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Abstract 

We introduce a game theory model of individual decisions to cooperate by contributing 

personal resources to group decisions versus by free-riding on the contributions of other 

members.  In contrast to most public-goods games that assume group returns are linear 

in individual contributions, the present model assumes decreasing marginal group 

production as a function of aggregate individual contributions.  This diminishing 

marginal returns assumption is more realistic and generates starkly different predictions 

compared to the linear model.  One important implication is that, under most conditions, 

there exist equilibria where some, but not all members of a group contribute, even with 

completely self-interested motives.  An agent-based simulation confirms the individual 

and group advantages of the equilibria in which behavioral asymmetry emerges from a 

game structure that is a priori perfectly symmetric for all agents (all agents have the same 

payoff function and action space, but take different actions in equilibria).  And a 

behavioral experiment demonstrates that cooperators and free-riders coexist in a stable 

manner in groups performing with the non-linear production function.  A collateral result 

demonstrates that, compared to a ―dictatorial‖ decision scheme guided by the best 

member in a group, the majority-plurality decision rules can pool information effectively 

and produce greater individual net welfare at equilibrium, even if free-riding is not 

sanctioned.  This is an original proof that cooperation in ad hoc decision-making groups 

can be understood in terms of self-interested motivations and that, despite the free-rider 

problem, majority-plurality decision rules can function robustly as simple, efficient social 
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decision heuristics. 

Key words: group decision making under uncertainty, free-rider problem, 

majority-plurality rules, marginally-diminishing group returns, evolutionary games, 

behavioral experiment 
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Democracy Under Uncertainty: 

The “Wisdom of Crowds” and the Free-Rider Problem in Group Decision Making 

Every human society relies on groups to make important decisions because, 

among other advantages, groups have more problem-solving resources than any 

individual member (e.g., Kerr & Tindale, 2004).  Indeed, there are many tasks that can 

be achieved only by a group effort and that could never be accomplished by one 

individual or by many individuals working separately.  For example, a group of 

geologists, engineers, demographers, and business executives have complementary skill 

sets that could allow them to make much more precise decisions about where to locate a 

large construction project than any one of the individuals in these groups could alone.  

Similarly, in a primitive setting, five tribesmen could cooperate to decide where to forage 

for prey much more effectively than if all worked independently. 

But, despite such a potential for ―collective wisdom,‖ there is a fundamental 

trade-off between selfish, individualistic goals and the more general social welfare.  

Participation in a group activity is often described as a sacrifice of personal utility.  Who 

hasn‘t pondered whether to ―blow-off‖ preparation for a group assignment (e.g., not to 

study the candidates‘ resumes before a hiring committee meeting, to shirk one‘s 

homework before a joint study committee meeting, etc.) and to ―free-ride‖ on the efforts 

of those who have fulfilled their social obligation?  Many theoretical analyses of small 

group cooperation conceptualize group enterprises as social dilemmas, and treat 

cooperative behavior as a puzzle (Dawes, 1980).  In social dilemma situations, the 
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personal payoff to an individual group member is always less when s/he cooperates in the 

group enterprise than it would be if s/he acted as a free rider, even though the overall 

group welfare is larger when all members cooperate than when nobody cooperates.  

Consistent with the ―sacrifice theme,‖ most behavioral experiments on social dilemmas 

show that average contributions to public goods deteriorate significantly after a few 

iterations if no punishment opportunity exists (e.g., Fehr & Gächter, 2002; Herrmann, 

Thöni & Gächter, 2008; for reviews, see Camerer, 2003; Fehr & Fischbacher, 2003; 

Ledyard, 1995).  Even with an alternative public goods game featuring a preliminary 

binding commitment round, which produces more theoretical and empirical support for at 

least some players to make social contributions, the prevailing interpretation holds that 

cooperation is difficult to sustain (Saijo and Yamato, 1999; Cason, Saijo and Yamato, 

2002; Cason, Saijo, Yamato and Yokotani, 2004).  And, in conventional group 

production and problem-solving tasks, social psychological research has provided 

considerable evidence of social loafing (Latané, Williams & Harkins, 1979; see also Kerr 

& Tindale, 2004; Williams, Harkins & Karau, 2003 for reviews).  If members of small 

decision-making groups (e.g., juries, panels, committees) are playing such a game, the 

theory predicts that cooperation is hard to sustain without enforcement mechanisms.  

This framing of group enterprises as social dilemmas leads to a pessimistic view of 

groups as problem solvers or decision makers and implies that public goods requiring 

group cooperation will be severely under-supplied. 

The above sketch illustrates a fundamental gap between the two images of group 
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decision mechanisms – a highly intelligent device that can achieve collective wisdom 

versus a defective social process that degrades towards sub-optimal performance (Janis, 

1972).  How can we reconcile the two contrasting images?  The central puzzle is as 

follows: How can the ―wisdom of crowds‖ (Surowiecki, 2004) be sustained in face of the 

free-rider problem?  Do groups require some policing mechanism that enforces 

members‘ contributions toward group enterprises to yield collective wisdom? 

Is Group Decision Making Necessarily a Social Dilemma? 

To defend the viability of group decision processes, some social choice theorists 

have argued that people may feel good, experiencing ―expressive benefits‖ (Brennan & 

Lomasky, 1993), when they contribute to the functioning of a group (Downs, 1957) or 

when they fulfill civic duties (Meehl, 1997; Riker & Ordeshook, 1973).  Survey data 

from large-scale elections provide modest support for this view, while identifying other 

social-psychological factors as well, including social norms (Knack, 1992) and cognitive 

biases (Opp, 2001).  Applying this view to small-group decision making, we would 

expect some people to be cooperative – for example, turning out for group meetings, 

engaging in costly information search prior to meetings – driven by these prosocial 

motives. 

Although prosocial motives underlie some contributions to group enterprises, 

such an account begs questions concerning the ultimate sources of these motives (see 

Posner, 2000).  The present paper proposes an alternative theoretical framework in 

which to interpret positive contributions to group enterprises without invoking prosocial 
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motives.  After all, there must be some personal advantage to individual members in 

cases where no collection of individuals acting independently could achieve even part of 

the group product that can be achieved by the collective.  But even in tasks where 

contributions are incremental, we argue that contrary to the social dilemma interpretation, 

cooperation can in many real-world and theoretical contexts (i.e., with diminishing 

marginal group returns to individual contributions) be both self-interested and beneficial 

tothe group.  Such an analysis would explain the widespread cooperation in human 

societies as a function of the benefits of individual cooperation without adding any new 

prosocial motives.  Our argument draws on a diverse sample of empirical and 

theoretical literatures, ranging from theoretical biology to experimental economics.  We 

first analyze structures of various group tasks in natural settings, in terms of functional 

relations between members‘ inputs and group productivity (McGrath, 1984; Steiner, 

1972).  We then discuss the implications of this analysis for cooperation in group 

decision making. 

The ubiquity of marginally-diminishing-returns group production function 

in naturally-occurring tasks.  When a group of people collaborates to make a decision 

or to produce some other tangible good (e.g., investment committee, strategic planning 

staff, production line), productivity usually increases monotonically with increases in 

group size, at least over some range.  But the relationship often falls short of linearity.  

Although we cannot conduct a census of all group production tasks in our society, we are 

confident that the almost universal relationship between group size and productivity is 
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monotonically increasing but with marginally-diminishing returns over an appropriately 

specified range in group size.  This can be observed in many natural settings.   

The behavioral ecology literature studying animal behavior provides a useful 

starting point to see why this is the case.  Marginally-diminishing returns are common in 

many systems of the animal kingdom, including social vertebrates and social insects 

(Foster, 2004).  For example, sentinel behavior of many mammals and birds is a 

collective endeavor with marginally-diminishing returns (Trivers, 1971; Bednekoff, 

1997).  Think of it this way: if you are camping with a group of 10 people, there are 

much larger benefits from the first and perhaps second person staying awake to warn the 

other campers about approaching bears than there are from the 9th and 10th campers 

staying awake, whose contributions generate virtually zero marginal benefits.   

To illustrate, let us denote the average probability of a single sentinel detecting 

an approaching predator as p.  Assuming that there is no process loss (Steiner, 1972), 

the probability that a group with n individuals being on watch detects the danger 

successfully is then approximated by 1-(1-p)n (Laughlin, 1980; Lorge & Solomon, 1955).  

This means that the group success in vigilance increases monotonically but diminishes at 

the margin, with an increase in the number of sentinels, n, in the group.  Social foraging, 

another key survival task, shares this structure.  When a flock of birds is searching for 

food, discovery of a rich food patch by a single bird results in other birds joining to 

forage in the same patch (Giraldeau & Caraco, 2000).  The group success in locating a 

rich food patch is thus approximated by the identical function, 1-(1-p)n, where p denotes 
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the average probability of a single bird encountering a rich patch and n refers to the flock 

size (Barnard & Sibly, 1981; see Foster, 2004, for other examples in the animal 

kingdom). 

Although many core everyday group-production tasks for humans also revolve 

around foraging and risk-monitoring (see Kameda & Tindale 2006 for review), ―groups‖ 

in these animal examples are surely nothing more than collections of individuals, where 

no substantial coordination activities exist.  Birds do not deliberately orchestrate their 

sentinel or food-searching behavior, and group performance is best described as a 

probabilistic aggregation of individual outputs rather than the product of a systematic 

group design (e.g., group decision making), which is more typical of human social 

coordination.   

Interestingly, however, explicit coordination efforts do not necessarily eliminate 

the marginally-diminishing nature of group production for the following reasons.  First, 

difficulties in coordination among members multiply with group size, and interpersonal 

conflicts are also likelier to occur, among other production-cutting social factors (see 

Steiner, 1972; Thompson, 2004, especially Chapter 2, for comprehensive reviews).  

Second and more importantly, the fundamental structure of many natural tasks mandates 

diminishing returns in productivity from later contributions.  When information is 

redundant or task-relevant skills overlap from member to member, diminishing returns 

are inevitable even with perfect coordination (Clemen & Winkler, 1999; Makradakis & 

Winkler, 1983); and when any task is not perfectly divisible into independent sub-tasks, 
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individual performances must be somewhat redundant, producing diminishing 

productivity as more individuals are added to the collective enterprise. 

For example, consider group judgments that rely on information aggregation, 

which represents an essential sub-task in group performance (McGrath, 1984).  

Members collectively estimate a quantity, such as the future price of a stock.  Let us 

presume that the group estimate is approximated by the arithmetic mean, or simple 

average, of the individual estimates, which is a valid description of many behavioral 

judgment aggregation processes (see Clemen & Winkler, 1999; Hastie, 1986; Kerr, 

MacCoun, & Kramer, 1996, for review).  Furthermore, if individual estimates have 

equal signal-to-noise ratios and vary around the true value of the stock price with 

uncorrelated random errors, the arithmetic mean is a statistically optimal aggregation rule 

(Larrick & Soll, 2006; Surowiecki, 2004).  For an average computed from a randomly 

drawn sample, the law of large numbers tells us the group estimate should converge on 

the true value, and well-known calculations of the variance of the arithmetic mean show 

explicitly that the precision of this group estimate improves with each additional 

observation (i.e., an individual‘s judgment in the present example).  The reduction in 

expected squared error by adding one more member to an n-person group,
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, is greater than zero, where σ2 is the variance of the individual 

estimates.  But note the marginal improvements in the aggregate estimate (in terms of 

smaller random deviations from the true value) diminish with increasing group size, n 

(see Condorcet, 1785/1994, for an analogous proof when the judgment is categorical, e.g., 
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between political candidates). 

