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Abstract 

This paper studies how options trading, by circumventing constraints on borrowing, 

permits optimistic investors to hold the desired portfolio. Unconstrained investors 

proceed to a portfolio rebalancing by constructing a zero-income portfolio that 

consists of a short position in the option, a long position in the stock and a short 

position in the riskless asset. We show that aggregate demand for the stock is what 

prevails when options do not exist and no constraints hold. Furthermore, the option 

listing causes an increase in the aggregate demand for the stock and consequently an 

increase in the equilibrium stock price. 
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1. Introduction 

In the traditional valuation of options the price process of the underlying asset is 

exogenous. The option price is derived by using an arbitrage argument. In this 

approach the option is a redundant asset whose payoff can be replicated by portfolios 

of primary assets. Introducing an option contract has no impact on the price of 

underlying stock and risk-sharing possibilities are not modified. However, when the 

assumption of complete and (or) frictionless markets is relaxed, the introduction of 

an option may affect the price of the underlying asset. In the presence of asymmetric 

information, the introduction of options affects information revelation through option 

prices and traders (Grossman (1988), Back (1993), Biais and Hillion (1994)). 

Grossman (1988) argues that for an option that can be replicated by dynamic trading 

strategies, its absence affects the prices of underlying assets due to the informational 

content of a traded option relative to its synthetic counterpart. If the information is 

symmetric, the impact of options trading is generally analyzed in the context of 

incomplete financial markets (Hart (1975), Detemple (1990), Detemple and Selden 

(1991)). As shown by Detemple and Selden (1991), introducing options may expand 

opportunities for risk sharing and will in general affect the price of the underlying 

assets. A usual justification to the creation of options is that they allow the 

completion of the market (Ross (1976)) and the opening of many sufficient securities 

allows an efficient allocation of resources. But this argument cannot explain the 

presence of redundant assets like mutual funds. Financial intermediaries create 

securities to permit lower transaction costs.  Another argument behind financial 

innovation is the existence of financial restrictions. Generally investors are limited in 

their ability to short sell assets and in borrowing. Introducing an option may be 

profitable even if the span of the supplied assets is unaffected by the innovation. The 

introduction of a redundant option permits constrained investors to circumvent 

financial restriction and then improve their wealth transfer among different states of 

nature. This leads to a change of their demand functions on underlying assets and 

then prices could be modified. 

 In this paper we analyze the role of a redundant option when some investors 

are not allowed to borrow at the riskless rate for the purpose of investing in the 

underlying stock. These investors are optimistic on the chance of the occurrence of 

the high payoff but are not sufficiently wealthy to hold the quantity of stocks as 

desired. The introduction of the option permits the achievement of maximum welfare 

by holding a long position in the option. The presence of unconstrained investors 

ensures the equilibrium of the option market and the valuation of the option by 

arbitrage. They sell the option and modify their demand for the stock and for the 

riskless asset. We show that aggregate demand for stock is what prevails in a 

financial market without financial constraints and without option trading. 

 One of the main assumptions in this paper is that investors who provide 

liquidity to the option market are not subject to wealth constraints. Gârleanu et al. 

(2009) assume that market makers take the other side of the net demand of private 

investors. They cannot hedge their option positions perfectly but they do not face 

financial constraints. Santa-Clara and Saretto (2009) show that, due to margin 

requirements and limited access to capital, non-market makers are restricted when 
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seeking to write S&P500 options. This leads them to the conclusion that investors do 

not compete with market makers for supplying liquidity to the option market. 

 The rest of the paper is organized as follows: Section 2 describes the model. 

Section 3 analyzes the impact of introducing a redundant option. The effect of 

modification the fraction of constrained investors on the stock price is studied in 

Section 4. Section 5 concludes. 

 

2. The model 

We consider a single good and an exchange economy with one period (two dates, 

zero and one). The financial market is composed of three assets: a stock in fixed 

supply, a call option written on the stock which is in zero net supply and a riskless 

asset in perfectly elastic supply at a price of one and yielding a rate of return equal to 

zero. The prices of the stock and the option are respectively Sp  and 0p . We denote 

by 
Sp∗  the equilibrium stock price in the absence of the option market and ∗∗

Sp  in the 

case of option trading.  We denote v~  the stock payoff, ( ,0)g Max v k= −  the payoff 

of the option and k  the exercise price.  We normalize the supply of stocks to be one 

unit. Investors have prior beliefs regarding the distribution of the stock payoff. The 

formation of expectations is exogenous to the model. 

