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Abstract

Recently some new techniques have been proposed for the estimation of the
slope coefficients in presence of unobserved components. Though, the presence of
common observed and unobserved factors is neither considered or the estimation
of their impacts is not taken into account. In this work a range of estimators
is surveyed and their finite-sample properties are examined by means of Monte
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1 Introduction

Recently, the large panel literature has focused on the presence of cross section dependence
that may stem from omitted common variables. These unobserved common factors affect
each cross-section unit heterogeneously and, when correlated with the regressors, lead to
inconsistent regression coefficient estimates. Allowing the errors to be correlated makes
the framework suited for a wider range of economic applications. Moreover, the large-
dimensional nature of the panel data permits consistent estimation of the factors.

The traditional factor analysis is not an implementable strategy for factor models in
large panels. Strict factor models do not work directly with typical macro or finance time
series because the characteristics of the data usually conflict with the assumptions. Indeed,
the classical factor analysis was developed for cross-sectional data where the assumptions
are often reasonable.1 The assumptions underlying the classical factor analysis are in
general restrictive for economic problems. The i.i.d. assumption for the error terms, for
instance, and diagonality of the idiosyncratic covariance matrix, which rules out cross-
section correlation, are too strong for economic time series data. Moreover, classical
factor analysis can consistently estimate the factor loadings but not the common factors.
However, in economics, it is often the common factors (representing the factor returns,
common shocks, diffusion indices, etc.) instead of the factor loadings that are of direct
interest.

Approximate factor models (static and dynamic) abandon the assumption that the
covariance matrix of the idiosyncratic disturbances is diagonal. In the approximate K-
factor model, the assumption is that the variance covariance matrix of the idiosyncratic
disturbances is no more diagonal: it’s possible to have correlation among the disturbance
terms. These models use many time series and have relatively few underlying factors.
A typical application is asset returns data with both a large period of observations and
a large number of assets. Starting from the seminal work of Stock and Watson (2002),
a new setting for approximate factor models has been developed. See, for example Bai
(2003), Bai and Ng (2002), Bai (2005), Bai and Ng (2006a) and Bai and Ng (2006b). The
main model assumptions may be summarized as follows. First, both factor loadings and
the factors are treated as parameters, as opposed to the factor loadings only as in the
classical factor analysis. Second, in general the number of observations is large in both
the cross-section and the time series dimensions. Last, the idiosyncratic errors can be
weakly serially and cross-sectionally correlated.

In this paper we address the issue of how to estimate panel data models with a mul-
tifactor error structure. In fact, whenever an unobserved common factor structure exists
the estimates of individual slope coefficients are inconsistent. Recently, different papers
propose methods to consistently estimate the effects of the observed individual compo-
nents. First, we present different methods for the consistent estimation of the coefficients
of the individual specific regressors in presence of a multifactor error structure.

Second, we consider also the estimation of the observed common components. This
aspect has been quite neglected by the literature which focus only on the estimation of
the individual components. However, in panel data analysis, common regressors are more
often than not the variables of primary interest. In financial empirical applications, for

1See, for instance Wansbeek and Meijer (2000), chapter 7 and Mardia, Kent, and Bibby (1979).
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instance, is common practice to consider generalization of standard APT models that
allows individual asset returns to be affected both by observed and unobserved common
factors. Examples are given in Kapetanios and Pesaran (2005) which consider, in addition
to unobserved common factors, the rate of change of oil prices in US Dollars for modelling
stock return. Ludvigson and Ng (2008) include the linear combination of five forward
spreads obtained by Cochrane and Piazzesi (2005) to explain the excess returns of U.S.
government bonds. Bai (2005) suggests to add to the factor structure either the common
risk factors identified by Fama and French (1993) or the dividend yields, dividend payout
ratio, and consumption gap as in Lettau and Ludvigson (2001) to model asset returns.

Third, we compare via a Monte Carlo simulation exercise the small sample properties
of the various estimators considered.

2 Panel data with unobserved and observed common

factors

In this section we present a model with unobserved and observed common factors. Con-
sider a linear model, where we include observed common factors along with unobserved
ones, we have:

yit = α′dt + β′xit + λ′

if t + ǫit i = 1, . . . , I t = 1, . . . , T (1)

dt is the (n×1) vector of observed common factors, xit is the (k×1) vector of individual-
specific components, and f t is the (r× 1) vector of unobserved factors. Coakley, Fuertes,
and Smith (2002) and Kao, Trapani, and Urga (2008) assume that the response of yit

to ft being homogeneous across individuals through λ. Pesaran (2006) assumes that the
individual specific factors are correlated with common (observed and unobserved) factors
through:

xit = Πi
′dt + Λi

′ft + vit i = 1, . . . , I t = 1, . . . , T (2)

where dt are independent of vit, Πi and Λi are n×k and r×k, factor loading matrices with
fixed components and vit are the specific components of xit distributed independently of
the common effects and across i.

Bai (2005) considers the case where xit is correlated with λi alone, or with ft alone,
or simultaneously with both. In this case expression (2) becomes:

xit = Πi
′dt + A′λi + B′ft + cλi

′ft + vit i = 1, . . . , I t = 1, . . . , T (3)

where A, B are (r × K) constant matrices and c is a (K × 1) constant vector.
It is worth noticing that both specifications (2) and (3), allow for xit being dependent

upon ft through heterogeneous loadings Λi. Coakley, Fuertes, and Smith (2002) consider
the case where the unobserved factors, ft, may be correlated with the individual specific
components xit through:

xit = Λi
′ft + vit (4)

where Λi is a r × k factor loading matrix and vit are the specific components of xit dis-
tributed independently across i. The estimation procedures of the above models proposed
in the literature focus on the estimation of β, the common slope coefficients, under large
time series T and cross section dimension N . Section 3 briefly illustrates the methods.
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2.1 Assumption on the factor loadings, λi

