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Abstract

In this note on the paper from (Jiang, Manchanda & Rossi2009) I want to discuss a simple
alternative estimation method of the multinomial logit, ‘model for aggregated data, the so
called BLP model, named after (Berry, Levingohn & Pakes 1995).

The estimation is conducted through a bagesian estimation similar to (Jiang et al. 2009).
But in difference to them here the time intensiye contraction mapping for assessing the mean
utility in every iteration step of the éstimation procedure is not needed. This is because the
likelihood function is computed ¥ia a special case of the control function method ((Petrin
& Train 2002) and (Park & Gupta’2009)) and hence a full random walk MCMC algorithm
is applied. In difference td (Rark & Gupta 2009) the uncorrelated error, which is explicitly
introduced through thé centrol function procedure, is not integrated out, but sampled with
a random walk MEMO=The introduced proceeding enables to use the whole information
from the data seét imythe estimation and beyond that accelerates the computation.
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1 Introduction

In this note! I want to discuss a simple alternative estimation method of the multinomial
logit model for aggregated data, as developed by (Berry et al. 1995), the so called BLP
model.

The estimation is conducted with a Bayesian estimation similar to (Jiang et al. 2009). But
in difference to them here the time intensive contraction mapping for assessing the mean
utility in every iteration step of the estimation procedure is not needed.qhis, issbécause the
likelihood function is computed via a special case of the control fungtiom method ((Petrin
& Train 2002) and (Park & Gupta 2009)) and hence a full randem walk MCMC algorithm
is applied. In difference to (Park & Gupta 2009) the uncorrelatedsérror, which is explicitly
introduced through the control function procedure, is net #tegrated out, but sampled with
a random walk MCMC. The introduced proceeding,enables to use the whole information
from the data set in the estimation and beyond'that accelerates the computation. In the
remaining of this paper is structured as follewing. Eirst in the next section the model setup is
outlined, both for the usual BLP model*and the estimation via the Bayesian method, which
includes the derivation of the likelihood function, the prior and posterior distribution. After
that in the following sectionfa simulation study is employed to assess the performance of the
introduced alternative gstimation approach. These results are compared to the outcome the
estimation accordifighto=(Jiang et al. 2009) as a reference. The text ends with referring to

limitations @nd axnconclusion.

IThis study originates from a course paper for the lecture 'Bayesian Modeling for Marketing’ held by
Prof. Thomas Otter at the Goethe University Frankfurt for Master and PhD respectively doctoral students
in the winter semester 2009/10.



2 Random coefficient logit model for aggregated data

2.1 General model

In the following only the demand side is considered of a multinomial choice model for
aggregated data, as developed by (Berry et al. 1995), the so called BLP model.
For marketing issues this framework can be applied for example to scanner data about con-
sumer goods.
This simulation concentrates on the case where the unobserved individual preferences
are normal distributed?, which is the most relevant case for applications of the model
(e.g. recently (Sovinsky Goeree 2008), (Gowrisankaran & Rysman 2009), (Albuquerque
& Bronnenberg 2008) ).
With a similar notation as in (Nevo 2000) the utility ‘of a‘product j=1,...,J for an individal

i=1,....,I in market t=1,...,T hence can be written as:

e = Tt + i Wi
= 0% & + xi(IID; + Av;) + g5

=y Oyt Mg + €ji- (1)

xj is the vector of influence variables, including e.g. price, with the vector of random
coefficients 3; Athat, is decomposed as 3; = 8+ II1D; + Av;, v; ~ N(0, Ik), where A is the
lower-triangularCholesky factor of the covariance matrix, i.e. 3 = A - A’

gije is am hi.d. extreme value distributed error term and &j; is the surrogate of unknown

3. TII are the influence parameters of the (matrix of) demographic

product characteristics
variables D;. Moreover the mean value of utility of product j in market t is d;: = x;+3 + &

and thus p;¢ = xj:(ILD; + Av;) is the individual specific deviation from 4.

