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Abstract

In this note on the paper from (Jiang, Manchanda & Rossi 2009) I want to discuss a simple

alternative estimation method of the multinomial logit model for aggregated data, the so

called BLP model, named after (Berry, Levinsohn & Pakes 1995).

The estimation is conducted through a bayesian estimation similar to (Jiang et al. 2009).

But in difference to them here the time intensive contraction mapping for assessing the mean

utility in every iteration step of the estimation procedure is not needed. This is because the

likelihood function is computed via a special case of the control function method ((Petrin

& Train 2002) and (Park & Gupta 2009)) and hence a full random walk MCMC algorithm

is applied. In difference to (Park & Gupta 2009) the uncorrelated error, which is explicitly

introduced through the control function procedure, is not integrated out, but sampled with

a random walk MCMC. The introduced proceeding enables to use the whole information

from the data set in the estimation and beyond that accelerates the computation.
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1 Introduction

In this note1 I want to discuss a simple alternative estimation method of the multinomial

logit model for aggregated data, as developed by (Berry et al. 1995), the so called BLP

model.

The estimation is conducted with a Bayesian estimation similar to (Jiang et al. 2009). But

in difference to them here the time intensive contraction mapping for assessing the mean

utility in every iteration step of the estimation procedure is not needed. This is because the

likelihood function is computed via a special case of the control function method ((Petrin

& Train 2002) and (Park & Gupta 2009)) and hence a full random walk MCMC algorithm

is applied. In difference to (Park & Gupta 2009) the uncorrelated error, which is explicitly

introduced through the control function procedure, is not integrated out, but sampled with

a random walk MCMC. The introduced proceeding enables to use the whole information

from the data set in the estimation and beyond that accelerates the computation. In the

remaining of this paper is structured as following. First in the next section the model setup is

outlined, both for the usual BLP model and the estimation via the Bayesian method, which

includes the derivation of the likelihood function, the prior and posterior distribution. After

that in the following section a simulation study is employed to assess the performance of the

introduced alternative estimation approach. These results are compared to the outcome the

estimation according to (Jiang et al. 2009) as a reference. The text ends with referring to

limitations and a conclusion.

1This study originates from a course paper for the lecture ’Bayesian Modeling for Marketing’ held by
Prof. Thomas Otter at the Goethe University Frankfurt for Master and PhD respectively doctoral students
in the winter semester 2009/10.
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2 Random coefficient logit model for aggregated data

2.1 General model

In the following only the demand side is considered of a multinomial choice model for

aggregated data, as developed by (Berry et al. 1995), the so called BLP model.

For marketing issues this framework can be applied for example to scanner data about con-

sumer goods.

This simulation concentrates on the case where the unobserved individual preferences

are normal distributed2, which is the most relevant case for applications of the model

(e.g. recently (Sovinsky Goeree 2008), (Gowrisankaran & Rysman 2009), (Albuquerque

& Bronnenberg 2008) ).

With a similar notation as in (Nevo 2000) the utility of a product j=1,...,J for an individal

i=1,...,I in market t=1,...,T hence can be written as:

uijt = xjtβi + ξjt + εijt

= xjtβ + ξjt + xjt(ΠDi + Λνi) + εijt

= δjt + µijt + εijt. (1)

xjt is the vector of influence variables, including e.g. price, with the vector of random

coefficients βi, that is decomposed as βi = β + ΠDi + Λνi, νi ∼ N(0, IK), where Λ is the

lower-triangular Cholesky factor of the covariance matrix, i.e. Σ = Λ · Λ′.

εijt is an i.i.d. extreme value distributed error term and ξjt is the surrogate of unknown

product characteristics3. Π are the influence parameters of the (matrix of) demographic

variables Di. Moreover the mean value of utility of product j in market t is δjt ≡ xjtβ + ξjt

and thus µijt ≡ xjt(ΠDi + Λνi) is the individual specific deviation from δjt.

2Although in the BLP model any other distribution for individual heterogeneity can be applied.
3These product characteristics are unknown by the data analyst, but known by the costumer and seller.

ξjt is also called unobserved demand shock or structural error term.

