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Abstract Given free information and unlimited processing power, should decision

algorithms use as much information as possible? A formal model of the decision-

making environment is developed to address this question and provide conditions

under which informationally frugal algorithms, without any information or pro-

cessing costs whatsoever, are optimal. One cause of compression that allows opti-

mal algorithms to rationally ignore information is inverse movement of payoffs and

probabilities (e.g., high payoffs occur with low probably and low payoffs occur with

high probability). If inversely related payoffs and probabilities cancel out, then

predictors that correlate with payoffs and consequently condition the probabilities

associated with different payoffs will drop out of the expected-payoff objective

function, severing the link between information and optimal action rules. Stochastic

payoff processes in which rational ignoring occurs are referred to as compressed

environments, because optimal action depends on a reduced-dimension subset of the

environmental parameters. This paper considers benefits and limitations of eco-

nomic models versus other methods for studying links between environmental

structure and the real-world success of simple decision procedures. Different

methods converge on the normative proposition of ecological rationality, as opposed

to axiomatic rationality based on informational efficiency and internal consistency

axioms, as a superior framework for comparing the effectiveness of decision

strategies and prescribing decision algorithms in application.
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Introduction

This paper offers a formal decision-theoretic result showing a less-is-more effect

regarding the information requirements of expected-payoff-maximizing decision

algorithms. In ongoing debates over normative criteria for what it means to make

good, or rational, decisions, economists and formal decision theorists tend to put

forward axiomatic criteria, such as transitive preferences or the Savage Axioms that

underlie expected-utility theory, as appropriate normative benchmarks (Raiffa

1986). Axiomatic notions of rationality require self consistency above all else,

rather than absolute levels of performance, and their requirements of self

consistency apply, by definition, across all decision domains. In contrast, ecological

rationality focuses on the match between a decision algorithm and the environment

in which it is applied: if the match is good enough that the decision maker avoids

harm, then the algorithm is likely to persist. Because of the high dimensionality of

the decision maker’s action space, constant change in the stochastic payoff

environment, and profound limitations on any mind or machine’s ability to list

future outcomes let alone assign probabilities to those outcomes, proponents of

ecological rationality argue that there is little adaptive pressure in most natural

environments to optimize (Gigerenzer et al. 1999).

Optimization may be well-defined but infeasible, as in the game of chess. Or

optimization may be ill-defined, as in mate choice—who, after all, could list the

criteria for optimal selection of his or her spouse and evaluate potential spouses by

these criteria? Whether infeasible or ill-defined, axiomatic rationality is inapplica-

ble, and ecological criteria requiring only that decision processes work well enough

to survive would seem to provide more practical normative content.

One major disagreement in debates about axiomatic versus ecological rationality,

with clear ramifications in applied problems of designing machines to monitor signals

and return judgments, classifications or decisions, concerns the quantity of informa-

tion. Is more always better? Game theorists acknowledge that, in some strategic

settings, possessing information can be disadvantageous (say, when one is a witness to

a crime and consequently becomes targeted because of possession of unwanted

information). They claim, however, that more information is necessarily better in

games against nature (Raiffa and Shlaifer 1961). There is also a sizeable literature in

psychology showing that human subjects often ignore relevant information, with the

interpretation that ignoring is pathological (Kahneman et al. 1982).

This paper provides a formal model in which it is possible to state precise

conditions under which expected-payoff-maximization is consistent with ignoring

relevant information. If expected-payoff maximization is consistent with ignoring

relevant, or predictive, information, then there can be no competitive pressure

selecting for decision rules that take more information into account.

As background, consider the finding that sleep deprivation, even at moderate

levels, increases the risk of an auto accident by an amount similar to that of alcohol
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intoxication (Mahowald 2000). Time of day also correlates strongly with

occurrences of auto accidents (Clarke et al. 2002; Dobie 2002; Pack et al. 1995).

And geographic location is another factor known to condition chances of a traffic

accident (Mohan 2001). Does it follow, then, that rational decisions about whether

to use seat belts should necessarily depend on these variables because they predict

outcomes that affect drivers’ payoffs?

This question is also relevant for machine learning and for the development of

algorithms used by machines: Would the expected-payoff-maximizing decision

algorithm used by a machine programmed to decide on seat belting necessarily

depend on location, time of day, and the previous night’s sleep? Or might optimal

decision rules rationally ignore some of that information? This paper shows that the

answer to the last question is affirmative. Expected-payoff-maximizing decision

algorithms rationally ignore signals that are correlated with payoffs if the stochastic

payoff environment satisfies several properties.

