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Abstract 

Empirical evidence suggests that nominal wages in the U.S. are downwardly rigid. This paper studies 

the optimal long-run inflation rate in a labor search and matching framework under the presence of 

Downward Nominal Wage Rigidity (DNWR). In this environment, optimal monetary policy targets a 

positive inflation rate; the annual long-run inflation rate for the U.S. is around 2 percent. Positive inflation 

“greases the wheels” of the labor market by facilitating real wage adjustments, and hence it eases job 

creation and prevents excessive increase in unemployment following recessionary shocks. These findings 

are related to standard Ramsey theory of “wedge smoothing”; by following a positive-inflation policy 

under sticky prices, the monetary authority manages to reduce the volatility and the size of the 

intertemporal distortion significantly. The intertemporal wedge is completely smoothed when prices are 

fully flexible. Since the optimal long-run inflation rate predicted by this study is considerably higher than 

in otherwise neoclassical labor markets, the nature of the labor market in which DNWR is studied can be 

relevant for policy recommendations.  
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1   Introduction  

This paper studies optimal monetary policy in the presence of Downward Nominal Wage Rigidity 

(DNWR) within a labor search and matching model.
1
 When nominal wages are downwardly rigid, 

optimal monetary policy sets a strictly positive inflation rate, of about 2 percent annually, in the long run. 

A strictly positive long-run inflation rate is driven by precautionary considerations in the expectations of 

adverse shocks. Positive inflation allows for downward real wage adjustments (thus “greasing the wheels” 

of the labor market) which eases job creation and limit the increase in unemployment following adverse 

shocks.  

The results of the paper are related to standard Ramsey theory of smoothing distortions (or “wedges”) 

over time. A virtually constant distortion across periods is the main insight of Barro (1979), in a partial 

equilibrium framework, and Chari, Christiano and Kehoe (1991) in a quantitative general equilibrium 

model, among others. Recently, Arseneau and Chugh (2010) have developed intertemporal and static 

notions of efficiency in general equilibrium models with labor search and matching frictions. They show 

that the intertemporal wedge should indeed be smoothed, but, contrarily to the cornerstone result of tax 

smoothing in the Ramsey literature, that occurs through volatility in labor income taxes. In this paper, 

optimal monetary policy, which calls for a positive inflation rate due to DNWR, reduces the size and the 

volatility of the intertemporal wedge when prices are sticky. This fact suggests that with both 

intertemporal and nominal distortions in place, the monetary authority cannot completely smooth both 

distortions simultaneously. When prices are fully flexible, however, monetary policy keeps the 

intertemporal wedge virtually constant over the business cycle by varying the inflation rate. Therefore, the 

volatility and the size of the intertemporal wedge are both falling in the inflation rate as the degree of 

price rigidity varies.  

The results under zero-inflation policy at all dates and states are significantly different. In this case, 

the volatility of the intertemporal wedge is substantially higher; the wedge absorbs the shock. Similar 

results are obtained for labor market variables; the combination of DNWR and fully stable prices limit the 

decline in real wages considerably, thus generating unemployment increases and job creation declines far 

beyond their responses under a positive inflation target.    

                                                           
1
 DNWR means not only that wage increases are more likely than wage cuts, but also that the distribution of wage 

changes is not symmetric. Nominal wages tend to increase in good times but they do not tend to fall proportionally 

in bad times, thus generating an asymmetric distribution of wage changes. Note that the fact that wage increases are 

more common than wage cuts by itself is insufficient evidence for the presence of DNWR; a preponderance wage 

increases may reflect long-term productivity growth or steady state (positive) inflation. 
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The paper is motivated by several recent empirical studies indicating DNWR. Some of the most 

notable recent evidence on DNWR is the comprehensive work of the International Wage Flexibility 

Project (IWFP), reviewed in Dickens et al.(2007a, 2007b). Their findings indicate asymmetry in the 

distribution of nominal wage changes in 16 OECD countries, with the U.S. being among the countries 

with very high degrees of DNWR. Gottschalk (2005) shows that after correcting for measurement errors 

that typically appear in wages reported in surveys, only about 5% of workers experienced wage cuts 

during a course of a year while working for the same employer. Card and Hyslop (1997) show a spike at 

zero in the distribution of nominal wage changes, indicating DNWR. The size of this spike is highly 

correlated with inflation; it significantly increased in the mid 1980‟s when inflation rates fell relative to 

the 1970‟s. In addition, their analysis reveals that, on average, real wages would have been lower by 

around 1% per year in the mid 1980‟s had nominal wages not been downwardly rigid. Using large 

financial corporation wage and salary data, Altonji and Devereux (2000) find that only 0.5% of salaried 

workers had salary cuts and 2.5% of hourly workers had wage reductions. 

The idea that positive inflation may be needed to “grease the wheels” of the labor market dates back 

at least to Tobin (1972). Following negative shocks that call for a fall in the real wage, Tobin (1972) 

suggests that setting a positive inflation rate, on one hand, and stabilizing nominal wages, on the other, 

would facilitate real wage adjustment in the presence of DNWR. Tobin‟s idea has gained more attention 

in recent years for two reasons. First, inflation rates have become very low in the last two decades. 

Clearly, DNWR is more relevant in low inflation environments and during recessions. Second, central 

banks around the world do in fact target positive inflation rates, either explicitly or implicitly. DNWR 

may create a precautionary motive for positive inflation: since the timing of (negative) shocks is not fully 

predictable, the monetary authority keeps the inflation rate positive on average in order to “ensure” 

against negative shocks once they materialize.  

This study allows for staggered price setting, downwardly rigid nominal wages, and search and 

matching frictions in the labor market, the latter being consistent with positive unemployment in 

equilibrium. To model DNWR, I follow Kim and Ruge-Murcia (2009) and Fahr and Smets (2008) by 

using the Linex wage adjustment cost function. This function delivers higher costs in case of wage cuts 

relative to wage increases. To see the significance of this setup, consider the response of an economy to 

an adverse productivity shock. If inflation is high, then downward rigidity in nominal wages cannot 

prevent real wage drops, and hence inflation mitigates the potential increase in unemployment. In case of 

low inflation rates, however, DNWR may translate into Downward Real Wage Rigidity (DRWR). In this 

case, if the monetary authority seeks to keeps prices stable (due to a direct cost of adjusting prices), 

downward rigidity in real wages implies higher unemployment than in the absence of DNWR. If the 
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monetary authority instead chooses to stabilize employment, it inflates in order to achieve the desired cut 

in real wages. That is, the inflation rate needed „to grease the wheels‟ of the economy is higher than it 

would be if nominal wages were not downwardly rigid. In short, the presence of labor market frictions 

may magnify the need for grease inflation if policy makers are trying to keep unemployment low, or it 

may create excessive unemployment when attempting to keep prices close to full stability.  