 In our model, investors are competitive and form a continuum with measure 

1. These investors are either borrowing constrained or unconstrained. Investors of the 

first type ( 1=i ), in fraction N , have unlimited access to credit. Investors of the 

second type ( 2=i ), in fraction N−1 , cannot rely on borrowing to buy stocks. At 

0=t  investors determine their portfolio. At 1=t  the uncertainty resolves and 

investors consume. Let i

Sx  and ix0  represent respectively the shares holding of the 

stock and option, (0)i
W  the first date wealth and (1)i

W  the final date wealth of 

investor i . Let 1U  and 2U be the utility of an investor of the first type and second 

type respectively, and which are strictly increasing and strictly concave. We assume 
1 2(0) (0)W W≥ , that is investors who are subject to the borrowing constraint do not 

have more initial wealth than unconstrained investors. 

 

3. The effect of option introducing 

Investors generally use credit or margin to increase their purchasing power so that 

they can own more stocks without fully paying for it. They borrow money from their 

broker to buy a stock and use the investment as collateral. According to US 

regulation, investors may borrow up to 50 percent of the purchase price of securities 

that can be purchased on margin. Even if investors use the margin system frequently, 

they are restricted in their ability to rely on this possibility. In this section we analyze 

the possibilities of trading created by the introduction of a redundant option in the 

presence of a borrowing constraint. We consider an extreme situation, where some 

investors, who form the second type, are not allowed to borrow but investors from 

the first type are unconstrained. Many authors have studied the case of agents having 

different ability to borrow at the riskless rate for the purpose of investing in risky 

assets. In Kiyotaki and Moore (1997), farmers are credit constrained whereas Gathers 

are unconstrained.  In Yuan (2005), a fraction of informed investors face borrowing 
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constraints. In Detemple and Serrat (2003), some agents are subject to liquidity 

constraints in that the value of their portfolios must be nonnegative at all times. 

Unconstrained agents, however, can trade the stock and the riskless asset without 

restriction and then use their labor income as collateral for an aggregate short 

position. As in our framework, markets are complete from their point of view. 

 In this section we assume that the stock payoff can take only two 

possible values Hv  and Lv  where ( HL vv <<0 ) and ( L Hv k v< < ). There are several 

criteria to characterize a complete financial market. In the absence of imperfections, 

these criteria are equivalent. The financial market is said to be complete if the 

number of non-redundant assets is equal to the number of successor states. In a 

second definition, a financial market is complete whenever investors can transfer as 

much wealth as desired among different states. In our context and because of the 

borrowing constraint, these two criteria are not equivalent when the option is not 

traded. In fact, a constrained investor cannot construct the first Arrow asset, with 

payoff )0,1( . To see this, suppose the contrary. Then we would have Sx  and Bx  

verifying )0,1(),()1,1( =+ LHSB vvxx , which leads to LSB vxx −=  and 

)/(1 LHS vvx −= . Hence 0>Sx  and 0<Bx , a contradiction to the borrowing 

constraint. The creation of the option leads to the completion of the market by the 

two criteria. The first Arrow asset is formed by purchasing )/(1 kvH −  options. Also 

with a long position of Lv/1  stocks and a short position of )(/ kvvv HLH −  options 

one can construct the second Arrow asset. We then adopt the second definition and 

consequently the financial market is incomplete when the option is not traded. We 

say that it is more complete when the fraction of unconstrained investors increases. 

 For unconstrained investors the option contract is redundant. The condition of 

no-arbitrage opportunity requires that HSL vpv <<  and 

 
0 1 2

1 2

S
p p

g v

ω ω
ω ω
= +⎧

⎨ = +⎩
 (1) 

where 0)/()(1 <−−−= LHLH vvvkvω , 0)/()(2 >−−= LHH vvkvω . 