Indeed, if we turn to classic analyses of group performance and productivity in 

social psychology (McGrath, 1982; Steiner, 1972), we find that many abstract task types 

imply that group performance indices (amount of goods produced, time to produce, 

accuracy of estimates) will be related to group size with a monotonically increasing but 

marginally diminishing returns function.  This includes decisions based on unanimous, 

majority, and truth-wins group decision rules (see Condorcet 1785/1994; Smoke & 

Zajonc, 1962); disjunctive tasks (Steiner, 1972) where a success of only one member is 

sufficient to achieve a collective goal (e.g., risk-monitoring, resource-finding, and other 

―Eureka problems‖: see Kameda & Tamura, 2007; Laughlin, 1980; Lorge & Solomon, 

1955; Taylor & Faust, 1952); and additive tasks (Steiner, 1972) where members‘ inputs 

are summed to determine an overall group performance (e.g., group estimation by 

averaging, physical tasks as exemplified by a tug of war: see Hastie, 1986; Ingham, 

Levinger, Graves & Peckham, 1974; Kravitz & Martin 1986).  The only clear 

exceptions to this generalization are conjunctive tasks (Steiner, 1972) where the ―weakest 

link‖ member determines the overall group performance and more members mean poorer 

performance, and synergistic tasks where the group production function would be 

positively accelerated.  We know of no examples of the deliberate use of groups to solve 

conjunctive tasks (unless institutional or situational constraints impose conjunctive task 

demands) and we know of very few examples of verified synergistic group performances 

in the scientific literature (see Larson 2009 for a recent comprehensive review). 
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In summary, a marginally-diminishing group production function seems to apply 

in many group performance domains in natural settings.  Perhaps because of the 

mathematical convenience of the linear group production function, this widespread 

diminishing marginal returns feature is conspicuously missing from most of the group 

performance and public goods literatures (see also Kerr 1983 for one of early attempts to 

link group performance with social dilemmas).  The linear public goods model assumes 

that each individual‘s contribution yields a constant return for the group, and the return, 

which is shared evenly by all members, is less than individual cost of cooperation, 

regardless of the number of other contributors.  This implies the overly pessimistic 

prediction that we should almost never expect to see contributors to public goods because, 

at all levels of inputs in the group production function, defection is the dominant strategy 

(Ledyard, 1995; but see Laury & Holt, 2008).１ 

Emergence of a mixed equilibrium.  Given a marginally-diminishing 

production function, is defection still the dominant strategy?  The answer turns out to be 

not necessarily.  A theoretical biologist, Motro (1991), concerned with abstract foraging 

problems, has provided a general powerful framework in which to analyze this question. 

Let us suppose that we have a six-person group and that the group production function 

(e.g., mapping the number of contributors who search for food into the expected quantity 

of food available for each member of the group, humans, non-human animals, robots, 

etc.) takes a marginally diminishing form as shown in Figure 1.  As in social dilemmas, 

we assume the group production benefit is shared equally by all group members, but that 
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production costs are borne by each producing or contributing member individually 

(Dawes, 1980; Kameda, Takezawa, & Hastie, 2003).  The x-axis represents the number 

of cooperators, while the y-axis represents the expected gross return to each member of 

the group (group gross return / 6).  ―Gross‖ refers to the fact that the costs of 

contributing are not yet represented in Figure 1.  The production function‘s concave 

increasing form generates marginal returns to individual contributions to the group, 

labeled δn when the number of cooperators increases from n to n+1, that are indeed 

diminishing as more individuals contribute. 

Motro (1991) analytically identified an Evolutionarily Stable Strategy (ESS) in 

this situation: Cooperate as long as the increment, δ, exceeds individual cost (denoted c), 

but switch to defection otherwise.２  In other words, keep cooperating while your 

contribution yields an individually positive expected net return.  Note that, even when 

the increment δ representing the marginal individual return to contributing is too small to 

justify the cost to contribute for an individual, additional contribution by the individual 

may still be beneficial to the entire group (i.e., while the marginal individual return, δm, 

by joining m other cooperators in the group is less than individual cost, c, aggregate 

group return, 6*δm, may still be greater than the individual cost).  This means that, as in 

linear social dilemmas (Dawes, 1980), each individual‘s rational action may lead to the 

inefficient level of contributions at the group level (―Pareto inefficient‖).  However, in 

the nonlinear case depicted in Figure 1, δ is not constant but is a function of the number 

of cooperators.  As long as c < δn for some small n, the model predicts that some 
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members in the group will contribute/cooperate; in other words, the important 

implication of diminishing returns in this empirically more realistic group production 

function is that defection is no longer a universally (i.e., over the entire range of number 

of cooperators) dominant strategy.  Thus, many naturally-occurring tasks with 

marginally-diminishing return curves do not necessarily constitute social dilemmas. 

--------------------------------------------- 

INSERT FIGURE 1 – ILLUSTRATION OF A MARGINALLY-DIMINISHING 

RETURN CURVE 

--------------------------------------------- 

Figure 2 re-expresses the production function from Figure 1 as a net (individual 

gross return – cost) payoff function for a cooperator (solid curve), and as a net payoff 

function for a defector (dashed curve), both expressed as functions of the number of other 

group members who contribute (individual cooperation cost was fixed at 0.7 in Figure 2).  

Note that the two curves intersect at an equilibrium, specifying the number that is 

predicted by the theory of Nash Equilibrium of rationally self-interested cooperators in 

the group.  As can be seen in the figure, an individual is personally better off 

cooperating when there are few cooperators, and better off defecting when there are 

already several cooperators among the other group members.  The net benefits of 

cooperating or defecting depends on the frequency of the alternative strategy within the 

group; neither strategy is dominant (Laury & Holt, 2008).  Too many players opting for 

one strategy reduces its relative profitability while increasing the profitability of its 
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alternative, providing an incentive for individuals to switch.  Since the two strategies are 

mutually constrained in terms of relative profitability, we expect a mixed equilibrium to 

emerge (Gintis, 2000; Maynard Smith, 1982).  At equilibrium, the group reaches a 

stable state in which complementary proportions of cooperators and defectors coexist, 

achieving an average frequency of cooperators given by the point at which the two 

individual net payoff curves intersect.  In Figure 2, the two curves intersect when the 

number of other cooperators is between 1 and 2, which predicts 2 cooperators and 4 

defectors on average in the group with the illustrative costs and benefits of cooperation in 

this example.  

--------------------------------------------- 

INSERT FIGURE 2 – EXPECTED INDIVIDUAL NET PAYOFFS (INDIDUAL GROSS 

RETURN – COST) 

--------------------------------------------- 

Group Decision Making Under Uncertainty 

Motro‘s (1991) model provides a powerful theoretical benchmark to re-consider 

realistic cooperation levels in group performance and public goods provision (Kerr, 1983; 

Laury & Holt, 2008).  We apply this model to a stylized group decision situation, which 

constitutes a core group-production task in everyday life.  We have two goals in this 

paper: (1) to examine the degree to which Motro‘s framework captures members‘ 

cooperation for the group enterprise, and (2) to examine the effects of various voting 
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rules (e.g., Majority/Plurality, Best Member Rule) on the quality of group decision 

outcomes when free-riding is possible. 

Applicability of Motro’s model to group decision making.  Suppose that a 

group of six members needs to select a single location in which they will search together 

for food.  Each member decides whether to ―cooperate‖ (produce) by seeking 

decision-relevant information, an activity with some personal costs; or to free-ride (defect, 

scrounge) on the decisions of the other members.  Obviously, if no member decides to 

seek information, the group decision will be uninformed and far from optimal.  But, it is 

also true that, if all members seek information, there will be redundancy and a loss of 

potential production value.  Motro (1991) proved that it is wasteful for all individuals to 

seek information precisely because of the diminishing marginal returns of the group 

production function.  We apply this logic to group decision making under uncertainty, 

where the objective value of a choice alternative, or ―truth‖ (Laughlin, 1980), must be 

inferred through imperfect stochastic information.  We predict that group decision 

making under uncertainty, which forms the core of modern committee meetings as well 

as ―primordial‖ team foraging, would yield a mixed equilibrium in which cooperators and 

free-riders coexist, rather than the all-defect equilibrium in social dilemmas (with the 

unrealistic linear-additive production function; see also footnote 1).  An equilibrium 

mixture of cooperators and defectors will be determined by the Motro function. 

Robustness of majority/plurality group decision rule.  Although the 

argument so far has depicted group decision making as if it were a uniform concept, 



     Democracy Under Uncertainty   17 

 

each group decision setting entails specific design features.  Even if we limit our focus 

to ―consensual‖ decision making (e.g., juries, committees, panels), there are numerous 

variations about how to implement the group decision system.  This includes choices of 

quorum rules, polling procedures, aggregation rules, and so on (e.g., Hastie, Penrod & 

Pennington, 1983; Kameda, Tindale, & Davis, 2003; Regenwetter, Grofman, Marley & 

Tsetlin, 2006).  How do these design features affect members‘ cooperation levels and 

consequentially determine the quality of final group decision outcomes?  In this paper, 

we test whether the Majority/Plurality rule, whereby the option in the group‘s choice set 

with the most votes becomes the group‘s final choice, can sustain members‘ cooperation 

and serve as a robust truth-seeking decision procedure in uncertain environments (Hastie 

& Kameda, 2005; Sorkin, Hays & West, 2001).   

Using computer simulations and a behavioral experiment, Hastie and Kameda 

(2005) evaluated various group decision rules based on their adaptive accuracy in 

choosing the mutually most beneficial alternative in an uncertain, simulated test bed 

environment.  These aggregation rules included Averaging, the Best Member Rule, 

Condorcet Majority, Majority/Plurality, and so on (see Hastie & Kameda, 2005 for 

details).  When the adaptive success standard is applied to evaluate the rules 

(Hammond & Stewart, 2001; Hastie, 1986; Gigerenzer, Todd, and the ABC Research 

Group, 1999), the Majority/Plurality rule fares quite well, performing at levels 

comparable to much more cognitively-taxing rules such as the averaging rule.  The 

Majority/Plurality rule also matches the computationally demanding Condorcet Majority 

Winner that is the common standard in evaluations of preferential choice rules (Arrow, 
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1951; Mueller, 2003; Regenwetter, Ho & Tsetlin, 2007).  These results indicate that, 

despite its computational simplicity, the Majority/Plurality rule can achieve surprisingly 

high levels of performance under uncertainty. 

 In these previous studies, however, it was assumed that everybody would 

cooperate to support the group enterprise (Hastie & Kameda, 2005; Sorkin et al., 2001).  

Thus, it is an open question, whether the Majority/Plurality rule would be theoretically 

and behaviorally successful when there is a personal cost to be an informed voter.  

