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= Summary

Nominal data currently lack a correlation coefficient, such as has already been defined for real data. A measure can be
designed using the determinant, with the useful interpretation that the determinant gives the ratio between volumes.
With M a m x n contingency table with m = n, and 4 = Normalized[M], then 4’4 is a square n x n matrix and the
suggested measure is » = Sqrt[det[4'4]]. With M an n; X ny X ... X n; contingency matrix, then pairwise correlations can
be collected in a k x k£ matrix R so that the overall correlation is R = f[R]. An option is to use R = Sqrt[1 - det[R]].
However, for both nominal and cardinal data the advisable choice for such a function f'is to take the maximal multiple
correlation within R.

Introduction

With x; € R” real data vectors, i = 1, ..., k, the correlation matrix R contains the pairwise correlations between x; and x ;.
Let R = det[R] the determinant of R and let R; ; be that specific co-factor. Then the multiple correlation coefficient for
the OLS regression of the first variable on the others is (Rz)l,z,_qk =1-R/R,,, see Johnston (1972:134). This approach
not only relies on various typographic forms of the letter “r” but also on the ratio scale of the data (real variables). For
nominal data such a correlation measure apparently is lacking. For example for a political poll on Republican or
Democrat support also categorized by sex (perhaps not only constituents but also candidates) we cannot apply the
Pearson formula for correlation since categorical values such as Male versus Female aren’t numbers, making it difficult
to find some “average value” and to square them.

This paper suggests a measure of association (or correlation) between nominal data. It relies on the use of determinants.
The general idea is that determinants measure the change in volume when mapping a body from one space to another,

and one can find a specific determinant that lies between 0 and 1. Since the suggested measure is new and has not been
tested in statistical practice, it is hoped that theorists of linear algebra and statisticians working with nominal data look
into the potential value of this suggestion.

It must be mentioned as well that the author has limited time and resources. He has used the literature in the list of
references but there obviously exists more literature.
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An other important limitation is that a correlation coefficient only gives some rough indication of association. For the
specific kind of association one would design a model and perform a test. However, the correlation coefficient has some
psychological value for research on real data and undoubtedly will have the same effect for nominal data as well. A
strong association for example might cause more curiosity as to what the true model is.

An example

Real data are a researcher’s paradise since you can do anything with real data. For example, when we have data on
temperatures {-2.4, 4.3, 10.5, 21.5, 29.9} in degrees Celsius and associated sales of icecream {10.5, 11.3, 8.7, 50.4,
70.8} in kilo’s then it is easy to determine a correlation. A correlation value generally lies between -1 and +1 and in this
case we find that temperature and icecream sales are highly and positively correlated, so that we are motivated to
determine the true model that captures their relationship.

Correlation[{-2.4, 4.3, 10.5, 21.5, 29.9}, {10.5, 11.3, 8.7, 50.4, 70.8}]

0.928301

The situation is entirely different for nominal data. This kind of data only gives categories that do not allow straightfor-
ward calculation. Consider for example two shops selling both blue and green hats, and a customer visiting both shops.
The customer tries all hats and scores them as “fit” or “no fit”. The resulting data are nominal since they only count the
cases and there isn’t an “average colour” or “average fit”. To determine associations, the nominal data can be collected
in cross tabulations a.k.a. contingency tables. The following example is from Kleinbaum et al. (2003:277). When we
want to analyze these data and express “how much association” there is between the data, and read the statistical
reference guides for help, we discover that nominal data and in particular these contingency tables lack a standard
coefficient of correlation. The contingency table is meant to analyze association, and the data lie there on the disection
table right in front of us, but we cannot do anything with them, to great frustration.

TableForm[mat = {{{5, 1}, {8, 2}}, {{2, 8}, {1, 5}}},
TableHeadings - {{"Shopl", "Shop2"}, {"Green", "Blue"} , {"Fit", "No fit"}}]

Green Blue
Fit 5 8
Shopl No fit 1 2
Fit 2 1
Shop2 N fir 8 5

Contingency tables are much used in psychology, epidemiology or experimental economics, and the frustration that we
feel with respect to above table is just a small example of what these researchers must experience every day. Statistical
analyses in psychology, epidemiology and experimental economics quickly proceed with more complex approaches like
the y’test on statistical independence, which tests are not only more complex but also require levels of statistical
significance that tend to say little about the strength of association. When we collect sufficiently large numbers of data
then a low association may still turn statistically significant. The most dubious research outcome is when we start out
with small numbers and a suggestion of high association that motivates us to collect more numbers, with the result that
we find a low association that however differece from independence in a manner that is statistically significant: what to
make of that ? Perhaps the true test in that case is to see whether the result also differs significantly from the originally
found high association - but to discuss that we actually need a measure of association.