 The current study contributes to some recent literature that studies the optimal inflation rate in the 

presence of DNWR. In a frictionless labor market environment, Kim and Ruge-Murcia (2009) show that 

the optimal annual grease inflation in the U.S. is positive (around 0.4 percent). Unlike the current study, 

they estimate the model‟s parameters based on some Taylor-type rule. In an earlier version of their paper 

(Kim and Ruge-Murcia, 2007), the monetary authority chooses allocations to maximize households‟ 

welfare, but without assuming any Taylor-type rule. In that case, the optimal annual grease inflation is 

found to be 1.2 percent. Fagan and Messina (2009) introduce asymmetric menu costs for wage setting and 

show that the optimal inflation rate for the U.S. ranges between 2 percent and 5 percent when nominal 

wages are downwardly rigid. The optimal inflation rate in their model depends on the dataset used to 

measure the degree of DNWR. The optimal long run inflation rate found in the current paper is thus more 

in line with the results of Fagan and Messina (2009).  

The fact that the inflation rate suggested by the current study is significantly higher than in Kim and 

Ruge-Murcia (2007, 2009), despite the use of a similar proxy for DNWR, suggests that structure of the 

labor market in which DNWR is studied may matter for policy recommendations. Since the discussion is 

over the long-run inflation rate, these differences are economically significant. In addition, the average 

inflation rate in the United States has been around 2.5 percent in the last two decades. Therefore, the 

current study may also be seen as one that suggests a theoretical ground for targeting an inflation rate of 

around 2 percent.   

     The remainder of this paper proceeds as follows. Section 2 outlines the search and matching model 

economy with DNWR. Section 3 discusses the search-based efficient allocations and the intertemporal 

wedge. Section 4 describes the calibration methodology and the parameterization of the model. Section 5 

presents the results regarding the optimal inflation rate. Impulse Response functions following 

productivity shocks are presented in section 6. Section 7 examines the performance of two extreme 

policies, full price stability and full employment stability, relative to optimal policy. Section 8 concludes. 
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2     The Model Economy 

Apart from the monetary authority, the economy is populated by households and monopolistically-

competitive firms that produce differentiated products. Hiring labor by firms is subject to search and 

matching frictions. Following literature, the model embeds the search and matching framework of 

Pissarides (2000), which has become the main framework within which optimal monetary policy is 

studied in the presence of labor market frictions.
2
 Each firm faces asymmetric adjustment cost for 

nominal wages that implies higher costs of cutting nominal wages relative to increasing nominal wages 

by the same magnitude. Changing prices by each firm is subject to a direct resource cost. The model 

allows for variations in total hours along both the extensive and the intensive margin.  

 

2.1   Households  

The economy is populated by a representative household which consists of family members of measure 

one. At each date t a household member can be in either of two states: employed or unemployed and 

searching for a job. Employed individuals are of measure tn and the unemployed are of measure tu , 

where tt nu  1 , as conventional in the literature.  

Following the assumptions of consumption insurance in Merz (1995) and Andolfatto (1996), all family 

members in this household have the same consumption. The disutility of work is assumed to be the same 

for all employed individuals and the value of non-work is the same for all unemployed individuals. Given 

these assumptions, the household‟s problem is to maximize  
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


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where 1 is the standard subjective discount factor, 0E is the expectation operator , tc is the composite 
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2
 Note that my model assumes no idiosyncratic shocks, unlike, for example, Mortensen and Pissarides (1994).       
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As standard in New Keynesian models, consumption ( tc ) is a Dixit-Stiglitz aggregator of 

differentiated products ( jtc ) produced by monopolistically-competitive firms,  

11

0

1 
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djcc jtt
,                                                                                                                                   (2) 

where 1 is the elasticity of substitution between two varieties of final goods. In line with standard 

Dixit-Stiglitz based NK models, the optimal allocation of expenditures on each variety is given by  
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0

1
djPP jtt is the Dixit-Stiglitz price index that results from cost minimization. 

Maximization is subject to the sequence of budget constraints of the form  
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where b stands for unemployment benefits, tB denotes nominal bonds, tW is the nominal wage, tR is the 

nominal gross interest rate on bonds, tP  is the aggregate price level, tT are net transfers and t stands for 

profits from the ownership of firms. 

     Household‟s choices of consumption and bond holdings yield the following optimality condition:  
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in which )(
1


t

t
t P

P denotes the gross price inflation rate. 

 

2.2   Firms in the Labor Market 

There is a continuum of measure one of monopolistically-competitive firms. Each firm j hires labor as the 

only input and produces differentiated products using the following linear technology  

)( jtjttjt hfnzy  ,                                                                                                                                       (6) 
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with tz denoting aggregate productivity, which is common to all firms, jtn is employment at time t in firm 

j, and 
jth is hours per worker supplied by each worker at the firm. The pricing of a firm is subject to a 

quadratic adjustment cost as in Rotemberg (1982), expressed in units of the final output.  

Hiring workers by each firm is subject to search and matching costs. Each period firms post vacancies 

and they meet unemployed workers searching for jobs. Nominal wages and hours per worker are 

determined in a Nash bargaining process between workers and firms as will be outlined later. As noted by 

Krause and Lubik (2007), the assumption of quadratic adjustment cost and symmetry among firms allows 

for integrating price decisions and employment decisions in the same firm.     

 Each firm faces an asymmetric wage adjustment cost function that involves a higher cost in case of a 

nominal wage cut compared to a nominal wage increase.
3
 In particular, following Kim and Ruge-Murcia 

(2009), the real wage adjustment cost per employed individual is given by the following Linex function: 


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
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




.                                                                               (7) 

For any positive value of , the cost of cutting nominal wages by a specific amount is higher than the 

cost of increasing wages by the same amount. Also, as   approaches zero, this function approaches the 

quadratic adjustment cost and hence enables comparison with the symmetric adjustment function. In the 

other extreme, as   approaches infinity, this function becomes L-shaped implying that nominal wages 

cannot fall. Naturally, this parameter will have special significance in my analyses, particularly regarding 

the optimal long-run inflation rate.  

