 1 year 4 years
AUD
o 0.0000 0.0001 0.0008 0.0016 —0.0012 0.0213
se(a) (0.0001) (0.0005) (0.0025) (0.0062) (0.0196) (0.0907)
o4 0.8295%** 0.8741*** 0.9148*** 0.9433*** 1.0499*** 0.9226***
se() (0.1979) (0.2266) (0.2468) (0.2277) (0.2275) (0.3378)
t[g = 1] [-0.86] [-0.56] [-0.35] [-0.25] [0.22] [-0.23]
R? 0.0053 0.0292 0.1267 0.3194 0.6843 0.4217
CAD
o 0.0001 0.0003 0.0013 0.0028 0.0017 —0.0061
se(a) (0.0001) (0.0004) (0.0014) (0.0034) (0.0078) (0.0349)
o4 0.2050** 0.4329* 0.8983*** 0.9465*** 1.0325%** 1.0217***
se() (0.1020) (0.2545) (0.2489) (0.2213) (0.1471) (0.1395)
t[s =1] [-7.79] [-2.23] [-0.41] [-0.24] [0.22] [0.16]
R? 0.0007 0.0071 0.1013 0.2716 0.7402 0.7454
CHF
o/ —0.0000 0.0000 0.0004 0.0006 —0.0062 —0.0044
se(a) (0.0001) (0.0006) (0.0026) (0.0079) (0.0179) (0.0423)
e 0.5639*** 0.7340*** 0.7205*** 0.8088*** 0.9364*** 1.0130%**
se() (0.1391) (0.1687) (0.2331) (0.2357) (0.1962) (0.1995)
t[g = 1] [-3.13] [-1.58] [-1.20] [-0.81] [-0.32] [0.06]
R? 0.0054 0.0239 0.0574 0.1638 0.5470 0.5294
DEM-EUR
o 0.0001 0.0004 0.0022 0.0059 —0.0061 —0.0002
se(a) (0.0002) (0.0007) (0.0027) (0.0074) (0.0088) (0.0687)
o4 0.1598 0.4812%** 0.6352%** 0.7666*** 1.1301%** 0.9498***
se(3) (0.1688) (0.1722) (0.2219) (0.1930) (0.0791) (0.2484)
t[s =1] [-4.98] [-3.01] [-1.64] [-1.21] [1.64] [-0.20]
R? 0.0005 0.0136 0.0740 0.2344 0.8314 0.5927
GBP
o 0.0001 0.0004 —-0.0109**  —0.0297"*  —0.0433* —0.0777
se(a) (0.0001) (0.0005) (0.0045) (0.0123) (0.0243) (0.0527)
e —0.0026 0.2746 24790 2.5660*** 2.2722%% 1.7400%**
se() (0.1448) (0.3704) (0.7249) (0.7243) (0.4975) (0.3669)
t[g = 1] [-6.92] [-1.96] [2.04] [2.16] [2.56] [2.02]
R? 0.0000 0.0006 0.0643 0.2027 0.5105 0.5737
JPY
o —0.0003 —0.0012 —0.0030 —0.0055 —0.0145 —0.0513**
se(a) (0.0002) (0.0008) (0.0034) (0.0093) (0.0248) (0.0216)
o4 1.4620*** 1.6955*** 0.9862%** 0.6151** 0.7675%** 0.6841***
se(3) (0.3360) (0.3787) (0.3556) (0.2820) (0.2921) (0.1309)
t[s =1] [1.38] [1.84] [-0.04] [-1.37] [-0.80] [-2.41]
R? 0.0058 0.0419 0.0574 0.0486 0.1947 0.4152
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Table A.19: Ability to Predict Excess Returns: Sample 01/1996 to 10/2008 including Currency Options