It is also interesting to observe that a common notion in real data analysis is that “correlation doesn’t mean causation”.
However, this expression has little use in nominal data - since there is no standard measure of correlation.
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This paper presents a new proposal for correlation in contingency tables. We will develop this measure below, starting
with a 2 x 2 table, generalize this to a n X n table, then m x n, and finally n; x ny X ... X ng.

For the hat shop contingency table above we find for the overall association:

NominalCorrelation[mat] // N

0.648564

Leading ideas

The general idea is that the determinant of a matrix measures the change in volume when mapping a body from one
space to another. We can also find a specific determinant that lies between 0 and 1, so that we get a normalized volume
ratio that can be interpreted as correlation. Note that the correlation coefficient for real data has the geometric interpreta-
tion of the cosine of the angle between the vectors. For nominal data we thus don’t find a cosine but the important point
is that there is a meaningful interpretation. Perhaps the true position should be the other way around that the standard is
a volume ratio and that real data don’t quite follow that standard but use a cosine instead. Perhaps there is a way that the
volume ratio can be translated into a cosine interpretation. For now it suffices that we consider volumes only. Since the
suggested coefficient is new and has not been tested in statistical practice, it is hoped that theorists of linear algebra and
statisticians working with nominal data look into the potential value of this suggestion.

With respect to the statistical reference guides - and see in particular the accessible sources on the internet Becker
(1999), Garson (2007) and Losh (2004) - it must be observed that we find that there are actually various possible
measures of association for contingency tables. This is another way of saying that there is no standard. The multitude of
measures does not present a Land of Cockaign but rather a tropical forest or maze. We find Phi, (Pearson’s) Contin-
gency Coefficient, Tschuprow’s T, Cramer’s V, Lambda, (Theil’s) Uncertainty Coefficient and some tetrachoric
correlation. Appendix A reviews these measures and rejects them for various reasons. A key point is that some mea-
sures are not symmetric. Another key point is that the most promising measures Phi, (Pearson’s) Contingency Coeffi-
cient and Cramer’s V all depend upon the y’statistic that is not elementary. Cramer’s V is the most promising measure
but is limited to the m x n case, and thus cannot handle the hat shop example above. However, it appears that the
proposed measure for nominal correlation is equal to Cramer’s V for the 2 x 2 case. We might start with that case and
develop the story from there. However, it is better to develop the new measure by its own logic. Appendix B discusses
the use of Cramer’s V in relation to the y’test and shows its complexity. Readers who are versed in statistics and want
to start on familiar grounds might consider starting there.

When we compare this situation with the one for real data then it appears that it is not common for real data to summa-
first and the other variables should not be confused with the overall association between a set of variables irrespective of
order. Apparently, real data are such a paradise for analysis that the question about an overall correlation is not urgent.
The issue is more urgent for nominal data since one quickly gets higher order contingency tables. It appears useful to
define such an overall measure for both for nominal and real data. For real data, the idea is further developed in Appen-
dix C. Essentially the point is the choice of some f'such that overall correlation within the data is R = f[R]. One option is
to say R> =1 - R =1 - det[R] since off-diagonal zero’s mean no correlation while that determinant becomes 1. It
appears better to base an overall correlation upon the multiple correlations (R2)i,2,“,k- For both types of data, the best f'
to take is the highest value of any multiple correlation in the data. The reason is that we are used to think in terms of
such multiple correlations. Having a single high multiple correlation is sufficient to say that the whole block of data
shows high association. PM 1. We may also think about separating data into subsets. Once the set of data with that
maximal correlation has been located, it can be separated from the other data, that may contain another maximum. This
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reminds of canonical correlation methods, but is not the same. PM 2. This generalization procedure might also be used
for Cramer’s V but has not been implemented.

Analysis of the example

As shown above, the hat shop case has a nominal correlation of 0.649. Since this is closer to 1 than to 0, we conclude
that there is quite some association in these data. If we would select a statistical significance level then we could decide
on statistical independence. But given this amount of correlation we certainly become more interested in what the
relation between these variables is.