Posting a vacancy v entails a cost of  for a firm. Matches between vacant jobs and unemployed 

individuals are governed by a constant return-to-scale-matching function of the form 
4
 

  1),( ttmtt vuuvm ,                                                                                                                                (8) 

where m is a scaling parameter that reflects the efficiency of the matching process. Labor market 

tightness is measured as  

                                                           
3
 The assumption that firms pay the adjustment costs of wages is without loss of generality. In a model where 

workers unilaterally set their wages, they will naturally pay the wage adjustment cost. In this model however, the 

wage rate is determined through bargaining between firms and workers. Hence, households do not have all the 

bargaining power and they therefore are not wage setters in the typical manner. In this case, it is less clear who 

should pay the cost of adjusting wages. I assume that firms entail these costs without loss of generality. Note that 

this assumption has no effect on the economy-wide resource constraint.  
4
 The variable u measures the number of unemployed individuals at time t. The corresponding unemployment rate is 

given by 
1)1)(1(1  tt uur . 
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t

t
t

u

v
 .                                                                                                                                                       (9) 

The probability of the firm to fill a job (i.e. the job filling rate) is given by
t

tt
t

v

uvm
q

),(
)(  . Using 

the properties of the matching function it can be written as 

  tmtq )(  ,                                                                                                                                       (10) 

which is decreasing in labor market tightness. Intuitively, the higher the ratio of vacancies to 

unemployment, the lower the probability for a specific vacancy to be filled. Similarly, the job finding rate 

(i.e. 
t

tt
t

u

uvm
p

),(
)(  ) can be written as 

  1)( tmtp ,                                                                                                                                       (11) 

and hence it increases in tighter labor markets. Finally, employment in each firm evolves according the 

following law of motion: 

 ),()1(1 tjtjtjt uvmnn   ,                                                                                                              (12)       

with  denoting the separation rate from a match. Using the expression for the job-filling rate and the law 

if motion of employment can also be written as 

))()(1(1 tjtjtjt qvnn   .                                                                                                                (13)  

In this formulation, I assume that a match formed at time t starts to produce at time t+1 given that it 

survived exogenous separations.  

Each firm chooses its price vacancies and employment for next period to maximize the expected 

presented discounted stream of profits given by  
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subject to the sequence of laws of motion of employment, and the : 

))()(1(1 tjtjtjt qvnn   ,                                                                                                                 (15) 

and the downward-sloping demand function for its product 
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Households are assumed to own the firms, and hence firms discount next period‟s profits by the 

stochastic discount factor of households (i.e. )1

t

t


  , where t is the Lagrange multiplier on the 

households budget constraint.   

Let
jt  be the Lagrange multiplier associated with the employment law of motion (equation 15), 

and jt be the Lagrange multiplier associated with the output constraint (equation 16). The multiplier 

jt measures the contribution of one additional unit of output to the revenue of the firm, and it equals, in 

equilibrium, the real marginal cost of the firm. Imposing symmetry across firms, and assuming that all 

workers supply the same number of hours (h), the first-order conditions with respect to 1jtn and jtv read, 

respectively, as follows: 
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and, 

0)()1(  ttq   .                                                                                                                      (18) 

Combining conditions (15) and (16) and the fact that ctt u ,  give the Job Creation (JC) condition:  
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where (
t

t
t

P

W
w  ) is the real wage. Thus, in equilibrium, the firm equates the vacancy-creation cost to the 

discounted expected value of profits from the match. As the term in brackets makes clear, the flow profit 

to a firm from a match equals output net of wage payments and costs of adjusting wages.
5
 This condition 

is also referred to as the free-entry condition for posting vacancies.  

                                                           
5
 To see this clearly, one may write this condition in the following way            
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    The LHS is the cost of posting a vacancy. The RHS shows the discounted expected value of profits from a given 

match. The firm enjoys profits from this match in case of being filled (which occurs with probability )( tq  ) and 

surviving exogenous separation (which occurs with probability )1(  ). We can use the last term in the RHS to 

iterate forward and hence get the expected PDV of profits. In short, this equation equates the cost of posting a 

vacancy (the LHS) to the (expected) benefit of posting that vacancy.  
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     By taking first order condition with respect to the price jtP and assuming symmetry among firms (since 

they all set the same price in equilibrium), we get the following price Philips curve (see Appendix D): 

)1()1()1(1 1
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This equation shows that the current inflation rate is an implicit function of the expected inflation rate 

and the real marginal cost. This equation collapses in the case of fully flexible prices ( )0p or fully 

stable prices ( 1t  for all t) to the familiar condition,


 1
t

, the inverse of the gross price markup.  

 

2.3   Nash Bargaining 

As is typical in the literature, wage payments and hours per employed individual are determined by Nash 

bargaining between firms and individuals. I follow Thomas (2008) and Arseneau and Chugh (2008) 

among others by assuming that bargaining is over nominal wages tW rather than real wages tw (as 

typically has been the assumption). This assumption allows focusing on nominal wages, which are the 

subject of this study. To have a good notion for downward wage rigidity one should focus on the 

determination of nominal wages, since if bargaining is over real wages, downward real wage rigidity will 

have no implications for monetary policy. As discussed in Fahr and Smets (2008), Downward Real Wage 

Rigidity means than nominal wages are indexed to inflation, which in case of full indexation, implies a 

zero greasing inflation rate. Put differently, the fact that real wages cannot fall following negative shocks 

regardless of the inflation rate makes grease inflation irrelevant. Given that deviation from price stability 

is costly, optimal policy will fully stabilize prices. This renders the discussion here less relevant.  

Firms and workers split the surplus of a match according to their bargaining power. The asset value 

for an employed worker from a job is given by   
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where the disutility from work is expressed in terms of the marginal utility of consumption (and hence is 

equal to the marginal rate of substitution between consumption and labor). Therefore, the asset value for 

an employed individual is the difference between his current wage payment and the disutility from labor 

together with the discounted continuation value of staying employed or becoming unemployed next 

period, with the two events taking place with probabilities )1(  and  , respectively.  
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Similarly, the asset value for an unemployed worker can be expressed as  
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1

1 ))1)((1()1)((   ,                                (22) 

which equals unemployment benefits plus the continuation value. The latter is the weighted sum of the 

values of staying unemployed next period (which occurs with probability ))1)((1(   tt q ) and 

becoming employed (which occurs with probability )1)((  ttq ).  

    Finally, the value of a filled job for a firm (after suppressing the index j) is  
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2
)1(1)1()]1(exp[)( 


  .       (23) 

Therefore, the value of each match equals the flow value of its product net of wage payments and 

wage adjustment costs plus the continuation value of that match in case of surviving separation.  

   The Nash bargaining problem is to choose tW and th to maximize 

 


1
)( V

t

U

t

W

t VVV  ,                                                                                                                                  (24) 

where   denotes the bargaining power of workers (and their share in the match surplus). In equilibrium, 

the value of posting a vacancy is zero and hence the threat point of firms is set to zero in the above 

formulation. The first-order condition with respect to tW reads 

 0)()1()(
11 
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
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VV .                                      (25) 

Denoting the effective bargaining power of workers by t , the first-order condition with respect to 

tW can be re-written as  

V

t

t

tU

t

W

t VVV
)1(

)(





 ,                                                                                                                       (26) 

with 

W

t

F

t

t







)1( 

  ,   
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t
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

 . 

If nominal wages are costless to adjust, t will be exactly equal to  .
6
 The wage adjustment cost 

drives a wedge between the effective and the ex-ante bargaining powers. Also, since the parameter   

                                                           

6
 To see this, notice that if  =0, then 

t

W

t

W

V




= th and 

t

V

t

W

V




=- th . Hence, 
W

t

F

t




=1, and t = . 
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appears in the expression for
F

t , the presence of DNWR plays here a role in determining the effective 

bargaining power of workers. As   increases, the cost of increasing wages becomes very low and hence 

the effective bargaining power approaches its ex-ante value, .  