The table reports results related to the predictive ability of the model as compared to the UIP and RW benchmarks. Hit-ratios (HR) are calculated as the
proportion of times the sign of the excess return is correctly predicted by the model. R2 = 1 — MSEy /MSEp where MSE); denotes the mean squared
prediction error of the model and M SEp that of the benchmark. CW and GW denote the test-statistics of Clark and West (2007) and Giacomini and White
(2006) as described in Section 3.3. The one-sided p-values of the test-statistics in square brackets are obtained from the block bootstrap procedure described
in Appendix E which accounts for autocorrelation and heteroscedasticity. The results are based on non-overlapping observations for horizons up to 1 month
and on monthly frequency for horizons of 3 months and beyond. The sample periods are January 24, 1996 to October 10, 2008 for AUD, CAD, CHF, GBP,

and JPY. For DEM-EUR the sample period isJanuary 1, 1998 to October 10, 2008.

Model vs. UIP Model vs. RW
1d 1w 1m 3m ly 4y 1d 1w 1m 3m ly 4y

AUD

HR 0.5385  0.5891  0.6857  0.6857 0.8762  0.7905 | 0.5385  0.5891  0.6857  0.6857  0.8762  0.7905
R2 0.0054 0.0299 0.1291  0.3229 0.6852 0.4815 | 0.0041  0.0225 0.1007 0.2619 0.6186  0.3941
p-value[CW] | [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] | [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01]
p-value[GW] | [0.147]  [0.084] [0.044] [<0.01] [<0.01] [<0.01] | [0.211] [0.120] [0.064] [<0.01] [<0.01] [<0.01]
CAD

HR 0.5355 0.5522  0.6476  0.6095 0.8857 0.7048 | 0.5355  0.5522 0.6476 0.6095  0.8857  0.7048
R2 0.0009 0.0082 0.1061  0.2790 0.7462  0.8123 | -0.0004 0.0011 0.0783  0.2175  0.6778  0.7880
p-value[CW] | [0.173] [0.056] [<0.01] [<0.01] [<0.01] [<0.01] | [0.311] [0.190] [0.012] [<0.01] [<0.01] [<0.01]
p-value[GW] | [0.423] [0.384] [0.185] [0.040] [<0.01] [<0.01] | [0.397] [0.472] [0.252] [0.071] [<0.01] [<0.01]
CHF

HR 0.5416  0.5630  0.5905  0.7238  0.8571  0.9143 | 0.5416  0.5630 0.5905 0.7238  0.8571  0.9143
R2 0.0056  0.0249 0.0608 0.1728  0.5683  0.5371 | 0.0045  0.0188  0.0357 0.1119  0.4497  0.5007
p-value[CW] | [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] | [<0.01] [<0.01] [0.021] [<0.01] [<0.01] [<0.01]
p-value[GW] | [0.115] [0.055] [0.222] [0.011] [<0.01] [<0.01] | [0.149] [0.097] [0.342] [0.014] [<0.01] [<0.01]
DEM-EUR

HR 0.5355  0.5905  0.6341  0.6463 0.8902 0.8780 | 0.5355  0.5905 0.6341  0.6463 0.8902  0.8780
R2 0.0006  0.0143 0.0783 0.2446  0.8331  0.7203 | -0.0004 0.0094 0.0570  0.1959  0.7953  0.7329
p-value[CW] | [0.264] [0.014] [<0.01] [<0.01] [<0.01] [<0.01] | [0.422] [0.040] [<0.01] [<0.01] [<0.01] [<0.01]
p-value[GW] | [0.428] [0.176] [0.130] [<0.01] [<0.01] [<0.01] | [0.388] [0.296] [0.176] [0.011] [<0.01] [<0.01]
GBP

HR 0.5255 0.5391 0.5714  0.5619  0.6667  0.6476 | 0.5255  0.5391 0.5714 0.5619  0.6667  0.6476
R2 0.0009  0.0055 0.0897 0.2639 0.5912  0.7152 | -0.0002 -0.0006 0.0598  0.1823  0.4562  0.6581
p-value[CW] | [0.511] [0.073] [0.020] [<0.01] [<0.01] [<0.01] | [0.658] [0.227] [0.085] [0.040] [0.019] [<0.01]
p-value[GW] | [0.318] [0.043] [0.149] [0.034] [<0.01] [<0.01] | [0.497] [0.171] [0.176] [0.051] [0.016] [<0.01]
JPY