The example of the hat shops has been taken since it is an example of the Simpson paradox. In each separate shop the
green hats fit relatively better, but for both shops combined the blue hats fit relatively better. For Shop 1 the fit / no-fit
odds for green hats are 5/1 and for blue hats 8/2, thus the odds ratio (5/1) / (8/2) = 5/4. For Shop 2 we find the fit / no-fit
odds ratio (1/4) / (1/5) = 5/4 too. For the two shops separately the odds ratio is above 1 but for the total (7/9 versus 9/7)
it is below 1. The dispersion over the two shops is a confounder.

OddsRatio /@ Append[mat, Plus @@ mat]
{5 5 49}
4’ 4’ 81

The further analysis depends upon the case at hand. When the tables only concern the problem of fitting hats then it
makes sense to eliminate the confounder, add the two tables, and find a small association.

NominalCorrelation[Plus @@ mat] // N

0.125

When these data tables don’t concern hat shops but represent another kind of problem, then it might not be sensible to
merely add the subtables. In that case the difference between 0.125 and 0.649 helps us to consider that there indeed is
some relation, and, if the problem is serious enough, we might grow convinced that it could be worth while to find the
true model. For example, we might do a meta-analysis on the findings of the separate shops, aggregating the problem in
such a way that the overall direction reflects the individual ones. Or, for example in voting theory, if a bill must pass
both Houses in Parliament (Congress and Senate) then we might accept that it is OK that it passes in both while it would
not pass in a joint session.

Thus, this example shows that the notion of nominal correlation coefficient might help in the analysis. To understand the
measure, let us start with the 2 x 2 case. Note that Appendix D discusses conventional approaches to the 2 x 2 case.

The 2 x 2 case

= The layout

The 2 x 2 case is much discussed in epidemiology. Contingency tables generally are presented with table-headings and
border-sums. Calculations are normally done with the inner matrix. The following is an example where men and women
are dieting or not. Observed frequencies are a to d. We wonder whether the behaviour of the groups differs.
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DiseaseTestMatrix[] = mat2 = BorderedZDPrSolve[

oo
0o aub
OO o

DiseaseTestMatrix[Table, "men", "dieting"]

men - men Tested
dieting a b a+b
- dieting c d c+d
Sum a+c b+d a+b+c+d

For analysis, we rely on the inner matrix only.

mat3 = StripMatrix[mat2]
a b
(e d)

= An insight: diagram of the 2 x 2 case

The 2 x 2 matrix {{a, b}, {c, d}} contains two row vectors {a, b} and {c, d} that together span a parallelepiped. When
we draw a diagram of this, we find that the parallelepiped is contained in a rectangle with sides (a + ¢) and (b + d)
which are the column sums of the matrix. The following gives a numerical example (a routine defined for this), and
recall that we discuss nonnegative matrices:

ShowDet[{{11, 3}, {4, 9}}1:

{4, 9}

{11, 3}

The total area of the rectangle is given by (a + ¢)(b + d) while the area of the parallelepiped can be found by substrac-
tion of the small rectangles and triangles, thus (a + ¢c)(b+ d) -2 bc -2 * (%ab) -2 % (%cd) = ad - bc. This latter value is

the determinant of the matrix.

1 1
(a+c) (b+d)-2bc-2 (E- ab)—2 (—2- cd) // Simplify
ad-bc

Det[{{a/ b}l {cl d}}]

ad-bc
When we take the ratio of the areas cr = (ad - bc) / ((a + ¢)(b + d)) then we find a number between -1 and 1.

Note also that the determinant ad - bc also holds for the dual (transposed) matrix, giving a ratio 77.
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Since it is arbitrary which variable influences the other, a more robust measure is the geometric average v cr = rr. The
numerator remains ad - bc but the denominator becomes v ((a +¢)(b+d)(a+ b)(c+ d)). This gives us a “standardized
volume ratio”.