Combining the job creation condition (19) with the asset value for the firm from a match (23) gives  

 
)(

1)1()]1(exp[)(
2
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   .                                    (27) 

It is evident that the more downwardly rigid nominal wages, the lower the value to a firm from a given 

match.  Also, substituting the expression for 
V

tV yields the equation characterizing the real wage setting:  
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.(28) 

    The current wage is affected by the cost of adjusting nominal wages, the outside option (b), the 

disutility from labor and the continuation value of the worker being employed.
7
  

Finally, the equation characterizing the determination of hours per employed individual is given by  
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where
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To find expression (29), the FOC with respect to h was expressed as V
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 Condition (29) can also be written in the following way: 
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Therefore, the wage paid to a worker is a weighted average of the value of his output (net of wage adjustment costs), 

the value of his outside options, the disutility of work, and the present discounted value of his expected gain from 

search. In the absence of wage adjustment costs, this expression collapses to the more familiar equation 

  







 b

u

hv
hfzhw

ct

t

tttttt

)(
)1()(  . 

Hence, the real wage of a worker is equal to the share  of the revenue and saving of hiring costs, and he is 

compensated by the share )1(  of the disutility from supplying work and the foregone unemployment benefits. 
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2.4   The Private Sector Equilibrium 

The equilibrium conditions of the private sector are the consumption Euler equation (5) describing 

intertemporal choices, the law of motion for employment (13), the job creation condition (19), the price 

Philips curve (20), the wage setting equation (28), the hours determination equation (29) , the resource 

constraint of the economy given by  

    01
2

1)1()]1(exp[
2

2
  


 tttt

p

t

w

t

w

ttttttt hznnuchzn ,                  (30) 

the constraint on unemployment 

 tt nu  1 ,                                                                                                                                               (31) 

and finally, the identity describing real wage growth 

t

w

t

t

t

w

w





1

,                                                                                                                                               (32) 

 which is typically introduced in sticky price and sticky nominal wage models. As explained in Chugh 

(2006) and Arseneau and Chugh (2008), this identity does not hold trivially in the case of rigid nominal 

wages and hence it should be added to the equilibrium conditions of the private sector.
8
 

Note that in condition (30), I substitute for tv using the expression for labor market tightness 

( ttt uv  ).   

Definition 1: Given the exogenous processes },{ tt zR , the private sector equilibrium is a sequence of 

allocations },,,,,,,,{ w

ttttttttt wunhc  that satisfy the equilibrium conditions (5), (13), (19), (20) and 

(28)-(32). 

 

2.5   The Optimal Monetary Policy Problem 

The monetary authority in this economy seeks to maximize the household‟s welfare subject to the 

resource constraint and the first order conditions of individuals and firms (see Appendix C for the full 

optimal monetary policy problem). Formally, given the exogenous process for technology tz , the 

monetary authority chooses },,,,,,,,{ w

ttttttttt wunhc  in order to maximize (1) subject to (13), (19), 

(20) and (28)-(32). 

                                                           
8
 This constraint also appears in the study of Erceg, Henderson and Levin (2000).  
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3     Search Efficiency and the Intertemporal Wedge 

In the basic Ramsey theory of public finance, the planner aims at smoothing distortions (or “wedges”) 

over the business cycle. This is the main insight of the partial-equilibrium “tax-smoothing” result of Barro 

(1979). Chari,Christano and Kehoe (1991) show that this result is carried over to a general equilibrium 

framework. Judd (1985) and Chamley (1986) established that the optimal capital income tax in the steady 

state is zero and that there are no intertemporal distortions. Albanesi and Armenter (2007) generalize this 

idea and show that, in the deterministic steady state of a general class of optimal policy problems, it is 

optimal to achieve zero intertemporal distortion. More recently, Arseneau and Chugh (2010) have shown, 

within a labor search and matching model, that the Ramsey planner aims indeed at smoothing 

intertemporal wedges, but that is not mapped into tax smoothing. In the current paper, the only “tax” 

available to the Ramsey planner is the inflation rate. Hence, I also examine whether the notion of “wedge 

smoothing” applies to the current setup, and if does, how that is mapped into smoothing the inflation rate.  

The derivations, presented in Appendix A, give to the following definitions  
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These definitions are borrowed from the recent work of Arseneau and Chugh (2010). IMRS is the 

intertemporal marginal rate of substitution between consumption choices across periods (put differently, 

the ratio of marginal utilities at time t and time t+1). IMRT stands for the intertemporal marginal rate of 

transformation, and it measures the increase in consumption at time t+1 as a result of a forgone one unit 

of consumption at time t.  

As shown in Appendix A, efficiency requires IMRT=IMRS for all t. The efficiency condition can also 

be written as 
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In the decentralized economy, the equivalent condition to (36) is given by 
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Comparing the square brackets in condition (35) with the square brackets in condition (36) implicitly 

defines the “intertemporal wedge”. By comparing (35) with (36), sufficient conditions for efficiency are: 

nominal wages are fully flexible or fully stabilized (i.e. 
W

t 1 =0, and hence  1t ), the Hosios 

condition holds (   ), the unemployment benefits are zero (b=0), and no monopolistic power in the 

final-good sector (which implies 1t =1). See Appendix B for further details.  

The fact that the adjustment cost of nominal wages appears in the term defining the intertemporal 

wedge is of special significance. When nominal wages are not fully flexible (or not fully stabilized), they 

induce a direct effect on the intertemporal wedge. But, nominal wage rigidity has also an indirect effect 

on the intertemporal wedge, which happens through the deviation of the effective bargaining power of 

workers ( t ) from its ex-ante value ( ). This is well reflected in the last term of the numerator of 

condition (36). The fact that nominal wages are downwardly rigid only magnifies the two effects in 

periods of downturn. Hence, “smoothing” nominal wages is one way to smooth the wedge over time. 

Setting a positive inflation rate lead, at least partially, to smoothing nominal wages, and hence the 

intertemporal wedge. This can be easily seen by substituting for the real marginal cost ( t ) using the 

Phillips curve.   
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4    Calibration 

The first subsection discusses the parameterization of the model, and the second subsection presents some 

discussion about the calibration methodology applied in this study. 

4.1   Parameterization:   

There are two groups of parameters. The values of the first group will be set to conventional values in the 

existing literature. The second group of parameters, namely the adjustment cost parameters of prices and 

nominal wages and the measure for DNWR, are obtained to match certain data moments. I follow this 

approach since most parameters of the model are commonly used in existing literature and hence there is 

no necessity to estimate them. The adjustment costs parameters will thus be consistent with commonly-

used values for other parameters.  

I assume the following period utility function:  



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

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11
),,(

11

t
t

t
ttt

h
n

c
nhcu   

I set the parameter  to 2. The parameter  is set at 2, implying a labor supply elasticity of 0.5.
9
 I 

then calibrate  such that the SS level of hours is 0.3, as is conventional in literature. I assume a time unit 

of a quarter and hence the discount factor  is set to 0.99. 