Several key questions in the present research concern the performance of the 

Majority/Plurality rule under more realistic assumptions about the group production 

function and individual cooperation costs.  If a mixed equilibrium holds (Motro, 1991), 

how efficient is the productivity at the equilibrium under the Majority/Plurality group 

decision rule?  Does the Majority/Plurality rule degrade into a universal free-riding 

―tragedy of the commons‖ situation where decisions are made by uninformed voters 

(Downs, 1957; Mueller, 2003)?  How does it compare with the group outcome guided 

by the best and brightest ―benevolent dictator‖ in a group – a logically coherent decision 

system that has been pitted against democratic rules in the social choice literature 

(Arrow, 1951; Laughlin, 2006) and a solution that is selected in some 

naturally-occurring human groups? 

In the following, we first report on an evolutionary computer simulation 

(Kameda et al., 2003; Smith & Conrey, 2007; Kenrick, Li & Butner, 2003) to determine if 

there is a mixed equilibrium in a ―group-foraging‖ task with significant and stable levels 

of cooperation under different group decision rules, and then compare adaptive success of 
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the different decision rules at respective equilibria.  Next, we report a behavioral 

experiment that implements a group foraging task under uncertainty in an interactive 

laboratory set-up.  In both cases, individuals (computer agents in the simulation study 

and human participants in the behavioral experiment) were required to decide whether to 

cooperate or defect before voting on a foraging location. 

EVOLUTIONARY COMPUTER SIMULATION 

Overview 

We rely on an evolutionary simulation model based on Darwinian logic to explore 

the implications of the diminishing group returns model and to evaluate the theoretical 

viability of a Majority/Plurality group decision rule when informed participation in the 

decision is individually costly.  In the evolutionary simulation, we first specify a set of 

behavioral strategies, and then let them interact in the same population (e.g., Axelrod, 

1984; Gintis, 2000; Kameda et al., 2003).  The strategies are defined in terms of the 

basic cooperate (at personal cost) versus defect (at no personal cost) distinction.  The 

Darwinian logic dictates that more successful strategies in the current population 

reproduce at higher rates for the next generation, analogous to biological evolution in an 

ecological niche.  In social scientific applications, such changes are not necessarily 

evolutionary but may reflect, most notably, social imitative learning of successful 

strategies in a group (Gintis, 2000).  We observe whether such a change in the 

population structure leads to a stable collective state where the population is dominated 

by a set of strategies (or a strategy) and no further changes occur.  If it does, the stable 
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end state is called an evolutionary equilibrium (Gintis, 2000; Maynard Smith, 1982). 

In the following simulations, we formulate four behavioral strategies in terms of 

the basic distinction between cooperating (at a personal cost) versus defecting (at no 

personal cost):  (a) whether to pay a cost to acquire the information needed to make 

well-informed individual judgments, and (b) whether to pay a cost in order to vote.  

Individual cooperation (information search and voting) can increase the quality of group 

decisions and thus enhance overall group return, but it entails a personal cost as well, 

which presents a dilemma for the agent in deciding at what level to take part in collective 

action. 

Given such a dilemma, it seems that uncooperative members are unilaterally 

better off than cooperative members, and we might expect them eventually to dominate 

the population, which would yield an all-defect equilibrium.  But based on Motro‘s 

model (1991), we posit that a mixed equilibrium will emerge, where both cooperative and 

uncooperative individuals coexist in the population.  We test this prediction in two 

populations governed by contrasting decision rules: the Majority/Plurality Rule (based on 

the winner with the most votes in a one-member-one-vote election) versus the 

Best-Member Rule (where the member with the best long-term ability/accuracy dictates 

the choice).  As a benchmark, we also examine a population operating with the 

Random-Member Rule (where a randomly-chosen member dictates the choice to the 

other members) as in Hastie & Kameda (2005).   

If a mixed equilibrium indeed emerges for each population as predicted by the 
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model, we will consider our second question: Does the Majority/Plurality Rule produce 

better outcomes in terms of individual net benefit than the Best-Member Rule at the 

respective equilibrium in each population?  Is the ―wisdom of crowds‖ sustained over 

time or does the Majority/Plurality Rule unravel into a free-riding world in which 

decisions are made predominantly by uninformed voters? 

Simulation Method 

Simulation platform 

To illustrate the basic features of our simulation, we rely on the metaphor of a 

primitive forager seeking resources at locations in an uncertain physical environment (see 

Hastie & Kameda, 2005, for more details on the procedure).  This task represents the 

essential features of a general decision problem faced by any organism: Which option 

among a set of alternatives to choose, given noisy information about the payoff 

contingent on choosing each option.  The simulation world has two major components, 

environmental events, namely the amounts of reward (gain or loss) available at various 

locations, and foragers whose fitness depends on accurate judgments of the 

environmental events (see Figure 3).  The state of an environmental event (reward 

available) is known probabilistically to foragers through proximal, partially valid cues 

(i.e., a noisy cue is the true value plus a white-noise error term).  Thus, each individual 

faces the adaptive task of aggregating the information contained in these noisy cues to 

infer whether environmental locations are rewarding or punishing.  The individual 

reward judgment process is a direct implementation of Brunswik‘s general ―Lens Model‖ 
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framework for perception and judgment (Brunswik, 1955; Cooksey, 1998; Hammond & 

Stewart, 2001; Gigerenzer et al., 1999). 

-------------------------------------- 

INSERT FIGURE 3 - STRUCTURE OF THE ENVIRONMENT 

-------------------------------------- 

Structure of the environment.  In the simulation, we set up the stochastic 

features of environmental events as follows.  Let j index one of 10 possible foraging 

locations, j ∈{1, 2, …, 10}.  To represent the true value of the food available at each of 

these 10 locations, we generated random numbers from a normal distribution N(0, 30) 

denoted, Qj (we refer to this quantity as the ―payoff‖ in this paper).  Motivation for the 

units used (e.g., standard deviation equal to 30) is discussed below.  These true values, 

however, cannot be directly known; information about each of the 10 values represented 

by Qj is available in three noisy cues.  These cues were generated by taking each 

location‘s true resource value, Qj, and adding normally distributed error to it, creating a 

cue value composed of true value + error.  The normally distributed error terms were 

specified with standard deviations of 10, 20, and 30.  Therefore, the cues, denoted (C1, 

C2, C3), differed in validity as predictors of the true value of each patch, with validities of 

0.90, 0.69, and 0.50, respectively, on a proportion-of-variance-accounted-for metric (i.e., 

R-squared).  As shown in the left portion of Figure 3, the optimal linear combination of 

these cues for estimation (explaining 92% of the variance of Qj) was: 

E[Qj |C1,C2,C3] = 0.68C1+0.17C2+0.08C3 .    (1) 
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Foragers.  As evident from the discussion above, the adaptive goal for each 

individual ―forager‖ is to combine the cues, in the same manner as the optimal linear 

combination rule, to yield an estimate for value of the payoff (i.e., ―expected nutritional 

value‖) available at each location.  Such an individual estimation process, which we 

refer to as a judgment policy (Brunswik, 1955; Hammond & Stewart, 2001), can be 

represented by how the person weights the three proximal cues to form an estimate.  

Our simulation implemented this feature by assigning judgment policies to foragers at 

random as follows (see the right portion of Figure 3).   

Member i‘s estimation of location j‘s value is expressed (i = member, j = location, 

and k = cue): 

estimated Qij  =  wi.1Cij1 + wi.2Cij2 + wi.3Cij3  (2) 

where wi.1 is the weight forager i gives to his or her perception of Cue 1 for location j, 

denoted Cij1.  The model allows agents to experience perceptual errors.  In other words, 

cue values are not usually perceived veridically and different judges make different errors.  

Each perceived cue value, Cijk, has two components: a true cue value (C.jk) that is 

common to all members, plus an environmental-perceptual error (eijk), associated 

uniquely with each member i‘s perception of the cue ( ijkjkijk eCC  . ).  The error 

component, eijk, is generated randomly from N(0, 20).   

We relied on Dawes‘ (1979; also Brehmer & Joyce, 1988, and Anderson, 1981) 

observation that, in judgment tasks such as the one in our simulations, people appear to 

use simplified linear aggregation rules.  Instead of using optimal weights (e.g., Equation 
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1), people judge as though they rely on approximate weights and often on equal weights, 

getting the predictive ―direction‖ right, but only approximating relative cue importance.  

(Dawes [1979] also demonstrated that such ―improper linear models‖ achieve levels of 

accuracy comparable to optimal linear aggregation rules in many situations; see also 

Gigerenzer, et al., 1999, for analyses of other simplified estimation rules). 

Dawes‘ (1979) conclusion implies that most people would weight the three cues 

approximately equally in aggregation.  Based on this reasoning, our simulation used the 

following procedure in the implementation of wi.k.  For each member of each foraging 

group, we generated three random numbers once and then standardized them so that their 

sum equaled 1.  The standardized fractions determined the member‘s judgment policy 

which remained identical throughout the group‘s 100 ―hunts‖.  Thus, the modal 

judgment policy under this procedure is equal cue weighting, (.33, .33, .33), but there is 

considerable variation in individual cue weighting policies.  The important point is that 

a modal forager‘s estimates in the basic simulation are not statistically optimal (see Eq. 1), 

but on average are based on equal cue weights. 

Behavioral strategies of the foragers 

Members‘ judgment policies for cue-weighting were the only individual 

differences that Hastie and Kameda (2005) considered in their simulation platform; these 

are cognitive differences among members.  To address the issue of the free-rider 

problem in group decision-making, the current simulation introduced members‘ 

motivational differences for cooperation as a key element in the evolutionary algorithm.  

Initially, we focused on two dimensions that often underlie members‘ cooperation in 
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group decision-making (Downs, 1957; Riker & Ordeshook, 1973): (a) whether to accept 

the information search cost to make well-informed individual judgments (Lupia, 2002; 

Kameda & Nakanishi, 2002, 2003), and (b) whether to bear the cost of participating 

(voting) in group meetings (Knack, 1992).  As shown in Table 1, each dimension had 

two behavioral options, creating four ―genotypes‖.   

-------------------------------------- 

INSERT TABLE 1 – FOUR BEHAVIORAL STRATEGIES 

-------------------------------------- 

For the search dimension, some agents engage in individual information search 

about the environment and personally incur some cost (a simulation parameter to be 

varied systematically) to obtain that information.  These ―searchers‖ have access to the 

environmental cues in all ten locations (Figure 3) and combine them according to their 

judgment policies.  Other agents (―non-searchers‖) skip information search to avoid the 

search cost.  Accordingly, they have no cue information to inform their judgments, and 

if non-searchers ―vote‖ (see below), they endorse one alternative randomly (essentially 

introducing ―noise‖ into the group decision).  As in many public goods situations, group 

payoffs are equally available to all irrespective of members‘ cooperation levels. 

We quickly discovered, however, that only two of the four original strategies 

could survive at the equilibrium: searcher/voter hybrids and non-searcher/abstainer 

hybrids.  The other two hybrids, searcher/abstainer and non-searcher/voter, disappeared 

in the course of Darwinian selection.  These two hybrids are ―evolutionarily irrational‖ 
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behavioral choices in this model in that they cannot sustain themselves (searchers who 

abstain from voting harm themselves by wasting resources expended on information 

search, while non-searchers who vote also harm themselves by degrading the accuracy of 

group decisions in terms of average payoff).  Thus, we collapsed the 2 x 2 system of 

genotypes into a dichotomous cooperator (producer) versus defector (scrounger) 

classification, which we use from now on in reporting the results of the simulation study.  