According to the cost-benefit model implicit in the objective of maximizing

expected payoffs, optimal seat belt decisions should use information about risk

factors for traffic accidents that vary through time and space, as well as the

condition of the driver, together with a driver’s risk attitudes, subjective costs of seat

belting, expected fines for driving without a seat belt, and the intensity of

enforcement policies regarding seat belt rules. Of course, any particular decision,

either for or against seat belting, can be rationalized within the expected-payoff

maximization framework. Given sufficiently extreme dislike of seat belts or low

enough risk parameters, the decision to forgo the proven safety benefits of seat belts

is consistent with maximization. More generally, drivers driving at variable times,

locations, and with varying amounts of rest will maximize expected payoffs by

opting for seat belts in a contingent manner, based on a seat-belt-decision algorithm

that scores environments according to a weighted index of risk factors. Many drivers

in the real world do not do this, however.

Many drivers in the real world instead wear their seat belts automatically,

regardless of time, place or their own physiological condition. Is such behavior

irrational? No. Habitual or automatic decision processes that disregard observable

signals, which help predict the chances of an accident, are perfectly consistent with

expected-payoff maximization, so long as drivers regard the net benefits of seat

belting as positive in all environments, including those with the lowest possible risk.

In other words, if the decision maker has cost-benefit and risk parameters for which

it is optimal to wear the seat belt in every driving environment, then the expected-

payoff-maximizing decision algorithm will ignore signals that are correlated with

payoffs, contrary to the standard normative message in most of economics and

decision theory suggesting that more information is better, and that ignoring

relevant information is pathological.

Rather than an isolated case, optimizing seat belt strategies that ignore

statistically valid predictors of accidents are one manifestation of a general

principle. Bullock and Todd (1999) identified forms of asymmetry in the external

environment favoring information-frugal decision making. Forster (1999) suggested

systematic relationships between the structure of the environment and success of

simple decision rules. The robustness of simple algorithms with low informational
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requirements was demonstrated in a variety of contexts (Simon 1982; Bookstaber

and Langsam 1985; Brooks 1991; Martignon and Schmitt 1999; Todd 1999;

Martignon et al. 2008; Gigerenzer and Brighton 2009). Goldstein and Gigerenzer

(2002) analyzed cue-criterion correlations that underlie a special class of less-is-

more effects. Hogarth (2001) and Hogarth and Karelaia (2005) specified conditions

on data generating processes that favor frugal rules of inference.

In spite of these developments, our understanding of the links between

environmental structure and the effectiveness of simple decision procedures

remains incomplete. This paper proposes an economic model to generalize the

question: What conditions on environments enable low-information decision rules

to match the performance of decisions based on full optimization? We approach this

question in steps. What is an environment? What does low-information mean? And

with respect to what metric is performance to be measured? After formalizing the

requisite concepts and introducing a rigorous definition of the decision-making

environment, the paper illustrates advantages of the formal modeling approach

using a particular example with special functional forms. An easy-to-interpret

analytic condition results, specifying precisely when payoffs and probabilities

interact to produce optimal action rules that are independent of objectively

predictive decision cues.

The General Decision Problem

Let Y be a continuous or discrete random variable representing states of the world

that are ex ante unobservable to the decision maker. The vector of cues X represents

observable environmental factors used to form expectations about Y. Assumption 1

rules out redundancy, or perfect collinearity, among cues:

A1 (non-redundancy) E[XX0] exists and is full rank.

The trivial case of cues that fail to predict states is also ruled out by requiring

each component of X to be state-relevant. To be state-relevant, there must be at least

one pair of values in the cue’s support at which the conditional expectation of Y is

non-constant with respect to X:

A2 (state-relevancy) E[Y|X] is non-constant in each component of X for some

value on its support.

The decision variable labeled a (for action) takes on values in the action space A:
The function fY|X(Y, X, a) denotes the conditional density of Y given X, which may

or may not depend on a. The payoff function p(Y, X, a) serves to rank conditional

distributions of Y according to the expected payoff criterion.

Mappings into Outcomes and Payoffs

Figure 1 illustrates three different mappings from observable information (X) and

actions (a) into outcomes (Y) and payoffs (p). Case 1 is the simplest, corresponding

to tasks frequently studied in experiments with human subjects such as paired
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comparison. In one well-known paired comparison task, two German cities are

drawn at random from a fixed list of cities, and subjects are asked to state which

among the two has a larger population (Gigerenzer et al. 1991). The state Y,

unknown to the mind or machine faced with the comparison task, codes whether the

larger city is listed first or second: Y = 1 or 2. Unconditional probabilities o the

events Y = 1 and Y = 2 are fixed at 1/2 by the experimental design. Obviously,

whether the decision maker picks the first or second city (a = 1 or a = 2) has no

effect on the frequency distribution of Y, indicated by the absence of an arrow

connecting a to Y in Fig. 1, Case 1. Choices of a together with Y do, nevertheless,

jointly determine payoffs p. The combinations (a, Y) = (1, 1) and (2, 2)

correspond to correctly picking the first or the second city, respectively, while

(1, 2) and (2, 1) represent incorrect paired comparisons.

