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Abstract

An allocation’s ordinal efficiency deficit (OED) is defined as the greatest ordinal efficiency

loss that can result from its application. More precisely, an allocation’s OED is the negative

of the greatest total amount by which it may be stochastically dominated by another feasible

allocation. Thus, an allocation is ordinally efficient if and only if its OED is zero. Using this

insight, we set up a linear program whose optimal objective value corresponds to a given allo-

cation’s OED. Furthermore, we show that the OED is a piecewise-linear convex function on the

set of allocations. We use the optimal dual variables of the linear program to construct a profile

of von Neumann-Morgenstern (vNM) utilities that is compatible with the underlying ordinal

preferences, and which is a subgradient of the OED at the given allocation. When the given

allocation is ordinally efficient, our analysis implies that it is ex-ante welfare maximizing at the

constructed vNM profile, and we recover the ordinal efficiency theorem due to McLennan [10].
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1 Introduction

In an influential paper, Bogomolnaia and Moulin [3] consider the probabilistic assignment of n

objects to n agents. Agents are endowed with strict ordinal preferences over the set of objects and

wish to be allocated the equivalent of one full object. To accommodate this fractional environment,

Bogomolnaia and Moulin [3] adapt the familiar notion of Pareto efficiency to random assignments

by introducing the concept of ordinal efficiency. A random assigment is ordinally efficient if agents

cannot trade probability shares of objects to achieve a new random allocation that stochastically

dominates the original one. Bogomolnaia and Moulin show that ordinal efficiency is equivalent to the

acyclicity of a particular kind of binary relation between objects.1 Abdulkadiroglu and Sonmez [1]

provide a different characterization of ordinal efficiency based on a novel concept of dominated sets

of assignments. In recent years, ordinal efficiency has been seen as an important benchmark in ran-

dom assignment and has motivated the study and comparison of individual allocation mechanisms

(Manea [7], Manea [9], Kesten [6], Che and Kojima [4]).

McLennan [10] offers a different characterization of ordinal efficiency. In particular, he considers

the weak preference domain and shows that an allocation is ordinally efficient if and only if it is

ex-ante welfare maximizing at some profile of von Neumann-Morgenstern (vNM) utilities, which

are compatible with the underlying ordinal preferences. In his proof, he establishes and uses a new

version of the separating hyperplane theorem. Manea [8] provides a simpler, constructive proof of

McLennan’s result that is based on the acyclicity of the binary relation discussed in [3] and [5].

The constructed profile of vNM utilities is related to a given weak representation of this (acyclic)

binary relation.

Similarly to Manea [8], our work provides a simple constructive proof of McLennan’s charac-

terization. Given a feasible allocation and a profile of weak preferences, we define this allocation’s

ordinal efficiency deficit (with respect to the given preference profile) as the greatest total ordinal

efficiency loss that can result from its application. More precisely, an allocation’s OED is the neg-

ative of the greatest total amount by which it may be stochastically dominated by another feasible

allocation. For example, consider an economy with three agents (1, 2 and 3), and three objects (a,

b and c). Agent 1 strictly prefers object a to b and b to c; agent 2 strictly prefers b to c and c to

a; and agent 3 c to a and a to b (preferences are complete, reflexive, and transitive). Consider the

fractional allocation where all three agents are awarded a share of 1/3 of all houses. This allocation

is clearly ordinally inefficient, and is strictly dominated by many feasible allocations. Indeed, the

only ordinally efficient allocation in this economy is the deterministic outcome in which agent 1

gets all of a, 2 all of b, and 3 all of c. Focusing on agent 1 and his most preferred object a, we see

that the ordinal efficiency loss here is equal to -2/3; examining the same agent and the set of his

first and second-most preferred objects, a and b, the efficiency loss is -1/3. Adding the two together