3

W
ith

dr
aw

n 
by

 th
e 

au
th

or



Λ is the lower-triangular Cholesky factor of the K×K covariance matrix Σ so that Σ = Λ·Λ′

and βi ∼ N(β + ΠDi,Σ).

Define4

Λ =



















γ11 0 · · · 0

γ21 γ22
. . .

...

...
. . . 0

γK1 · · · γKK



















.

The expectation of the individual market shares sijt,

sjt = ED,ν(sijt) =

∫

D

∫

ν

sijt(D, ν)dνdPD(D)

=

∫

D

∫

ν

exp(x′

jt
β + ξjt + x′

jt
(ΠD + Λν))

1 +
∑J

l=1 exp(xltβ + ξlt + xlt(ΠD + Λν))
φ(ν)dνdPD(D)(2)

can be approximated by different simulation methods.

Where Di ∼ PD(D) is the distribution of the demographic characteristics and φ(·) denotes

the density function of the standard normal distribution.

The most obvious kind of an approximation of the expectation is the mean value

ŝjt =
1

ns

ns
∑

i=1

wi

exp(x′

jt
β + ξjt + x′

jt
(ΠDi + Λνi))

1 +
∑J

l=1 exp(xltβ + ξlt + xlt(ΠDi + Λνi))
(3)

with ns5 random or decisively chosen draws from the assumed distribution of ν and for

given data observations from the empirical distribution of D with some appropriately cho-

sen weights wi.

Later in the simulation study (section (3)) I use for the simulation the nested Gauss-

Quadrature with nodes and weights on sparse grids as implemented and developed by (Heiss

4Define Λ with respect to possible exclusion restrictions for identification (Walker, Ben-Akiva & Bolduc
2007).

5ns stands for ”number of simulations”.
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& Winschel 2006) and going back to (Smolyak 1963).

This method has the advantage over applying the product rule to the usual Gauss-

Quadrature, e.g. in (Judd 1998), that due to the construction of sparse grids far less nodes

are needed for the integration of integrals of higher dimension.

The numerical integration with Gauss-Quadrature on sparse grids leads to a relative fast

estimation compared to other simulation methods such as simple random draws from the

normal distribution or randomized draws from Halton Sequences (e.g. (Bhat 2000)) 6; since

the overall computation time depends mainly on the magnitude of ns (Dube, Fox & Su 2008).

For all estimation methods of the BLP model, which require the simulation of the market

share from equation (2) 7 and especially for both - the approach discussed here and a Bayesian

estimation as in (Jiang et al. 2009) - the advantage of the nested Gauss-Quadrature cannot

be taken, if also demographic variables enter the utility (in µjt from equation (1)). This

is because otherwise the simulated individuals would have specific weights which are not

connected with values of their demographic variables. Thus that would only make sense, if

this assumption was reasonable.

In the following demographic variables are not considered and therefore D is dropped in

equations.

2.2 Likelihood

In the likelihood function endogeneity is explicitly incorporated through a setup as (Park

& Gupta 2009). Note that the derivation of the likelihood is strongly based on the theory

of the cited paper, which goes back to (Hausman 1954) and (Heckman 1978). The approach

uses a special case of the more general control function estimation method of (Petrin &

6(Train 2000) obtains similar results at the simulation with 1000 random draws and 100 draws from
Halton Sequences.

7Which includes also the GMM estimation from (Berry et al. 1995).
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Train 2002).

xjt = Zjtζj + ν̃jt (4)

with Zjt = (IK ⊗ z′jt),

ν̃jt
i.i.d.∼ N(0, Σν̃j

),

ξjt
i.i.d.∼ N(0, σ2

ξj
),

Cov(νjt, ξjt) = λj,

Cov(zjt, ξjt) = 0,∀t.

zjt is the vector of instrumental variables which are correlated with the known product char-

acteristics xjt or e.g. only price8, but uncorrelated with the unknown product characteristics

ξjt.

The distribution of two error terms can be expressed as the product of a Choleski factor of

their covariance and two independent error terms:







ν̃jt

ξjt






=







b11,j 0

b21,j b22,j













ω1,jt

ω2,jt






(5)







ω1,jt

ω2,jt







i.i.d.∼ N(0, IK+1).