2 Although in the BLP model any other distribution for individual heterogeneity can be applied.
3These product characteristics are unknown by the data analyst, but known by the costumer and seller.
&j¢ is also called unobserved demand shock or structural error term.
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A is the lower-triangular Cholesky factor of the K x K covariance matrix ¥ so that ¥ = A-A’

Define*
mo 0 -0
A — Y21 Y22
0
YKL YKK

The expectation of the individual market shares s;j;,

sjt = Epu(sijt) = //Sijt(D,V)dVdPD(D)

B / / exp( ]tﬁ+6jt+wgt(HD—|—Au))
1+ 307 exp(@iB + Gt wi(TLD + Av))

¢(v)dvdPp(D)(2)

can be approximated by different simulation™methaods.
Where D; ~ Pp(D) is the distribution,of the demographic characteristics and ¢(-) denotes
the density function of the standardynermal distribution.

The most obvious kind of an.approximation of the expectation is the mean value

s Z exp(}, B + & + x5, (IID; + Avy))
L =
: ws =1+ Y0 eap(muB + & + 2 (TID; + Avy))

(3)

with ns®_random 6r decisively chosen draws from the assumed distribution of v and for
given data,observations from the empirical distribution of D with some appropriately cho-
sen weights w;.

Later in the simulation study (section (3)) I use for the simulation the nested Gauss-

Quadrature with nodes and weights on sparse grids as implemented and developed by (Heiss

4Define A with respect to possible exclusion restrictions for identification (Walker, Ben-Akiva & Bolduc
2007).

5ns stands for ”number of simulations”.



& Winschel 2006) and going back to (Smolyak 1963).

This method has the advantage over applying the product rule to the usual Gauss-
Quadrature, e.g. in (Judd 1998), that due to the construction of sparse grids far less nodes
are needed for the integration of integrals of higher dimension.

The numerical integration with Gauss-Quadrature on sparse grids leads to a relative fast
estimation compared to other simulation methods such as simple random drawgffrom the
normal distribution or randomized draws from Halton Sequences (e.g. (Bhat 2000))®; since
the overall computation time depends mainly on the magnitude of ns (Dube, Fox & Su 2008).
For all estimation methods of the BLP model, which require the simulation of the market
share from equation (2) 7 and especially for both - the approach disgissed here and a Bayesian
estimation as in (Jiang et al. 2009) - the advantage of thefiested Gauss-Quadrature cannot
be taken, if also demographic variables enter the utility (in s ;; from equation (1)). This
is because otherwise the simulated individuals would“have specific weights which are not
connected with values of their demographicswariables. Thus that would only make sense, if
this assumption was reasonable.

In the following demographic variables are not considered and therefore D is dropped in

equations.

2.2 Likelihood

In the likelihgodifunction endogeneity is explicitly incorporated through a setup as (Park
& Gupta2009). Note that the derivation of the likelihood is strongly based on the theory
of the citeédypaper, which goes back to (Hausman 1954) and (Heckman 1978). The approach

uses a special case of the more general control function estimation method of (Petrin &

6(Train 2000) obtains similar results at the simulation with 1000 random draws and 100 draws from
Halton Sequences.
"Which includes also the GMM estimation from (Berry et al. 1995).



Train 2002).

T = LG+ U (4)
with Z;; = (Ix ® z;-t),
. RON(0,%5,),
& N N(0,02),
Cov(vj,&t) = A,
Cov(zj,&e) = 0,V

zjt is the vector of instrumental variables which are correlated with the known product char-
acteristics zj; or e.g. only price®, but uncorrelated with théufiknown product characteristics
Eir

The distribution of two error terms can be exprégsed as the product of a Choleski factor of

their covariance and two independent error(terms:

Djt _ bn,j 0 Wi, jt (5)
&jt botb22,5 W, jt
Wi, jt
Tl NN, Ik).
W2 jt
/
S bu; 0 bu; 0 Yo, X, (©)
] pr— pr—
ba1,; oz bar; o2 Soe  OF

8To simplify the notation this notational differentiation is not made, but the incorporation of a set of
exogenous and a set of endogenous variables is straight forward. In fact one could treat all variables as
endogenous and simply add the exogenous variables to the instrumental variables.