FullSimplify[CorrelationPr2By2[mat2], Assumptions » {a 2 0, b 20, ¢ 2 0, d 2 0}]

ad-bc
Va+b)(a+o)(b+d)(c+d)

We can easily check that a diagonal matrix with » = ¢ = 0 gives outcome +1 and with @ = d = 0 gives outcome -1.
Nominal data have no natural order, but one cannot avoid an order of presentation and the sign of the correlation in this

case reflects that.

m Statistical independence means zero correlation

As might already have been obvious from the properties of determinants, algebraic independence means that this
measure shows zero association. The following routine constructs a matrix by multiplying the marginals. We can
multiply with the total number of observations.

mat4 = PrTable[t, p] n

(npt n(l-p)t )
np(l-n n(l-p)-09

FullSimplify[CorrelationPr2By2[mat4], Assumptions -» {t 2 0, p 2 0}]

0

Next step: square matrices

The 2 x 2 case can easily be extended to the n x n case. The determinant is only defined for square matrices. We
directly get a measure if we apply the paradigm that we put the determinant in the numerator and the square root of the
products of the border sums in the denominator.

In normalizing a matrix with the products of sums of columns and rows, it may be noted that the latter relate to determi-
nants of diagonal matrices. Let 4 be any matrix. Let detr(4) = det(diag(4 1)) and detc(4) = det(diag(4’ 1)). These detr
and detc are just the products of the diagonals but there may be an advantage to write them in this manner. The determi-
nant of a normalized matrix can be resolved in subterms using the properties of the determinant with respect to multipli-
cations of rows and columns. The suggested measure for square matrice M then gives det(M) / V detr(M) detc(M) .

The case n = 3 is already a big deviation from »n = 2. The following example is from Mood & Graybill (1963:325).
Given the categories, and possibly an implied order related to the way of presentation, one might interprete the negative
association as “the more capable the less poorly clothed”. The correlation measure shows little overall association
though (note the emphasis on “overall”).

"Dull" "Intelligent" "Very Capable"
£5 = "Very well clothed" 81 322 233 .
maes = "Well clothed" 141 457 153 ’

"Poorly clothed" 127 163 48
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SquareMatrixNormedDet[Take [mat5, -3, -3]] // N

—0.0285548

The low overall association does not preclude that there might be some stronger association when we aggregate over
subgroups. However, in that case we need a theory that can handle m x n matrices.

mat6 = mat5 . Transpose[{{1, O, O, O}, {O, 1, 1, 0}, {O, O, O, 1}}]

Null Dull + Intelligent Very Capable
Very well clothed 403 233

Well clothed 598 153

Poorly clothed 290 48

SquareMatrixNormedDet[Take[mat6, -3, -2]] // N

SquareMatrixNormedDet:dim : Must be a n by n matrix More. ..

Next step: m x n matrices

Take an arbitrary m x n contingency table, say 4 € R™", not necessarily integers. With f[x] = 4 x, we have f: R” - R™.
A property in linear algebra is that if S is a subset of R” with Volume[S] then Volume[/[S]] = Sqrt[det[4"A4]]
Volume[S]. Hence Sqrt[det[A".A]] gives a volume ratio. For a problem like the hat shops, one can interprete f'as taking
combinations of the nominal categories, where a combination is not quite an addition (though it is in linear algebra).
Thus there is an interpretation that makes the volume ratio an interpretable summary of association. Note that there is
also a dimensionality adjustment, since a 2D surface has zero 3D volume; however, each space has a unit metric, e.g. as
1 m? or 1 m>.

To make the measure robust we include the following: (1) 4 is normalized by dividing column-wise and row-wise by the
square roots of the sums of the columns and rows respectively, (2) of 4.4 and 4.4’ we take the one with lower size,
since the larger one will give a zero determinant. It makes sense to consider only the smaller matrix since all variation in
the higher dimension is only relevant with respect to the smaller dimension.

Hence: let M be the m x n contingency table and m = n. The suggested VolumeRatio or NominalCorrelation measure is

r= Sqrt[det[4'A]] with A = Normalized[M]
PM 1. For normalization, let dr = diag[M.1] and dc = diag[1'.M] with diag[...] the diagonal matrix. Then 4 = dr’% M
de™* . We can check that if M is square, then the m % n measure reduces to the measure already defined for square
measures, with the only loss of the sign (due to the square root of the squares). PM 2. Note that this is a special kind of
normalization. Repeated application results into different values. PM 3. Given that we are still considering nonnegative
matrices, the only condition for the division would seem to be that every row or column contains at least one non-zero
element. A row or column with only zero’s would cause the determinant to be zero too so that division can be left out of
consideration. It might be too simple to merely drop such a row or column. PM 4. For a calculation procedure, it seems
most efficient to first check the diagonal. Only for zero elements on the diagonal it is necessary to check whether also
the row or column are all zero. PM 5. In OLS the coefficient of determination relates to the correlation between
explained variable y and explanation . In this present case for nominal data we consider an overall correlation. See
Appendix C.