What makes the comparison task interesting is the possibility of using

information in X by exploiting its components’ correlations with Y. In the city

example, X records city characteristics, correlated with Y to varying degrees, such as

presence of professional soccer teams, train stations and universities. Correlation

between X and Y reflected by arrows connecting those two symbols is a constant

feature of the model in all three cases in Fig. 1. Absence of an arrow between X and

p in Case 1 implies that payoffs depend only on actions and outcomes, not on other

observable covariates. Most paired comparison tasks studied in the psychology

literature satisfy this condition, in that correct answers are rewarded uniformly,

regardless of other contextual information contained in X. For example, payoffs are

the same for correctly answering which of two cities has the larger population,

regardless of whether both cities have train stations or not.

Cases 2 and 3 in Fig. 1 introduce additional complexity that requires further

examples to illustrate. Suppose now that states (Y), or outcomes, represent low and

high crop yields; a is choice of fertilizer types; p maps (Y, a) combinations into

payoffs as measured by the cash value of crop yields net of costs; and X codes

observable weather conditions at planting time. The arrow in Case 2 from a to Y

reflects the fact that choice of fertilizer affects the probabilities of high and low crop

yields. Unlike paired comparison tasks in which the actor’s decisions do not

influence experimentally determined probabilities of outcomes, the entire motiva-

tion for acting in many real-world environments is to improve the chances of a good

outcome.

In Case 3 of Fig. 1, an arrow links X and p, representing the most complicated

case. Extending the crop yield example of the previous paragraph, Case 3 would be

applicable if weather conditions coded in X also influenced thecash value of any

Fig. 1 Mappings from cues (X) and actions (a) into states(Y) and payoffs (p)
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realized level of crop yield Y. This would be the case if pre-planting weather

conditions simultaneously predicted low yields and higher than average market

prices at harvest time. In such a case, X conditions Y, as usual, but also moves p up

and down for any fixed value of Y.

Definition of Environment

Utilizing the framework introduced above, one can make a precise definition of the

decision-making environment. Suppose there exist states Y, cues X, and actions a.

We say that the pair of functions � � ffY jXðY ;X; aÞ; pðY ;X; aÞg is an environment,

where fY|X is the conditional density of Y given X, and p is a scalar valued payoff

function representing fitness rankings, by the expected utility principle, over

conditional distributions of Y.

Ecological Versus Axiomatic Rationality

Formal specification of the environment usefully delimits the generalizability of

comparisons between two action functions, algorithms or decision procedures.

Consider two action functions a1(X) and a2(X), and two environments eA and eB. It

often happens that what works well in one setting is ineffective in another. Such

context-dependent evaluation of decision procedures can be translated as: a1ðXÞ �A

a2ðXÞ and a2ðXÞ �B a1ðXÞ . In other words, a1(X) performs better than a2(X) in

environment A, but the reverse is true in environment B.

From the perspective of ecological rationality, the performance of algorithms is

ei-specific (where i indexes a set of environments), based on rankings of expected

payoffs in environment ei. Action a(X) is adaptive, or ecologically rational with

respect to ei if it maximizes expected payoffs in ei for some set of action rules under

consideration.

A famous example is Simon’s (1982) notion of intelligent search. In environ-

ments with food uniformly distributed on a plane, intelligent search, supported by

capacities such as vision and memory, is equivalent to random search based on

nothing more than random movement in the plane. In environments where food is

distributed in clusters, intelligence, or rational foraging, means something quite

different, and memory can be exploited for adaptive gain. From the perspective of

ecological rationality, it is a mistake to regard memory as a beneficial cognitive

capacity in a universal sense. Rather, memory helps in some particular environ-

ments, but there are also environments where forgetting is advantageous, for

instance, when nonrandom forgetting improves the accuracy of inferences (Schooler

and Hertwig 2005), or when it enables forgiveness or peace of mind.