Σ̃j =







b11,j 0

b21,j b22,j













b11,j 0

b21,j b22,j







′

=







Σν̃j
Σξj ,ν̃j

Σν̃j ,ξj
σ2

ξj






. (6)

8To simplify the notation this notational differentiation is not made, but the incorporation of a set of
exogenous and a set of endogenous variables is straight forward. In fact one could treat all variables as
endogenous and simply add the exogenous variables to the instrumental variables.
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With (5) and with b11,j = Σ
1/2
ν̃j

, the equation (1) and (4) can be transformed to

uijt = x′

jtβi + b21,jω1,jt + b22,jω2,jt + εijt, and (7)

xjt = Zjtζj + b11,jω1,jt. (8)

After plugging ω1,jt from equation (8) in equation (9), the utility can be written as:

uijt = x′

jtβi + ̺′

j[xjt − Zjtζj] + b22,jω2,jt + εijt, (9)

with ̺j = b21,jb
−1
11,j.

Note that now along with εijt, as the usual extreme value error term, there are three uncor-

related error terms in the utility ω1,jt, ω2,jt and εijt.

As ω2,t = (ω2,1t, . . . , ω2,Jt) is uncorrelated with every other term in the equation (Park &

Gupta 2009) denote it hence as ”Exogenous unmeasured product characteristic” (EUPC).

Now the logit probability for the individual i’s choice of product j at time t, sijt, thus equals:

sijt =
exp(x′

jtβ + ̺′

j[xjt − Zjtζj] + b22,jω2,jt + x′

jtΛνi)

1 +
∑J

l=1 exp(x′

ltβ + ̺′

l[xlt − (IK ⊗ z′lt)ζl] + b22,lω2,lt + x′

ltΛνi)
.

Explicit inclusion of endogeneity thus leads to the ordinary form of the random coefficient

logit model, apart from the bias correction term [xjt − Zjtζj] and the shocks ω2,jt (EUPC).

Given the bias correction term [xjt − Zjtζj] and conditional on ω2,jt the likelihood

can be written as:

L1,t(ω2,t) =

(

qt!

q0t! . . . qJt!

) J+1
∏

j=1

[∫

ν

sijt(ω2,jt, νi)φ(ν)dν

]qjt

. (10)

The observe quantities of chosen products j at t time t are denoted by qjt.

ω2,t is standard normal distributed and unknown, therefore it can be integrated out as in
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(Park & Gupta 2009):

L1,t =

∫

L1,t(ω2,t)φ(ω2)dω2. (11)

Since ω2,t is not observed, one way is to integrate the error terms EUPC out. Because of

this integration usually only a sample of the observed sold quantities, e.g. 100 draws, can

be used and not the full information in the data. Since otherwise the computation reaches

quickly machine zero, due the fact, that the observed choice quantities enter the likelihood

through the exponent (see equation (10)) and the logarithmic transformation does not help

to avoid the computation of the exponentiated probabilities as usual. Even though (Park

& Gupta 2009) state, that the estimation is not sensitive to that sampling, it is on the one

hand in general desirable to use the full information of the data if possible. This is especially

important when one wants to recover the parameter values of a model with a somehow

complex setup. On the other hand when integrating out ω2 one has to integrate over the

dimension of J, the number of alternatives which can be high per se. Additionally since νi

from equation (3) needs to be integrated out with a number of ns draws, the total number

of evaluations to numerically integrate out both νi and ω2 would is ns · ns2, if ns2 is the

number of draws needed for integrating out ω2. Thus is procedure might limit the available

information form the data set and aggravate the burden of the estimation.

The here used approach is to sample ω2 through a random walk MCMC chain, which does not

require a second numerical integration and furthermore allows to use the full information of

the data. But here in the following the likelihood is written dependent on ω2,t (and dependent

on bias correction term [xjt − Zjtζj]), which is then drawn in the Bayesian estimation.

That is why the total likelihood function is:

L(θ|ω2) =
T
∏

t=1

L1,t(ω2,t).
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With θ = (β, γ11, ..., γK,K , b11,1, b21,1, b22,1, ..., b11,J, b21,J, b22,J).