We now can tackle above case.
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NominalCorrelation[Take[mat6, -3, -2]] // N

0.208759

Finally ny x np x ... X n,

= In general

Let us take x; as nominal data, i = 1, ..., k, and let n; be the number of nominal categories in the i variable, then a
contingency matrix M is of size ny X ny % ... X ny. When we can define an association measure r; ; between two variables
then we can collect all of those in a k X k correlation matrix R. Subsequently, we can define an overal correlation as R =
fIR]. For this f, we best take the highest value of any multiple correlation in the data.

For nominal data, the crux is to find a good 7; ;. The relation between two variables x; and x; can be considered in two
ways. (1) One way is to sum out all other variables, giving S = M; ;, the border matrix of x; and x;. It may well be that
some third variable in some category has most influence, but when we consider only two variables then the influence of
the other variables and the manner of influence might be considered to no longer apply. (2) The other approach is to
hold that all variation in the submatrices that generate the border matrix is important too. Consider all matrices S,
=M, j(p) used in the summing procedure to create S = M; ; = Z;[i’{] M; j(p) and note thatp = 1, ..., n[i, j] = ny X ny x ...
X ni / (n; * n;). With our measure r on an arbitrary m X n contingency table, we determine the r, for each §,, and
determine a weighted average 7, using the total number of observations in S, as the weight. We thus distinguish
between aggregating correlations for the same two variables given a total border sum (for which we take the weighted
average) and aggregating correlations for & variables (for which we take the maximal value of any multiple correlation).
Each method has its own reason.

m Using bordersums

Reconsider the shop case, its dimensions (1) Shop, (2) Colour and (3) Fitness, and its border matrices. For example, the
border matrix for Shop versus Colour (the first two dimensions) is created by summing over Fitness (the third
dimension).

TableForm[mat = {{{5, 1}, {8, 2}}, {{2, 8}, {1, 5}}},
TableHeadings - {{"Shopl", "Shop2"}, {"Green", "Blue"} , {"Fit", "No fit"}}]

Green Blue
Fit 5 8
Shopl Nofit 1 2
Fit 2 1
Shop2 Nofit 8 5

BorderMatrices[mat]

15 6 10 13 13 3 5 3 7 9
{u, }*(10 ] ),{, }e(3 13),{, }e(g 7]}

When we use only these border matrices to determine the association between the variables then we neglect the varia-
tion that is in the submatrices. Application of the NominalCorrelation measure to these bordermatrices gives the ele-
ments of the total correlation matrix.
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nc[bm, Mat] = NominalCorrelationMatrix[mat, Method -» BorderMatrices]

1
4
1

oo|— oo|unn

[N
—_

1
B
By default, MultipleSquared[mat] only considers the maximal multiple correlation in this correlation matrix.

nc[mrs, bm] = {Correlation » (MultipleRSquared[nc[bm, Mat]] // Sgqrt // N)}

{Correlation — 0.648564}

An alternative is to take the average of all multiple correlations. One may experiment with such functions but it will be

noted quickly that a single high correlation within a block of data might be sufficient to say that there is high correlation
within that data.

MultipleRSquared[nc[bm, Mat], Function -» Average] // Sqrt // N

0.540495
PM. Note the outcome of this alternative measure of overall correlation:

nc[Det, bm] = {Correlation » ((1 - Det[nc[bm, Mat]]) // Sgrt // N)}

{Correlation - 0.655506}

m Using inner submatrices

When we want to account for the variation in the inner submatrices, then we can determine all submatrices that are used
in the sum for a border matrix, determine each separate VolumeRatio, and then add these outcomes. It will be sensible
in this addition to use the weights given by the numbers of observations in each submatrix. Note that there is an element
of arbitrariness in using the weighted sum. We might also weigh e.g. the squared measures of association, or use a
geometric average, or take the maximal value, and so on. For the time being, the simple weighted average seems wise. It
will also be instructive to see how the procedure works. In the following, the "VR" stands for the VolumeRatio measure,
i.e. the NominalCorrelation, and the "Add" stands for taking the weighted sum.