Coakley, Fuertes, and Smith (2002) adopt a panel model with common unobserved com-
ponents which are time-varying but constant across i, i.e. the factor loadings λ are
constant:

yit = β′xit + λ′ft + ǫit (5)

Kao, Trapani, and Urga (2008) share the same framework while Bai (2003), Bai (2005) and
Pesaran (2006) have a heterogeneous factor-loading specification. Specification (5) rules
out the presence among the regressors of either individual or time-invariant regressors.
For instance in case of individual-invariant regressors (dt)

yit = β′xit + α′dt + λ′f t + ǫit

where dt is a (r × 1) vector of observed common factors. The coefficients (α) of the
individual-invariant regressors (dt) are obviously not identified if λ is constant among
individuals.2

Pesaran (2006) assumes that the unobserved factor loadings, λi and Λi in equations
(1) and (2), are independently and identically distributed across i, and of the individual
specific errors, ǫjt and vjt, the common factors, dt and ft, for all i, j and t. In particular,
the factor loadings, λi, follow the random coefficient model:

λi = λ + ηi, ηi ∼ IID(0,Ωη), for i = 1, 2, . . . , I. (6)

Though, Bai (2005) treats ft and λi as fixed effects parameters to be estimated along
with the common slope coefficients β.3

2.2 Assumption on the f t

All the models cited above assume that the number of unobserved factors is fixed but un-
known. Once a consistent estimator of the slope parameters, β̂, is provided, the consistent

2Ahn, Lee, and Schmidt (2001) allow for time-invariant regressors, although they do not consider the
joint presence of common regressors: yit = β′xit + α′zi + λ′ft + ǫit. Again, the coefficients (α) of the
individual-invariant regressors (zi) are not identified if λ is constant among individuals. Ahn, Lee, and
Schmidt (2001) assume non-zero correlation between factor loadings and the regressors to identify the
parameters.

3Bai assumes that:

E‖ft‖4 ≤ M and
1

T

T∑

t=1

ftft

′ p→ Σf > 0 as T → ∞

and

E‖λi‖4 ≤ M and
1

I
ΛΛ

′ p→ ΣΛ > 0 as I → ∞

for some finite M not depending on I and T . The assumption that both Σf and ΣΛ are definite positive,
i.e. have rank = r, rules out redundant components in λi. It is worth noticing that in this set up r is
equal to the smallest value of the number of factors that the factor representation λift holds. In fact, as
stressed by Ahn, Lee, and Schmidt (2006), if the factor representation λift holds for a given r, it also
holds for any greater number of factors than r.
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residuals show a pure factor model structure:

yit − β̂
′

xit = λi
′f t + ǫit + (β̂ − β)′xit

with an added error given by (β̂−β)′xit which does not affect the factor model analysis.4

Therefore, the number of the unobserved common factors can be consistently estimated
based on the information criteria approach developed by Bai and Ng (2002).

It’s worth noticing that Bai (2003) shows that the distribution of the estimated factors
does not depend on whether the number of factors is known or estimated as long as the
number of factors is consistently estimated. Hence, once a consistent estimation of the
slope coefficients is given, the unobserved factors as well as the factor loadings can be
consistently estimated by means of principal components5 even though up to a non-
singular transformation, i.e. a rotation indeterminacy.

3 Alternative panel estimators

3.1 Estimators of the individual specific components, β.

3.1.1 Common Correlated Effects Estimator (Pesaran, 2006).

In model (1)-(2) Pesaran (2006) put forward, using cross section averages of yit and xit

as proxies for the latent factors, ft, a consistent estimator for β. The basic idea behind
the proposed estimation procedure, the Common Correlated Effects (CCE) estimator,
is to filter the individual specific regressors by means of cross section aggregates such
that asymptotically (as I → ∞) the differential effects of unobserved common factors are
eliminated.

For the individual slope coefficients the CCE estimator is given by augmenting the
OLS regression of yit on xit and dt with the cross-section averages zt = 1

I
ΣI

i=1zit where

zit =

[
yit

xit

]
.

Although yt and ǫit are not independent (i.e. endogeneity bias), their correlation goes to
zero as I → ∞. Based upon the CCE estimator, Pesaran (2006) proposes two estima-
tors for the means of the individual specific slope coefficients: the Common Correlated
Effects Mean Group (CCEMG) estimator, a generalization of the estimator proposed by
Pesaran and Smith (1995), and a generalization of the fixed effects estimator, the Common
Correlated Effects Pooled (CCEP) estimator.

Considering the model in (1)-(2), the CCEP estimator allows for the possibility of
cross-section dependence:

β̂P =

(
I∑

i=1

Xi
′MXi

)−1 I∑

i=1

Xi
′Myi (7)

4See Bai (2005), Pesaran (2006) on page 30.
5See Bai (2003).
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M = IT − H (H ′H)
−1

H
′

where Xi is a T × k matrix of observed specific regressors for unit i, yi is a T × 1 vector
of observed specific regressors for unit i. M is the orthogonal projection matrix with
respect to H = (y, X), D, y and X being, respectively, the (T × I), (T ×1) and (T ×k)
matrices of observations on dt, yt and x′

t where yt = 1
I

∑I
i=1 yit and x′

t = 1
I

∑I
i=1 xit.