1Katta and Sethuraman [5] extend Bogomolnaia and Moulin’s analysis to the weak preference domain.
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yields -1. Examining each agent in this way, we establish that the original allocation’s OED with

respect to the given preference profile is -3.2

Contribution. Clearly, an allocation is ordinally efficient if and only if its OED is zero. Using

this insight, we set up a linear program (LP) whose optimal objective value corresponds to a given

allocation’s OED. Furthermore, we show that the OED is a piecewise-linear convex function on the

set of allocations. We use the optimal dual variables of the previously mentioned LP to exhibit a

profile of vNM utilities that is compatible with the underlying ordinal preferences, and which is a

subgradient of the OED at the given allocation. This result is, in a sense, more general than the

ordinal efficiency theorem and points to a deeper connection between ordinal and cardinal measures

of efficiency in random-assignment problems. Indeed, when a given allocation is ordinally efficient

our analysis implies that it is ex-ante welfare maximizing at the constructed vNM profile, and we

recover McLennan’s result. It is our hope that the simplicity of our LP-based approach may prove

helpful in thinking about related problems in the growing field of random assignment.

Structure of the Paper. The structure of the paper is as follows. Section 2 introduces the

model, and Section 3 provides a proof of McLennan’s [10] ordinal efficiency welfare theorem that

is based on LP duality. Section 4 generalizes the approach pursued in Section 3 to arbitrary (i.e.,

non ordinally efficient) allocations. It introduces the concept of an allocation’s OED and discusses

the interpretation of the constructed vNM utility profiles as subgradients of the OED at a given

allocation. Section 5 provides concluding remarks.

2 Model Description

Consider an economy with a set N of n agents and M of m objects indexed by i = 1, 2, ..., n

and j = 1, 2, ...,m, respectively. Suppose without loss of generality that m ≥ n, allowing for the

possibility of “dummy” objects that correspond to not being assigned anything at all. Each agent i’s

preferences over the set of objects are expressed by the complete, reflexive, and transitive relation

�i, and � denotes the economy-wide profile of preferences {�i}
n
i=1. If objects j1 and j2 are such

that j1 �i j2 and j2 �i j1 then agent i is indifferent between them, and this is denoted by j1 ∼i j2.

If j1 �i j2, but j2 6�i j1, then agent i strictly prefers object j1 to j2, and this is denoted by j1 ≻i j2.

In what follows, a prime symbol following a given (column) vector denotes the vector’s transpose.

An individual allocation for agent i is a non-negative column vector pi = (pi1, pi2, . . . , pim)′ such that
∑

j pij = 1. An allocation p = (p′1, p
′
2, ..., p

′
n)′ is a concatenation of a set of individual allocations pi

2For simplicity, from now on we omit making explicit the dependence of these concepts on the underlying preference
profile except where necessary.
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for i = 1, 2, ..., n that satisfies
∑

i pij ≤ 1 for all j ∈ M .3 Let P denote the set of all allocations.

For agent i, an individual allocation pi dominates another qi at �i, denoted pi �i qi, whenever

∑

a�ij

pia ≥
∑

a�ij

qia, for all j ∈ M.

If at least one of the above inequalities is strict, then pi strictly dominates qi, which is denoted by

pi ≻i qi. The dominance relation defined on an individual allocation extends to its economy-wide

equivalent in a natural way: an allocation p dominates an allocation q at � if pi �i qi for every

agent i; p strictly dominates q at � if p dominates q, and if pi ≻i qi for some agent i. Bogomolnaia

and Moulin [3] introduce the following efficiency criterion: An allocation p is said to be ordinally

efficient at � if there does not exist an allocation q that strictly dominates it at �.

A profile of von Neumann-Morgenstern (vNM) utility functions u =
(

ui : M → ℜ, i ∈ N
)

is

compatible with a profile of ordinal preferences � if

ui(j1) ≥ ui(j2) ⇔ j1 �i j2, ∀j1, j2 ∈ M, ∀i ∈ N.

Finally, an allocation p is ex-ante welfare maximizing at a profile of vNM utilities u if it maximizes

the social welfare function
n

∑

i=1

m
∑

j=1

pijui(j),

over the set of feasible allocations.