(In the behavioral experiment to be reported subsequently, it remains an empirical 

question what frequencies of these four behavioral genotypes will be observed.) 

These strategies were subject to evolutionary selection in the simulation in that 

the prevalence of each genotype in the population was adjusted over time based on the 

behavioral payoffs that they received in the past; more successful strategies reproduced at 

a higher rate in later generations.３ 

Evolutionary algorithm 

The evolutionary algorithm is summarized in Figure 4.  For illustration, let us 

consider a population governed by the Majority/Plurality Rule.  For each simulation run, 

we started with an equal probability (0.50) that any member would be assigned to one of 

the two behavioral strategies.  Next, 12-person teams were formed by randomly 

selecting individuals of various genotypes. Using the metaphor of foraging, this 

twelve-person team goes on a ―hunt‖ together. 

-------------------------------------- 

INSERT FIGURE 4 – EVOLUTIONARY ALGORITHM 
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-------------------------------------- 

For each hunt, members behave according to their assigned strategies.  The 

group members are first provided an opportunity to acquire information about the current 

environment.  Searcher/voters engage in individual learning of the three cues for each of 

ten locations at some personal cost which was assumed to be constant across foragers 

(cost was varied as a simulation parameter).  They rely on these three cues to choose the 

best alternative based on their judgment policies (Figure 3; see also footnote 3).  

Non-searcher/abstainers skip the individual learning, avoid the cost, and do not vote or 

otherwise influence the group decision. 

Searcher/voters‘ opinions are then aggregated by the Majority/Plurality Rule; 

selecting the location endorsed by the greatest number of voters in the meeting.  In case 

of a tie, one of the alternatives (of those endorsed by at least one voter) is selected at 

random.  Payoff accruing from the group‘s collective choice (i.e., the payoff available in 

the chosen patch) is equally shared among all members, whereas the corresponding costs 

are subtracted from the shares for the cooperative searcher/voters. 

The group repeats the same process for 100 different hunts in a new environment 

on each hunt.  The entire routine runs for 10,000 12-member groups, based upon which 

we calculated the mean net benefit (fitness) for each of the two strategies, by collapsing 

their net behavioral outcomes (individual gross return – cost) over 1,000,000 (100 x 

10,000) trials. 

One ―generation‖ ends here and, according to the Darwinian logic, agents with 
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more fit strategies produce slightly more offspring for the next generation.  We 

formulated the selection mechanism by a standard numerical technique called the 

replicator dynamic (see Gintis, 2000).  In the replicator dynamic, a strategy associated 

with a fitness greater than the average fitness in the current generation increases in 

frequency in the next generation, while a strategy associated with a fitness less than the 

average decreases (see Appendix A for details).  Using this idealized evolutionary 

process, we observed adjustments in the population strategy structure over generations. 

The simulation repeated the above steps for many generations until an equilibrium 

state emerged in the population.  The equilibrium refers to a state where no further 

changes occur in the distribution of strategies in the population.  In the simulation, we 

terminated iterations when changes in proportions of the strategies between two 

consecutive generations dropped below .0001. 

As noted, we created three types of populations (―societies‖), one governed by the 

Majority/Plurality Rule; one governed by a Best-Member Rule, where the most 

competent member (i.e., the member whose judgment policy was closest to the optimal 

weighting) among the searcher/voters in each group was initially designated the leader 

and made the decisions for the subsequent 100 hunts, and the other governed by a 

Random-Member Rule, where one searcher/voter in each group was initially selected at 

random and made decisions for the 100 hunts.  For each of the three decision rule 

societies respectively, we conducted separate simulation runs to see if an equilibrium 

state emerged.  When the equilibrium was reached in each society, we compared the 
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three societies (governed by different decision-making rules) in terms of average 

individual net benefits (―individual fitness‖). 

Simulation Results and Discussion 

Emergence of a mixed equilibrium over time 

We systematically varied the cost parameters for cooperation (cost parameters for 

information search and voting) and the number-of-resource-locations parameter.  We 

fixed the group size at 12 throughout the simulation runs.  Figure 5 displays equilibrium 

proportions of the two viable strategies (searcher/voters versus non-searcher/abstainers) 

in each population (Majority/Plurality Rule, Best-Member Rule, or Random-Member 

Rule), as a function of the total cooperation cost (the figure shows simulation results 

when the number of resource locations was set at 10; later we will show results from a 

sensitivity analysis where the two parameters were varied simultaneously). 

-------------------------------------- 

INSERT FIGURE 5 – EQUILIBRIUM PROPORTIONS OF THE STRATEGIES  

-------------------------------------- 

As expected, a mixed equilibrium emerged in each of the three societies.  For 

example, when the cooperation cost was set at 0.03, 45% were cooperative searcher/voter 

hybrids in the Majority/Plurality Rule population, 39% in the Best-Member Rule 

population, and 35% in the Random-Member Rule population.４  Rather than being 

dominated solely by the free-riding non-searcher/abstainer hybrids, the cooperative 
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searcher/voter hybrids sustained themselves in a stable manner.  These results support 

our hypothesis that cooperation in group decision-making under uncertainty can be 

conceptualized as a game where a mixed equilibrium exists (Motro, 1991; Laury & Holt, 

2008). 

Individual net benefits 

Given the emergence of the mixed equilibrium, we can address our nextl question:  

Does the Majority/Plurality Rule produce better results for individuals in terms of 

average net benefits than the Best-Member Rule, when incentives for free-riding exist?  

Figure 6 displays individual net benefits (individual gross return – cost) at the respective 

equilibriums in the three societies, as a function of total cooperation cost.   

-------------------------------------- 

INSERT FIGURE 6 – INDVIDUAL NET PAYOFF AT THE EQUILIBRIUM 

-------------------------------------- 

Individuals in the Majority/Plurality Rule population were better off than those in 

the Best-Member Rule population, who were substantially better off than the 

Random-Member Rule population, for the parameter range displayed in Figure 6.  

However, notice also that the difference in net benefits between the two key populations 

decreased as the cooperation costs increased.  This suggests that the superiority of the 

Majority/Plurality Rule over the Best-Member Rule may be eliminated and even reversed 

when cooperation costs are high.  Indeed, this was the case in all the simulations we ran.  
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When the cooperation cost was 0.27 or higher (see footnote 4), the relative standings of 

the two rules were reversed [these points are not displayed in Figure 6 to simplify the 

graphic representation].   

How can we interpret these patterns? A close inspection of the equilibrium 

proportions of cooperative and defecting individuals in the population (see Figure 5) 

provides some insights.  Figure 5 shows that the proportions of searcher/voter hybrids 

decreased monotonically with a higher cooperation-cost.  For example, in the 

Majority/Plurality Rule population, the proportion of the cooperative individuals dropped 

to 27% when the cost was 0.15 (on the right side of the diagram).  This implies that, 

with the increase in cooperation cost, the average frequency of searcher/voter hybrids 

(cooperators) in each 12-person group could eventually fall below three (≈ 12 x 0.27).  

Notice that three is the minimum number of voters for the Majority/Plurality Rule to be 

meaningfully compared with the Best-Member Rule and other group decision processes, 

as if the frequency of voters is less than three, no majority/plurality can be defined among 

the voters, except for the theoretically trivial case of perfect agreement.  In other words, 

when the cooperation cost is high, searcher/voter hybrids become so rare that most 

decision-making groups fail to assemble the critical voter-quorum (three).  In these 

circumstances, the Best-Member Rule beats the ―indecisive‖ Majority/Plurality Rule. 

Sensitivity analysis 

In order to see how robust these findings were, we conducted a sensitivity 

analysis varying key parameters: the number of choice alternatives (from two to 11) and 
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the cooperation costs (from 0.03 to 0.27), with group size held constant at 12.  A mixed 

equilibrium, as we observed in Figure 5, emerged for all combinations of these parameter 

values.  Given this, we only report relative standings of the Majority/Plurality Rule to 

the Best-Member Rule in terms of individual net payoffs at the respective equilibria.  

Figure 7 displays differences in individual net benefits between the two populations 

(Majority/Plurality Rule minus Best-Member Rule) as a joint function of the cooperation 

costs and the number of alternatives.  In the iceberg-shaped surface, the unshaded 

(―above water‖) regions refer to parametric combinations where the Majority/Plurality 

Rule outperformed the Best-Member Rule (i.e., the net benefits difference score was 

greater than zero), and the shaded (―underwater‖) regions refer to the reverse situation. 

-------------------------------------- 

INSERT FIGURE 7 – SENSITIVITY ANALYSIS  

-------------------------------------- 

First, as we saw in Figure 6, the relative advantage of the Majority/Plurality Rule 

over the Best-Member Rule decreased monotonically, and was eventually reversed with 

higher cooperation costs (represented on the x-axis).  As the cooperation costs increased, 

the equilibrium proportion of searcher/voter hybrids in the population decreased and 

groups operating with the Majority/Plurality Rule could rarely assemble 3 voters.  

Second, the Majority/Plurality Rule was more successful with greater numbers of choice 

alternatives (the second abscissa).  As can be seen in the figure, the unshaded regions in 

the graph, where the Majority/Plurality Rule outperformed the Best-Member Rule, were 
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larger with more locations (in general, more elements in the group‘s choice set).   

 To summarize, the sensitivity analysis demonstrated that the Majority/Plurality 

Rule was more successful than the Best-Member Rule when the cooperation cost was 

small and when there were more locations (i.e., choice-alternatives in the group‘s choice 

set).  (Of course, if cooperation costs are extremely high, no one will cooperate and all 

decision rules will perform at equally low levels.)  These results suggest that, despite the 

inherent free-rider problems in group decision making, there exist large parametric 

regions where the Majority/Plurality Rule is successful in an uncertain game against 

nature. 

BEHAVIORAL EXPERIMENT 

The next step is to see how these theoretical results fare as hypotheses about the 

behavior of human decision-making groups.  For this purpose, we designed a laboratory 

task where we could compare the performance of the Majority/Plurality Rule and the 

Best-Member Rule, while measuring each member‘s cooperation during the 

decision-making process.  Based on the simulation results, we predict: (a) that 

participants will be divided into one of the two behavioral types, searcher/voter hybrids 

(cooperators) or non-searcher/abstainer (defectors) hybrids, and (b) that the proportions 

of these two types of members will stabilize over time, consistent with the expectation of 

a mixed equilibrium.  We also predict (c) that groups governed by Majority/Plurality 

Rule will be better off than those governed by the Best-Member Rule in terms of 

individual net payoffs.  Of course, the simulation model suggests that this prediction is 
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parameter-dependent (Figure 7); our aim is to provide an empirical demonstration (or an 

―existence proof‖) of one case where majoritarian decision rule works well under 

uncertainty in face of the free-rider problem.   

Method 

Participants 

Participants were 180 undergraduate students (127 males and 53 females) 

enrolled in introductory psychology classes at Hokkaido University.   