Pesaran (2006), pag. 67, suggests to use ẽi = M(yi − Xiβ̂P ), the consistent estimates

of the errors eit = yit − α′dt − beta′xit, to obtain consistent estimates of the factors, f̂ t.
Last, the factor loadings can be easily estimated in the regression equation:

yit = α′dt + β′xit + λi
′f̂ t + ζit (8)

However, the estimates of the unobserved common factors f̂ t, obtained as linear com-
binations of the vectors êt, are by construction orthogonal to zt In particular y′f̂ = 0
where y is the (T × 1) vector whose t − th element is given by yt = 1

I

∑I
i=1 yit and f̂ is

the (T × 1) vector of the estimated unobserved common factors. The previous relation
implies:

y′(ιI ⊗ f̂ ) = 0

where y is the (IT × 1) vector of observations over yit and ιI is the unit vector of length
I. Thus, if we estimate a familiar panel model as the fixed or random effects models, the
estimated factors f̂t in equation 8 is orthogonal to the dependent variable yit bringing no
gain in explaining it.6

3.1.2 Quasi-Maximum Likelihood Estimator (Bai, 2005).

Bai (2005) considers the Concentrated Least-Squares (CLS) estimation of the linear model

(1). The CLS β̂CLS estimator minimizes the following concentrated least-squares function:

CLSIT (β) = min
Λ,F

I∑

i=1

(yi − Xiβ − Fλi)
′

(yi − Xiβ − Fλi) (9)

where the function have been already minimized over Λ and F , treated as parameters.
Λ and F are subject to the following identification constraints: F ′F /T = Ir and Λ′Λ
being diagonal. Integrating out Λ one obtains:

CLSIT (β) = min
F

I∑

i=1

(yi − Xiβ)
′

MF (yi − Xiβ) (10)

where MF = IT − F (F ′F )−1F ′. Given F the solution β of (10) is

β̂ =

[
I∑

i=1

(Xi
′M bFXi)

]−1 I∑

i=1

(Xi
′M bFyi) (11)

6Alternatively, f̂ t could be used as a regressor in a SURE-GLS model. However when the cross-section
dimension I is bigger than the time series T dimension SURE-GLS is not feasible.
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and given β the solution F of (10) is

[
I∑

i=1

(yi − Xiβ̂)(yi − Xiβ̂)′

]
F̂ = F̂ V IT (12)

where F̂ is equal to the first r eigenvectors associated with the first r largest eigenvalues
of the above matrix in the brackets and V IT is the corresponding diagonal matrix of
eigenvalues.7 Last, from the concentrated solution of (9), Λ(F ′F ) = Z ′F where Z =

(Z1, Z2, . . . , ZI) and Zi = yi − X iβ. Thus Λ̂ = Z′F
T

is expressed as function of (β̂, F̂ ).
Under the assumptions that the ǫit are iid normal and if xit are treated as fixed, the

CLS estimator is the Maximum Likelihood estimator.
Because the number of λi and f t grows with sample size I and T , both the λi and

f t are incidental parameters in the sense of Neyman and Scott (1948). As a consequence
the usual results for the asymptotic properties of the MLE (or quasi-MLE) do not apply
and the asymptotic properties of the CLS estimator need to be derived directly. (See
Ahn, Lee, and Schmidt (2001), Bai (2005) and Moon and Weidner (2008)). Moreover,
consistency for both λi and ft can only be stated in terms of some average norm or for
componentwise consistency (Bai and Ng (2002), Bai (2003), Bai (2005)).

Kiefer (1980) shows that the CLS estimator can be computed by the iterative scheme
in (11) and (12). For a given value of β, the estimator of F is the first r eigenvectors

associated with the first r largest eigenvalues of
∑I

i=1(yi−Xiβ̂)(yi−Xiβ̂)
′

. Conversely,
for a given value of F , the estimator of β is obtained by regressing MFyi on MFXi

A starting value for F or β is needed. The two natural candidates are the principal
components estimator for F (ignoring the regressors X i) and the simple least squares for
β (ignoring the unobserved common effects), respectively. Bai (2005) proposes also the
following iteration scheme which shows better convergence features especially for the case
of time-invariant and common regressors included in X. Given F and Λ, compute

β̂ =

(
I∑

i=1

Xi

′

Xi

)−1 I∑

i=1

Xi(Yi − Fλi)

and given β, compute F and Λ from the pure factor model Wi = Fλi + ǫi with Wi =
Yi − Xiβ.

3.1.3 Two-step estimator (Coakley, Fuertes, and Smith, 2002).

Coakley, Fuertes, and Smith (2002) propose a two-step estimator based on principal com-
ponents, when α = 0 in the model (1). They augment the regression of each dependent
variable yit on xit with one or more principal components of the estimated OLS residuals

7Bai (2005) divides [
∑I

i=1
(yi−Xiβ̂)(yi−Xiβ̂)′] by IT to make have V IT a proper limit. However the

scaling does not affect F̂ . The concentrated objective function (10) is the same considered by Ahn, Lee,
and Schmidt (2001) although they divide it by I instead of IT . Ahn, Lee, and Schmidt (2001) consider
the case of a single unobserved factor for fixed T under the assumption that Xi are iid distributed across
individuals.
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êit, for i = 1, . . . , I and t = 1, . . . , T obtained from a first stage OLS regression of yit on
xit for each i. The second stage consists of estimating

yit = β′xit + λ′f̂t + ǫit (13)

where f̂t are the r largest Principal Components of the first-stage standardized residuals8

where r is estimated by the Bai and Ng (2002) selection criteria.
Pesaran (2004) shows that this procedure leads to inconsistent estimation when the

cross section mean of the included regressors, xt = 1
I

∑I
i=1 xit, and the unobserved factors

are correlated. It is, in fact, not surprising to find inconsistency of the two-step estimator
because both β and ft are inconsistently estimated in the first step.

3.1.4 Two-step estimator: PCA augmented estimators (Kapetanios and Pe-
saran, 2005)

Kapetanios and Pesaran (2005) propose an alternative two-stage estimation method: in
the first step principal components of all the economic variables in the panel data model
(yit and xit) are obtained as in Stock and Watson (2002), and in the second step the
model is estimated augmenting the observed regressors with the estimated PCs:9

yit = α′dt + β′xit + λi
′f̂ t + ǫit (14)

In this setup the estimated factors f̂ t are linear combinations of both the unobserved and
the observed common factors ft and dt. Therefore, r +n rather than just r factors, must
be extracted from zit = (yit, xit), where the number of unobserved factors (r) is estimated
by the Bai and Ng (2002) selection criteria. This can introduce some sampling uncertainty
into the analysis as stressed by Kapetanios and Pesaran (2005) which show substantial
small sample bias on the estimations when the number of factors to be included in the
regression has to be estimated.