3 A Duality Proof of the Ordinal Efficiency Welfare Theorem

For simplicity, assume that preferences are strict (Remark 1 clarifies how the argument extends to

the general case). In what follows, we use LP duality to provide a constructive proof of McLennan’s

ordinal efficiency welfare theorem.

Theorem 1 (McLennan [10]) An allocation is ordinally efficient at � if and only if it is ex-ante

welfare-maximizing at some profile of vNM utilities compatible with �.

Proof. Consider an allocation p̂ ∈ P and denote by ji(k) agent i’s k’th most preferred object.

Where applicable, let 0 denote a zero vector of appropriate dimension. Consider the following

3Note how the elements pij of p are positioned in lexicographic order. For reasons that will become apparent in
Section 3, we avoid the more common representation of an allocation as a sub-stochastic matrix.
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linear program (LP) in standard form:

min
p,r,s

n
∑

i=1

m
∑

k=1

−rik

subject to:
∑

j�iji(k)

pij − rik =
∑

j�iji(k)

p̂ij , ∀k ∈ {1, 2, ...,m}, ∀i ∈ N

m
∑

j=1

pij = 1, ∀i ∈ N

n
∑

i=1

pij + sj = 1, ∀j ∈ M

p ≥ 0, r ≥ 0, s ≥ 0. (1)

By definition, the solution (p, r, s) = (p̂,0, ŝ) (where ŝj = 1 −
∑n

i=1 p̂ij for all j ∈ M), is feasible

and establishes an upper bound of 0 for the problem’s optimal cost (i.e., objective value).

Using the definition of ordinal efficiency, it is easy to see that p̂ is ordinally efficient if and only

if the optimal solution (p∗, r∗, s∗) of the primal problem (1) satisfies (p∗, r∗, s∗) = (p̂,0, ŝ), thus

yielding an optimal cost of 0.

Taking the dual of (1), and letting 1 denote a unit vector of dimension n · m, we obtain4

max
x,y,z

n
∑

i=1

m
∑

k=1

xik

∑

j�iji(k)

p̂ij +

n
∑

i=1

yi +

m
∑

j=1

zj

subject to:
m

∑

j=k

xij + yi + zji(k) ≤ 0, ∀k ∈ {1, 2, ...,m}, ∀i ∈ N

x ≥ 1

y free variable, z ≤ 0. (2)

By strong duality (see Theorem 4.4 in [2]), the primal problem has an optimal cost of 0 (which, as

mentioned before, is equivalent to p̂ being ordinally efficient) if and only if the optimal solution of

the dual problem (2), (x̂, ŷ, ẑ), satisfies
n

∑

i=1

m
∑

k=1

x̂ik

∑

j�iji(k)

p̂ij +
n

∑

i=1

ŷi +
m

∑

j=1

ẑj = 0. (3)

Now, let û denote a profile of von-Neumann Morgenstern (vNM) utilities such that

ûi(ji(k)) =
m

∑

j=k

x̂ij , k ∈ {1, 2, ...,m}, i ∈ N. (4)

Recall that since (x̂, ŷ, ẑ) is feasible, we must have x̂ik ≥ 1 for all i, k. In combination with Eq. (4),

this immediately establishes that û is compatible with the ordinal preferences �. Rearranging

terms, Eq. (3) can be rewritten in the following way
n

∑

i=1

m
∑

k=1

ûi(ji(k))p̂iji(k) = −

( n
∑

i=1

ŷi +
m

∑

j=1

ẑj

)

⇒
n

∑

i=1

m
∑

j=1

ûi(j)p̂ij = −

( n
∑

i=1

ŷi +
m

∑

j=1

ẑj

)

(5)

4For details see Chapter 4.2 in Bertsimas and Tsitsiklis [2].
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Again by dual feasibility we must have

m − k + 1 ≤ ûi(ji(k)) ≤ −
(

ŷi + ẑji(k)

)

, ∀k ∈ {1, 2, ...,m}, i ∈ N

⇒ 1 ≤ ui(j) ≤ −
(

ŷi + ẑj

)

, ∀j ∈ M, i ∈ N. (6)

Now, consider an arbitrary p ∈ P . We have

n
∑

i=1

m
∑

j=1

ûi(j)pij

(6)

≤
n

∑

i=1

m
∑

k=1

−
(

ŷi + ẑj

)

pij

(1) (2)

≤ −

( n
∑

i=1

ŷi +
m

∑

j=1

ẑj

)

(5)
=

n
∑

i=1

m
∑

j=1

ûi(j)p̂ij . (7)

Thus, p̂ is ex-ante welfare maximizing at the vNM utility profile û, which is compatible with the

ordinal preferences �.