HR 0.5146  0.5587  0.5714  0.6095 0.6952  1.0000 | 0.5146  0.5587 0.5714  0.6095  0.6952  1.0000
R2 0.0062  0.0439 0.0655 0.0718  0.2840 0.8865 | 0.0054  0.0395 0.0450 0.0116  0.0475  0.2986
p-value[CW] | [<0.01] [<0.01] [<0.01] [<0.01] [0.010] [<0.01] | [<0.01] [<0.01] [<0.01] [0.030] [0.041] [<0.01]
p-value[GW] | [0.059] [<0.01] [0.064] [0.074] [0.082] [<0.01] | [0.088] [0.016] [0.114] [0.120] [0.085] [<0.01]




Table A.20: Yield Pricing Errors: Sample until December 2006

The table reports annualized root mean squared errors in basis points for the domestic US T-period yields
(Panel A) and the respective foreign yields (Panel B). The rows indicate the model estimated, the column
headers indicate the yield maturities 7. The results are based on daily observations for the sample periods
are October 12, 1994 to December 29, 2006 for AUD; June 1, 1993 to December 29, 2006 for CAD; and
September 18, 1989 to December 29, 2006 for CHF, DEM-EUR, GBP, and JPY.

Panel A: US Yields
1 month 3 monthy 6 months 1 year 2 years 3 years 4 years

AUD 3 4 6 10 9 13 20
CAD 3 3 6 9 9 12 16
CHF 3 3 ) 10 9 10 17
DEM-EUR 3 3 6 12 10 11 18
GBP 3 3 5 10 10 11 17
JPY 9 11 11 16 35 52 68

Panel B: Foreign Yields
1 month 3 monthy 6 months 1 year 2 years 3 years 4 years

AUD 6 7 8 15 17 24 37
CAD 7 9 10 16 23 37 o7
CHF 7 8 8 13 27 39 51
DEM-EUR 8 10 10 16 33 46 65
GBP 9 10 11 24 35 52 7
JPY 3 3 5 9 11 10 17
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Table A.21: Regressions of Excess Returns on Expected Excess Returns: Sample until December 2006

The table (23),
ERip = o + B'ERir + n; 7, for the horizons indicated in the column headers. Values in parenthe-
ses are block-bootstrapped standard errors. t[3’ = 1] is the t-statistic for testing 3’ = 1. R? is the in-sample
coefficient of determination. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
The results are based on non-overlapping observations for horizons up to 1 month and on monthly frequency
for horizons of 3 months and beyond. The sample periods are October 12, 1994 to December 29, 2006 for
AUD; June 1, 1993 to December 29, 2006 for CAD; and September 18, 1989 to December 29, 2006 for CHF,

DEM-EUR, GBP, and JPY.