NominalCorrelationMatrix[mat, Method - Show]

1 Add[{VR[(g f)]VR[(é i)]}] Add[{VR[(z ;)]VR[(? i)]}]
sadfvr(5 b5 Sl a3 5 b7 S
sl Jbvel(y S sl vl SN

Actually doing the calculation gives this correlation matrix.

nc[All, Mat] = NominalCorrelationMatrix[mat, Method -» All] // N

1. 0.221917  0.61807
0.221917 1. 0.0413449
0.61807  0.0413449 1.
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In this numerical example, using all variation in the submatrices, the total measure appears to be no different from the
one using only the border matrices.

nc[mrs, All] = {Correlation » (MultipleRSquared[nc[All, Mat]] // Sqgrt // N)}

{Correlation - 0.648564}
PM. Note the outcome of this alternative measure of overall correlation.

nc[Det, All] = {Correlation » ((1 - Det[nc[All, Mat]]) // Sqgrt // N)}

{Correlation — 0.649327}

= Review

We calculated the nominal correlations using both the border matrices or all submatrices, and using only the maximal
multiple RSquared or the determinant measure. The following table collects above results in a summary overview.
heading = TableHeadings - {{mrs, Det}, {bm, All}};

InsideTable[Set, nc, heading]

InsideTable[Show, Correlation]

bm All
mrs 0.648564 0.648564
Det 0.655506 0.649327

It appears that the Det measure is more sensitive to the use of the inner submatrices, while the maximal RSquared is not
affected.

m The default

As already shown above, the default definition uses the inner submatrices and the maximal Multiple RSquared.

NominalCorrelation[mat] // N

0.648564

See Appendix E for an example in higher dimensions. See Appendix F for a note on the Frobenius theorems on

nonnegative (contingency) matrices. See Appendix G for a note on causality, and how this paper originated. See
Appendix H for a list of the routines used here.
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Conclusion

The crux in this development lies in the m X n case. It covers the lower orders, and it forms the core for the n; x ny x ...
x n; generalization. Since the m x n case has a sound interpretation, the overall interpretation is sound. There is an
element of arbitrariness in the methods of aggregation in the upward generalization. Namely there is the use of a
weighted average for submatrices of pairwise correlations, and the use of the maximal element of multiple correlations
in the total correlation matrix. Though arbitrary as this seems, each step has merit, and as a standard it is well defined.
The link to Cramer’s V in the 2 x 2 case seems to be only a happenstance, though additional research might show a
deeper cause.

The suggested measure has a useful interpretation as the volume ratio, with values between 0 and 1. Next to the y?
scores and tests currently in use, the suggested measure has the added value of indicating the overall strength of associa-
tion. That a deviation from independence is statistically significant or not, at some level of significance, need not be the
most meaningful message when researching an issue.

Given this measure of correlation, we must say (and we can do it now, with some relief that we can do so) that the
normal caveats apply, i.e. that correlation is no causation, and that correlation itself doesn’t say much about the actual
model.

Appendix A: Measures of association mentioned by common resources

There seems to be no standard and satisfactory measure of association for nominal data. Apart from the official books
mentioned in the list of references, like Mood & Graybill (1963) and Kleinbaum et al. (2003), also the resources on the
internet mentioned there, notably Becker (1999), Garson (2007) and Losh (2004), have been used to find measures for
the association in nominal data. See Cool, Th. (1999, 2001), “The Economics Pack, Applications for Mathematica”, and
the website update, for an implementation of the LLR and Pearson tests, in the CrossTable package, and for some
implementations in the Life Sciences packages. The following measures have been found.

(1) Fisher’s exact test does a test and does not provide a measure of association. Similarly for the likelihood ratio test
and the Pearson approximation. The measure then is yes/no with respect to passing the test.

(2) The Odds Ratio depends upon direction (column-wise versus row-wise) and does not seem to be generalizable. For
the 2 by 2 table, taking the default column direction:

OddsRatio[]

ad
bc

(3) “The tetrachoric correlation coefficient is essentially the Pearson product-moment correlation coefficient between
the row and column variables, their values for each observation being taken as 0 or 1 depending on the category it falls

into”

(4) Phi (Cramer’s V in non-square tables): “Also in 2-by-2 tables, phi is identical to the correlation coefficient. In larger
tables, where phi may be greater than 1.0, there is no simple intuitive interpretation, which is a reason why phi is often
used only for 2-by-2 tables.” (Garson (2007))
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PM 4.1. The statement “Also in 2-by-2 tables, phi is identical to the correlation coefficient” is confusing since that
correlation coefficient is not clearly defined for nominal data. As with the "tetrachoric" measure, one takes {1, 0}
assignments to the nominal values, but are these also the values for Phi ?