With (5) and with by ; = E;J/_Q, the equation (1) and (4) can be transformed to

/
Uit = xjtﬁi + ba1 jwi ji + bag jwa ji + €45, and (7)

Tjp = ZjiGj + b jw e (8)
After plugging w; j; from equation (8) in equation (9), the utility can be written as:
Uijt = x;tﬁi + Q} (250 — Zj1Cj] + baa jwa je + €ije, 9)

with g; = bgljjbﬁl’j.

Note that now along with €;5, as the usual extreme value error temnd, there are three uncor-
related error terms in the utility wy j¢, w2 j+ and €.

As woy = (wa1t,...,wo ) is uncorrelated with evefly ogher term in the equation (Park &
Gupta 2009) denote it hence as ”Exogenous unmeasured product characteristic” (EUPC).

Now the logit probability for the individuaki’s choice of product j at time t, s;;;, thus equals:

o Gl’p(l’;tﬁ + .Q; [l’jt g th(j] + bgg}j&)gdt + J?;-tAl/i)
1+ 22]:1 exp(xy, ez — (Ixk @ 2,)G] + baggwo e + 2}, Av;)

Sijt
Explicit inclusion of emdegeneity thus leads to the ordinary form of the random coefficient

logit model, apart from the bias correction term [x;; — Z;(;] and the shocks ws j; (EUPC).

Given the_biasN\correction term [z;; — Z;(;] and conditional on wsj; the likelihood

can be wsitten as:

o= (2 |

| |
Gor! - qsit ) S

qjt

/siﬁ(wzﬁ, vi)o(v)dv| . (10)

14

The observe quantities of chosen products j at t time t are denoted by g¢;;.

wa, is standard normal distributed and unknown, therefore it can be integrated out as in



(Park & Gupta 2009):

Ly, = /Ll,t(wzt)ﬁb(m)dwz (11)

Since wy; is not observed, one way is to integrate the error terms EUPC out. Because of
this integration usually only a sample of the observed sold quantities, e.g. 100 draws, can
be used and not the full information in the data. Since otherwise the computatiomyreaches
quickly machine zero, due the fact, that the observed choice quantities ‘entermthe likelihood
through the exponent (see equation (10)) and the logarithmic transfotmation does not help
to avoid the computation of the exponentiated probabilities asgiSuale’Even though (Park
& Gupta 2009) state, that the estimation is not sensitive to,that Sampling, it is on the one
hand in general desirable to use the full information of tie data if possible. This is especially
important when one wants to recover the parameéter values of a model with a somehow
complex setup. On the other hand when integrating out ws one has to integrate over the
dimension of J, the number of alternativestwhich ¢an be high per se. Additionally since v;
from equation (3) needs to be integratedsout with a number of ns draws, the total number
of evaluations to numerically integrate out both v; and wy would is ns - ns,, if nsy is the
number of draws needed forfintegrating out wy. Thus is procedure might limit the available
information form the data Set and aggravate the burden of the estimation.

The here used appfoaeh is to sample w, through a random walk MCMC chain, which does not
require a seé¢ofid nwmerical integration and furthermore allows to use the full information of
the data. ‘Butshere in the following the likelihood is written dependent on ws; (and dependent
on bias correction term [zj; — Z;;(;]), which is then drawn in the Bayesian estimation.