 

 

3.1. Without the option market 

The wealth (0)i
W  allows investor i  to invest i

SS xp  in the stock and (0)i i

S SW p x−  in 

the riskless asset. His time 1 wealth is given by 
1 0 ( )i i i

S S
W W x v p= + − . Each investor 

chooses his portfolio at date zero so as to maximize expected utility of date one 

wealth. Let ( ) ( (0) ( ))i i i

i S i i S Sx EU W x v pΓ = + − . In the absence of the borrowing 

constraint, the demand for the stock of investor i , denoted by i

SX , is solution of 

equation 0)( =Γ′ i

Si x . The quantity i

SX  verifies 

 [( ) ( (0) ( ))] 0i i

i S i S S
E v p U W X v p′− + − =  (2) 
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Investor of type 1 is unconstrained; his demand function for the stock is given 

by (.)1

SX . For the investor of type 2, her demand function for the stock is the solution 

of the program: 

 

2

2 2

2 2

( (1))

(0)S S

MaxE U W

p x W

⎧⎪
⎨

≤⎪⎩
 

For a given stock price, if 2 2 (0) /S SX W p≤ , her demand for the stock is i

SX but if 
2 2 (0) /S SX W p>  she does not hold the riskless asset and then invests all her wealth 

in the stock. The borrowing would allow reaching a superior expected utility 

compared to the case when all her wealth is invested in the risky asset. A 

Constrained investor, who is optimistic about the chance of the stock appreciation, 

would invest more in the stock if she were allowed to borrow. 

We are interested in the situation where the borrowing constraint imposed on 

investors of type 2 is binding
1
. 

Assumption 1 We restrict the set of parameters describing the economy such that, 

with and without options, 2 2 (0) /S SX W p>  in equilibrium. This assumption indicates 

that constrained investors are optimistic about the stock payoff. 

3.2. With the option market 

The date-1 wealth of each investor is given by: 

 1 0 0(0) ( ) ( )i i i i

S SW W x v p x g p= + − + −  

By (1) we have: 

                              1 2 0(0) ( )( )i i i i

S SW W x x v pω= + + −
                                    (3)

 

For the unconstrained investor the option is redundant. Its introduction has no impact 

on his expected utility (for the same stock price). His optimal demands for the stock 

and option verify: 

 1 1 1

2 0S Sx x Xω+ =  (4) 

The introduction of the option induces a change of his demand for the stock so that 
1

02

1
xxS ω+  corresponds to his demand for the stock when options are not traded. We 

show below that in equilibrium he holds a short position in the option ( 01

0 <x ) and 

then 11

SS Xx > ; this investor sells 1

0x  options and buys a quantity of stocks superior 

to what happens if the  option does not exist. 

 For investor 2 the program is to maximize her expected utility with the 

constraint that 2

0

2

00

2
Wxpxp SS ≤+ . 

2 2 2

2 2 0 0( (0) ( ) ( ))S SMaxE U W x v p x g p+ − + −  

                                           

 

1
We could assume that for a fraction of constrained investors the borrowing constraint is not 

binding in equilibrium. However, this framework does not change the results of this paper. 
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2 2 2

0 0 (0)S Sp x p x W+ ≤  

The existence of the option contract, other things equal, allows her to increase 

expected utility of date-1 wealth. The first order conditions are: 

 

( )

2

2 2

2

2 2 2 0

2 2 2

0 0

[( ) ( (1))] 0

[ ( ) ( (1))] 0

(0) 0 , 0

S S

S

S S

E v p U W p

E v p U W p

W p x p x

λ

ω λ

λ λ

⎧ ′− − =
⎪⎪ ′− − =⎨
⎪

− − = ≥⎪⎩

 

The first two equations imply that
 02 ppS λλω = . From (1) it comes that 0=λ . 

Hence 
2

2 2[( ) ( (1))] 0SE v p U W′− = . Consequently, we obtain the following equation: 

 2 2 2

2 0S Sx x Xω+ =  (5) 

From equations (3) and (5) we can state the following Proposition. 

Proposition 1 The option introduction permits constrained investors to circumvent 

imperfections in that their expected utility is what will be attained if constraints are 

nonexistent. 