3.2 Estimators of the common observed components, α

To the best of our knowledge, only Bai (2005) explicitly considers the issue of identifica-
tion and estimation of the common observed components when the errors have a factor
structure. Ahn, Lee, and Schmidt (2001) allow for time-invariant regressors, although
they do not consider the joint presence of common regressors, in the case of a single un-
observed factor. In the following subsections we present two estimation methods which
deal not only with the estimation of the individual specific components but also with the
common observed ones.

8The estimated factor matrix F̂ = (f̂1, f̂2 . . . , f̂T )′, is the (T × r) eigenvectors matrix corresponding

to the r largest eigenvalues of the (T × T ) matrix ÊÊ
′
where Ê = (ǫ̂1, ǫ̂2, . . . , ǫ̂T )

′

.
9Bai (2003) shows that as long as

√
t

I
→ 0, the error in the estimated factor is negligible. Thus he

justifies to augment the equation with the estimated factors.
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3.2.1 Two-step estimator: CCEP+PCA (Castagnetti and Rossi, 2008)

When the analysis is not concerned only with the estimation of β, the slope coefficients,
but also with α, the coefficients of the observed common components, is important to
rely on a consistent estimator of β, which is obtained using suitable proxies for the
unobservable factors. Based on these estimates is possible to compute consistent estimates
of the errors eit, which can be used as observed data to obtain estimates of the unobserved
factors, f t. In a previous work, we propose an estimation procedure which heavily relies
on both Bai (2005) and Pesaran (2006) estimators. First, we estimate the individual slope
coefficients by means of the Pesaran (2006) CCEP estimator.

1. we consistently estimate the slope parameter β̂ by means of the CCEP estimator
of equation (7), based on an estimate of ft by means of cross-section averages, zt,
and dt.

2. for i = 1, . . . , I we estimate the residuals as:

êi = M d(yi − X iβ̂p) (15)

where M d is given by
M d = IT − D(D′D)−1D′

3. The unobserved common factors are estimated, up to a non-singular transformation
(i.e. rotation indeterminacy), by the method of least squares. The estimator of F

is equal to the first J eigenvectors associated with the first J largest eigenvalues of

the matrix ÊÊ
′

where Ê is the (T × I) matrix: Ê = (ê1, ê2, . . . , êI).

Under the assumption that E[ftdt
′] = 0 ∀t we show in a previous work (Castagnetti

and Rossi, 2008) that F̂ is a consistent estimator (in average norm) for F .

4. Finally, f̂t are used as regressors in the model. Bai (2003) shows that as long as√
T/I → 0 the error in the estimated factor is negligible, and for large I, ft can be

treated as known.

The two-step estimator of δ = (α′, β′)′ is given by:

δ̂2step =

[
I∑

i=1

Qi
′M (bF )Qi

]−1 I∑

i=1

(Qi
′M (bF )yi) (16)

where Qi = (Xi, D) and M (bF ) is the orthogonal projection matrix with respect to

F̂ .10.

10Or any linear combination of them, i.e. F̂H , where H is an invertible matrix such that F̂ is an

estimator of FH and H−1Λ̂
′
is an estimator of Λ′
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3.2.2 Quasi-Maximum Likelihood Estimator (Bai, 2005)

Bai (2005) explicitly considers the case of observed common factors included in the re-
gressors.11 The conditions that guarantee both the identification as well as the consistent
estimation of the parameters can be summarized as follows:

• neither F nor its rotation can contain the unit vector; the same for Λ

• absence of multicollinearity between F and D.

The first condition guarantees what Bai (2005) defines the presence of a genuine factor
structure in the error terms. The second condition is a standard identification condition
for the common components coefficients, α.

The estimation method is the same described in section 3.1.2, equations (11)-(12),
where Xit

′ = (dt
′, xit

′) and β = (α′, β′)′.

3.3 Estimation of the number of factors

Unlike the Pesaran (2006) estimator, the implementation of all the other methods pre-
sented above require the determination of the number of factors to be included in the
regression. This is usually done by means of the criteria advanced in Bai and Ng (2002).
They formulate the problem of selecting the number of factors in approximate factor
models as a model selection problem therefore by minimizing information criteria. This
method is designed for data where the number of observations is large in both the cross-
section (I) and the time series (T ) dimensions. However this method could produce
inconsistent estimators if either I or T is small. Simulation results reported in Bai and
Ng (2002) indicate that the number of factors is not accurately estimated if I or T is
less than 20. Ahn and Perez (2008) present a generalized method of moment (GMM)
estimator of the number of factors which requires just one of the data dimensions (I or
T ) to be large.12

Both Coakley, Fuertes, and Smith (2002) and Kapetanios and Pesaran (2005) evaluate
the impact of selecting the factors on the accuracy of the second-step estimation. Coakley,
Fuertes, and Smith (2002) extract the factors from estimated disturbances rather than
observed variables as considered by Bai and Ng (2002). They observe that the selecting
information criteria of Bai and Ng (2002) are quite accurate. On the contrary, Kapetanios
and Pesaran (2005) show substantial small sample bias on the estimations due to the need
to selecting the number of factors to be included in the regression.

4 Monte Carlo Experiments

The purpose of this section is to compare the small sample properties of the estimators
discussed in Section 3 when unobserved common factors are present. Each experiment
involves 1,000 replications of (I, T +T0) observations where the first T0 = 50 observations

11Bai (2005) considers also the presence of individual-invariant regressors.
12The method proposed by Ahn and Perez (2008) is designed for exact factor model but it can be easily

used to estimate some approximate factor models.
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are discarded for each time series to avoid dependence on the initial conditions (set equal
to zero). We consider combinations of T = and I =. Therefore we consider both the case
of I much larger than T and of T much larger than I.