shows the results from estimating, by ordinary least squares, the regression

1 day 1 week 1 month 3 months 1 year 4 years
AUD
o —0.0000 —0.0001 —0.0003 —0.0011 0.0005 0.0072
se(a) (0.0001) (0.0006) (0.0023) (0.0060) (0.0166) (0.0927)
o4 0.4105** 0.5598** 0.5944** 0.8118*** 1.0773%* 0.9135
se() (0.1805) (0.2612) (0.2480) (0.1944) (0.1117) (0.8124)
t[g = 1] [-3.27] [-1.69] [-1.64] [-0.97] [0.69] [-0.11]
R? 0.0026 0.0181 0.0702 0.3328 0.7487 0.3540
CAD
o —0.0001***  —0.0002 —0.0013 —0.0028 —0.0001 —0.0062
se(a) (0.0000) (0.0003) (0.0012) (0.0032) (0.0096) (0.0330)
e 0.0551 0.8163*** 0.6201** 0.6877*** 1.1416*** 1.1312**
se(3) (0.1839) (0.3114) (0.2599) (0.2391) (0.3003) (0.4722)
t[s =1] [-5.14] [-0.59] [-1.46] [-1.31] [0.47] [0.28]
R? 0.0000 0.0109 0.0279 0.0989 0.5029 0.4660
CHF
o/ —0.0000 0.0000 0.0001 —0.0004 —0.0029 —0.0019
se(a) (0.0001) (0.0006) (0.0026) (0.0071) (0.0213) (0.0433)
e 0.4882* 0.5187** 0.6354** 0.8708*** 0.9152%** 0.9834***
se() (0.2580) (0.2625) (0.2710) (0.2659) (0.3307) (0.3263)
t[g = 1] [-1.98] [-1.83] [-1.35] [-0.49] [-0.26] [-0.05]
R? 0.0008 0.0042 0.0246 0.1039 0.2516 0.3266
DEM-EUR
o 0.0000 0.0002 0.0010 0.0019 0.0007 0.0053
se(a) (0.0001) (0.0005) (0.0024) (0.0063) (0.0208) (0.0522)
o4 0.5307* 0.5015* 0.6511** 0.8167*** 0.9338** 0.8856™*
se(3) (0.2720) (0.2825) (0.3060) (0.3161) (0.3939) (0.3886)
t[s =1] [-1.73] [-1.76] [-1.14] [-0.58] [-0.17] [-0.29]
R? 0.0009 0.0037 0.0251 0.0903 0.2680 0.2490
GBP
o 0.0001 0.0004 0.0014 0.0018 0.0148 0.0206
se(a) (0.0001) (0.0005) (0.0018) (0.0048) (0.0152) (0.0352)
e 0.1791 0.3065 0.5734 0.8253 0.2882 0.7391**
se() (0.4893) (0.5289) (0.5965) (0.7488) (0.7941) (0.3450)
t[g = 1] [-1.68] [-1.31] [-0.72] [-0.23] [-0.90] [-0.76]
R? 0.0000 0.0003 0.0036 0.0191 0.0097 0.2438
JPY
o 0.0001 0.0004 0.0014 0.0023 0.0066 —0.0109
se(a) (0.0001) (0.0007) (0.0027) (0.0061) (0.0189) (0.0284)
o4 1.1401*** 1.0564*** 0.8779*** 0.7680*** 0.9763*** 0.9308***
se((') (0.2325) (0.2364) (0.2510) (0.2025) (0.2113) (0.1433)
t[s =1] [0.60] [0.24] [-0.49] [-1.15] [-0.11] [-0.48]
R? 0.0063 0.0232 0.0645 0.1042 0.4662 0.7611
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The table reports results related to the predictive ability of the model as compared to the UIP and RW benchmarks. Hit-ratios (HR) are calculated as the
proportion of times the sign of the excess return is correctly predicted by the model. R2 = 1 — MSEy /MSEp where MSE); denotes the mean squared
prediction error of the model and M SEp that of the benchmark. CW and GW denote the test-statistics of Clark and West (2007) and Giacomini and White
(2006) as described in Section 3.3. The one-sided p-values of the test-statistics in square brackets are obtained from the block bootstrap procedure described
in Appendix E which accounts for autocorrelation and heteroscedasticity. The results are based on non-overlapping observations for horizons up to 1 month
and on monthly frequency for horizons of 3 months and beyond. The sample periods are October 12, 1994 to December 29, 2006 for AUD; June 1, 1993 to

Table A.22: Ability to Predict Excess Returns: Sample until December 2006

December 29, 2006 for CAD; and September 18, 1989 to December 29, 2006 for CHF, DEM-EUR, GBP, and JPY.