Therefore log likelihood is except for a constant:

L(θ|ω2) =
T
∑

t=1

J+1
∑

j=1

qjtlog

(∫

ν

sijt(ω2,jt, νi)φ(ν)dν

)

.

Because the bias correction term [xjt −Zjtζj] - which is so to say the error term from the 1st

stage regression of the endogenous variable(s) on the instrumental variables - is not given

we can either include it in the likelihood as the probability from the K dimensional normal

distribution (Park & Gupta 2009) or estimate the bias correction term in advance (Petrin

& Train 2002). It is an interesting issue, if the estimation method was more robust when

the bias correction term would be simultaneous assessed. On the other hand estimating

the bias correction term in advance simplifies the estimation procedure and especially

reduces the number of parameters in the likelihood respectively Bayesian estimation. That

might especially be important, if the number of instrumental variables is very large, due to

interactions with dummy variables, as in some practical applications.

2.3 Priors

The priors are9:

β ∼ N(β0, Vβ),

(ζj ∼ N(ζ0, Vζ).)

As pointed out previously, it is assumed, that: (12)

ω2,jt
i.i.d.∼ N(0, 1). (13)

9If the estimation of the bias correction term is done separately before the full estimation procedure, as
it is done here, the prior of ζj is not needed in the following.
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To obtain a more equal distribution of the correlations of both variance-covariance matrices

Σ̃j and Λ, the prior distributions are set as in (Jiang et al. 2009) 10.

Λ = UU ′,

U =



















er11 0 · · · 0

r21 er22
. . .

...

...
. . . 0

rK1 · · · rK,K−1 erKK



















.

Where the priors of rmk are specified as

rmm ∼ N(0, σ2
mm)

rmk ∼ N(0, σ2
off ), m = 1, ..., K and k = 1, ..., K,m > k.

Analogously for Σ̃j(same for all j = 1, ..., J):

r̃ll ∼ N(0, σ̃2
ll)

r̃lh ∼ N(0, σ̃2
off ), l = 1, ..., J and h = 1, ..., J, l > h.

10Frequencies of the correlations of elements of covariance-variance matrix from draws from the prior are
shown in the appendix .
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The standard choice of the hyper-parameters is (for the hyper-parameter of the variance-

covariance matrices see (Jiang et al. 2009) and e.g. (Rossi, Allenby & McCulloch 2005)):

β0 = 0, Vβ = 100IK ,

(ζ0 = 0, Vζ = 100IK , )

σ2
mm =

1

4





1 +
√

1 − 4(2(m − 1)σ4
off − c)

2



 ,

σ2
off = 1,

c = 50,

σ̃2
ll =

1

4





1 +
√

1 − 4(2(l − 1)σ̃4
off − c)

2



 ,

σ̃2
off = 1,

c = 50.

2.4 Bayesian estimation

With the inversion of the market shares - the contraction mapping according to

(Berry 1994) - the parameters can be estimated with a hybrid MCMC algorithm like in

(Jiang et al. 2009).

They proceed as following. Given the draws for the choleski factor of the variance

covariance matrix of the random coefficients Λ, the mean utility δjt can be computed via

the contraction mapping.

After that a Bayesian instrumental variable regression of this mean utility on the influence

variables and instrumental variables can be conducted11. Through this they asses the

structural error term ξjt and establish the likelihood function with the assumed distribution

of ξjt. The parameters of Λ are gained through a step of a random walk Metropolis chain.

The advantage of the procedure of (Jiang et al. 2009) is, that they can easily obtain draws

11This Bayesian instrumental variable regression can be conducted as outlined in (Rossi et al. 2005), an
adaption for the here used case and parameter notation can be requested from the author.
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from all parameters, except those of Λ, and use the information of the model setup and

from the observed shares to obtain these draws.

A disadvantage of their approach is in my opinion, that for every iteration of the MCMC

algorithm the contraction mapping - as the inner loop of the GMM estimation of the

BLP model - has to be conducted, which leads after (Jiang et al. 2009) to a three times

larger estimation time, than the GMM approach. Additionally the Jacobian of the shares

according to ξjt has to be computed.