At each iteration we generate the following DGP:

yit = α1 + α2d2t + β1x1it + β2x2it + λift + ǫit (17)

x1it = a11 + a21d2t + λ1ft + v1it (18)

x2it = a12 + a22d2t + λ2ft + v2it (19)

for i = 1, . . . , I, and t = 1, . . . , T . This DGP considers only two individual specific
components, x1it and x2it, two observed common factors, d1t and d2t, and one unobserved
common factor ft. α = (α1, α2) = (0.8, 0.5) and β = (β1, β2) = (1, 3).

The parameters

A =

[
a11 a21

a12 a22

]

and

Λ =

[
λ1

λ2

]

are generated as vec(A) ∼ IIDN(0, 0.5 × I4), and IIDN(0, 0.5 × I2) respectively, and
are kept constant across replications. λi = IIDN(1, 0.2). The common factors and the
individual specific errors are generated as independent stationary AR(1) processes with
zero means and unit variances:

d1t = 1

d2t = ρdd2,t−1 + vdt, t = −49, . . . 1, . . . , T.

vdt ∼ IIDN(0, 1 − ρ2
d), ρd = 0.5, d2,−50 = 0

ft = ρfft−1 + vft, t = −49, . . . 1, . . . , T.

vft ∼ IIDN(0, 1 − ρ2
f ), ρf = 0.5, f−50 = 0

vjit = ρvij
vji,t−1 + νijt, t = −49, . . . 1, . . . , T.

νijt ∼ IIDN(0, 1 − ρ2
vij

), vji,−50 = 0 j = 1, 2

and
ρvij

∼ IIDU (0.05, 0.95) , j = 1, 2.

The errors of yit are generated as stationary AR(1) processes:

ǫit = ρiǫǫi,t−1 + σi(1 − ρ2
iǫ)

1/2ζit for i = 1, . . . , I

ρiǫ ∼ IIDU (0.05, 0.95)

σ2
i ∼ IIDU (0.5, 1.5)

ζit ∼ IIDN (0, 1)
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For each experiment we computed the CCEP and the Bai (2005) estimators as well as
the infeasible estimator, assuming ft is observable, and the naive estimator that excludes
the factor. The infeasible estimator provides an upper bound to the unbiasedness and
efficiency of the CCEP and the Bai (2005) estimators. The naive estimator illustrates the
extent of bias and size distortions that can occur if the error cross section dependence is
ignored.

Namely the infeasible estimator is given by:

β̂inf =

[
I∑

i=1

(Xi

′

M (D,F )Xi)

]−1 I∑

i=1

(Xi

′

M (D,F )yi)

while the naive estimator is given by:

β̂naive =

[
I∑

i=1

(Xi

′

M (D)Xi)

]−1 I∑

i=1

(Xi

′

M (D)yi)

The Bai (2005) estimator is computed by allowing up to 500 iterations for each simu-
lation and by setting the tolerance coefficient equal to 0.0001.

4.1 Simulation results

• finite sample properties of β

First we compare the estimators of β, i.e. the individual specific components coeffi-
cients. Tables 1 and 2 report the bias and the root mean squared errors (RMSE) of
the two estimators, respectively. Overall, the Pesaran Common Correlated Effects
Pooled (CCEP) estimator bias is the closest to the one realized by the infeasible es-
timator. Bai estimator and 2step estimator show mixed results. For what concerns
the efficiency, as measured by the root mean square error, the Pesaran estimator
turns out to the best, while the Bai and the 2step estimators have very close per-
formances.

[Tables 1 and 2 here]

• finite sample properties of α

We now compare the Bai (2005) and the Castagnetti and Rossi (2008) estimator α̂
for the common observed components. The two-step estimation method of section
3.2.1 relies on a first-step consistent estimation of the errors eit, which can be used
as observed data to obtain consistent (in average norm) estimates of the unobserved
factors, ft.

Like in Bai (2003) to evaluate the estimate of a transformation of ft, f̂t,2step, we

compute the correlation coefficient between { ˆft,2step}T
t=1 and {ft}T

t=1, for each Monte
Carlo simulation. We compare these correlation coefficients with those obtain using
the Bai (2005) estimator in equation (12). Table 3 below reports the average corre-
lation coefficients for both estimation methods. The results suggest that both factor
estimates are highly correlated with the unobserved factor. This seems to confirm

12



the results in Bai (2003), obtained in a different context, that is as
√

T/I → 0,
the estimation error in the factor estimates is negligible. It is worth noticing that
in many cases the iteration method of Bai (2005) does not converge. The last two
columns of table 3 report the average number of iterations and the number of failure
for each Monte Carlo simulation, respectively.

[Table 3 here]

Tables 4 and 5 report the bias and the RMSE of the the Bai (2005) and the two-step
estimator of section 3.2.1 estimators of α, respectively. As before we also present
estimation results for the naive as well as for the infeasible estimator. For what
concerns the bias, when I > T we observe a slightly superior performance of the
two-step estimator with respect to the CLS estimator. For the root mean square
error we observe a mixed situation. However, we should take into account that
the CLS estimator is more computationally intensive than the two-step estimator
and that the number of cases in which the iterative procedure fails in achieving the
convergence is quite high.

[Tables 4 and 5 here]

• finite sample properties of β when the factor loadings λi are correlated
with the regressors

Bai (2005) suggests that the method proposed by Pesaran (2006) does not provide
consistent estimates of β when λi is correlated with the regressors. Using the pro-
jection argument of Mundlak (1978), Bai (2005) suggests that additional regressors,
the time-series averages zi = 1

T
ΣT

t=1zit where zit = (yit, x
′

it
)
′

should also be added
to achieve consistency. Appendix 6 shows that the general argument used by Pe-
saran (2006) to justify the CCEP estimator holds not only when Ft is correlated
with the regressors but also when λi is correlated with the regressors.