That is why the total likelihood function is:

T
L(0lwn) = [ ] L1e(wsy)-
t=1



With 0 = (8,71, .., VKK, 011,15 b21,15 b22,15 20y b11,75 D21, 75 b22,J)-

Therefore log likelihood is except for a constant:

T J+1

L(lw2) =Y > gjilog (/ Sijt(Wa,jts Vi)¢(V)dV) :

t=1 j=1

Because the bias correction term [z;; — Z;:(;] - which is so to say the error term from the 1%
stage regression of the endogenous variable(s) on the instrumental variables £ 1Synot given
we can either include it in the likelihood as the probability from the K diimensional normal
distribution (Park & Gupta 2009) or estimate the bias correction term inwadvance (Petrin
& Train 2002). It is an interesting issue, if the estimation methodywas more robust when
the bias correction term would be simultaneous assessed#~@On the other hand estimating
the bias correction term in advance simplifies thé,éstimation procedure and especially
reduces the number of parameters in the likelihood reéspéctively Bayesian estimation. That
might especially be important, if the number Gfsinstrumental variables is very large, due to

interactions with dummy variables, as in somespractical applications.

2.3 Priors

The priors are”:

ﬁ ~ N<507Vﬂ)7
(G~ NG, Vo))

As pointed out previously, it is assumed, that: (12)

s

N(0,1). (13)

w27jt

9If the estimation of the bias correction term is done separately before the full estimation procedure, as
it is done here, the prior of ¢; is not needed in the following.
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To obtain a more equal distribution of the correlations of both variance-covariance matrices

f)j and A, the prior distributions are set as in (Jiang et al. 2009) '°.

A = UU,
e 0 0

T21 er2 e K
v - | O

0
\ Tkl ot TEE-1 €K 0\'
Where the priors of r,,. are specified %

Trm ~ N(0,02 )

Tk~ N(0,0%,),m=1,..,K a&&.,fgm > k.

Analogously for f]j(s (&1]’ =1,...,J):

7~ N(0,67)

Fin o~ N(o,agff@, : Jand h=1,..,J,01> h.

3

O
S

10Frequencies of the correlations of elements of covariance-variance matrix from draws from the prior are
shown in the appendix .
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The standard choice of the hyper-parameters is (for the hyper-parameter of the variance-

covariance matrices see (Jiang et al. 2009) and e.g. (Rossi, Allenby & McCulloch 2005)):

Bo = 0,Vz=1001F,

(G = 0,V =1001,)
2 1+\/1—4 — ot —c)

mm 2

o = L

c = 50,

L 1+\/1— 21— )3, — )
on = g ;
oo = 1,

c = 5H0.

2.4 Bayesian estimation

With the inversion of the market shares - the contraction mapping according to
(Berry 1994) - the parameters ¢an, be estimated with a hybrid MCMC algorithm like in
(Jiang et al. 2009).

They proceed as following. Given the draws for the choleski factor of the variance
covariance mataix of the random coefficients A, the mean utility d;, can be computed via
the contgaction mapping.

After that a Bayesian instrumental variable regression of this mean utility on the influence
variables and instrumental variables can be conducted!!. Through this they asses the
structural error term &j; and establish the likelihood function with the assumed distribution
of ;. The parameters of A are gained through a step of a random walk Metropolis chain.

The advantage of the procedure of (Jiang et al. 2009) is, that they can easily obtain draws

"This Bayesian instrumental variable regression can be conducted as outlined in (Rossi et al. 2005), an
adaption for the here used case and parameter notation can be requested from the author.
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from all parameters, except those of A, and use the information of the model setup and
from the observed shares to obtain these draws.

A disadvantage of their approach is in my opinion, that for every iteration of the MCMC
algorithm the contraction mapping - as the inner loop of the GMM estimation of the
BLP model - has to be conducted, which leads after (Jiang et al. 2009) to a three times
larger estimation time, than the GMM approach. Additionally the Jacobian of the shares

according to §;; has to be computed.

In approach of this paper the likelihood is evaluated without theéyconducting of the
contraction mapping via a method similar to (Park & Guptd 2009) to compute the
likelihood function and a full random walk MCMC algouithim for all parameters 6 in the
model, as discussed above.