In approach of this paper the likelihood is evaluated without the conducting of the

contraction mapping via a method similar to (Park & Gupta 2009) to compute the

likelihood function and a full random walk MCMC algorithm for all parameters θ in the

model, as discussed above.

The approach is to sample ω2 through a random walk MCMC chain, which omits a second

numerical integration and furthermore allows to use the full information of the data.

The posterior probability for given ω2 is:

π(θ|st, Xt
T
t=1, ω2) =

∝ L(θ|ω2)π(θ)

= L(θ|ω2) ×

× |Vβ|−1/2 exp
(

−0.5(β − β0)
′V −1

β (β − β0)
)

×
K
∏

m=1

exp

(

− r2
mm

2σ2
mm

)

×
K
∏

m=2

j−1
∏

k=1

exp

(

− r2
mk

2σ2
off

)

×
J+1
∏

j=1

[

J
∏

l=1

exp

(

− r̃2
ll

2σ̃2
ll

)

×
J
∏

l=2

l−1
∏

h=1

exp

(

− r̃2
lh

2σ̃2
off

)]

. (14)

There are two random walk MCMC chains, one for updating θ and the other one for updating

ω2.
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(1) For given ω2 the MCMC chain for θ is updated in the usual way:

θnew = θold + τθ, τθ ∼ N(0, σ2Dθ).

Where σ2 is a scaling constant and Dθ the candidate variance-covariance matrix, typically

obtained from a calibration chain.

A new draw of θ is accepted with the probability α

α = min

{

1,
L(θnew|ω2)π(θnew)

L(θold|ω2)π(θold)

}

.

(2) For given θ the random walk MCMC chain for ω2 is updated as follows:

ωnew
2 = ωold

2 + τω2
, τω2

∼ N(0, σ2
ω2

Dω2
).

Where σ2
ω2

is the scaling constant and Dω2
the candidate variance-covariance matrix for ω2

which has the dimension for the number of alternatives J.

A new draw of ω2 is accepted with the probability αω2

αω2
= min

{

1,
L(ωnew

2 |θ)φ(ωnew
2 )

L(ωold
2 |θ)φ(ωold

2 )

}

.
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3 Simulation study

3.1 Data generating process (DGP)

In this simulation study I consider J=2 products (and the outside option) on T=50

markets. The data is generated as follows, similar to (Park & Gupta 2009). This way how

endogeneity enters a certain variable, say price, is explicitly modeled:

x
(1)
jt = u

(11)
jt · u(12)

jt (Variable 1).

u
(11)
jt

i.i.d.∼ N(0, 1)

u
(12)
jt

i.i.d.∼ U(0, 1)

x
(2)
jt

i.i.d.∼ U(0, 1) (Variable 2).

x
(3)
jt = Z ′

jtγj + νjt (an endogenous variable, say price).

To account for endogeneity the correlation of the error terms is:







νjt

ξjt






=







b11 0

b21 b22













ω1,jt

ω2,jt







ω1,jt, ω2,jt
i.i.d.∼ N(0, 1)

j = 1, 2 ; t = 1, ..., T.

Through this setting there is a correlation between x
(3)
jt and the structural error term ξjt,

but ξjt also exhibits an additional variation component.
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b11 =
√

.1/niv and the 1+niv instrumental variables are set as the following, where niv = 10:

Zjt = (2, zjt,1, ...,zjt,niv
),

zjt,l
i.i.d.∼ N(0, .9/niv), l = 1, 2, ..., niv

b21 =
√

.5/niv,

b22 =
√

.5/niv.

Where γj is a column vector of values 1/2.

Thus there are with the two brand dummy variables dj, five influence variables:

(d1, d2, x
(1)
jt , x

(2)
jt , x

(3)
jt ) with mean parameter values determined as

β = (−3.25,−3.5, .5, 1,−1).

The covariance Σ of the coefficients of the five influence variables is specified as the following,

to assure a model with different substitution patterns then those from the homogeneous

logit (similar to (Jiang et al. 2009)):

Σ =

























2 0 0 0 0

0 2 0 0 0

0 0 2 1.5 −1.5

0 0 1.5 2 −1.5

0 0 −1.5 −1.5 2

























To asses the aggregated market share (so to say the ’true simulated market share’) I take

in the data generating process the average of the simulated decisions of 100 000 random

sampled costumers 12.