Output per worker has diminishing returns in hours per worker, as follows:  


tt hhf )( , 

where is set to 2/3 implying a labor share of output of about 67%, in line with literature.      

The matching process between vacancies and unemployed individuals is governed by the following 

constant return-to-scale function:  

  1),( ttmtt vuuvm  

The parameter measures the elasticity of matches with respect to unemployment and is set here to 

0.40 in line with several studies (e.g. Arseneau and Chugh, 2008 and Faia, 2008). The parameter 

m measures the efficiency of the matching process and is calibrated in my benchmark case to be 0.658. 

This value has been calibrated assuming that the probability to fill a vacancy is 0.7 and the probability to 

find a job is 0.6, as conventional in the literature. The implied steady state value of labor market tightness 

                                                           
9
 Previous studies considered elasticity between 0.1 and 1, corresponding to values of 10 and 1 for  , respectively. 

I choose here an intermediate value for the elasticity of hours.  
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is 6/7. I therefore calibrate the value of posting vacancies to match this SS level of ; the value obtained 

for  is 0.413.  Also, following Shimer (2005) and Arseneau and Chugh (2008), among others, I set the 

quarterly separation rate  at 0.10. 

As is standard in literature, I assume that the Hosios (1990) condition holds and hence that the Nash 

bargaining power of workers is equal to the contribution of an unemployed individual to the match (i.e. 

)  . As shown in Hosios (1990), this condition guarantees the efficiency of the matching process. 

Productivity is governed by the following AR(1) process:  

ttzt zlnzln    )()( 1  

z is set to 0.95 in line with previous literature. The innovation term t is normally distributed with zero 

mean and a standard deviation of 007.0 , as typically assumed in the literature.  

The parameters governing the adjustment cost functions of prices and nominal wages (i.e. 
p ,  and 

 ) are estimated using the Simulated Method of Moments (SMM).  In my baseline calibration, I choose 

parameters to match the standard deviations of consumption, wage inflation, price inflation, real wages, 

hours per employed individual and employment. However, as a robustness check, I also redo my work 

using other groups of moments to match. The resulting parameter estimates in my baseline calibration are 

9.26p , 3.87 and 3.2567 . 

 

4.2   Computational Solution 

The main purpose of this paper is to address optimal monetary policy in the presence of asymmetries in 

the adjustment of nominal wages. Linearization cannot account for this asymmetry since, by construction, 

it eliminates the asymmetries of the model. Therefore, I need to apply second-order approximations for 

the monetary authority‟s equilibrium conditions. A second-order approximation allows for the 

unconditional mean of the variable in the “stochastic steady state” to be different from its deterministic 

steady state value. In particular, it allows the unconditional mean to be affected by the size of the 

underlying shock. Finally, I apply the second order approximation procedure of Schmitt-Grohe and Uribe 

(2004).  
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5    The Optimal Inflation Rate 

 This section presents the main findings regarding optimal monetary policy under search and matching 

frictions in the presence of downward rigidity in nominal wages. I first discuss the deterministic steady 

state and then turn to the dynamics of the model.   

 

5.1   The Optimal Inflation Rate in the Deterministic Steady State 

The deterministic steady state of the model is invariant to the degrees of price stickiness, wage stickiness 

and asymmetry in the adjustment of nominal wages. In the absence of shocks, inflation is not beneficial, 

and due to the direct cost of deviation from complete price stability, the monetary authority completely 

stabilizes prices (and nominal wages) in the deterministic steady state. This fact is unrelated to whether 

wages are flexible or rigid.    

 

5.2   The Optimal Long-Run Inflation Rate  

In this subsection I discuss the dynamics of the model. As a benchmark, I first examine the case with fully 

flexible wages (i.e. 0 ). When wages are costless to adjust, and prices are rigid, optimal monetary 

policy fully stabilizes prices (Panel I, Table 1). In this case, all the adjustment of real wages occurs 

through instantaneous adjustment of nominal wages. When nominal wages are rigid, but the adjustment 

cost function is symmetric ( 0 , 0  ), the optimal grease inflation rate is zero (Panel I, Table 1): in 

the latter case, the symmetry of the wage adjustment cost eliminates the precautionary motive for 

inflation.
10

 

This is the main result of the paper is reported in panel III. When nominal wages are downwardly 

rigid ( 0 ), optimal monetary policy deviates from full price stability in the long run; the optimal 

annual long-run inflation rate is slightly above 2 percents. This is an important result for, at least, two 

reasons. First, the optimal inflation rate is significantly higher than in a model with neoclassical labor 

markets (as for example in the work of Kim and Ruge-Murcia, 2007). This fact suggests that the nature of 

                                                           
10

 In both cases, the 95 percent confidence intervals include the zero. The confidence interval for the case with fully 

flexible wages is (-0.0057, 0.0020), and the confidence interval for the case with a symmetric adjustment cost of 

wages is (-0.0193, 0.0221).  Hence, the hypothesis that the optimal inflation rate is zero cannot be rejected in either 

of the two cases.  
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the labor market in which DNWR is studied can be important for policy recommendations. Second, the 

optimal inflation rate suggested by this paper is only about half a percent lower than the average annual 

inflation rate in the U.S. during the last two decades. Hence, the current environment can be seen as one 

that justifies an inflation rate of more than 2 percents as observed in U.S. data.  

 

 I II III 

 
Fully Flexible Wages 

( 0 ) 

Rigid Wages,  

Symmetric Adjustment 

Cost ( 0 ) 

Rigid Wages,  

Asymmetric Adjustment  

Cost ( 3.2567 ) 

x 
x  x  x  x  x  x  

  -0.0018 0.0385 0.0014 0.5605 2.1505 3.7184 

w  0.0190 2.0317 0.0003 0.1362 2.1204 2.9052 

 y 0.3782 1.1189 0.3782 1.1718 0.3801 1.3507 

 c 0.3229 1.0238 0.3229 0.9287 0.3237 1.1530 

 h 0.3000 0.2596 0.3000 0.3021 0.3009 0.4702 

 w 1.1178 2.7432 1.1176 1.9594 1.1132 2.4304 

 u 0.1563 1.7040 0.1563 1.9656 0.1583 3.6871 

ur 0.0626 1.8933 0.0626 2.1840 0.0648 4.0968 

 v 0.1339 1.7194 0.1339 1.9965 0.1361 4.1440 

  0.8576 2.9148 0.8576 3.3697 0.8859 7.4962 

Table 1: Simulated moments- Second order approximation. 3.87 and 9.26p .                                                     

x - the mean of the variable. x - the standard deviation of the variable (in percents).                                           

Price inflation and wage inflation are presented in annualized terms. 