We have proved that if p̂ is ordinally efficient, then it is ex-ante welfare maximizing for some

vNM utility profile that is compatible with the agents’ ordinal preferences. The other direction is

easily established (see Lemma 1 in [3]) so that the equivalence of the two statements follows.

It is easy to show that the optimal solution of the primal LP (1) always produces an ordinally

efficient solution, independently of whether p̂ is ordinally efficient.

Proposition 1 Consider the optimal solutions (p∗, r∗, s∗) and (x̂, ŷ, ẑ) of the primal (1) and

dual (2) LPs, respectively. Moreover, consider the vNM utility profile û, that is a function of the

optimal x̂ variables, given by Eq. (4). The following two statements hold:

(a) The allocation p∗ is ordinally efficient, and

(b) For all i ∈ N and j ∈ M we have

p∗ij > 0 ⇔ ûi(j) = −
(

ŷi + ẑj).

Proof. (a) As established in the proof of Theorem 1, if r∗ = 0 then p∗ = p̂ is ordinally efficient. So

we focus on the case r∗ 6= 0 and suppose that p∗ is not ordinally efficient. Then there exists a feasible

allocation p̃ which strictly dominates p∗. Consider the solution (p̃, r̃, s̃), where s̃j = 1 −
∑m

i=1 p̃ij

for all j ∈ M , and

r̃ik = r∗ik +
∑

j�iji(k)

(p̃ij − p∗ij) ≥ r∗ik, k ∈ {1, 2, ..,m}, ∀i ∈ N. (8)

The solution (p̃, r̃, s̃) is easily seen to be feasible for the primal problem (1) as

∑

j�iji(k)

p̃ij − r̃ik =
∑

j�iji(k)

p̃ij −

[

r∗ik +
∑

j�iji(k)

(p̃ij − p∗ij)

]

=
∑

j�iji(k)

p∗ij − r∗ik =
∑

j�iji(k)

p̂ij , ∀i, k,
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while all other constraints are trivially satisfied. Since p̃ strictly dominates p∗, at least one of the

inequalities given by Eq. (8) is strictly satisfied. This implies that the feasible solution (p̃, r̃, s̃)

yields a strictly smaller cost than (p∗, r∗, s∗) contradicting the latter’s optimality.

(b) This part follows trivially from the complementary slackness conditions (see Theorem 4.5 in [2])

p∗iji(k)

( m
∑

j=k

x̂ij + ŷi + ẑji(k)

)

= 0, ∀k ∈ {1, 2, ...,m}, i ∈ N.

Remark 1. It is straightforward to modify our argument when indifferences are allowed. Suppose

agent i is allowed to be indifferent between various objects, so that he has mi ∈ {1, ..,m} indifference

classes. Here, an object is said to belong in agent i’s k’th indifference class, Ii(k), if it is among his

k’th-most preferred. Consequently, we only introduce variables rik where k = 1, ...,mi, and adapt

the primal problem’s relevant constraints to5

∑

j�iIi(k)

pij − rik =
∑

j�iIi(k)

p̂ij , ∀k ∈ {1, 2, ...,mi}, ∀i ∈ N.

The corresponding dual constraints are modified to

mi
∑

j=k

xij + yi + zj ≤ 0, ∀j ∈ Ii(k), k ∈ {1, 2, ...,mi}, ∀i ∈ N,

while the vNM utility profile û is defined so that

ûi(j) =

mi
∑

j=k

x̂ij , ∀j ∈ Ii(k), ∀k ∈ {1, 2, ...,mi}, ∀i ∈ N.