The approach is to sample ws through a random, walkeWICMC chain, which omits a second
numerical integration and furthermore allowsstouse the full information of the data.

The posterior probability for given ws is:

W(QfstaXttT:sz) =
&t L(0|ws2)m(0)
= L<9|W2) X

X |Va| ™% eap (=0.5(8 — Bo) V(B — Bo)

xwﬁlmp(_ )xﬁﬁemp< 20”)

m=2 k=1

xﬁ [ﬁel‘p (—r—l%) x f[l lexp< 222)] (14)

=2 h=1

There are two random walk MCMC chains, one for updating ¢ and the other one for updating

wWa.
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(1) For given wy the MCMC chain for € is updated in the usual way:
grew — geld + To, Ty ~ N(O, 0‘2D9).

Where o2 is a scaling constant and Dy the candidate variance-covariance matrix, typically

obtained from a calibration chain.

A new draw of 6 is accepted with the probability « é

N

(2) For given 6 the random walk MCMC chain for wy is u@d as follows:

Wy = W' + Ty, T (&Dw).

new old
y Ywy

a = min {1, L6 |uop)m(6 )} .

L(@old|w2)ﬂ-(90ld)

Where o2, is the scaling constant and Dﬁcandidate variance-covariance matrix for ws
which has the dimension for the n r of alternatives J.
A new draw of wy is accepted $€ probability a,,

L wnew 8 wnew
&amm{l’ CRiEESIY

L(ws|0)p(ws')

5 =

13



3 Simulation study

3.1 Data generating process (DGP)

In this simulation study I consider J=2 products (and the outside option) on T=50
markets. The data is generated as follows, similar to (Park & Gupta 2009). This way how

endogeneity enters a certain variable, say price, is explicitly modeled:

mﬁ) = uﬁl) -uﬁZ) (Variable 1).

ul? R ON(0,1)

ul? T U(0,1)

2 "% U(0,1) (Variable 2).

.Zlﬁﬁ) = Z%v; + v (an endogen@uswariable, say price).

To account for endogeneity the correlation 6f the error terms is:

Vjt bii 0 Wi,j¢

§jt ba1 a2 Wa jt

.
W1,jta2 jt R N<071)

(3

Through,thig setting there is a correlation between xjt) and the structural error term &j,

but §;;"alse exhibits an additional variation component.

14



bi1 = +/.1/n;, and the 14 n;, instrumental variables are set as the following, where n;, = 10:

Z

it = (2,200, Zjtng, )
i.7.d.
th,l ~ N(O, 9/7’Lw),l: ]_,2,...,’[’Liv

by = /.5/n,
\/.5/71“).

b22

Where 7, is a column vector of values 1/2.

Thus there are with the two brand dummy variables d;, five influgnge variables:

(dy,ds, xﬁ), xﬁ), xﬁ’)) with mean parameter values determified’ as

B =(-3.25-35,51,—1).

The covariance . of the coefficients of the five influenceariables is specified as the following,

to assure a model with different substitutien, patterns then those from the homogeneous

logit (similar to (Jiang et al. 2009)):

00 —-15 —-15 2

To asses blie aggregated market share (so to say the 'true simulated market share’) I take
in the data generating process the average of the simulated decisions of 100 000 random

sampled costumers '2.

12With e.g. 20 000 random sampled costumers the following results are quite similar.
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3.2 Estimation with an alternative approach

After the data is generated, first to obtain a candidate variance-covariance matrix for
the MCMC algorithm a calibration chain is run with some initial starting values!3. The
random walk sampling matrix'® for # is set as a diagonal matrix with the entries of 1/100
on the diagonal and then 10 000 draws with 6 000 of them as burn-in are taken.