 

The model does well in accounting for the volatilities of key macroeconomic aggregates (e.g. output, 

consumption and hours per worker). The standard deviations of labor market variables (i.e. vacancies, 

unemployment, unemployment rate, and labor market tightness) are well below their values in actual U.S. 

data. The failure of the labor search and matching model to account for the true volatilities of labor 

market aggregates is well known in the literature since the seminal paper of Shimer (2005). The model, 

however, manages to capture the volatilities of v and u relative to the volatility of  as shown in data. The 

model also captures the relative volatilities of v and ur, and the level of the unemployment rate (around 

6.25 percent, in line with the literature). Finally, the model with DNWR better accounts for the volatilities 

of these three variables compared to the model with fully flexible nominal wages and the model with 

symmetric adjustment cost of nominal wages.   
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5.3   Discussion- The Optimal Inflation Rate and Intertemporal Wedge Smoothing 

The strictly positive long-run inflation rate is due to precautionary behavior by the monetary authority. 

Since the timing (and magnitude) of adverse shocks is not fully predictable, a positive inflation rate over 

time allows for real wage adjustments when nominal wages are downwardly rigid, and hence it eases job 

creation and limits the increase in unemployment.  

This result can also be rationalized by considering basic Ramsey theory of “wedge smoothing”. As 

discussed in section (3), DNWR acts, directly and indirectly, towards generating a wedge between the 

intertemporal marginal rate of substitution and the intertemporal marginal rate of transformation, thus 

positioning the economy away from the efficient state. Therefore, the Ramsey planner acts in a manner 

that aims at closing this source of distortion, at least partially. This happens through stabilizing nominal 

wages to the maximum possible extent. Holding a positive inflation rate over time serves in achieving the 

real wage adjustments with less nominal wage adjustments and hence lower distortion.  

The role of inflation in smoothing the intertemporal wedge is well documented in Figure 1. The figure 

shows the standard deviation of the intertemporal wedge for various optimal inflation rates obtained under 

different values of the price rigidity  parameter (
p ). Clearly, the volatility of the intertemporal wedge is 

falling with the optimal annual long-run inflation rate. This finding supports the earlier expectations that 

positive inflation helps in reducing the volatility of the intertemporal wedge.  

In the standard Ramsey theory, the intertemporal wedge should be completely smoothed over time. 

This is not the result here for the following reasons. First, the monetary authority does not have enough 

set of instruments to completely and simultaneously stabilize all distortions, including the intertemporal 

distortion, over the business cycle. Hence, the monetary authority chooses to spread the distortions across 

all margins. This is a well-know result in the literature (Dupor, 2002). Second, deviations from zero 

inflation rate are costly, and hence the monetary authority trades-off between stabilizing the inflation rate 

and stabilizing the intertemporal wedge through stabilization of nominal wages. The convexity of the 

adjustment costs of nominal wages and prices makes it not optimal to fully stabilize one of the two 

variables and allow for the other variable to vary.  

It is interesting to contrast these findings with the results under a policy that commits to a zero-

inflation rate at all dates. Figure 3 shows that standard deviation of the intertemporal wedge for various 

degrees of DNWR ( ) under both optimal policy and a zero-inflation policy. The standard deviation of 

the wedge is considerably smaller under a positive inflation rate policy than under a zero-inflation policy, 

particularly for the relevant values of (which are around 2600 given a benchmark calibration value of 

2567.3). Moreover, as the degree of DNWR increases, the difference between the standard deviations 
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becomes bigger. Hence, inflation has a more significant role in smoothing the intertemporal wedge as 

nominal wages become more downwardly rigid.  

The intertemporal wedge is almost entirely smoothed when prices are fully flexible (Figure 4).
11

 In 

this case, the monetary authority has more room for policy actions that stabilize the intertemporal wedge. 

Put differently, the monetary authority faces less trade-offs in conducting policy. Indeed, with fully 

flexible prices, the intertemporal wedge is essentially smoothed over time, regardless of the degree of 

asymmetry in the adjustment cost of nominal wages.  

Figure 5 also helps to shed light on this result. The figure is drawn under the assumption that the 

monetary authority commits to a certain inflation target at all dates and states.  The figure shows the mean 

levels and the standard deviations of unemployment rate and vacancies as a function of the inflation target 

(ranging between zero and 3 percents). The unemployment rate drops significantly in the range between 

zero inflation rate and about 2 percents. On the other hand, vacancy posting increases significantly in this 

range. The standard deviations of both variables fall considerably as the target increases in this range. 

Basically, two important conclusions can be obtained from this figure. First, inflation is more important in 

“greasing” the wheels of the labor market for low inflation rates, as expected. In addition, the trade-off 

between inflation and unemployment is more significant for lower inflation rates. Second, the marginal 

“benefit” from increasing the inflation rate approaches zero as we move beyond, approximately, 2 

percents. This observation just supports an optimal inflation rate of about 2 percents.    

 

 

5.4   The Optimal Inflation Rate- Sensitivity Analyses  

The goal of this subsection is to check whether the main result of this paper, an inflation rate of about 2 

percents holds once other empirical moments to match are chosen. The results are shown in Table 2. In 

general, I choose here two different cases: in the first, I allow for only 3 moments to match (and so the 

number of moments equals the number of parameters). In the second, the number of moments exceeds the 

number of parameters.   

The results show that the long run inflation rate is usually around 2 percents, ranging from about 1.80 

percents to about 2.44 percents. The higher inflation rate in the latter case (where the standard deviation 

of labor market tightness is targeted) is due to the fact that in order to account for the high standard 

deviation of labor market tightness, a higher   is needed. This in turn leads to a higher inflation rate.  

                                                           
11

 In fact, for inflation to be determinate, prices in the current setup cannot be fully flexible. Hence, “fully flexible” 
prices refer to the case where the adjustment cost of price is set to 10

-5
.  
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 I II III IV V 

Moments 
The Standard 

Deviations of 

c, n and 
w  

The Standard 

Deviations of 

c, h, w, 
w and n 

The Standard 

Deviations of 

c, w,   

 

The Standard 

Deviations of 

c, w, 
w and   

The Standard 

Deviations of 

c, 
w  and  

  1.8016 1.8706 2.2324 2.3757 2.4372 

w  1.8256 1.8645 2.1971 2.4201 2.4359 

  Table 2: Simulated moments- Second order approximation. Each entry shows the annualized mean of the variable.  

 

In general, the analyses in this subsection confirm my earlier result; the optimal long run inflation rate 

in a model with DNWR and labor market frictions is about 2 percent. In addition, all cases considered the 

optimal grease inflation rate is considerably higher than the optimal grease inflation rate in Kim and 

Ruge-Murcia (2007, 2009). Hence, the nature of the labor market in which DNWR is imbedded seems to 

matter for policy analysis.  

 

 

6    Impulse Responses 

This section describes, under optimal policy, the behavior of the economy following negative and positive 

productivity shocks of the same magnitude (the size of the shock is one standard deviation of the shock to 

TFP). Figure 6 shows the behavior of the main variables of interest under the presence of DNWR. These 

variables display asymmetry in their responses to negative and positive shocks, particularity those of big 

sizes (a big shock is defined here as of two standard deviation size).  