In much of the judgment and decision making literature, predictive accuracy is

tacitly assumed to measure performance, which would mean that p simply counts

the number of correct decisions, or is an increasing function of that count. Connolly

(1999) argues that predictive accuracy has special philosophical status in identifying

causal links. But important counter examples with highly asymmetric losses may

warrant reconsideration of predictive accuracy as a proper normative benchmark. In

Bullock and Todd’s (1999) mushroom selection task, a decision rule that maximizes
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predictive accuracy would aim to not eat mushrooms whenever they are poisonous,

and to eat mushrooms whenever they are non-poisonous. Compared to this

predictive-accuracy-maximizing strategy, more conservative strategies that waste

more non-poisonous mushrooms, but do better at avoiding poisonous mushrooms,

are easily superior in terms of promoting survival of the species. In the case of seat

belting, the predictive-accuracy-maximizing strategy would maximize the overall

chance of either wearing a seat belt when accidents occur, or of not wearing a seat

belt when no accident occurs. Again, because of asymmetric losses, departing from

predictive-accuracy maximization may be adaptive. Because smart behavior does

not necessarily maximize predictive accuracy, it is therefore important to be explicit

about p, any asymmetries of costs and benefits, and defend predictive accuracy on a

case-by-case basis.

In contrast, the axiomatic approach (e.g., Luce and Raiffa 1957) promotes the

position that there are appealing normative guidelines for ranking a1(X) and a2(X)

which hold universally across all environments, obviating the need to specify e.

Demonstrations of context specificity, such as Simon (1982), in which transitivity

and virtually all other imaginable constraints on decisions in the uniformly

distributed food environment fail to characterize effective search rules, would seem

to make the axiomatic approach less attractive. Following Simon’s lead, Todd

(2000), Gigerenzer and Selten (2001), Berg (2005) and Berg and Hoffrage (2008)

demonstrate high-stakes instances in which the meaning of adaptive is clearly

context specific. Negating the axiomatic approach to defining rationality does not

imply relativism, however. Indeed, examples of non-axiomatic theories of decision

making abound. The challenge is to identify observable features of environments

that predict when simplicity will succeed.

Expected-payoff Maximization

Once the environment is specified, making p explicit, the question of determining

how well different decision rules perform is far from obvious. Because there is

random chance in the environment, every choice of an action gives rise to a

probability distribution of payoffs. Choosing the action rule with the highest

associated expected payoff is perhaps the most common benchmark, but many other

statistics of the payoff distribution other than the mean may be important. Linear

regression and Bayesian prediction algorithms are commonly used benchmarks in

simulation studies that seek to gauge the performance of simple heuristics using

real-world data (Czerlinski et al. 1999; Martignon and Schmitt 1999; Martignon and

Hoffrage 2002). Those benchmarks provide useful tools for measuring the

predictive value of information, for example, the predictive gains of moving from

a decision rule based on a single cue to one that utilizes ten pieces of information.

In the abstract environment of the economic model, the unconstrained expected-

payoff maximizing decision rule, assuming it exists and is unique, searches over

every possible rule for mapping K pieces of observable information, X, into actions.

The expected payoff maximizer of E[p(Y, X, a)|X] with respect to a is, in general, a

function of all K cues and is denoted a*(X).
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Defining Frugality

Suppose the decision maker faces no cognitive constraints, no information costs,

and has a complete understanding of the data generating process (i.e., the joint

frequency distribution of Y and X) that determines future outcomes. Under what

conditions on ffY jXðY;X; aÞ;pðY;X; aÞg is the link between the elements of X and

a*(X) broken, despite the dependence of E[Y|X] on all elements of X?

The decision rule a(X) exhibits one basic form of frugality whenever it depends

only on a strict subset of the K elements in X. In other words, there are K predictors

of payoff-relevant outcomes, but the expected-payoff-maximizing algorithm

depends on a strict subset of them. There are other simple rules in the literature,

such as Gigerenzer and Goldstein’s (1996) lexicographic take-the-best strategy, that

depend on a strict subset of the cues most of the time, but occasionally look up all K

cues. To deal with such cases, frugality can be defined as a statistic of the stochastic

number of cues used in the decision procedure. For example, sometimes the

algorithm requires all 10 pieces of information, sometimes only 1, but on average, it

looks up 3 cues. An obvious frugality measure, then, is 1 minus the average fraction

of K cues used. By this measure, frugality ranges over the unit interval, with

maximally frugal decision rules, which never look up any cues at all, indicated by a

frugality measure of 1. A decision rule with positive frugality is referred to as frugal.

Of course, there are many frugal decision rules, most of which are maladaptive. The

important question is whether one can identify specially structured environments in

which the maximally adaptive rule a*(X) is guaranteed to be frugal according to the

definition above.

A caveat is in order. Frugal decision rules are not necessarily heuristics, in the

sense of Gigerenzer and Todd (1999). Heuristics are frugal, but the converse does

not hold. The economic, or top-down, approach advanced in this paper is well suited

for identifying conditions under which adaptive decision procedures have low

information requirements. It stops short, however, of discovering new heuristics. To

move from the set of frugal, adaptive decision rules to its strict subset comprised of

heuristics would require additional specificity with regard to the mechanisms of the

human mind. Additional psychological theory and empirical evidence are required.