Model vs. UIP Model vs. RW
1d 1w 1m 3m ly 4y 1d 1w 1m 3m ly 4y

AUD

HR 0.5275  0.5668  0.6364 0.7273 0.8384 0.7374 | 0.5275  0.5668 0.6364 0.7273  0.8384 0.7374
R2 0.0027  0.0188 0.0733  0.3407 0.7496  0.3592 | 0.0020  0.0150 0.0564 0.2996 0.7097  0.3541
p-value[CW] | [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] [0.018] | [0.014] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01]
p-value[GW] | [0.258]  [0.050] [0.144] [<0.01] [<0.01] [<0.01] | [0.276] [0.059] [0.179] [<0.01] [<0.01] [<0.01]
CAD

HR 0.5319 0.5406 0.5304 0.5478 0.7391  0.5217 | 0.5319  0.5406 0.5304 0.5478 0.7391  0.5217
R2 0.0006  0.0135 0.0419 0.1247 0.5055  0.4962 | -0.0004 0.0086  0.0249  0.0649 0.3952  0.4778
p-value[CW] | [0.243] [<0.01] [0.012] [<0.01] [<0.01] [0.016] | [0.496] [0.020] [0.049] [0.011] [<0.01] [0.020]
p-value[GW] | [0.241] [0.184] [0.153]  [0.015] [0.024] [<0.01] | [0.274] [0.280] [0.262] [0.029] [0.054] [<0.01]
CHF

HR 0.5383 0.5516  0.6101  0.6604 0.8302 0.7547 | 0.5383  0.5516  0.6101  0.6604 0.8302  0.7547
R2 0.0008  0.0042  0.0247  0.1039  0.2527  0.3475 | -0.0000 0.0005 0.0084 0.0662 0.1484  0.2050
p-value[CW] | [0.044] [0.037] [0.017] [<0.01] [<0.01] [<0.01] | [0.188] [0.157] [0.089] [0.012] [<0.01] [<0.01]
p-value[GW] | [0.350] [0.231] [0.152]  [0.026] [0.016] [<0.01] | [0.497] [0.364] [0.282] [0.054] [0.061] [<0.01]
DEM-EUR

HR 0.5354  0.5530  0.5597  0.6101 0.7736  0.7610 | 0.5354  0.5530 0.5597  0.6101  0.7736  0.7610
R2 0.0009  0.0038 0.0256  0.0907  0.2680  0.2501 | 0.0003  0.0010 0.0120 0.0533  0.1482  0.1395
p-value[CW] | [0.022] [0.031] [0.012] [<0.01] [<0.01] [<0.01] | [0.081] [0.110] [0.045] [<0.01] [<0.01] [<0.01]
p-value[GW] | [0.368] [0.192] [0.074] [0.017] [0.021] [<0.01] | [0.390] [0.226] [0.115] [0.028]  [0.058] [<0.01]
GBP

HR 0.5308  0.5487  0.5723  0.6478  0.6604 0.6352 | 0.5308  0.5487  0.5723 0.6478 0.6604  0.6352
R2 0.0004  0.0017  0.0099 0.0334 0.0568 0.4197 | -0.0001 -0.0002 0.0008 0.0124 -0.0007 0.4543
p-value[CW] | [0.271] [0.214] [0.150]  [0.080] [0.181] [<0.01] | [0.262] [0.198] [0.115] [0.023] [0.107] [<0.01]
p-value[GW] | [0.066] [0.532] [0.339] [0.214] [0.178] [<0.01] | [<0.01] [0.390] [0.336] [0.130] [0.127] [<0.01]
JPY

HR 0.5277  0.5530  0.5786  0.6541  0.7925  0.9560 | 0.5277  0.5530 0.5786  0.6541  0.7925  0.9560
R2 0.0064  0.0235 0.0657  0.1076  0.4712  0.7942 | 0.0054  0.0194 0.0466 0.0603 0.3464 0.6843
p-value[CW] | [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] | [<0.01] [<0.01] [<0.01] [<0.01] [<0.01] [<0.01]
p-value[GW] | [0.014] [0.016] [0.146] [0.064] [<0.01] [<0.01] | [<0.01] [0.023] [0.212] [0.091] [<0.01] [<0.01]