The logic of the proof then carries over. Notice how the vNM utility profile û assigns identical

utility to objects over which an agent is indifferent.

4 A Subtler Connection Between Ordinal Efficiency and vNM

Utilities

In this section, we make a more general connection between ordinal efficiency and the profile of vNM

utilities discussed in Section 3. Indeed, duality theory lends the constructed vNM utility profile û

of Theorem 1 a novel economic interpretation, regardless of whether the candidate allocation p̂ is

ordinally efficient. Throughout, we fix a preference profile � and suppress the explicit dependence

5Abusing notation, we denote the set of objects that are at least as preferred to agent i as those in his k’th
indifference class by j �i Ii(k).
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of our results on the economy’s preferences. Once again, we assume strict preferences; it is clear

how the results extend to the weak domain. We begin by defining the concept of a subgradient that

is pervasive in convex optimization.

Definition 1 Let f : X → ℜ denote a convex function defined on a convex set X . Let x̂ ∈ X . A

vector v ∈ X is a subgradient of f at x̂ if

f(x̂) + v · (x − x̂) ≤ f(x), ∀x ∈ X .

Returning to our model, let p ∈ P and reorder its elements so that

pik = piji(k), ∀k ∈ {1, 2, ...,m}, i ∈ N.

Now, we define the vector-valued function g : P → ℜn·m, where g(p) =
(

g(p)′1,g(p)′2, ...,g(p)′n
)′

,

such that

g(p)ik =
∑

j�iji(k)

pij , ∀k ∈ {1, 2, ..,m}, i ∈ N. (9)

Given column vectors xi ∈ ℜm for all i ∈ N , let x =
(

x′
1,x′

2, ...,x′
n

)′
∈ ℜn·m. Next, we define

u : ℜn·m → ℜn·m to be a vector-valued function, where u(x) =
(

u(x)′1,u(x)′2, ...,u(x)′n
)′

, such that

u(x)ik =
m

∑

j=k

xij , ∀k ∈ {1, 2, ..,m}, i ∈ N. (10)

Echoing the proof of Theorem 1, we can rearrange terms and establish the following identity

x′g(p) = u(x)′p, ∀p ∈ P, x ∈ ℜn·m. (11)

We use the primal problem (1) to define an allocation’s ordinal efficiency deficit (OED) as the

negative of the greatest amount by which it can be stochastically dominated by another feasible

allocation. Or, equivalently, as the greatest ordinal efficiency loss that its application can result in.

Let F (p̂) denote the feasible region of the primal problem (1) for a given p̂ ∈ P so that

F (p̂) =

{

(p, r, s) ≥ 0

∣

∣

∣

∣

∑

j�iji(k)

pij − rik =
∑

j�iji(k)

p̂ij ,

m
∑

j=1

pij = 1,

n
∑

i=1

pij + sj = 1, ∀i, j, k

}

.

(12)

The OED of an allocation p̂ is defined as the optimal cost of the primal problem (1) when the

allocation in the right-hand-side of the constraints constraints is given by p̂. Formally, it is denoted

by a function D : P → ℜ− such that

D(p̂) = min
(p,r,s)∈F (p̂)

n
∑

i=1

m
∑

k=1

−rik.
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Proposition 2 The ordinal efficiency deficit D(·) is a piecewise-linear convex function on the set

P .

Proof. The argument follows closely Section 5.2 in Bertsimas and Tsitsiklis [2]. Let p̂ ∈ P and

consider the associated dual LP (2). By strong duality, the dual’s optimal cost is finite and equal to

D(p̂). To make the dual feasible region a polyhedron (see Definition 2.1 in [2]), we substitute the

free variable y by the difference of two non-negative variables y+ and y−. Since any real number

can be written as the difference of two non-negative real numbers, the two problems yield the same

optimal cost.