Still, valid generalizations derived from economic models linking environmental

structure to frugal and adaptive decision rules must apply to heuristics as well, and

therein lies the opportunity for the economic approach to provide insight.

Understanding when reduction of dimensionality is possible—that is, learning to

recognize compressed environments—is itself of tremendous value, as statisticians

(Hansen and Bin 1996) and, increasingly, economists (Zellner et al. 2001) have

shown.

Compressed Environments

The environment eh is said to be compressed whenever its expected-payoff-

maximizing decision algorithm is frugal. In such cases, a strict subset of the relevant

information permits optimal performance and, in this sense, its stochastic payoff

structure is compressed.
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Next, we present a model of a one-cue environment in which the condition

guaranteeing compression (i.e., that a*(X) ignores X) can be stated explicitly.

Compression is equivalent to rational ignoring. Its source is the interaction of

payoffs and probabilities in the external environment that allow optimal action to

get by with reduced informational requirements. The advantage of the economic

approach is that the precise interaction of probabilities and payoffs that leads to

compression can be seen directly in algebraic form, and its sensitivity to various

parameters of interest may be easily examined.

An Example: Theft Deterrence in a Small-scale Society

Consider a small-scale society with boat-making technology and a high degree of

dependence on boats and boat operators for survival. The decision problem is to

choose the quantity of resources to be allocated to theft deterrence, which includes

any activity that reduces the chances of the boat being stolen. Time and material

resources allocated to theft deterrence are aggregated into the scalar action variable

a, ranging from zero to the maximum effort 1, (i.e., 0 \ a \ 1). Theft deterrence

includes such activities as nighttime patrolling, camouflaging, and physically

securing the boat with anchors and ropes, which incurs non-negligible and

increasing marginal cost with each increase in effort, a.

States of nature encode possession or loss of the boat. Theft is coded as the event

Y = 0 (i.e., absence of the boat), and no-theft is coded as Y = 1 (i.e., possession

of the boat). There is just one observable cue X, which correlates positively with Y

and therefore helps predict boat theft. The cue takes on values of 0 and 1 depending

on whether the group was attacked in the preceding week, coding the missing or

present state of group members lost in the attack:

X ¼
0 if group members are missing, killed in attacks by rival groups;
1 if all group members present.

�

ð1Þ

Loss of group members tends to coincide with boat theft because the two kinds of

losses share a common cause, which is the presence of hostile competitors in the

vicinity. Thus, the worst and best joint outcomes, theft and attack (0,0) and no-theft

and no-attack (1,1), are more likely than joint outcomes with intermediate payoffs,

theft and no-attack (0,1) and no-theft and attack (1,0).

The motivation for groups to allocate effort to theft deterrence is that higher

choices of a reduce the probability of theft, captured by conditional probabilities of

theft that are decreasing in deterrence effort with the following functional forms:

PrðY ¼ 0 ðtheftÞ j X ¼ 0 ðattackÞÞ ¼ f00ð1� aÞ; ð2Þ

PrðY ¼ 0 ðtheftÞ j X ¼ 1 ðno attackÞÞ ¼ f01ð1� aÞ: ð3Þ

Given that group members were killed and zero deterrence is applied (a = 0), Eq. 2

indicates that the conditional chance of theft is f00. As more resources are spent on

deterrence, the chance of theft conditional on group members having been killed is

reduced, shrinking to zero in case maximum effort is applied (a = 1). Similarly,
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Eq. 3 states that, conditional on no recent loss of group members due to hostilities,

the chance of theft is f01 for zero deterrence, decreasing to zero in case maximum

deterrence is applied. The assumption f00[ f01 captures the idea that, for any choice

of a, the probability of theft is greater if group members have been attacked than if

no attack occurred.

The opportunity cost of resources allocated to a is assumed to be an increasing,

convex quadratic function, reflecting the idea that doubling the level of deterrence

more than doubles its cost. The payoff function is therefore specified as:

pðY ;X; aÞ ¼ pYX � ca2=2; Y ;X ¼ 0; 1: ð4Þ

The four constants pYX shift payoffs up and down across the four joint state-cue

combinations (Y, X), and the cost parameter c scales the quadratic costliness of

action a.

We assume the group is always better off in possession of the boat (Y = 1 vs.