Group Decision Task 

We implemented a hunting-under-uncertainty task through a Local Area Network 

in a behavioral laboratory.  We told participants that they were members of six-person 

teams that must choose one of ten locations in which to hunt (instead of 12-person groups 

assumed in the simulation, we used 6-person groups in the experiment due to practical 

constraints).  Resource levels (e.g., prey values) in each location were generated 

randomly from a normal distribution N(80, 30) [unit = 1 yen].  The resource levels 

could only be estimated on the basis of three stochastic cues that differed in predictive 

validity and ―perceptual errors,‖ analogous to the model in the previous section.  The 

parametric set-ups for the cue structure and the perception errors were identical to those 

used in the simulation reported here in Figure 3.５ 

The group decision task was to select the most profitable location, using either the 

Majority/Plurality Rule or the Best-Member Rule.  These rules were assigned to each 
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group at the outset.  Participants‘ rewards were made contingent upon their performance 

in the hunts.  Specifically, resources in the chosen patch were divided evenly among all 

six members, although cooperative members (who engaged in information search and/or 

voting) incurred personal costs, which were subtracted from their individual accounts. 

Procedure 

Six participants were randomly assigned to one of two decision-rule conditions 

(Majority/Plurality or Best-Member), in experimental sessions lasting approximately one 

hour.  There were 15 groups (90 participants) in each condition.  Upon arrival, each 

participant was seated in a private cubicle and received instructions individually via 

computer displays.  After the hunting-under-uncertainty task was explained, participants 

were provided an opportunity to familiarize themselves about how to use the three 

stochastic cues (see Figure 3 for the cue structure), displayed on the screen for each of the 

ten locations.  For 20 practice trials, each participant made personal judgments as to the 

most profitable location out of ten alternatives.  On each of the 20 practice trials, they 

received feedback about their choice success, in terms of the discrepancy in resource 

levels between the chosen location and the most profitable one (the most profitable 

location was also identified on the screen).  Because this was a practice session, all the 

judgments in this phase were individual, without reward. 

Majority/Plurality Rule versus Best-Member Rule.  After practicing the 

cue-based judgment under uncertainty task, participants were told they were members of 

a six-person hunting-team seeking the most profitable location out of ten.  They were 
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told that their rewards in the experiment would be contingent on the success of their 

group decisions.  Participants in the Majority/Plurality Rule condition were told that the 

location endorsed by the greatest number of voters would be designated as their 

collective choice by the computer.  Participants in the Best-Member Rule condition 

were told that the best individual (who was most accurate in the practice session) among 

the voters on each ―hunt‖ would be automatically selected by the computer 

(anonymously), and that participant‘s choice would be designated the group choice. 

Costs for cooperation.  Costs (incentives for free-riding) were introduced as 

follows: First, members who chose to collect environmental information, when forming 

individual judgments, had to pay 3 yen.  Second, voters who chose to participate in a 

group meeting to express their preferences had to pay another 3 yen.  However, the 

payoff from the selected location was to be equally shared among all six members 

whether they incurred costs or not.  The experiment consisted of 24 trials with 3 new 

hunts in each trial.  Before each of the 24 trials, each participant was asked whether he 

or she wanted to pay 3 yen for information search and whether to pay 3 yen to vote on the 

trial (these decisions were made independently).６  Only individuals who had paid the 

information search cost could access the environmental cues when forming individual 

judgments, while those who had not paid the search cost could not access the cue 

information in the three hunts during that trial.  And, only individuals who had paid the 

voting cost were able to express their preferences during that trial.  For each hunt, the 

group decision was reached by aggregating these voters‘ preferences via either the 
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Majority/Plurality Rule or the Best-Member Rule (the aggregation was conducted by the 

computer).  

Outcome feedback.  After each of the 24 trials, participants were provided 

private feedback.  The feedback consisted of their personal net benefit earned during the 

trial (i.e., evenly split share of the sum of group outcomes from the three hunts minus an 

individual‘s own cooperation costs) and the number of group members who voted during 

the trial.７  Through the summary feedback, participants could learn how well they 

performed on the trial and adjust their cooperation levels on the next trial.  Unlike the 

practice session, no specific feedback was provided as to personal accuracy. 

Results and Discussion 

Emergence of stable cooperation over time 

Our evolutionary simulation model suggested that group decision making under 

uncertainty would eventually yield a mixed equilibrium, where cooperative and 

uncooperative individuals coexist in a stable manner.  Specifically, we predicted that 

participants would be divided into one of the two behavioral types over time, 

searcher/voter hybrids versus non-searcher/abstainer hybrids, and that proportions of 

these two types of members would stabilize.８ 

Interlocked information-search strategies and the voting strategies.  We 

examined how frequently each participant showed the behavioral linkage between the 

choices of information search strategy and voting that we observed in the simulation.  

For this analysis, we divided the 24 trials into three 8-trial-blocks.  Figure 8 shows mean 
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proportions of the trials in each block, where participants‘ strategic choices were coherent, 

i.e., either totally cooperative (searcher/voter hybrid) or totally uncooperative 

(non-searcher/abstainer hybrid).  

-------------------------------------- 

INSERT FIGURE 8 – INTERLOCKING BETWEEN THE TWO STRATEGIES 

-------------------------------------- 

Consistent with the simulation, mean proportions of the coherent choices 

(searcher/voter hybrids and non-searcher/abstainer hybrids) increased over time, reaching 

nearly 100% coherence in the last block.  A 2 (condition) x 3 (block) x 15 (group) 

Analysis of Variance (using a hierarchical linear model) yielded a main effect for block, 

F(2, 52) = 36.52, p<.001.  This means that, if an individual voted in the last block of the 

experiment, she or he, with probability very close to 1, had also engaged in costly 

individual information search.  Voting by ignorant members in truth-seeking situations 

(e.g., ―group foraging‖) would be self-defeating in terms of individual net payoff, 

because it would degrade the overall quality of group decisions, while exacting a 

personal voting cost (Lupia, 1994).  If members are aware of these cost issues, a 

behavioral linkage between information search strategy and voting should emerge 

voluntarily without social enforcement mechanisms in truth-seeking groups, as in the 

present experiment.   

Stabilization of cooperation (searcher/voter hybrids) over time.  Were the 

cooperative members (search/voter hybrids) able to sustain themselves in actual groups, 
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as predicted by the evolutionary simulation model?  Or, was the coherent-choice pattern 

due to the tendency of uncooperative members (non-searcher/abstainer hybrids) 

eventually to dominate groups?  For this analysis, we estimated the theoretical 

equilibrium frequency of cooperators in each condition.  We first estimated the 

empirical group and individual payoff functions by means of an econometric procedure, 

and then estimated the equilibrium frequency and the Pareto-optimum frequency for the 

Majority/Plurality Rule (see Appendix B for the estimation procedure).  

Figure 9 displays mean frequencies of the cooperative members in each group 

across the 24 trials, along with the equilibrium frequency and the Pareto optimum (local 

and global) frequency in the Majority/Plurality Rule condition.９  Although the mean 

frequencies of cooperative searcher/voter hybrids slightly decreased over trials, about 

half of members remained cooperative on the last trial.  Notice that the mean frequency 

of cooperative members in the Majority/Plurality Rule condition was 3.13 on the final 

trial and was significantly greater than the equilibrium frequency (t(14) = 3.89, p < .001).  

Indeed, the modal number of cooperators across all groups in all trials in the 

Majority/Plurality Rule condition was 3, with more than 75% of observed action profiles 

containing 3 or more cooperators.  Figure 10 displays the empirical distribution of the 

numbers of group members who cooperated (N) across 360 observations (15 groups x 24 

trials). 

-------------------------------------- 

INSERT FIGURE 9 – MEAN FREQUENCIES OF COOPERATIVE MEMBERS  
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INSERT FIGURE 10 – FREQUENCY DISTRIBUTION OF NUMBER OF 

COOPERATORS IN GROUPS IN THE MAJORITY/PLURALTIY RULE CONDITION  

-------------------------------------- 

Notice also that variances associated with the mean frequencies, as depicted by 

vertical bars in Figure 9, decreased over time in both conditions.  Dividing the 24 trials 

into three 8-trial-blocks, a 2 (condition) x 3 (block) repeated measures ANOVA on the 

variability index revealed a significant main effect for block, F(2,56) = 8.02, p < .001.  

Thus, most groups stably functioned at a locally Pareto efficient level of public goods 

contributions, with 3 contributors and 3 free-riders per group.  The unambiguous modal 

value (Figure 10) is remarkable in finding a locally best outcome in group terms despite 

the fact that the individual incentives built into the game structure would predict far less 

cooperation at N=1 (see Appendix B). 

Did the stabilization in cooperation rates occur at the aggregate level or at the 

individual level?  That is, did different individuals cooperate on each trial or did the 

same individuals cooperate (and the others consistently defect) across trials?  Figure 11 

displays how frequently individual participants cooperated during each of the three 

blocks in the Majority/Plurality Rule and the Best-Member Rule conditions.  Since each 

block is composed of 8 trials, the frequency of cooperation (search and vote) during a 

block could range from 0 (a total free-rider) to 8 (a total cooperator).  As can be seen in 

Figure 11, the relatively symmetric distribution pattern in the first block dissolved over 

time and the distribution in the last block was U-shaped, with the 100%-consistent 
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cooperators and 100% consistent free-riders jointly representing 32% (the 

Majority/Plurality Rule) and 42% (Best-Member Rule) of the participants.  This 

indicates that, at least when individual adjustment is the basis for sorting into strategies, 

there is a trend towards polymorphic role self-assignment, with ―types‖ of individuals 

adopting different consistent strategies. 

Taken together, these results indicate that both uncooperative 

non-searcher/abstainer hybrids and cooperative searcher/voter hybrids persisted across 

trials, and that their proportions in each group stabilized over time. 

-------------------------------------- 

INSERT FIGURE 11 – OBSERVED FREQUENCIES OF INDIVIDUAL STRATEGIES  

-------------------------------------- 

Did the Majority/Plurality Rule outperform the Best-Member Rule? 

Given that the rates of cooperation stabilized in each group over time, we can 

address our next question: Did the Majority/Plurality Rule produce better net benefits to 

group members than the Best-Member Rule?  Figure 12 shows that average per-trial 

individual net benefits were higher in the Majority/Plurality Rule condition than in the 

Best-Member Rule condition across the three blocks of trials.  A 2 (condition) x 3 

(block) x 15 (group) repeated ANOVA using a Hierarchical Linear Model revealed a 

significant main effect for the group decision rule, F(1, 28) = 11.90, p < .002. 

-------------------------------------- 
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INSERT FIGURE 12 – MEAN INDIVIDUAL NET PAYOFFS 

-------------------------------------- 

How does this pattern relate to the theoretical results from the evolutionary 

computer simulations?  Notice that the theoretical equilibrium frequency of cooperators, 

estimated by fitting an econometric model to the data (Appendix B), was 1 in the 

Majority/Plurality Rule condition (see Figure 9).  This means that, theoretically, the 

Majority/Plurality Rule should yield worse (at least no better) outcomes than the 

Best-Member Rule, because the minimal effective voting quorum for the 

Majority/Plurality Rule (three members) could not be assembled.  However, as we 

observed in Figure 9, the mean frequencies of the cooperative, searcher/voter hybrids 

stabilized at slightly above three under the Majority/Plurality rule.  The minimal quorum 

(three searcher/voter hybrids) persisted in the experiment and, consequently, the 

Majority/Plurality Rule yielded higher individual net payoffs than the Best-Member Rule 

(shown in Figure 12).  These results imply that behaviorally—although not predicted by 

theory—the parametric range where the Majority/Plurality Rule outperforms the 

Best-Member Rule may be much wider than that predicted by theory (shown in Figure 7).  