Nominal wages do not almost fall following a negative shock, but they increase considerably 

following a positive shock. The asymmetry in the response of nominal wages is more significant the 

bigger the size of the shock. Price inflation increases considerably following a negative shock, but it falls 

only slightly below its SS level following a positive shock of the same magnitude. This finding confirms 

the role of inflation in greasing the wheels of the labor market following negative shocks when nominal 

wages are downwardly rigid.  

Unemployment displays asymmetry in the response to productivity shocks and it is more persistent 

following big negative shocks. The asymmetry in unemployment is less than the asymmetry in price 

inflation and wage inflation. This fact is due to less asymmetry in the behavior of real wages: since prices 

and nominal wages almost complement each other following shocks, the fall in real wages following a 
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negative shock (which almost entirely occurs through the increase in prices) is roughly the same, in 

absolute terms, as the increase in real wages following a positive shock (in which case the adjustment is 

through both prices and nominal wages). Hence, the asymmetry in unemployment is smaller.  

Other variables also display asymmetry in their response to negative and positive shocks. The 

asymmetry in the behavior of vacancies coupled with the asymmetry in the behavior of unemployment 

explains the asymmetry in the behavior of labor market tightness. Finally, there seems to be little 

asymmetry in the behavior of output and consumption. This is perhaps due to the symmetry in the 

productivity shock and the relatively small degree of asymmetry in unemployment.  

It is also interesting to compare the behavior of the economy following shocks under the presence of 

DNWR to its behavior under symmetric adjustment cost function. Figure 7 displays the response of the 

economy to positive and negative shocks in the absence of DNWR. As expected, all variables display 

symmetry in their response to positive and negative shocks.   

Figure 8 shows the response of the economy to a negative shock in the three possible cases: fully 

flexible nominal wages, symmetric nominal wage adjustment cost and DNWR. When nominal wages are 

fully flexible, not only that inflation is set at zero on average (recall Table 1), but inflation is also 

irresponsive on impact. Given that prices are costly to adjust and nominal wages are fully flexible, 

nominal wages fall instantaneously to allow for the drop in real wages. The role of DNWR is clearly 

revealed in this case: the response of inflation to a negative shock under downwardly nominal wages is 

significantly larger than its response to a negative shock when the adjustment cost is symmetric.  

The fall in real wages under fully flexible nominal wages is considerably larger than under wage 

rigidity (of either type). Unemployment increase only slightly under fully flexible wages and it displays 

less persistence. In addition, the fall on vacancies and labor market tightness is considerably smaller 

under fully flexible nominal wages than under rigid wages. The larger falls in unemployment and hours 

under rigid wages than under fully flexible nominal wages lead to larger drops in output and 

consumption. In overall, and as expected, the case of symmetrically rigid wages is an intermediate case 

between the cases of fully flexible nominal wages and downwardly rigid nominal wages.   

The discussion on optimal monetary policy can be summarized as follows. Under fully flexible 

nominal wages, inflation does not respond to negative shocks and it is always set at zero. When nominal 

wages are rigid and the adjustment cost function is symmetric, inflation responds to shocks but it is kept 

at zero on average. Finally, when nominal wages are downwardly rigid, the response of inflation is 

stronger on impact and monetary policy deviates, on average, from complete price stability.  
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7    Price Stabilization vs. Unemployment Stabilization  

This section considers the performance of two extreme polices relative to optimal policy. In the first case, 

the monetary authority commits to full stabilization of prices at all dates and states (to which I refer as 

strict inflation targeting or zero-inflation policy). In the second, the monetary authority commits to 

stabilize unemployment at its steady state level. 

When the monetary authority strictly targets zero inflation, unemployment responds more strongly 

than under the optimal policy (Figure 9). The initial response of unemployment for a shock of one 

standard deviation size is significantly larger than under optimal policy. The peak on the response, after 

about 3 quarters, is approximately three times as large under strict inflation targeting as under optimal 

policy. In addition, unemployment displays considerably more persistence under strict inflation targeting. 

In either case, unemployment displays the typical humped-shaped pattern that has been observed in 

previous studies with labor market frictions (e.g. Blanchard and Gali, 2008; Krause and Lubik, 2007).  

Wage inflation falls more under strict inflation targeting than under constant unemployment and 

optimal policy (although in either case, the fall in wage inflation is relatively small due to the presence of 

DNWR). Since prices are fully stabilized, nominal wages must fall by more than under the optimal policy 

in order to allow for real wage adjustments. Note that the behavior of nominal wages under the constant 

unemployment regime is almost the same as under the optimal policy.  

When the monetary authority fully stabilizes unemployment, inflation displays a stronger response 

than under the optimal policy. Intuitively, if unemployment cannot increase, prices must increase by more 

in order to generate the larger required decline in real wages. However, it is interesting to notice that after 

about 4 quarters, the behavior of inflation under the constant unemployment regime is similar to its 

behavior under optimal policy.  

The most muted decline in real wages is under strict inflation targeting (which is a result of both 

DNWR and zero inflation), while the strongest decline is under the constant unemployment regime 

(because nominal wages remain almost unchanged, while inflation displays a larger increase than under 

optimal policy). This result is as expected since, when the monetary authority commits to fully stable 

employment, real wages must fall significantly so that the economy can adjust to the negative 

productivity shock.  

Following the behavior of unemployment, the largest drop in output occurs under strict inflation 

targeting.  Output reaches its trough after about 3 quarters, when unemployment peaks (and also when 

hours per worker reach their lowest point). The behavior of consumption is similar to the behavior of 
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output, while the largest decline in labor market tightness occurs under strict inflation targeting, as 

vacancies fall strongly and unemployment increases considerably.  

These responses suggest that strict inflation targeting is far from being optimal under DNWR. Full 

stabilization of prices in the presence of DNWR limits the ability of the economy to adjust to adverse 

shocks. Stabilizing unemployment, however, delivers responses similar to those under optimal policy. 

Welfare analyses show that welfare under a zero-inflation policy is lower by roughly 8.48 percent than 

welfare under the optimal policy. Welfare under full stabilization of unemployment is lower by only 0.30 

percent than welfare under optimal policy.  

 The results of this section are in line with recent studies that suggest the need for deviations from full 

price stability. Blanchard and Gali (2008) show that strict inflation targeting delivers a welfare loss which 

is more than twice as large as under full stabilization of unemployment , and more than four times as large 

as under the optimal policy. My results here suggest higher welfare loss under strict inflation targeting 

than in Blanchard and Gali (2008), which can possibly be attributed to DNWR that makes zero-inflation 

policy even more undesirable. Faia (2008) suggests that, in the presence of real wage rigidities, the 

optimal Taylor-type rule should respond to unemployment alongside with inflation. Thomas (2008) also 

argues for incomplete stabilization of prices following shocks when nominal wages are rigid. Although 

these studies and the current one may differ in their focus (i.e. the type of wage rigidity), they all suggest 

that optimal policy should deviate from price stability following shocks. This study shows that, due to 

precautionary behavior, DNWR also leads to a significant deviation from full price stability on average.  