Y = 0) whether group members have been killed or not (X = 0 or 1):

p11[ p01 and p10[ p00: ð5Þ

Similarly, we assume that the group is always better off with more of its members

alive (X = 1 vs. X = 0) whether its boat is stolen or not (Y = 0 or 1):

p11[ p10 and p01[ p00: ð6Þ

By assumption, the boat can be operated more efficiently with a full set of boat

operators. Therefore, because the boat operates less efficiently with fewer operators,

the value of the boat is greater when all group members are alive than when some

are killed:

p11 � p01[ p10 � p00: ð7Þ

The universe of theft-deterrence environments is parameterized by seven values,

stacked into vector form as h = [p11, p01, p10, p00, f01, f00, c]. The two conditional

probabilities must lie within the unit interval and respect the inequality f00[ f01.

Payoffs must satisfy inequalities Eq. 5 through Eq. 7. The cost scaling factor c must

satisfy c C max{f00(p10 - p00), (1 - f01)(p11 - p01)} to guarantee existence of an

interior maximizer with respect to a. The boundaries of these restrictions on h define

a dense subset of 7-dimensional Euclidean space in which each point corresponds to

an admissible value of h and, thus, to one particular realization of the theft-

deterrence environment.

The expected payoff function is:

E½pðY;X; aÞjX� ¼
ð1� f00Þp10 þ f00p00 þ af00ðp10 � p00Þ � ca2=2 if X ¼ 0;
ð1� f01Þp11 þ f01p01 þ af01ðp11 � p01Þ � ca2=2 if X ¼ 1:

�

ð8Þ

Without further restrictions, it is clear from the piecewise definition of the

expected payoff function that, depending on whether X = 0 or 1, different actions

will be required to maximize expected payoffs. Indeed, the expected payoff

maximizing action rule is itself a piecewise-defined function that provides different

levels of optimal effort depending on the observed value of X:
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a�ðXÞ ¼
f00ðp10 � p00Þ=c if X ¼ 0;
f01ðp11 � p01Þ=c if X ¼ 1:

�

ð9Þ

There is a condition on h, however, under which cancellation of payoffs and

probabilities occurs, and a*(X) is consequently independent of X. Thus, the theft-

deterrence environment h is compressed if:

p10 � p00

p11 � p01
¼

f01

f00
: ð10Þ

Any theft-deterrence environment satisfying Eq. 10 gives rise to a payoff-

maximizing effort rule that optimally ignores X. Action functions in compressed

environments choose levels of theft deterrence without regard to observed hostile

attacks, even though hostile attacks correlate with and are indeed causally linked to

boat theft. The intuitive explanation for this is that, conditional on loss of group

members, the decrease in the value of the boat given by the ratio p10�p00

p11�p01
is exactly

offset by an increase in the conditional risk of theft given by f00
f01

. In compressed

environments, the two ratios measuring decrease in the boat’s value on one hand,

and increase in the risk of theft on the other, are reciprocals. Thus, compressed

environments are characterized by inverse movement of payoffs and probabilities

across cue observations, X = 1 versus X = 0. Inversely moving payoffs and

probabilities produce a flat expected payoff function even though frequencies and

payoffs are, themselves, nonconstant with respect to X.

Visualizing Cancellation in the Space of Environments

A single realization of the theft-deterrence model requires seven parameter values

for the elements in the vector h, too many to visualize easily. This section introduces

a simplified re-parameterization of payoffs and probabilities in terms of ratios that

reflect values conditional on attack X = 0 versus no-attack X = 1. The simplified

re-parameterization facilitates an intuitive visualization of the model, within which

the set of compressed environments can easily be seen.

First, the re-parameterization. The value of the boat given no-attack, X = 1, is p11
- p01. Similarly, the value of the boat given an attack is p10 - p00. We define the

ratio of the boat’s value conditional on attack to its value conditional on no attack as

g �
p10 � p00

p11 � p01
: ð11Þ

If the boat requires a larger number of people to operate than is available after the

attack, then the boat loses value following the attack, and gwill be\1,with aminimum

of zero in the event that the boat loses all value. If, on the other hand, the boat gains

value because of the attack, for example, if the boat provides an essential means of

escaping further attack, then g is larger than one, with no upper bound. The inequality

on payoffs introduced earlier (Eq. 7) translates into g ranging between 0 and 1.

In the parameterization of the previous section, the joint distribution of theft and

attack was determined, already in abbreviated form, by two conditional probability

parameters, Pr(theft | attack) = f00 and Pr(theft | no attack) = f01. Here, we
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introduce a single ratio-of-theft-likelihoods parameter l that measures the gross

percentage increase in the likelihood of theft, conditional on attack:

l � f00=f01: ð12Þ

As long as theft and attack are positively correlated, the restriction f00[ f01 holds,

which translates as l[ 1.