After that every draw is kept and the mean of the draws is used as the starting,value for
the final MCMC chain as well as the variance-covariance matrix of the seleeted draws is

employed as the candidate variance-covariance. Moreover the scalingfactor is set to the

usually recommended value 2.3/y/number of parameters in § whichnis divided by 10. The
same is done for the candidate variance-covariance matrix of wy { Finally 20 000 draws are

taken, with 20% of them as burn-in draws, i.e. 4 000.

To compute the simulated likelihood function 1 use the nested Gauss-Quadrature with
nodes and weights on sparse grids implemented and developed by (Heiss & Winschel 2006)
as discussed earlier. The accuracy leyel,is set to 6, which leads to ns=993 nodes for eight
parameters for the integration of gquation (2) ; this involves that the approximation is exact

up to a polynomial of degreeGx-1.

3.3 Estimationywith the reference model

As referente and”comparison to the presented approach, the Bayesian estimation with
contraction mapping is conducted as in (Jiang et al. 2009). The DGP, the overall procedure
and the prior distributions as well as hyperparameters are the same as before, but now the
likelihood function and posterior are obtained as in (Jiang et al. 2009).

Since here for every set of parameters A, the contraction mapping has to be executed and as

well it is necessary to compute the Jacobian matrix, this sampling procedure is considerably

13Which are deliberately taken from a prior likelihood based estimation and are unprecise.
14i e. the initial candidate variance-covariance.
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slower than the earlier introduced alternative approach. The estimation time in general
depends critically on the number of simulation draws for the simulation of the expected
market share (Dube et al. 2008). In both here discussed estimation methods the same
number of simulation draws for obtaining the market share is applied, but when employing
the contraction mapping on average roughly about 70-100 iterations are conducted in
the setting here and thus additionally 70-100 times the time for simulating thefexpected
market share is needed. As stopping criterion for the contraction mapping I (use gimilar to
(Nevo 2000) the condition that the mean respectively maximum of tworcongecutive values of
0 are smaller than le-12 respectively le-15 to employ tight tolerance levels as recommended

by (Dube et al. 2008)

3.4 Results

The DGP and the estimation were éxécuted 50 times. Bias and mean squared error
(MSE) are presented in table (1). It gan be seen, that the parameters'® are captured with
satisfying accuracy. The Bias and MSE are in the range of the values of e.g. (Jiang et al.
2009) and especially the parametérs for the variance-covariance matrix are comparably well
estimated. Even thoigh“the"WISE of the parameter estimates with contraction mapping
is slightly lower, oyver ‘the/ 50 replications, the means of the parameter estimates without
contraction, mapping, on the other hand are slightly closer to the true values ("Goodness of
fit of pafameter estimates’ in table (1)). In my personal experience the estimation accuracy
depends mainly on the dimension and entries of 32, which is the same issue for most estimation
methods (i.e. GMM estimation, Bayesian estimation according to (Jiang et al. 2009) and

the here discussed approach.).

15(Dube et al. 2008) determine the effect of the stopping criterion in detail and recommend to use tight
tolerance levels, i.e. to stop the contraction mapping, if the Euclidean norm of two consecutive values from
this mapping is e.g. less than 1le-14. The applied tolerance level in the estimation thus is in the recommended
range.

16The parameter from the auxiliary instrumental variable regression are not shown here.
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With contraction mapping

Alternative approach

Description Variable True value | Mean Bias MSE | Mean Bias MSE
Product dummy 1 dy -3.25 | -3.24 0.01 0.21 | -3925%,0.00 0.15
Product dummy 2 d» -3.50 | -3.41 0.09 0.20, ], =3.52» -0.02 0.17

Variable 1 aly) 1.50 | 1.52  0.02 0.04 [\, 143 -0.07 0.04
Variable 2 ) 1.00 | 1.01 001 0,06 fh 0.98 -0.02 0.04
Price 'l -1.00 | -1.24 -0.24 0.16" -1.07 -0.07 0.08