 

 

8   Conclusions  

This paper studies the optimal long-run inflation rate within a labor search and matching framework in the 

presence of downward nominal wage rigidity. When nominal wages are downwardly rigid, the optimal 

long-run inflation rate is around 2.0 percent. Optimal monetary policy deviates from full price stability to 

allow for real wage adjustments, particularly following adverse shocks, which promotes job creation and 

prevents an excessive increase in unemployment. 

The results of this paper are related to Ramsey theory of smoothing wedges over time. In this study, 

the concern is over the “intertemporal wedge”, which is defined here, generally speaking, as the deviation 

of the intertemporal marginal rate of substitution from the intertemporal marginal rate of transformation. 

Importantly, the asymmetric adjustment cost of nominal wages is part of this wedge. By setting a positive 

inflation rate, the Ramsey planner acts towards smoothing the intertemporal wedge and hence taking the 
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economy closer to the efficient allocation. Indeed, the results suggest that the size and volatility of the 

wedge are both falling in the inflation rate as the degree of price rigidity is varied. The intertemporal 

wedge is virtually constant over time when prices are fully flexible.  

Committing to a zero inflation rate over the business cycle has been found to perform the worst 

among other alternatives. Under a zero-inflation policy, the volatility of the intertemporal wedge is 

significantly higher (about 4 times as large as under optimal policy with sticky prices). The findings 

regarding labor market aggregates are similar; if the monetary authority strictly targets a zero inflation 

rate, the increases in unemployment is significantly larger than under the optimal policy. In addition, 

unemployment displays significantly higher volatility and reaches a higher level on average under full 

price stability, while vacancies are lower on average and far more volatile than under optimal policy. 

The current paper can be further extended. One natural extension is to evaluate the performance of 

different Taylor-type rules compared to the optimal policy. Another extension is to allow for endogenous 

participation in the labor force. Finally, future work may consider the optimal long-run inflation rate in an 

economy with labor market frictions, price rigidity, DNWR and monetary distortions. It will be 

interesting to study the optimal inflation rate in this environment giving that each distortion calls for a 

different inflation rate.  
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Figure 1- The standard deviation of the intertemporal wedge and the 

optimal annual inflation rate with varying the degree of price rigidity. 
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Figure 2- The size of the intertemporal wedge and the 

optimal annual inflation rate with varying the degree of price rigidity. 
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Figure 3- The standard deviation of the intertemporal wedge as a function of 

the degree of DNWR with sticky prices under optimal policy and zero-inflation policy. 
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Figure 4- The standard deviation of the intertemporal wedge as a function of 

the degree of DNWR with flexible prices under optimal policy and zero-inflation policy. 
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               Figure 5: The mean value the unemployment rate (in percents), the mean of vacancies, 

                                  the standard deviations of the unemployment rate and vacancies  

                                       for various levels of annual inflation rates (in percents).  
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Figure 6: Response to a negative productivity shock with asymmetric wage adjustment cost function (percentage 

deviations from SS levels).   1 : a positive 1 standard deviation shock.  1 : a negative 1 standard deviation 

shock. 2 : a positive 1 standard deviation shock.  2 : a negative 1 standard deviation shock. 
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     Figure 7: Responses to productivity shocks with symmetric wage adjustment cost function (percentage 

deviations from SS levels).   1 : a positive 1 standard deviation shock.  1 : a negative 1 standard deviation 

shock. 2 : a positive 2 standard deviation shock.  2 : a negative 2 standard deviation shock. 
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Figure 8: Responses to negative productivity shocks- Flexible nominal wages, symmetric wage adjustment cost 

function and asymmetric wage adjustment cost function (percentage deviations from SS levels). 
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Figure 9: Responses to a 1 standard deviation negative productivity shocks with asymmetric wage adjustment cost 

function under different policy rules (percentage deviations from SS levels). 
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Appendix 1 

  

A   Efficient Allocations: 

The problem of the social planner is to  
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subject to the sequence of the economy-wide resource constraints 
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and the sequence laws of motion of employment 
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Let, t1 and t1 denote the Lagrange multipliers on constraints (A2) and (A3), respectively. Then, the 
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By substituting (A8) in (A6) and rearranging, we get 

 





























 










),1(

),1(1)(
)()1(

),1( 11

11

1

1
11

1

ttv

ttu

ct

t
tt

ct

ct
t

ttv vnm

vnm

u

hv
hfz

u

u
E

vnm


,                     (A9) 

Finally, condition (A9) can also be written as 
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The left hand side is the Intertemporal Marginal Rate of Substitution (IMRS), while the right hand side 

is Intertemporal Marginal Rate of Transformation (IMRT). Efficiency, thus, requires the IMRT being 

equal to the IMRS for all t.  

Finally, this condition can also be written as, 
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B   The Intertemporal Wedge 

In order to derive the intertemporal wedge, I make use of the vacancy-posting condition  
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and the wage bargaining condition 
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Rearranging condition (B4) yields: 
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After iterating one period ahead and collecting terms, equation (B5) can now be substituted into (B3) 

to yield: 
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Then, dividing by )1(   gives 
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By comparing (B7) with (A9), efficiency is restored if nominal wages are fully flexible or fully 

stabilized (i.e. 
W

t 1 =0, and hence  1t ), the Hosios condition holds (   ), the unemployment 

benefits are zero (b=0), and no monopolistic power in the final-good sector (which implies 1t =1). 

Finally, the wedge is implicitly defined by the comparing equation (B7) and (A9).  

An analogous to condition (A10) can be obtained by rearranging terms in B(7), as follows 
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where the left-hand side is the intertemporal rate of substitution (IMRS) and the right-hand side is the intertemporal rate of 

transformation (IMRT). Finally, rewrite condition (B8) as 
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Comparison of the square brackets in (B9) with the square brackets of (A10) implicitly defines the 

intertemporal wedge.  
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C  Optimal Monetary Policy Problem:  

The optimal monetary policy problem is to choose },,,,,,,,{ w

ttttttttt wunhc  to maximize 

household‟s expected discounted lifetime utility subject to the resource constraint of the economy and the 

equilibrium conditions of firms and individuals. Formally, 
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D   Deriving the Philips Curve: 

 

I show here the derivation of the Phillips curve (condition 20 in the text) which is the outcome of the first-

order condition with respect to the price
jtP . The firm j chooses the price

jtP to maximize  
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subject to the sequence of laws of motion of employment, and the : 
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and the downward-sloping demand function for its product 
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Associating a Lagrange multiplier jt with (D3), the first-order condition with respect to the price 

jtP reads 
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In equilibrium, all firms set the same price (i.e. jtP = tP  for all j). Imposing symmetry on condition 

(D4) and canceling terms give 
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Multiplying by 
t
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P
yields 
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which is equation (20) in the text.  

 