12With e.g. 20 000 random sampled costumers the following results are quite similar.
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3.2 Estimation with an alternative approach

After the data is generated, first to obtain a candidate variance-covariance matrix for

the MCMC algorithm a calibration chain is run with some initial starting values13. The

random walk sampling matrix14 for θ is set as a diagonal matrix with the entries of 1/100

on the diagonal and then 10 000 draws with 6 000 of them as burn-in are taken.

After that every draw is kept and the mean of the draws is used as the starting value for

the final MCMC chain as well as the variance-covariance matrix of the selected draws is

employed as the candidate variance-covariance. Moreover the scaling factor is set to the

usually recommended value 2.3/
√

number of parameters in θ which is divided by 10. The

same is done for the candidate variance-covariance matrix of ω2 . Finally 20 000 draws are

taken, with 20% of them as burn-in draws, i.e. 4 000.

To compute the simulated likelihood function I use the nested Gauss-Quadrature with

nodes and weights on sparse grids implemented and developed by (Heiss & Winschel 2006)

as discussed earlier. The accuracy level is set to 6, which leads to ns=993 nodes for eight

parameters for the integration of equation (2) ; this involves that the approximation is exact

up to a polynomial of degree 6+1.

3.3 Estimation with the reference model

As reference and comparison to the presented approach, the Bayesian estimation with

contraction mapping is conducted as in (Jiang et al. 2009). The DGP, the overall procedure

and the prior distributions as well as hyperparameters are the same as before, but now the

likelihood function and posterior are obtained as in (Jiang et al. 2009).

Since here for every set of parameters Λ, the contraction mapping has to be executed and as

well it is necessary to compute the Jacobian matrix, this sampling procedure is considerably

13Which are deliberately taken from a prior likelihood based estimation and are unprecise.
14i.e. the initial candidate variance-covariance.
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slower than the earlier introduced alternative approach. The estimation time in general

depends critically on the number of simulation draws for the simulation of the expected

market share (Dube et al. 2008). In both here discussed estimation methods the same

number of simulation draws for obtaining the market share is applied, but when employing

the contraction mapping on average roughly about 70-100 iterations are conducted in

the setting here and thus additionally 70-100 times the time for simulating the expected

market share is needed. As stopping criterion for the contraction mapping I use similar to

(Nevo 2000) the condition that the mean respectively maximum of two consecutive values of

δ are smaller than 1e-12 respectively 1e-15 to employ tight tolerance levels as recommended

by (Dube et al. 2008) 15

3.4 Results

The DGP and the estimation were executed 50 times. Bias and mean squared error

(MSE) are presented in table (1). It can be seen, that the parameters16 are captured with

satisfying accuracy. The Bias and MSE are in the range of the values of e.g. (Jiang et al.

2009) and especially the parameters for the variance-covariance matrix are comparably well

estimated. Even though the MSE of the parameter estimates with contraction mapping

is slightly lower over the 50 replications, the means of the parameter estimates without

contraction mapping on the other hand are slightly closer to the true values (’Goodness of

fit of parameter estimates’ in table (1)). In my personal experience the estimation accuracy

depends mainly on the dimension and entries of Σ, which is the same issue for most estimation

methods (i.e. GMM estimation, Bayesian estimation according to (Jiang et al. 2009) and

the here discussed approach.).

15(Dube et al. 2008) determine the effect of the stopping criterion in detail and recommend to use tight
tolerance levels, i.e. to stop the contraction mapping, if the Euclidean norm of two consecutive values from
this mapping is e.g. less than 1e-14. The applied tolerance level in the estimation thus is in the recommended
range.