Even in cases where individual cooperation cost is theoretically too high to secure the 

minimal quorum (three) for the Majority/Plurality Rule, observed frequencies of 

cooperators in each group often surpassed the quorum (Laury, Walker, & Williams, 1999; 

Sefton & Steinberg, 1996).   
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GENERAL DISCUSSION 

The present research develops an explanation for the fact that human groups that 

engage in production often contain a share of highly cooperative individuals who 

contribute to public enterprises at a cost to themselves, such as those who prepare well 

for committee meetings, devote substantive time and energy writing a joint grant 

proposal, or stay on lookout to protect their village from enemies/predators.  It provides 

a principled alternative to the over-generalized prediction of the linear model that the 

only rational choice is to free-ride.  Recall that group production function in the linear 

model is often set arbitrarily by researchers.  For example, it is common practice in 

public-goods game experiments to multiply an individual‘s contribution by some 

arbitrary number and then divide it by group size to determine a (constant) personal 

return from the contribution; and, this personal return is set to be less than the individual 

cooperation cost, regardless of the number of contributors in the group (Ledyard, 1995).  

Although such a linear model is a useful device to consider some theoretical problems 

concerning cooperation (e.g., effects of punishment; Fehr & Gächter, 2000), it is a serious 

misconception to assume that most natural group production tasks fall into this category.  

The analysis of the cooperate-or-free-ride, produce-or-scrounge decisions in terms of the 

Motro framework, with its plausible assumptions of a marginally-diminishing-returns 

group production function is conceptually compelling, realistic, and supported by 

theoretical simulations and a behavioral experiment.  Our conceptual framework, based 

on the ubiquity of the marginally-diminishing returns group production function common 
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in natural settings, provides a useful benchmark explanation for realistic levels of 

cooperation in broad range of small group activities (McGrath, 1984; Steiner, 1972).  It 

also seems more convincing than alternate, somewhat contrived explanations that posit 

special sources of indirect utility satisfaction such as ―expressive functions‖ and utility 

derived from fulfilling ―civic duty‖, though these prosocial motives may be important in 

some cases (Brennan & Lomasky, 1993). 

The insight that guides the present research is that group performance is not 

necessarily a strict social dilemma if group production is a marginally-diminishing 

function of the number of productive members (as it usually is) and if personal 

production costs add up (as they usually do).  If the marginal individual return to 

contributing is greater than its cost for some members (i.e., c < δm for some m between 0 

and group size), the equilibrium is a mixture of cooperation and free-riding.  In simpler 

terms, in most groups it is to the individual member‘s personal advantage to produce 

(contribute), unless an equilibrium number of other members is already contributing.  

We believe that group decision making tasks and many other group tasks in natural 

settings are of this type.  Perhaps most surprising of all, we found that experimental 

human decision making groups yielded a stable behavioral equilibrium at a locally Pareto 

efficient level of public goods contributions, with 3 contributors and 3 free-riders per 

group.  Finally, we found that majoritarian group decision rules have an adaptive value 

under uncertainty, and this result may explain why majority-plurality rules are popular 

across the full spectrum of human groups from hunter-gatherer or tribal societies (Boehm, 
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1996; Boyd & Richerson, 1985; Wilson, 1994) to modern industrial democracies (Hastie 

et al., 1983; Kameda et al., 2003; Mueller, 2003). 

Our results are conceptually relevant to the long-term puzzle in political science 

about why citizens invest resources to become well-informed and to vote (e.g., Mueller, 

2003; Riker & Ordeshook, 1973).  In an election, the cost associated with voting is 

personal and seems to outweigh any individual benefit that the act of voting can possibly 

yield.  Why would rational individuals bother to spend time and resources to become 

well-informed and go to the polls, if the chance of having an impact on the outcome of 

the election is virtually zero (―the Voter‘s Paradox,‖ Downs, 1957)?   

We should emphasize that there are several key differences between small-group 

decision making and elections.  First, there is the obvious difference in the size of 

electorate, implying that each vote is much more consequential in small-group decision 

making than in a large-scale election.  Second, most theoretical analyses of small-group 

decision making, including our own, have posited that ―common values‖ (Feddersen & 

Pesendorfer, 1996) or ―truth‖ (Condorcet, 1785/1994) underlie group decisions; members 

seek the mutually most beneficial outcome via group decisions (e.g., finding the most 

valuable investment, finding the truth in a criminal jury trial).  In contrast, a large scale 

election is a competition among several factions (e.g., parties) with disparate ideologies 

and preferences.  This difference is important because, in the political domain, two 

motives operate when each individual decides whether to vote or to not – free-riding and 

competition (Dhillon & Peralta, 2002; Palfrey & Rosenthal, 1983).  Within each faction 
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(e.g., supporters of ―Candidate A‖) sharing the same preference, each individual is 

personally better off free-riding if a sufficient number of individuals are already voting 

for the alternative.  However, in the political domain, competition is also a motive.  In 

order for your party to win the election, you must assemble more voters than the other 

parties.  This competition factor is absent in our group decision making situation where 

members collectively play a ―game against nature‖ (Bornstein, 2003). 

In this sense, it remains to be seen how exactly the two decision situations relate 

to each other, both theoretically and behaviorally.  One possible extension of our group 

decision-making paradigm might be to have two teams of hunters compete for the same 

resource.  The team with the more accurate group decision monopolizes the resource 

and distributes it evenly among members on the winning team, as found in some political 

domains.  How cooperative will members be in situations where the competitive and 

free-riding motives conflict?  Will a stable equilibrium emerge over time?  Is the 

Majority/Plurality Rule better in those settings than the Best-Member Rule?  These 

questions are important and provide another test of the adaptive robustness of 

majoritarian decision making under uncertainty. 

There are several limitations on the conclusions of this paper.  Perhaps most 

obvious is the assumption that group members develop individual judgments 

independently from each other.  Although this assumption has been common in the 

previous theoretical work (Hastie & Kameda, 2005; Sorkin et al., 2001), future work 

should relax this condition to see its impact on group decisions.  Indeed, if members 
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conform (Asch, 1956) or mimic (Hung & Plott, 2001) each other when forming 

individual judgments, majoritarian aggregation could be subject to ―herding‖ effects, 

where erroneous information cascades across individuals to yield defective outcomes 

(e.g., Anderson & Holt, 1997; Banerjee, 1992; Bikhchandani, Hirshleifer, & Welch, 1992; 

Kameda & Tamura, 2007).  Because the Majority/Plurality Rule works under 

uncertainty via its error-cancellation function (Hastie & Kameda, 2005; Hung & Plott, 

2001), independence among members is a key contributor to its success (Surowiecki, 

2004).  One possible extension to address this question is to provide each individual 

(computer agent or human participant) an option to mimic another‘s judgments (i.e., 

free-riders who skip information search can mimic other members, rather than deciding 

randomly as assumed in the current model) and to examine the performance of the 

majoritarian aggregation when social learning is possible (Henrich & Boyd, 1999; 

Kameda & Nakanishi, 2002, 2003). 

Second, our results are obviously contingent on the distribution of competence 

among group members.  In the simulation, group members‘ modal judgment policies 

were not statistically optimal (Eq. 1) but were based on the suboptimal, ―equal 

cue-weighting‖ (Dawes, 1979) with substantive variation; members‘ preferences were 

thus affected not only by random error in cue perception but also by the systematic biases 

built in their judgment policies.  However, if these modal members had even more 

deviating judgment policies while the most competent member had a near perfect 

judgment policy, then the parametric range where the Majority/Plurality Rule 
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outperforms the Best-Member Rule would necessarily become much narrower (Kerr et 

al., 1996).  It remains to be seen how and under what conditions the accuracy of modal 

group members‘ preferences, relative to that of the brightest member, can be guaranteed 

in naturally-occurring settings (Surowiecki, 2004). 

Third, in our simulation and experiment, group members had no direct 

opportunities to coordinate their actions ex ante.  However, if members are allowed to 

coordinate their behaviors in advance, they may eventually develop some social norms to 

produce more equitable outcomes within a group, rather than allowing some members to 

free ride on others unilaterally (Figure 11).  For example, such social norms may take 

the form of turn-taking to bear the cost of cooperation equally among all members.  

Given the central importance of ―inequity aversion‖ in human cooperation (Fehr & 

Schmidt, 1999), it will be interesting to see how such egalitarian norms and mutual 

expectations (Fehr & Fischbacher, 2004; Kameda, Takezawa, Ohtsubo & Hastie, 2010; 

Kerr, 1983) may develop in groups working on tasks with 

marginally-diminishing-return-curves. 

Lastly, the model we have developed in this paper is an 

evolutionary/population-level model whereby ultimate causes (Tinbergen, 1963) for 

cooperation in group decision making are considered.  It still remains to see how each 

individual actually computes costs and benefits of their cooperation in a group task with a 

marginally-diminishing-return-curve, and especially how they coordinate their behaviors.  

Behavioral ecologists studying group decision making by non-human animals have 
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begun to address these questions to understand computational algorithms for collective 

nest search by honey bees, collective navigation by baboons, and so on (see the special 

issue of Philosophical Transactions of the Royal Society B, 2009, edited by Larissa 

Conradt and Christian List).  Given the robustness of marginally-diminishing-returns 

group production function in nature (Foster, 2004), cross-fertilization between human and 

non-human animal researchers will be useful to delineate proximate mechanisms 

underlying cooperation and coordination in group endeavors. 

We hope our methodology, starting with a description of the situation in game 

theory terms, followed by computer simulation explorations, and then behavioral 

experiments is appealing to other researchers.  And, we hope that the virtues of this 

eclectic approach are self-evident.  Social behavior is often more adaptive and more 

rational than it sometimes appears at first glance.  Thinking about functional, adaptive, 

and rational properties of a system will often reveal a deeper structure that is not apparent 

to a superficial descriptive analysis (Barkow, Cosmides & Tooby, 1992; Gigerenzer et al., 

1999; Schelling, 1978).  The wisdom of crowds can arise from fundamental laws of 

social ecology that emerge from individually adaptive strategies (Surowiecki, 2004). 
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Table 1.  Four behavioral strategies implemented in the evolutionary simulation 

 Participate in group meetings? 

Yes No 

Engage in individual 

information search? 

Yes Searcher/Voter Searcher/Abstainer 

No Non-searcher/Voter Non-searcher/Abstainer 
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Appendix A 

Implementation of the replicator dynamic in the evolutionary computer simulation 

We used the following formula to represent the selection process (Henrich & Boyd, 

1998).  Let us denote proportion of strategy i (= 1 or 2) in the population at generation t 

as pi
t, and its fitness outcome as Oi

t.  Then its proportion in the population at generation 

t+1 is:   

t

t
i

t
it

i W

OWp
p

)(1 


, 

where W is the baseline-fitness constant which is common to all strategies (we set W=30 

in the current simulation), and tW is the average fitness outcome: 

 
i

t
i

t
it OWpW ).(  
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Appendix B 

Estimation of the empirical group and individual payoff functions 

We describe a simple model in which the group‘s aggregate payoff as a function 

of the number of group members who contribute information has diminishing marginal 

returns.  For analytic tractability, we make standard assumptions that result in an 

objective function that rewards predictive accuracy by providing a fixed reward from 

which the squared error of the group‘s prediction is deducted.  Accurate predictions 

have smaller squared errors and consequently higher payoffs according to this objective 

function.  A priori, errors can be expected but are not known until ex post values of all 

random variables are realized.  It is straightforward to show that the resulting expected 

payoff function is increasing in the quantity of information, but concave, implying 

diminishing marginal returns to information. 