Given the parameters g and l (g capturing changes in payoffs across states of X,

and l capturing changes in theft probabilities), we can express a similar ratio of

expected-payoff-maximizing actions, that is, optimal effort conditional on X = 0

over optimal effort conditional on X = 1:

a�ð0Þ=a�ð1Þ ¼ gl: ð13Þ

Any set of environments along which the product gl is constant is referred to as a

iso-action-ratio curve. Iso-action-ratio curves are subsets of the universe of

environments along which the ratio of optimal effort following attack versus no

attack is the same. For example, the iso-action-ratio curve given by gl = 1.2

indicates all environments where the optimal reaction to a change in signal X, from

1 to 0, is to increase effort by 20%. There is one special iso-action-ratio curve

defined by the restriction gl = 1 that exactly defines the set of compressed

environments. Everywhere this restriction holds, optimal action is the same

regardless of which attack signal is observed.

Figure 2 depicts the valid parameter space for the theft-deterrence model

projected into (g, l) space. The inequalities on payoffs in previous sections give rise

to two vertical lines at g = 0 and g = 1 that bind g between 0 and 1. The restriction

that g[ 0 follows from the assumption that the boat has positive value. The

restriction that g\ 1 reflects the assumption that the boat’s value decreases

conditional on attack. The horizontal line l = 1 depicts the lower bound on l (i.e.,

l[ 1), which follows from the assumption that X and Y are positively correlated.

Both dimensions of Fig. 2 are ratios of values in which the numerator

corresponds to X = 0 and the denominator corresponds to X = 1, with the ratio

of boat values given by g on the x-axis, and likelihoods of theft given by l on the

y-axis. Figure 2 makes it straightforward to visualize the set of compressed

environments, given by the iso-action-ratio curve gl = 1, along which rational

ignoring occurs. Rational ignoring along the compressed set occurs because

percentage increases in the likelihood of theft, l, are the exact reciprocal of

percentage decreases in the value of the boat, g.

If the modeler wishes to introduce perceptual limits in action space on how finely

levels of effort can be adjusted, a just-noticeable-differences argument augments the

set of ignoring environments from the one-dimensional iso-action-ratio curve

gl = 1 to the dense set in (g, l) space defined as follows. Suppose that, whenever the

optimal action rule prescribes action across attack/no-attack (X = 0/X = 1) states

that are less than s 9 100% different, then the decision maker ignores the signal X

and applies the same action in both states. That is, a s-sensitive decision maker

ignores X and chooses the same level of effort regardless of attack whenever

1� s\a�ð0Þ=a�ð1Þ\1þ s: ð14Þ
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Given perceptual or technological limitations that make an equivalence class of any

action levels that differ in percentage terms by less than s, the ignoring subset in the

space of environments indexed by (g, l) is enlarged, shown by the shaded area in

Fig. 2.1

There is another large set of compressed environments in which rational ignoring

occurs for a different reason, connected to the cost parameter c, than in the set of

compressed environments depicted in Fig. 1. Recall that the optimal action rule is

given by Eq. 9. An earlier section gave a lower bound on c to insure that a*(X) takes

on admissible values between 0 and 1. If, however:

c\minff00ðp10 � p00Þ; f01ðp11 � p01Þg; ð15Þ

(g)

g =  [boat value | attack]/[boat value | no attack] 
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Fig. 2 Compressed environments within the space of al boat-theft deterrence environments. *The action

ratio is defined as a*(0)/a*(1), the expected-payoff-maximizing action (i.e., optimal level of effort)

conditional on the signal X = 0 divided by the expected-payoff-maximizing action conditional on X = 1.

An iso-action-ratio curve is a set within parameter space along which the action ratio is constant. For

example, the set of environments for which a*(0)/a*(1) = 1.2 is an iso-action-ratio curve indicating all

parameterizations for which a change in the signal X, from 1 to 0, leads to a 20 percent increase in action.

**Points to the left of the vertical line g = 0 are inadmissible because of the assumption that the boat has

positive value, g[ 0. ***Points below the horizontal l = 1 are ruled out by the assumption that theft is

positively correlated with attack. ****The restriction that g\ 1 corresponds to the assumption that the

boat’s value is reduced in the event of attack. The model easily allows for extension of parameter space

by admitting points g[1. However, based on the previous assumption that l[1, there are no compressed

environments in the extended region to the right

1 An important theme in the just-noticeable-differences literature is asymmetry of perceptual sensitivity

with respect to deviations from the status quo. Allowing for asymmetric ss would add an additional

degree of psychological plausibility without changing the main conclusion, namely, that the set of

environments in which ignoring is rational is nonempty.
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then the cost parameter is so small that the optimal action is maximum effort,

regardless of the signal X. In this case X is correlated with payoffs, yet the optimal

action algorithm ignores it, but not because of inversely moving payoffs and

probabilities (i.e., g and l are not necessarily reciprocals). Rather, compression

occurs in this case because action is so cheap that the maximum effort is applied

regardless of varying signals about risk. This is analogous to wearing a seat belt

every time one drives, ignoring time-varying signals about risks of an auto

accident.