16The parameter from the auxiliary instrumental variable regression are not shown here.
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With contraction mapping Alternative approach

Description Variable True value Mean Bias MSE Mean Bias MSE

Product dummy 1 d1 -3.25 -3.24 0.01 0.21 -3.25 0.00 0.15
Product dummy 2 d” -3.50 -3.41 0.09 0.20 -3.52 -0.02 0.17

Variable 1 x
(1)
jt 1.50 1.52 0.02 0.04 1.43 -0.07 0.04

Variable 2 x
(2)
jt 1.00 1.01 0.01 0.06 0.98 -0.02 0.04

Price x
(3)
jt -1.00 -1.24 -0.24 0.16 -1.07 -0.07 0.08

Covariance r11 0.35 0.23 -0.12 0.20 0.30 -0.05 0.10
Covariance r22 0.35 0.14 -0.21 0.21 0.33 -0.02 0.11
Covariance r33 0.35 0.32 -0.03 0.02 0.31 -0.03 0.02
Covariance r43 1.06 0.90 -0.16 0.14 0.97 -0.09 0.12
Covariance r53 -1.06 -0.99 0.07 0.04 -0.93 0.13 0.06
Covariance r44 -0.07 -0.62 -0.56 0.57 -0.74 -0.67 0.76
Covariance r54 -0.40 -0.66 -0.26 0.24 -0.58 -0.18 0.23
Covariance r55 -0.17 -0.16 0.00 0.13 -0.28 -0.11 0.16

Endogeneity r̃11,1 0.10 0.22 0.12 0.01 0.10 0.00 0.00
Endogeneity r̃21,1 0.22 0.17 -0.06 0.00 0.21 -0.02 0.00
Endogeneity r̃22,1 0.22 0.34 0.12 0.02 0.26 0.04 0.00
Endogeneity r̃11,2 0.10 0.22 0.12 0.02 0.10 0.00 0.00
Endogeneity r̃21,2 0.22 0.17 -0.06 0.00 0.23 0.00 0.00
Endogeneity r̃22,2 0.22 0.35 0.12 0.02 0.28 0.06 0.01

Goodness mape 0.125 0.084
of meape 0.118 0.039
fit maape 0.557 0.670

mse 0.031 0.028

Table 1: Bias and mean squared error (MSE) for all parameters (except those from in-
strumental variable regression) from the Bayesian estimation without and with contraction
mapping (mape: mean absolute percentage error; meape: median absolute percentage error;
maape: maximum absolute percentage error; mse: mean squared error; keep: every 100th
draw was kept).
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4 Limitations and conclusion

Limitations

Although the results were robust thus far to determinants of the setting of the simulation

study, it would be interesting to examine these issues more extensively. Potential determi-

nants are (i) the number of markets respectively number of periods (nmkt), (ii) the number

of products (J).

Another interesting topic is the effect of ’misspecification’ in the DGP on the estimation

results, i.e. to analyze how this estimation approach does perform, if the estimated model

is misspecified relating to the DGP.

The introduced approach is based on the procedure in (Jiang et al. 2009) and (Park

& Gupta 2009) and its theory also relies - in opposite to the GMM estimation of the BLP

model (Berry et al. 1995) - on the additional assumption, that the surrogate of unknown

product characteristics ξ is normal distributed. More precisely the assumption made is that

the residual ν, for the mapping of price on its instrumental variable, and ξ are distributed

jointly normal. (Park & Gupta 2009) point out the economic implications of this assumption

for pricing behavior and show that this assumption is not consistent with monopoly pricing

and Nash pricing in differentiated products oligopoly, but consistent if prices are equal to

marginal costs plus/times a fixed markups17. Otherwise the performance of an estimation

method of this type depends on the robustness according to the violation of the assumption

of the joint normality.

Conclusion

In summary the proposed simple alternative estimation approach leads to accurate results

and thus shows to be capable of estimating the discussed model with a simpler estimation

procedure and less computational effort. Moreover the procedure enables to use the whole

17I.e. markups do not depend on prices.
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information about sold quantities available in the data set. In applied work the reduced

time computation might be of special benefit when because of model selection lots of

different model specifications have to be estimated and analyzed. The introduced approach

roughly reduces the computation time by a factor proportional to the iterations needed in

the contraction mapping which is in this setting in a range of 70-100 iterations.
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Appendix

A Prior draws

Figure 1: Frequencies of correlations of Element 4,3 from 50 000 draws from prior distribution
of covariance-variance matrix.

Figure 2: Frequencies of correlations of Element 5,3 from 50 000 draws from prior distribution
of covariance-variance matrix.
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