The set of (updated) dual constraints {x ≥ 1,y+ ≥ 0,y− ≥ 0, z ≤ 0}, ensures that the new dual

feasible region is a polyhedron that does not contain a line (see Definition 2.12 in [2]). Consequently,

Theorem 2.6 of [2] implies that the dual feasible region (unaltered by changes in p̂) contains at

least one extreme point. Let
(

xk, (y+)k, (y−)k, zk
)

for k = 1, 2, ..., N be the extreme points of the

dual feasible region. By Theorem 2.8 of [2], the optimum of the dual must be attained at some

extreme point. Hence, we may write:

D(p̂) = max
k=1,..,N

{

(

xk, (y+)k − (y−)k, zk
)

′(g(p̂),1,1)

}

= max
k=1,..,N

{

u(xk)
′
p̂ +

(

(y+)k − (y−)k, zk
)

′(1,1)

}

. (13)

Since the maximum of a set of linear (and therefore convex) functions is itself convex, the result

follows.

We are now ready to generalize the insights obtained in the proof of Theorem 1.

Theorem 2 Consider a profile of preferences � and an allocation p̂ ∈ P . Let ji(k) denote agent

i’s k’th-most preferred object. Suppose the vector (x̂, ŷ, ẑ) is an optimal solution of LP (2) and

consider the vNM utility profile û where

ûi(ji(k)) =

m
∑

j=k

x̂ij , ∀k ∈ {1, 2, ...,m}, i ∈ N.

This profile is (a) compatible with the underlying ordinal preferences, and (b) a subgradient of the

ordinal efficiency deficit D at p̂.

Proof. Part (a) follows immediately from dual feasibility. We turn to part (b). The simple argument

follows the proof of Theorem 5.2 in Bertsimas and Tsitsiklis [2]. First, recall our earlier notation

u(x̂)ik =

m
∑

j=k

x̂ij , ∀k ∈ {1, 2, ..,m}, i ∈ N.

9



Strong duality implies that

(x̂, ŷ, ẑ)′(g(p̂),1,1) = D(p̂)
(11)
⇒ u(x̂)′p̂ +

n
∑

i=1

ŷi +
m

∑

j=1

ẑj = D(p̂).

Consider now an arbitrary p̃ ∈ P . By weak duality (see Theorem 4.3 in [2]), we have

u(x̂)′p̃ +
n

∑

i=1

ŷi +
m

∑

j=1

ẑj ≤ D(p̃).

Hence, we may conclude that

u(x̂)′(p̃ − p̂) ≤ D(p̃) − D(p̂), ∀ p̃ ∈ P.

Remarks. Theorem 2 leads to some interesting observations. Suppose we have an allocation p̂, its

associated optimal dual variables x̂, and the resulting profile of vNM utilities û = u(x̂). Consider

an arbitrary allocation p̃. Theorem 2 implies that, at the vNM utility profile û, the difference

in cardinal utility between p̃ and p̂ is bounded above by the difference of their ordinal efficiency

deficits. Thus, we arrive at a general relationship between these two measures of ordinal and cardinal

efficiency.

Moreover, when p̂ is ordinally efficient, we have that

u(x̂)′(p̃ − p̂) ≤ D(p̃) − D(p̂) = D(p̃) ≤ 0,

so that the allocation p̂ is immediately seen to maximize ex-ante welfare at û, which, we recall,

is compatible to the underlying ordinal preferences. Thus, we arrive at a related, though slightly

different, proof of the ordinal efficiency welfare theorem.

5 Directions for Future Research

The results in this paper provide a concise characterization of ordinal efficiency. In particular, an

allocation is ordinally efficient if and only if its ordinal efficiency deficit (OED), a piecewise-linear

convex function on the set of allocations, is zero. We believe that this insight, coupled with the

more general optimization framework explored in this work, may prove useful in future research in

random-assignment and house-allocation models. In particular, one may frame all sorts of existence

questions by setting up a trivial optimization problem (i.e., one with a zero objective), imposing as

constraints desired properties of efficiency, equity, and voluntary participation, and examining its

dual. A similar approach may be helpful in the comparison of individual allocation mechanisms;

10



in particular, one can attempt to provide bounds on the difference of their ex-ante welfare, for a

range of preference-compatible utility profiles.
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