Here we investigate the small sample properties of the CCEP estimator when λi is
correlated with xit. Following Bai (2005) we adopt the following DGP:

yit = α1d1t + α2d2t + β1x1it + β2x2it + λift + ǫit (20)

x1it = a1 + λift + λi + ft + v1it (21)

x2it = a2 + λift + λi + ft + v2it (22)

for i = 1, . . . , I, and t = 1, . . . , T . This DGP considers only two individual specific
components, x1it and x2it, two observed common factors, d1t and d2t, and one un-
observed common factor ft. ǫit is IIDN(0, 2). a = (a1, a2) = (1, 1) α = (α1, α2) =
(5, 4) and β = (β1, β2) = (1, 3).

d1t = 1

d2t = ft + vdt

vdt is IIDN(0, 1) independent of all other regressors. The variables λi, ft, vjit are
all IIDN(0, 1).
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This DGP is identical to Bai’s (2005) DGP for the case of common regressors. Tables
6 and 7 report the Monte Carlo results in terms of bias and RMSE for β.

[Tables 6 and 7 here]

The Monte Carlo results in table 6 and 7 show that Pesaran (2006) estimator has
better bias and root mean square error performances than the Bai estimator when
the xit are simultaneously correlated with λi and ft.

5 Conclusions

In this paper we review the estimation techniques adopted in panel data models with
individual and common factors. In particular we consider the presence of unobserved and
observed common factors. We present also a new approach to the estimation of individual-
specific components along with the estimation of the common factors coefficients which is
based on a two-step estimation procedure. The finite sample properties are investigated
by means of Monte Carlo simulations, under different data-generating processes. The
results show that the CCEP estimator by Pesaran (2006) has remarkable properties under
different DGPs. Furthermore, the two-step estimator by Castagnetti and Rossi (2008)
shows good finite sample properties when compared to the iterative CLS estimator by Bai
(2005), which is computationally more demanding and less accurate when we consider the
fact that it fails to achieve convergence in a relevant number of cases.

6 Appendix

When the factor loadings are correlated with the regressors, model (1-2) becomes:

yit = β′xit + λi
′ft + ǫit (23)

xit = Λi
′ft + Aλi + vit (24)

where Λi is a (r×K) factor loading matrix with fixed components, Λ, and A is a (K×r)
matrix of parameters. Combining (23-24) we have the system of equations:

zit =

(
yit

xit

)
= Ci

′ft + Bλi + uit (25)

where

Ci =
(

λi Λi

)( 1 0
β IK

)

B =

(
β

′

IK

)
A

and

uit =

(
β

′

vit + ǫit

vit

)
(26)
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Consider the cross-section averages of the equations in (25):

z̄t = C̄
′

ft + Bλ̄ + ūt (27)

suppose that Rank(C̄) = r ≤ K + 1 for all I, then we have:

ft = (C̄C̄
′

)−1C̄(z̄t − Bλ̄ − ūt) (28)

Pesaran (2006), (Lemma 1) shows that ūt

q.m.→ 0 as I → ∞ for every t. Moreover, as in

Pesaran (2006), λ̄
p→ λ as I → ∞ where λ = E(λi) and C̄

p→ C where

C =
(

E(λi) E(Λi)
)( 1 0

β IK

)
=
(

λ Λ
)( 1 0

β IK

)

Therefore, from (28) we obtain:

ft − (C̄C̄
′

)−1C̄(z̄t − Bλ)
p→ 0 (29)

Therefore the argument of Pesaran (2006), pag. 976 of using z̄t as observable proxies
for ft still holds also when the factor loadings λi are correlated with the regressors.

15



References

Ahn, S., Y. Lee, and P. Schmidt (2001): “GMM Estimation of Linear Panel Data
Models with Time-varying Individual Effects,” Journal of Econometrics, 101, 219–255.

(2006): “Panel Data Models with Multiple Time-Varying Individual Effects,”
mimeo.

Ahn, S., and M. Perez (2008): “GMM Estimation of the Number of Latent Factors,”
mimeo.

Bai, J. (2003): “Inferential Theory for Factor Models of Large Dimensions,” Economet-
rica, 71(1), 135–171.

(2005): “Panel Data Models with Interactive Fixed Effects,” mimeo.

Bai, J., and S. Ng (2002): “Determining the Number of Factors in Approximate Factor
Models,” Econometrica, 70(1), 191–221.

(2006a): “Confidence Intervals for Diffusion Index Forecasts and Inference for
Factor-Augmented Regressions.,” Econometrica, 74(4), 1133–1150.

(2006b): “Evaluating Latent and Observed Factors in Macroeconomics and
Finance.,” Journal of Econometrics, 113(1), 507–537.

Castagnetti, C., and E. Rossi (2008): “Euro Corporates Bonds Risk Factors,”
Mimeo.

Coakley, J., A. Fuertes, and R. Smith (2002): “A Principal Component Approach
to Cross-Section Dependence in Panels,” Discussion paper, Birkbeck College.

Cochrane, J., and M. Piazzesi (2005): “Bond Risk Premia,” The American Economic
Review, 95, 138–160.

Fama, E., and K. French (1993): “Common Risk Factors in the Returns on Stocks
and Bonds,” Journal of Financial Economics, 33(1), 3–56.

Kao, C., L. Trapani, and G. Urga (2008): “The Asymptotics for Panel Models with
Common Shocks,” mimeo.

Kapetanios, G., and M. Pesaran (2005): Alternative Approaches to Estimation and
Inference in Large Multifactor Panels: Small Sample Results with an Application to
Modelling of Asset Returnsvol. forthcoming in The Refinement of Econometric Estima-
tion and Test Procedures: Finite Sample and Asymptotic Analysis. Garry Phillips and
Elias Tzavalis, Cambridge, cambridge university press edn.

Kiefer, N. (1980): “A Time Series-Cross Section Model with Fixed Effects with an
Intertemporal Factor Structure,” Unpuplished manuscript, Cornell University.

16



Lettau, M., and S. Ludvigson (2001): “Resurrecting the (C)CAPM: A Cross-
Sectional Test When Risk Premia are Time Varying,” Journal of Political Economy,
109, 1238–1287.