 Consider a group trying to predict the unknown outcome x.  Denote its 

forecast m.  The group receives (in the aggregate) a fixed payoff B if its forecast is 

perfectly accurate (i.e., m = x).  The group‘s payoff, however, decreases as the group‘s 

squared prediction error grows larger.  Denoting the scaling of squared errors into the 

units used in the payoff function asλ, we can assemble the symbols defined above to 

form the group‘s (aggregate) gross payoff function: 

gross group payoff = B –λ(m – x)2. 

Let N denote the number of noisy pieces of information that the group forecast depends 

on, so that the functional notation m(N) describes the mapping from quantity of 
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information into group forecasts.  Denoting the cost of information as p per unit, then 

the net group payoff function becomes: 

net group payoff = B –λ(m(N) – x)2 – pN. 

In general, the best use of N noisy signals, (x +ε1), …, (x +εN), is to construct the 

forecast m(N) as the conditional expectation of x, which is very often assumed to take a 

linear form: 

E[x |ε1, …,εN] =α+β1 (x +ε1) + …+βN (x +εN). 

A simpler and more robust approach (in the absence of enough stability in the 

environment to estimate the parameters in the regression) would be the simple average: 

 m(N) =  𝑁𝑖=1 (x +εi)/N = x + (ε1 +ε2 + … +εN )/N. 

We now compute the expected value of the net group payoff function: 

E[B –λ(m – x)2 – pN] = B –λE[(ε1 +ε2 + … +εN )
2] /N – pN  

= B –λσε
2/N – pN. 

Applying this function as the group‘s expected net payoff function, we can 

examine the individual-level incentives for a single member of this group who is facing 

a binary decision of whether to pay p and provide one more noisy signal to be included 

in the group‘s forecast, or to free-ride on the information acquisition of others.  We 

assume, as everywhere else in this paper, that gross group payoffs are divided evenly 

among all group members (cooperators and free-riders alike) but the costs of 

information are borne individually.  Thus, if there are n other group members 

cooperating in a group with M members in total, after netting out costs for the cooperator, 

the individual‘s expected net payoff is: 
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Expected net individual payoff for a cooperator = (1/M)(B –λσε
2 /(n+1)) - p, 

Expected net individual payoff for a free-rider = (1/M)(B –λσε
2 /n). 

The point at which the individual payoff curves intersect defines the so-called 

Nash point (see footnote 10): 

n* = - 0.5 + 0.5[1 + 4λσε
2 / (pM)]0.5. 

At integer values to the left of n*, the strategy of cooperation maximizes individual 

payoffs even though some other members are free-riding.  At integer values to the right 

of n*, free-riding maximizes individual payoffs.  As intuition would suggest, n* is a 

decreasing function of the price of information, p, holding all else equal.  Also, n* is 

increasing inλ, because higher penalties for forecasting error increase the individual 

rationale for contributing information.  Similarly, n* is increasing inσε
2, because, 

when each single piece of information is lower in quality (i.e., less precise), the marginal 

returns from additional units of information diminish less rapidly, implying a rightward 

shift in the cooperator-free-rider cross-over point.  Finally, holding all else equal, n* is 

decreasing in group size.  The incentive to cooperate is present for fewer group 

members, the larger the group is. 

 Recall that the expected aggregate net payoff function for the group is: 

Expected aggregate net payoff = B –λσε
2 /N – pN. 

We refer to the total number of cooperators N that maximizes the expected aggregate net 

payoff as the Pareto point and denote this special value of N as N* (see footnote 10): 

N* = (λσε
2 /p)0.5. 

Notice that the Pareto point is independent from the parameters B and M.  It depends 
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positively on the penalty for forecast error and on the imprecision of private information, 

and is decreasing in the price of information. 

 This model is used to estimate the empirical group and individual payoff 

functions in the body of the paper.  The estimation procedure is as follows.  First, we 

estimate the gross individual payoff conditional on the reciprocal of the total number of 

cooperators in each group, 1/N.  The notation introduced here uses subscripts g to index 

groups and t to index experimental trials.  Because gross payoffs (before netting out the 

cost of individual information acquisition) are the same for all group members, the 

notation here does not index individuals‘ identities, although this is straightforward to 

add.  Using the definitions from above, any individual in group g receives an individual 

gross payoff in trial t given by the following expression 

individual‘s gross payoff = E[ygt |1/Ngt] = (1/M)(B –λσε
2 /Ngt), 

where g ranges from 1 to 15, and t ranges from 1 to 72, for a total of 15 x 72 = 1080 

observations that are obviously not statistically independent.  Because the same group 

is observed 72 times, the statistical model allows for within-group correlation of the 72 

error terms in the regression model, which affects the size of estimated standard errors 

but not the estimated coefficients.  There were only three observations in which N = 0.  

The model is valid only when N > 0, and therefore the regression coefficients were 

estimated using the 1077 observations for which N ranged between 1 and 6.  This 

produced statistically significant regression coefficients, and the following estimated 

regression line where coefficients are rounded to the nearest integer: 

E[y | 1/N] = a + b (1/N) = 60 – 9/N. 
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This regression line is plotted in Appendix-Figure 1 together with mean values of y at 

each value of N, the total number of cooperators in the group.  It is straightforward to 

estimate expected individual net payoff for a cooperator and for a free-rider as a function 

of n, the number of other group members who cooperate, from Appendix-Figure 1.  For 

a free-rider, there are no costs to net out, and the gross individual payoff in 

Appendix-Figure 1 is identical to the net payoff, plotted as a dashed line in 

Appendix-Figure 2.  For a free-rider, the total number of cooperators in the group is 

equal to the number of other group members cooperating: N = n.  For a cooperator, 

however, the total number of cooperators includes the others plus him or herself, and 

therefore N = n + 1, plotted in Appendix-Figure 2 as the solid line after subtracting 6 yen 

for the cost of contributing to the public good.  The figure shows that the two payoff 

curves cross strictly to the left of n=1, where n represents the number of other group 

members who cooperate.  This implies that cooperation maximizes individual payoffs 

when no other group members cooperate (at n = 0), and free-riding maximizes 

individual payoffs as soon as there is at least one other group member cooperating (when 

n > 0).  Thus, any Nash equilibrium is a profile of binary actions in which there is one 

cooperator and five free-riders. 

-------------------------------------- 

INSERT APPENDIX-FIGURES 1 & 2 

-------------------------------------- 

 Appendix-Figure 3 shows the empirical net aggregate payoff for groups as a 
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function of the total number of cooperators.  The points on this curve are empirical 

averages over 1080 observations of group payoffs and numbers of cooperators.  The 

curve has a local maximum at 3 and a global maximum at 6.  Thus, three is a local 

Pareto point, although a benevolent dictator aiming to maximize aggregate payoffs 

would choose the global Pareto point, 6. 

-------------------------------------- 

INSERT APPENDIX-FIGURE 3 

-------------------------------------- 

In linear public goods games, the dominant strategy is usually to contribute zero 

and, if not zero, then the other boundary point of the action space (i.e., contributing the 

maximum amount).  In contrast, nonlinear public goods payoff structures can generate 

Nash equilibria on the strict interior of the agents‘ action spaces.  Our model‘s Nash 

equilibrium requires 1 contributor per group, which falls short of the socially efficient 

Pareto points of 3 (local) and 6 (global) contributors per group.  As shown in Figure 10, 

the data revealed a pronounced mode at 3 and showed that the groups we observed 

regularly achieve larger aggregate payoffs than the Nash equilibrium predicts.  We 

found that groups stably functioned at a locally Pareto efficient level of public goods 

contributions, with 3 contributors and 3 free-riders per group.  The unambiguous modal 

value is remarkable, in that subjects find a locally best social outcome as a group that 

requires asymmetric action profiles among group members, without any mechanism to 

coordinate action.  The subjects in our study earn more by cooperating more than is 
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predicted from the individual incentives built into the game structure. 
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Figure Captions 

Figure 1.  An illustration of a marginally-diminishing return curve (unit here is 

arbitrary) as a function of number of cooperators.  The y-axis has been adjusted to 

expected gross return to each individual (group gross return / 6).  An ESS is defined as 

follows (Motro, 1991): Cooperate as long as the marginal increment (δ) exceeds 

individual cost (c), but switch to defection beyond that. 

Figure 2.  Expected individual net payoffs (individual gross return – cost) for a 

cooperator (solid curve) and a defector (dashed curve), as a function of the number of 

other members who cooperate (derived from the gross return curve in Figure 1 with 

individual cooperation cost fixed at 0.7). 

Figure 3.  Structure of the simulated judgment environment 

Figure 4.  Outline of the evolutionary simulation platform 

Figure 5.  Equilibrium proportions of the strategies in each population 

Figure 6.  Individual net payoff at the equilibrium in each population 

Figure 7.  Sensitivity analysis about the superiority of Majority/Plurality Rule to the 

Best-Member Rule in individual net payoff 

Figure 8.  Interlocking between the two strategic choices.  Participant‘s behavioral 

choices of information search strategy and voting became more coherent over time. 
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Figure 9.  Mean frequencies of cooperative members (searcher/voter hybrids) across 

the 24 trials.  Vertical lines indicate one standard error (solid line for the 

Majority/Plurality Rule condition, and dotted line for the Best-Member Rule condition).  

Empirically-estimated Nash point in the Majority/Plurality Rule condition was 1, 

whereas Pareto optimal points were 3 (local Pareto optimal) and 6 (global Pareto 

optimal).  See Appendix B for details of the estimation procedure. 

Figure 10.  Frequency distribution of number of cooperators (searcher/voter hybrids) in 

groups in the Majority/Plurality Rule condition across 360 observations (15 groups in 24 

trials). 

Figure 11.  Observed frequencies of individual strategies in the Majority/Plurality Rule 

condition and the Best-Member Rule condition.  Individual strategies could range from 

full defection (0) to full cooperation (8) in each block of trials. 

Figure 12.  Mean per-trial individual net payoffs (in Yen) in the Majority/Plurality Rule 

condition and the Best-Member Rule condition. 

Appendix-Figure 1.  Fitted regression line for individual gross payoffs (and observed 

means) as a function of N, the total number of cooperators in the group.  The regression 

model is E[individual gross payoff | 1/N] = a + b(1/N) = 60 - 9/N, for 1 ≤ N ≤ 6.  The 

mean of three payoff observations for N = 0 is plotted in the figure as well, although it is 

not derived from the regression model with the restricted range of N.  The model was fit 

with 1077 observations, and the coefficients were statistically significant at the 5% level. 
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Appendix-Figure 2.  Estimated net individual payoffs for cooperators (solid line) and 

free-riders (dotted line) as a function of the number of other cooperators in the group.  