Conclusion

This paper makes no categorical claim about benefits of ignoring information.

Ignoring is, without doubt, detrimental to the wellbeing of decision makers and

the societies they belong to in some cases. However, the model in this paper does

show clearly that ignoring is not always detrimental. In the theft-deterrence

model, expected payoff maximizing decision rules ignore information that

objectively helps predict future states and payoffs when payoff and probabilistic

information is compressed in the proper way. The compression condition does not

require anything pathological or degenerate about the stochastic payoff process.

Rather, it depends on cancellation of probabilities and payoffs that de-links

variables, which predict both probabilities and payoffs, from expected-payoff-

maximizing action.

Two frequently cited experiments in which predictive information is ignored are

Kahneman and Tversky’s (1973) engineer-lawyer problem and Tversky and

Kahneman’s (1982) taxi cab problem. In both studies, respondents were asked to

produce posterior probabilities given experimenter-controlled prior probabilities, hit

rates, and false-positive rates. The studies showed a surprising lack of sensitivity to

changes in base rates, which came to be known as base-rate neglect, or the base-rate

fallacy. To the extent that experimental subjects receive higher intrinsic payoffs

from correct inference when the probability of success is low (i.e., take greater

psychological satisfaction in solving more difficult problems), base-rate neglect

could be consistent with expected-payoff maximization. It may be worthwhile

therefore to vary monetary payoffs by difficulty, measure the economic losses

associated with base-rate neglect, if any, and collect post-experiment survey data to

investigate the possibility of asymmetric subjective payoffs in experimental

conditions that otherwise appear symmetric.

Another interesting case close to those working in the scientific community

concerns payoffs from scientific discoveries and their probabilities of occurrence.

Scientific projects with low probabilities of success tend to have large payoffs,

whereas projects that are nearly certain to verify scientists’ hypotheses are

unsurprising and therefore have nearly zero payoff. Perhaps because of cancellation

of probabilities and payoffs, many scientists seem to ignore payoffs and

probabilities, adopting simple heuristics for choosing research agendas, such as

Follow the line of research my advisor works in or Pick projects that are
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intrinsically interesting to me, rather than estimating probabilities of success and

choosing projects according to a maximization algorithm.

The normative implications of ignoring are, in general, ambiguous. This stands in

contrast to decision-theoretic prescriptions advising, in virtually all contexts, that

Bayes rule be followed by conditioning action on the full set of observable

predictors. One of the main implications of the demonstrated existence of

compressed environments in which rational ignoring occurs is that ecological

(i.e., environment-specific) rationality, rather than universal rationality axioms

focused on informational efficiency and internal consistency, are needed to properly

evaluate individual and aggregate consequences of ignoring information. Less

information does not necessarily imply reduced performance.

Using economic models to identify conditions under which informationally

frugal action performs just as well as information-greedy optimization is analogous

to simulation studies which find that simple decision rules can match (or exceed in

out-of-sample prediction) the performance of prediction rules based on regression or

Bayesian networks. Bullock and Todd (1999) investigated a similar set of questions

using agent-based modeling and computer simulation. As one might anticipate,

distinct methods lead to distinct and sometimes difficult to compare results. The

simulation approach requires specific distributional assumptions and functional

forms, or else relies on particular databases of real-world data sets that are, at some

stage of analysis, interpreted as statistically representative of a larger population of

environments.

The economic approach, on the other hand, searches a much larger space of

possible environments, although still within the confines of a parameterized

mathematical model. To the extent that only a small subset of real-world

environments correspond to the abstract environments in economic models, it is

not clear whether the generality of such abstract models is a virtue. Valid

generalizations for the set of all real-world environments may not hold more

generally within the larger set of fictitious environments parameterized in the

economic model, and would therefore be impossible to discover in an unrestricted

model space. These potential disadvantages are counterbalanced by one clear

benefit of formal modeling, which is the opportunity to observe and interpret

functional links between environments and the relative success of different decision

procedures. In spite of methodological differences, both simulation and formal

modeling converge around the proposition of ecological rationality as an organizing

framework for normative decision theory and its application.

Finally, we note that the model of adaptive ignoring without cognitive limitations

presented in this paper is both distinct from, and complementary to, bounded

rationality explanations for behavioral insensitivity to relevant information. The

focus of this investigation was squarely on the role of the external environment in

favoring different amounts of usage of available information. Joint explanations

concerning the match between external stochastic payoff structure and internal

cognitive processes provide perhaps the most promising direction to account for the

demonstrated real-world success of simple decision algorithms.
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