Ludvigson, S., and S. Ng (2008): “Macro Factors in Bond Risk Premia,” The Review
of Financial Studies, forthcoming.

Mardia, K., J. Kent, and J. Bibby (1979): Multivariate Analysis. Academic Press.

Moon, H. R., and M. Weidner (2008): “Asymptotic Analysis of the quasi-MLE of
Panel Regression Models with Interactive Fixed Effects,” Department of Economics,
UCS.

Mundlak, Y. (1978): “On the Pooling of Time Series and Cross Section Data,” Econo-
metrica, 46, 69–85.

Neyman, J., and E. Scott (1948): “Consistent Estimates Based on Partially Consis-
tent Observations,” Econometrica, 16, 1–32.

Pesaran, M. (2004): “Estimation and Inference in Large Heterogeneous Panels with a
Multifactor Error Structure,” mimeo, Cambridge University.

(2006): “Estimation and Inference in Large Heterogeneous Panels with a Mul-
tifactor Error Structure,” Econometrica, 74(4), 967–1012.

Pesaran, M., and R. Smith (1995): “Estimating Long-Run Relationships from Dy-
namic Heterogeneous Panels,” Journal of Econometrics, 68(1), 79–113.

Stock, J., and M. Watson (2002): “Macroeconomic Forecasting Using Diffusion In-
dexes,” Journal of Business and Economic Statistics, 20, 147–162.

Wansbeek, T., and E. Meijer (2000): Measurement Error and Latent Variables in
Economics. North-Holland.

17



Table 1: BIAS of β estimators

CLS CCEP infeasible 2step naive

I T β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

10 10 0.0589 -0.0108 -0.0130 0.0031 0.0024 0.0017 0.0063 -0.0463 0.2749 -0.1621
10 30 0.0011 -0.0157 -0.0016 -0.0082 -0.0011 -0.0007 0.0298 -0.0040 0.4868 -0.5624
10 100 0.0009 -0.0009 0.0012 0.0015 -0.0012 0.0025 -0.0100 0.0031 -0.1788 -0.7481
30 10 -0.0201 0.0492 -0.0015 0.0088 -0.0025 0.0003 0.0299 0.0117 0.0345 0.3747
30 30 -0.0179 -0.0012 0.0029 0.0017 -0.0004 0.0025 -0.0041 0.0046 -0.3070 0.5571
30 100 -0.0014 -0.0213 -0.0012 -0.0008 -0.0012 -0.0011 -0.0026 -0.0109 -0.0902 -0.4141
100 10 -0.0210 0.0072 -0.0016 0.0009 -0.0017 0.0027 0.0003 0.0050 -0.0345 0.4657
100 30 0.0150 -0.0172 -0.0008 -0.0009 0.0006 -0.0015 0.0025 -0.0037 0.2270 -0.3850
100 100 -0.0005 -0.0001 -0.0004 0.0005 0.0002 0.0002 -0.0019 0.0011 -0.4112 -0.0598
200 10 0.0097 -0.0032 0.0004 0.0003 0.0021 -0.0002 0.0021 0.0064 -0.3819 -0.3717
200 30 -0.0021 -0.0103 -0.0002 0.0002 -0.0004 0.0003 0.0017 0.0245 -0.0366 0.5980
200 100 0.0007 0.0000 0.0000 0.0005 0.0002 0.0007 0.0013 0.0039 0.2251 0.4504
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Table 2: RMSE of β estimators

CLS CCEP infeasible 2step naive

I T β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

10 10 0.1749 0.1192 0.1459 0.1174 0.1428 0.1172 0.1615 0.1365 0.2885 0.2036
10 30 0.0892 0.1018 0.0816 0.0971 0.0874 0.0986 0.0975 0.1032 0.4942 0.5701
10 100 0.0505 0.0663 0.0502 0.0666 0.0478 0.0633 0.0513 0.0656 0.1848 0.7489
30 10 0.0780 0.0906 0.0904 0.0858 0.0844 0.0866 0.0973 0.0929 0.0945 0.3801
30 30 0.0672 0.0591 0.0589 0.0494 0.0687 0.0570 0.0697 0.0589 0.3136 0.5579
30 100 0.0403 0.0910 0.0339 0.0296 0.0351 0.0304 0.0356 0.0327 0.0962 0.4143
100 10 0.0449 0.0397 0.0472 0.0434 0.0498 0.0435 0.0522 0.0449 0.0602 0.4670
100 30 0.0325 0.0333 0.0285 0.0281 0.0325 0.0316 0.0328 0.0320 0.2289 0.3857
100 100 0.0174 0.0168 0.0169 0.0166 0.0173 0.0167 0.0174 0.0169 0.4112 0.0620
200 10 0.0317 0.0328 0.0305 0.0312 0.0337 0.0340 0.0338 0.0345 0.3829 0.3728
200 30 0.0209 0.0238 0.0200 0.0209 0.0213 0.0221 0.0225 0.0339 0.0428 0.5981
200 100 0.0114 0.0116 0.0108 0.0109 0.0114 0.0116 0.0115 0.0123 0.2254 0.4505
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Table 3: Average correlation coefficients between {f̂t}T
t=1 and {ft}T

t=1.