The condition of clearing on the option market is 0)1( 2

0

1

0 =−+ xNNx . From 

(4) and (5) we deduce that the aggregate demand for the stock when the option is 

traded is 21 )1( SS XNNX −+ . Then 

Proposition 2 When the option market is introduced, the aggregate demand for the 

stock is the same as when the option market does not exist and there are no portfolio 

constraints. 

This result, consistent with the finding of Stein (1987), permits to conclude to 

a relation between opening a derivative market and the aggregate demand for the 

underlying asset. The introduction of the option permits constrained investors to 

choose their holdings of risky assets so that their wealth constraint is respected and 

expected utility is at maximum. The option contract allows constrained investors to 

circumvent market imperfections. 

 When options do not exist the clearing of the stock market yields 

 1 2( ) (1 ) (0) / 1S S SNX p N W p
∗ ∗+ − =  (6) 

In the presence of the option market, the stock market-clearing condition is 

 1 2( ) (1 ) ( ) 1S S S SNX p N X p
∗∗ ∗∗+ − =  (7) 

Proposition 3 In equilibrium and under assumption 1, constrained investors hold a 

long position in the option. 

Proof: Using (1) and (5) we have 
2

01

22

00

2
xXpxpxp SSSS ω+=+  

The budget constraint yields 
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 2 2 2

0 1( (0) ) /S Sx W p X ω≥ −  (8) 

The result follows from the assumption that 2 2(0)S Sp X W>  in equilibrium. 

In equilibrium, a constrained investor holds a long position in the option such 

that (8) is verified and completes her portfolio by a quantity of stocks that satisfies 

equation (5). She has an infinite number of possibilities for the composition of her 

optimal portfolio, which lead to the same equilibrium prices for the stock and option. 

As an example she could not hold the riskless asset so the quantities of stocks and 

options in her portfolio are such that 22

02

2

SS Xxx =+ω  and 2 2 2

0 0 (0)S Sp x p x W+ = . 

Even if investors of the first type do not share the optimism of investors of the 

second type, they sell them the option and then demand an additional quantity of the 

stock to put a perfect hedge of their position on the option market. 

If the stock price was unchanged, the creation of the option market increases 

the expected utility of constrained investors but do not modify the expected utility of 

unconstrained investors. As we show later, when the option is created, the aggregate 

demand for the stock is modified and then the equilibrium stock price changes. 

We consider a second restriction on the parameters of the economy. 

Assumption 2 The demand functions (.)1

SX  and (.)2

SX  are strictly decreasing in the 

stock price. 

This hypothesis guarantees, among others things, that the equilibrium stock price is 

unique. 

Let us examine the derivative S

i

S dpdX /  for the arbitrary utility function in 

order to determine sufficient conditions that make Assumption 2 hold. 

Differentiating (2) with respect to stock price we get: 

 
2

( (1)) ( ) ( (1))

( ) ( (1))

i i ii
i i S i S iS

i

S i S i

E U W X E v p U WdX

dp E v p U W

⎡ ⎤ ⎡ ⎤′ ′′+ −⎣ ⎦ ⎣ ⎦=
⎡ ⎤′′−⎣ ⎦

 

Let (.)/(.)(.) iiA UUR ′′′−=  denote the absolute risk aversion. The sign of 

[( ) ( (1))]i

i S iE v p U W′′−  depends on the sign of dzzdRA /)(  (Huang and Litzenberger 

(1988) page 22). Under a strictly decreasing absolute risk aversion, that is when 

0/)( <dzzdRA , [( ) ( (1))]i

i S iE v p U W′′−  has the sign of i

SX  and hence assumption 2 is 

verified. The same result holds in the case of a utility function of class CARA since 

[( ) ( (1))] 0i

i S iE v p U W′′− = . In contrast, when dzzdRA /)(  is strictly positive then 

[( ) ( (1))]i

i S iE v p U W′′−   and i

SX  have different signs and consequently the sign of 

S

i

S dpdX /  is ambiguous. Assumption 2 also holds for preferences of mean-variance 

type. 

We can now establish the following result on the effect of introducing an 

option market on the stock price. 