Covariance 11 0.35 0.23 -0.12 0.20 0.30 -0.05 0.10

Covariance 799 0.35 0.14 -0.21 0.21 0.33 -0.02 0.11

Covariance 733 0.35 0.32 -0.03 0.02 0.31 -0.03 0.02

Covariance T43 1.06 0.90 <046 0.14 0.97 -0.09 0.12

Covariance r53 -1.06 | -0.99 %20.07 0.04 | -0.93 0.13 0.06

Covariance T44 -0.07 | -0.62 -0:.560 0.57 | -0.74 -0.67 0.76

Covariance 54 -0.40 | -0.66 -0.26 0.24 | -0.58 -0.18 0.23

Covariance 55 -0.17 | -0vk6, 0.00 0.13 | -0.28 -0.11 0.16

Endogeneity T11,1 0.10 0.22 ), 0.12 0.01 0.10 0.00 0.00
Endogeneity 721,1 0.22 0.17 -0.06 0.00 0.21 -0.02 0.00
Endogeneity T92.1 0:22 0.34 0.12 0.02 0.26 0.04 0.00
Endogeneity T11,2 0.10 0.22 0.12 0.02 0.10 0.00 0.00
Endogeneity T21,2 0:22 0.17 -0.06 0.00 0.23  0.00 0.00
Endogeneity 7922 0.22 0.35 0.12 0.02 0.28 0.06 0.01

Goodness mapé 0.125 0.084

of meape 0.118 0.039

fit maape 0.557 0.670

mse 0.031 0.028

Table 1: BiasYandymean squared error (MSE) for all parameters (except those from in-
strumental %atiableregression) from the Bayesian estimation without and with contraction
mapping (mape: ‘mean absolute percentage error; meape: median absolute percentage error;
maapeénmaximum absolute percentage error; mse: mean squared error; keep: every 100th

draw was kept).
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4 Limitations and conclusion

Limitations
Although the results were robust thus far to determinants of the setting of the simulation
study, it would be interesting to examine these issues more extensively. Potential determi-
nants are (i) the number of markets respectively number of periods (nmkt), (ii) the number
of products (J).
Another interesting topic is the effect of 'misspecification’ in the DGR, omstheséstimation
results, i.e. to analyze how this estimation approach does perform, if the estimated model

is misspecified relating to the DGP.

The introduced approach is based on the procedure iny(Jiang et al. 2009) and (Park
& Gupta 2009) and its theory also relies - in opposite e the GMM estimation of the BLP
model (Berry et al. 1995) - on the additional assumption, that the surrogate of unknown
product characteristics £ is normal distributed. \Mare precisely the assumption made is that
the residual v, for the mapping of pricevon its instrumental variable, and £ are distributed
jointly normal. (Park & Gupta 2009)\point out the economic implications of this assumption
for pricing behavior and shoW that this assumption is not consistent with monopoly pricing
and Nash pricing in differentiated products oligopoly, but consistent if prices are equal to
marginal costs plug/times a fixed markups'”. Otherwise the performance of an estimation
method of this, type depends on the robustness according to the violation of the assumption

of the_jommt*normality.

Conclusion
In summary the proposed simple alternative estimation approach leads to accurate results
and thus shows to be capable of estimating the discussed model with a simpler estimation

procedure and less computational effort. Moreover the procedure enables to use the whole

1"T.e. markups do not depend on prices.
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information about sold quantities available in the data set. In applied work the reduced
time computation might be of special benefit when because of model selection lots of
different model specifications have to be estimated and analyzed. The introduced approach
roughly reduces the computation time by a factor proportional to the iterations needed in

the contraction mapping which is in this setting in a range of 70-100 iterations.
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Appendix

A Prior draws

400
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Figure 1: Frequencies of correlations of Element 4,3 from 50800 draws from prior distribution
of covariance-variance matrix.
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Figuré2: Ereduencies of correlations of Element 5,3 from 50 000 draws from prior distribution
of covarian€e-variance matrix.
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