I T {f̂t}ccep {f̂t}qmle iter fail
10 10 0.7999 0.9251 127.161 368
10 30 0.9632 0.9808 107.648 187
10 100 0.9694 0.9743 81.453 52
30 10 0.8583 0.7975 194.651 931
30 30 0.9621 0.9873 193.881 898
30 100 0.9408 0.9654 148.134 399
100 10 0.9318 0.9956 199.284 988
100 30 0.9555 0.9920 197.297 948
100 100 0.9962 0.9960 53.425 0
200 10 0.9926 0.9708 184.396 796
200 30 0.9980 0.9476 118.122 1
200 100 0.9967 0.9968 58.621 0

Iter and fail indicate the average number of iteration and the number of failure of the
iterative process for the qmle estimation method of Bai (2005), respectively.
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Table 4: BIAS of α estimators

CLS infeasible 2step naive

I T α1 α2 α1 α2 α1 α2 α1 α2

10 10 -0.3800 0.0135 -0.0082 -0.0002 0.5099 0.0564 -0.0441 0.1844
10 30 0.3163 -0.0359 0.0008 -0.0019 -0.4956 0.0721 -0.6562 0.0321
10 100 -0.0761 -0.0201 0.0032 -0.0009 0.2061 0.0547 0.3242 0.4322
30 10 0.5592 0.0125 0.0009 0.0008 -0.5102 -0.4649 -0.5183 -0.4575
30 30 0.8892 -0.1330 -0.0017 0.0013 -0.4511 -0.1406 0.1399 -0.0052
30 100 0.2176 0.0692 0.0006 0.0013 -0.1546 -0.2050 0.5849 -0.1189
100 10 -1.3010 -0.3470 0.0002 -0.0042 0.3402 -0.0215 0.0462 -0.2003
100 30 1.0918 0.1580 0.0016 -0.0005 -0.0793 0.0228 0.2678 -0.1667
100 100 0.0353 0.0108 0.0006 -0.0007 -0.0924 -0.0425 0.0038 0.1640
200 10 0.5647 0.0454 0.0019 -0.0010 -0.2575 0.3264 -0.4850 0.1927
200 30 -0.4202 0.0204 -0.0001 0.0003 0.6019 -0.3455 0.2108 0.2318
200 100 -0.1268 0.0164 0.0005 -0.0003 0.2605 0.0212 0.7366 -0.4138
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Table 5: RMSE of α estimators

CLS infeasible 2step naive

I T α1 α2 α1 α2 α1 α2 α1 α2

10 10 0.9248 0.3412 0.2891 0.1831 0.6562 0.1913 0.2980 0.2387
10 30 0.9111 0.2602 0.1572 0.0827 0.5183 0.1135 0.6736 0.0890
10 100 0.4882 0.1562 0.0989 0.0595 0.2279 0.0820 0.3381 0.4357
30 10 1.8646 0.4592 0.1851 0.0789 0.5424 0.4697 0.5474 0.4623
30 30 1.7113 0.3374 0.0888 0.0648 0.4621 0.1562 0.1650 0.0649
30 100 0.6986 0.1780 0.0887 0.0387 0.1812 0.2090 0.5907 0.1252
100 10 1.8175 0.4661 0.0634 0.0485 0.3467 0.0540 0.0785 0.2058
100 30 1.5220 0.2366 0.0520 0.0477 0.0955 0.0541 0.2722 0.1729
100 100 0.0956 0.0510 0.0346 0.0379 0.0987 0.0572 0.0347 0.1681
200 10 1.3146 0.1603 0.0486 0.0309 0.2615 0.3277 0.4869 0.1949
200 30 0.4394 0.0528 0.0329 0.0233 0.6030 0.3469 0.2133 0.2328
200 100 0.1516 0.0327 0.0273 0.0163 0.2618 0.0269 0.7370 0.4141
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Table 6: BIAS of β estimators

CLS CCEP infeasible naive

I T β1 β2 β1 β2 β1 β2 β1 β2

10 10 0.2358 0.2398 -0.0121 -0.0237 0.0001 -0.0028 0.2914 0.2913
10 30 0.2022 0.2034 0.0054 0.0007 -0.0013 -0.0021 0.3011 0.2952
10 100 0.1301 0.1254 0.0080 0.0024 0.0026 -0.0022 0.3054 0.3018
30 10 0.1766 0.1807 0.0095 0.0113 -0.0022 0.0029 0.2856 0.2887
30 30 0.0732 0.0783 0.0009 0.0047 -0.0028 0.0028 0.2980 0.3036
30 100 0.0115 0.0108 0.0040 0.0023 0.0017 0.0011 0.3044 0.3034
100 10 0.0632 0.0630 0.0028 0.0029 0.0009 0.0008 0.2897 0.2895
100 30 0.0067 0.0061 0.0030 0.0018 0.0006 -0.0002 0.3003 0.2998
100 100 0.0018 0.0016 0.0004 0.0000 0.0000 -0.0003 0.3037 0.3022
200 10 0.0260 0.0225 0.0050 0.0026 0.0023 -0.0007 0.2905 0.2879
200 30 0.0028 0.0033 -0.0007 0.0002 -0.0007 -0.0002 0.2999 0.3001
200 100 0.0017 0.0011 0.0000 -0.0006 0.0002 -0.0004 0.3035 0.3032
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Table 7: RMSE of β estimators

CLS CCEP infeasible naive

I T β1 β2 β1 β2 β1 β2 β1 β2

10 10 0.3264 0.3371 0.3173 0.3158 0.1802 0.1821 0.3345 0.3363
10 30 0.2719 0.2727 0.1356 0.1377 0.1008 0.0999 0.3169 0.3110
10 100 0.2077 0.2086 0.0686 0.0689 0.0541 0.0528 0.3101 0.3064
30 10 0.2493 0.2485 0.1695 0.1690 0.1004 0.1012 0.3012 0.3043
30 30 0.1594 0.1654 0.0738 0.0719 0.0551 0.0551 0.3028 0.3084
30 100 0.0591 0.0584 0.0394 0.0395 0.0309 0.0316 0.3061 0.3049
100 10 0.1415 0.1396 0.0940 0.0894 0.0561 0.0533 0.2952 0.2952
100 30 0.0437 0.0422 0.0415 0.0392 0.0301 0.0289 0.3019 0.3014
100 100 0.0205 0.0208 0.0204 0.0208 0.0163 0.0163 0.3042 0.3027
200 10 0.0780 0.0783 0.0609 0.0609 0.0375 0.0378 0.2941 0.2914
200 30 0.0288 0.0275 0.0284 0.0277 0.0215 0.0212 0.3009 0.3010
200 100 0.0144 0.0145 0.0145 0.0144 0.0115 0.0118 0.3038 0.3035
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