Proposition 4 Under assumptions 1 and 2, introducing an option contract increases 

the equilibrium stock price. 
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Proof: Let us suppose that ∗∗∗ ≤ SS pp . It follows from assumption 2 that 

)()( 11 ∗∗∗ ≥ SSSS pXpX . Since ∗
Sp  and ∗∗

Sp  verify respectively (7) and (8), then 

2 2( ) (0) /S S SX p W p∗∗ ∗≤ . Hence 2 2( ) (0) /S S SX p W p
∗ ∗≤ , is a contradiction to assumption 

1. 

The same result is derived by Detemple and Selden (1991) who study the case 

of an option contract that does not complete the financial market and investors have 

diverse beliefs about the risk of the stock payoff. The empirical findings of Conrad 

(1989) confirm the price effect of the option introduction and support our analysis of 

investors' behavior. He analyzes 96 options listed between 1974 and 1980 and shows 

that the price effect begins three to four days before the option introduction. Also the 

price increase is positively related to opening day trading volume in the option. 

These two facts lead Conrad to conclude that some traders are buying securities for 

hedging purposes in anticipation of the trading volume in the option. Grossman 

(1988) has shown that the introduction of an option that can be synthesized by 

existing assets can have an impact on the price of the underlying asset due to the 

informational content of the traded option. In our framework no asymmetric 

information holds, however, as Proposition 4 states, the introduction of a redundant 

option may affect the stock price because of the impossibility of borrowing imposed 

on some optimistic agents. 

Example Let )exp()( zzU ii β−−=  with 0>iβ  for 2,1=i . The utility functions 1U  

and 2U  are strictly increasing and are strictly concave. Since they are of class CARA 

then the demand functions (.)1

SX  and (.)2

SX  are strictly decreasing in the stock 

price. We deduce that option listing induces an increase in the price of the underlying 

asset for families of preferences in the CARA class. 

The option listing also modifies the holdings of the riskless asset. When 

options are not traded, only unconstrained investors hold the riskless asset. When 

options are traded, each unconstrained investor holds two portfolios; the portfolio 

held in the absence of the option market and a zero-income portfolio. The latter 

portfolio consists of a short position in the option with a quantity of 1

0x , a long 

position in the stock in quantity 1

2 0w x−   and a short position in the riskless asset, in 

quantity 1

1 0w x− . We verify easily that this portfolio is a zero-income portfolio since 
1 1 1

2 0 0 0 0 1 0Sw x p x p x w− + − =
 
and 1 1 1

2 0 0 0 1 0w x v x g x w− + − = . Since the supply of the stock 

is unchanged and 
S Sp p
∗∗ ∗> , it follows that the options trading induces a decrease in 

the aggregate holdings of the riskless asset. 

4. Modification of the fraction of constrained investors 

This section considers the case in which there are only a stock and a riskless asset 

and we assume that the stock payoff takes an arbitrary distribution function. We 

analyze the impact of a change of the fraction of unconstrained investors on the 

equilibrium stock price. When N  changes, the aggregate demand function for the 

stock is modified and then the equilibrium stock price varies. Let us assume that, in 
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equilibrium, demand 1

SX  of unconstrained investors is not smaller than the 

unconstrained demand 2

SX  of constrained investors. 

Assumption 3 21

SS XX ≥  in equilibrium. 

 Next, we derive sufficient conditions for assumption 3 to hold. In the special 

case where the utility function of investors is exponential and the stock payoff can 

take only two possible values Hv  and Lv )0( HL vv << , we have 

 
( )1

log
( ) (1 )( )

i i H S
S

i H L i L S

v p
X

v v v p

γ
β γ

−
= −

− − −
 (9) 

where iβ  denotes the risk aversion and iγ  the belief about the probability of the high 

payoff Hv  ( 10 << iγ ) of agent i . We say that agent i  becomes more optimistic if 

iγ  
increases. If 21 ββ =  we show easily that the demand function of unconstrained 

investor (.)1

SX  is higher than the demand function of constrained investor (.)2

SX when 

1 2γ γ>  and the two functions are equal when 1 2γ γ= . In the case where investors 

have the identical perception of the probability of states of nature ( 21 γγ = ), they 

share the same expected return on the stock. By Assumption 1, the investment in the 

stock by the constrained investor is strictly positive. Consequently his expectation on 

expected return is strictly positive and it is the same for investor of type 1. We 

deduce from (9) that assumption 3 holds when unconstrained investors are not more 

risk averse ( 1 2β β≥ ). Let us finally examine the case where the two types of 

investors have arbitrary but identical utility and they agree on the probabilities they 

assign to stock payoffs. The unconstrained demand functions for the stock (.)1

SX  and 

(.)2

SX  may be different only if 1(0)W  and 2(0)W  are different. Recall that if the 

investment on the stock is positive, then it is an increasing function of initial wealth 

when absolute risk aversion is strictly decreasing in wealth (Huang and Litzenberger 