Appendix-Figure 3.  Empirical net aggregate payoff for groups as a function of N, the 

total number of cooperators in the group (summing over 6 group members‘ individual 

payoffs after netting out costs for cooperation).  The curve has a local maximum at 3 

and a global maximum at 6.  Thus, three is a local Pareto point, although a benevolent 

dictator aiming to maximize aggregate payoffs would choose the global Pareto point, 6. 
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Footnotes 

                                                   

１ Laury and Holt (2008) provides a survey on the economics literature regarding 

nonlinear public goods games.  To understand the motivation that has led economists to 

study nonlinear public goods games, which is very different from the present study‘s 

motivation, it is helpful to recall that the standard linear public good game most 

frequently studied in laboratory experiments has a unique Nash equilibrium in which all 

group members contribute zero.  Thus, the theoretical model upon which most public 

goods experiments are based predicts universal and absolute free riding.  In contrast 

with this theoretical prediction, participants in experiments usually contribute 

significantly more than zero.  These contributions typically decline with repeated trials, 

but contributions remain well above zero even after as many as 60 rounds.  Interpreting 

this frequently replicated finding of greater than zero contributions in linear public 

goods games remains difficult, however, because of the statistical difficulty of 

measuring closeness to a boundary in any action space (in this case, the 

zero-contribution Nash equilibrium).  At a boundary point in participants‘ action space, 

deviations can occur only in one direction; random error of any kind will push empirical 

averages away from their true value and the law of large numbers no longer holds.  

Faced with this statistical problem of measuring deviations from an equilibrium located 

at the boundary of the range of individual contributions, economists turned to nonlinear 

public goods games as a mechanism for generating incentive structures with Nash 

equilibria located on the ―strict interior‖ (0 < equilibrium frequency < group size) of the 
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range of possible contributions.  This is the primary motivation for most of the existing 

experimental economics literature on nonlinear public goods (see Laury and Holt, 2008).  

In contrast, this paper reconsiders nonlinear public goods incentive structures as a 

widespread empirical regularity and investigates what insights they have to offer to 

psychology and the neighboring social science literatures dealing with social dilemmas, 

information acquisition, and voting behavior, concerning the commonplace observation 

of heterogeneous groups consisting of both cooperators and free-riders.  

２ In game theory, an evolutionarily stable strategy is a strategy that if adopted by all 

players in a population cannot be invaded (outperformed) by any competing alternative 

strategy (Maynard Smith, 1982; Gintis, 2000).  Suppose a situation in which a group is 

composed only of individuals with the focal strategy, x.  Now a question arises 

concerning if such an all-x group is robust enough to block a small number of 

individuals with another strategy (y) from intruding into the group.  Does strategy x 

outperform strategy y in terms of average profit?  If strategy x actually outperforms 

strategy y, it can block y‘s intrusion into the group, analogous to biological ―competition‖ 

for an ecological niche.  If strategy x is dominant in this sense over all other strategies 

in the game, then strategy x is called an Evolutionarily Stable Strategy (ESS). 

３ Notice that, different from the behavioral strategies, no game-theoretic aspect is 

involved in member‘s judgment policy.  The theoretically best judgment policy always 

corresponds to the optimal linear combination model (e.g., Eq. 1), which is solely 

determined by the environmental structure, independent of other members‘ judgment 



     Democracy Under Uncertainty   77 

 

                                                                                                                                                      

policies in a group.  In other words, a member‘s judgment policy is not a strategy in the 

game-theoretic sense.  Thus, after being randomly generated for each group member at 

the outset (see the text), the judgment policy was fixed and not under evolutionary 

control throughout a simulation run.  Elsewhere, we have discussed how such cognitive 

differences can affect qualities of group decisions under different aggregation rules (see 

Hastie and Kameda, 2005 for details). 

４ To illustrate, let us suppose that a group picked up a location with 36 resource units, 

where value of resource available at each of 10 locations had been generated randomly 

from N(0, 30).  Because each member of the 12-person group receives an equal share, 

this yields 3 resource units per person, which means that the total cost for cooperation to 

be subtracted from a cooperator‘s share, 0.03, corresponds to 1% of the gross individual 

payoff.   

５ N(80, 30) was used to generate resource levels in each location in the experiment, 

instead of N(0, 30) in the simulation; the change in mean value does not affect 

uncertainty level in the foraging task because the standard deviation of the distribution 

was held identical.  The only exception was that both the true resource value (Qj) and 

the true cue value (C
.jk) in each of 72 hunts during the experiment were held to be 

common across all groups in the experiment.  These common ―seeds‖ had been 

generated randomly from the respective normal distributions (identical to those used in 

the simulation), for once, prior to the experiment.  This procedure was different from 

the simulation, where the true resource value (Qj) and the true cue value (C
.jk) were 
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generated randomly for each hunt by each group.  Given the much smaller sample size 

in the experiment (n = 3 hunts * 15 groups per trial as compared to n = 100 hunts * 

10,000 groups per generation in the simulation), making the value-generation procedure 

exactly parallel to that of the simulation would introduce too much random noise.  

Because this change is theoretically trivial, we chose the current procedure for the 

experiment.  For each hunt by each group, however, we newly added individual 

perception error terms (eijk) to generate perceived cue values (Cijk) as in the simulation.  

Thus, the cue values that participants actually observed in each hunt could be different 

from person to person.  

６ The total cost for cooperation (information search + voting) implemented in the 

experiment (6 yen per trial) may seem small.  Yet, this was not the case because, as 

seen in Figure 12, it actually corresponded to about 10% of the average gross payoff to 

each individual in the trial (see Figure 12). 

７ Our own experience tells us that it is hard to tell whether other members have actually 

prepared for committee meetings (e.g., engaged in costly information search), thus the 

number of searchers during the trial was not included in the outcome feedback.    

８８ It is important to note that the simulation and the behavioral tests involved different 

manifestations of what we think are the same basic principles of functional adaptation.  

In the simulation, an evolutionary algorithm determined the surviving strategies over 

thousands of generations using a replicator dynamic.  However, in the behavioral 

experiment, individual learning and inference processes composed the mechanism 
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through which an adaptive equilibrium was discovered.  We believe that both routes, 

population cross-generational and individual learning, yield adaptive behavioral 

strategies, but we do not want to obscure the differences between the two mechanisms 

(but see Campbell, 1988).  

９ The equilibrium (Nash) frequency occurs where the marginal individual return is 

equal to the cost of cooperation (Figures 1 & 2; see also Appendix-Figures 1 & 2).  The 

Pareto-optimum frequency occurs where the marginal group return is equal to the cost of 

cooperation; net group payoff function is maximized at the Pareto point.  In the 

econometric analysis reported in Appendix B, we estimated the equilibrium (Nash) 

frequency and the Pareto-optimum frequency.  As shown in Appendix-Figure 3, the 

empirical net group payoff function reveals two Pareto-optimal points, a local maximum 

where the number of cooperators in the group is 3, and a global maximum at 6.  At 

each of these Pareto points, net group payoff is maximized locally or globally. 
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Figure 1.  An illustration of a marginally-diminishing return curve (unit here is arbitrary) as a function of number 
of cooperators. The y-axis has been adjusted to expected gross return to each individual (group gross return / 6).  
An ESS is defined as follows (Motro, 1991): Cooperate as long as the marginal increment (δ) exceeds individual 
cost (c), but switch to defection beyond that.   



 

Figure 2.  Expected individual net payoffs (individual gross return – cost) for a cooperator (solid curve) 

and a defector (dashed curve), as functions of the number of other members who cooperate (derived from 

the gross return curve in Figure 1 with individual cooperation cost fixed at 0.7). 
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Figure 3.  Structure of the simulated judgment environment 
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At the start of each simulation run (generation 1), the prevalence of the 

two behavioral strategies, searcher/voters and non-searcher/abstainers (Table 

1), in the (infinite) population was set equal, 50% each. 

 

 

 

 

 

A twelve-person “hunting team” is composed by random sampling. 

  

 

 
  

Only searcher/voters engage in individual learning about the 

environment for some personal cost. They can access to the three 

environmental cues (Figure 3) and make judgments according to their policies.  

 

 

 

 

 Depending on a given aggregation rule (majority/plurality, best 

member, or random member), the group picks up one alternative for 

hunting. The resource in the chosen patch is shared equally among all 

members. For the cooperative searcher/voters, however, the respective 

costs are subtracted from their shares.  

 

 

 

 

Mean outcome (fitness) for each of the two strategies is calculated by 

collapsing their net outcomes (benefit – cost) over 1,000,000 (=100x10,000) 

trials.   

 

 

 

  Depending on their mean outcomes (fitness), the two strategies are 

selected using a replicator dynamic, with the greater fit strategy yielding slightly 

more offspring for next generation.  
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 Figure 4.  Outline of the evolutionary algorithm  
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Figure 5.  Equilibrium proportions of the strategies in each population 
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 Figure 6.  Individual net payoff at the equilibrium in each population 
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Figure 7.  Sensitivity analysis about the superiority of Majority/Plurality Rule to the Best Member Rule 
in individual net payoff  
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Figure 8.  Interlocking between the two strategic choices.  Participant’s behavioral choices of 
information search strategy and voting became more coherent over time. 
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Figure 9.  Mean frequencies of cooperative members (searcher/voter hybrids) across the 24 trials.  Vertical lines 
indicate one standard error (solid line for the Majority/Plurality Rule condition, and dotted line for the Best 
Member Rule condition).  Empirically-estimated equilibrium point in the Majority/Plurality Rule condition was 1, 
whereas Pareto optimal points were 3 (local Pareto optimal) and 6 (global Pareto optimal).  See Appendix B for 
details of the estimation procedure. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Frequency distribution of number of cooperators (searcher/voter hybrids) in groups in the 
Majority/Plurality Rule condition across 360 observations (15 groups in 24 trials). 
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Figure 11.  Observed frequencies of individual strategies in the Majority/Plurality Rule condition and the Best 
Member Rule condition.  Individual strategies could range from full defection (0) to full cooperation (8) in each 
block of trials. 
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Figure 12.  Mean per-trial individual net payoffs (in Yen) in the Majority/Plurality Rule condition and the 
Best Member Rule condition 



 

Appendix-Figure 1.  Fitted regression line for individual gross payoffs (and observed means) as a function of N, the total 
number of cooperators in the group.  The regression model is E[individual gross payoff | 1/N] = a + b(1/N) = 60 - 9/N, for 
1 ≤ N ≤ 6.  The mean of three payoff observations for N = 0 is plotted in the figure as well, although it is not derived from 
the regression model with the restricted range of N.  The model was fit with 1077 observations, and the coefficients were 
statistically significant at the 5% level. 
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Appendix-Figure 2.  Estimated net individual payoffs for cooperators (solid line) and free-riders 
(dashed line) as a function of the number of other cooperators in the group.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix-Figure 3.  Empirical net aggregate payoff for groups as a function of N, the total number of cooperators in the group 
(summing over 6 group members’ individual payoffs after netting out costs for cooperation).  The curve has a local maximum at 
3 and a global maximum at 6.  Thus, three is a local Pareto point, although a benevolent dictator aiming to maximize aggregate 
payoffs would choose the global Pareto point, 6. 
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