(1988) page 21). By assumption 1 and since expectation on expected return are 

common to both types of investors, then demands 1

SX  and 2

SX  are positive in 

equilibrium. Consequently, assumption 3 holds in the case of decreasing risk 

aversion. 

 The effect of varying the fraction of constrained investors is summarized as 

follows. 

Proposition 5 Under assumptions 1, 2 and 3, the equilibrium stock price increases 

with the fraction of unconstrained investors. 

Proof: Using (6) and differentiate with respect to N  we get: 

 
1 2 2

1

2

(0) (0)
(1 )

( )

S S
S

S S S

dp dX W W
N N X

dN dp p p
∗ ∗

⎡ ⎤
− − = −⎢ ⎥

⎣ ⎦
 

It follows from Assumption 2 that 0/1 <SS dpdX . Assumptions 1 and 3 imply that 
2 2 1(0) / S S SW p X X

∗ < ≤ . Hence 0/ >dNdpS . 
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That is because increasing the fraction of first type investors act as if some 

constrained investors, who invest initially all their endowment in the stock, increase 

their holding of the stock as they now belong to the first type. Since we assume that 

the demand of unconstrained investor is superior to the demand of constrained 

investor, then the aggregate demand for the stock increases which induces an 

increase in the equilibrium stock price. 

 Let us consider the case where the only heterogeneity between the two types 

of investors concerns the possibility to borrow.  In this case, their wealth, utility 

function and subjective probabilities of successor states are identical. It then follows 

that unconstrained demand functions (.)1

SX  and (.)2

SX  are identical. We denote 

these demands by SX (.). From (6) and (7), the following proposition is immediate. 

Proposition 6 The equilibrium stock price in the presence of the option is equal to 

the stock price when options do not exist and N  converges to 1. 

From the results of Propositions 5 and 6, it follows that the price effect of 

introducing an option depends on the importance of the two types and it is relatively 

small when most investors are unconstrained ( N  is close to one). The fraction N  

could be seen as a determinant of completion degree of the market. It follows that the 

price effect of the option listing decreases when the market is becoming more 

complete. The theoretical results of Detemple and Jorion (1988) are similar. They 

consider two risky assets and two investors with different but constant relative risk 

aversion. For certain values of parameters, the price of the first risky asset increases 

when an option on that asset is traded. This price effect lasts but becomes relatively 

small when an option on the second asset is introduced. Detemple and Jorion (1990) 

examine the impact of option listing in the period 1973-1986. They remark that price 

increase and volatility decrease are dissipated after 1982. A possible interpretation of 

our previous result and the empirical finding of Detemple and Jorion (1990) suggest 

that, as the market becomes nearly complete, the price effect becomes insignificant 

in the period 1983-1986.  

5. Conclusion 

In this paper we demonstrate that in a financial market with borrowing constraints 

the introduction of an option that leaves the span unaltered induces changes in the 

demands for the underlying stock and hence the equilibrium stock price may change. 

We considered two types of investors who differ in their ability to borrow at the 

riskless rate. The introduction of the option permits each investor to transfer wealth 

as desired among different states. Investors of the second type, who are optimistic 

about the chance of the stock appreciation but are not allowed to borrow, hold a long 

position in the option. Unconstrained investors, who form the first type of investors, 

supply the option and then modify their demand for the stock. We show that the 

aggregate demand for the stock is what prevails in a financial market without options 

and without constraints. The option introduction has the same impact on equilibrium 

allocations and stock price as abandoning financial imperfection. Under the condition 

that demands for the stock are decreasing in the stock price, the introduction of the 

option increases the equilibrium stock price. 
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