PM 4.2. There are different ways to determine a y? value. The Pearson test statistic is (o - t)?/¢ with o the observed
and ¢ the theoretical frequency. For a 2 by 2 table the theoretical frequency might come from the hypothesis of indepen-
dence. Both other hypotheses are possible too.

PM 4.3 Cramer’s V is the most useful of all these possible measures. Yet its interpretation is the y? from the hypothesis
of statistical independence, and one wonders whether this captures the intuition of correlation as given by the real
variables.

Cramer’s V, defined for a m x n matrix, is the square root of the Pearson y? value divided by the sample size p times g,
where ¢ is the smaller of (m - 1) and (7 - 1). Thus V=V x2 / (p¢q) . For a 2 x 2 case we find ¢ = 1, and then V reduces
to Phi (that always takes ¢ = 1).

See Appendix B for a longer discussion.

(5) The Contingency Coefficient, Pearson’s C = SQRT[Xz/(X2 +n)]. “There is no easily intuited interpretation of C or

C*, though C* may be viewed as the association between two variables as a percentage of their maximum possible
variation. Pearson viewed C as a nominal approximation of Pearsonian correlation r.” (Garson (2007))

(6) The Uncertainty Coefficient, UC or Theil’s U - an asymmetric measure.
(7) Hoeffding’s Dependence Coefficients - not looked into.

(8) Eta is an asymmetric correlation coefficient, and its dependent variable would be interval scaled.
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Appendix B: Relation to the y? measure

= In general

A standard procedure in the analysis of contingency tables is to perform the Pearson test on independence, which is an
approximation of the log-likelihood ratio test. Independence arises when the cells in the matrix are mere products of the
marginals, given in the border sums. With o the observed data and ¢ the theoretical frequencies, derived from those
products given by the hypothesis of independence, the Pearson test statistic is X (o — #)? / t. When we introduce
additional assumptions on the distribution then we can perform a test. A possible assumption is a multinomial distribu-
tion and for larger numbers this gets closer to the multivariate normal, such that the Pearson test statistic would have a
xdistribution. Mood & Graybill (1963:314) clarify the procedure: “In casting about a test which may be used when the
sample is not large, we may inquire how it is that a test criterion comes to have a unique distribution for large samples
when the distribution actually depends on unknown parameters which may have any values in certain ranges. The
answer is that the parameters are not really unknown; they can be estimated, and their estimates approach their true
values as the sample size increases.” The routine Test in The Economics Pack contains the Pearson y? test and explains
the various intermediate steps. In output, the rule Do — Accept | Reject expresses whether the hypothesis of indepen-
dence is accepted or rejected at the stated significance level. When we simplify the output of this routine then it appears
that there are -1. terms that are reals and better should be treated as integers; this replacement is not done in the part that
is printed or that is contained within some expressions.
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m The 2 x 2 case

test = Test[Chi2, Pearson, {{a, b}, {c, d}}] /.
Times[-1., x_ ] » Times[-1, x] // Simplify

Pearson::consis : The o and t input may not add up to the same

Observed
b
d
Theoretical
(a+b) (a+c) (a+b) (b+d)
a+b+c+d a+b+c+d
(a+c) (c+d) (b+d) (c+d)
a+b+c+d a+b+c+d

Pearson (0 — t)"2 / t

1. (a+b) (a+c) \2 L. (a+b) (b+d) \2
(a+betd) (a== 7220 ) (atbterd) (h-—"F7 2 )

(a+b) (a+c) (a+b) (b+d)

_ L.(a+c) (c+d) )2

(a+betd) (=5

L. (b+d) (c+d) \2
(atbtetd) (d—— 7200 )

(a+c) (c+d) (b+d) (c+d)
{A Depth — 2, BorderS (a thoex ]
- -
rrayep , bordersums a+c b+d N

(a+b) (b+d) (a+c) (c+d) (a+b) (a+c) (b+d) (c+d)
a+b+c+d

0.5 ( (be=1.ad)? (be=1.ad)? + (ad=1.bc)? (ad=1.be)? )
Chi2PValue -» 1. - 1. Q[O.S, 0., ],

DegreesOfFreedom — 1, Dimensions — {2, 2},

((hc—Lad)z " (be=1.ad)? (ad=1.bc)? (ad=1.bc)? )
Do - If [1. 005, 0., (@+h) (b+d) a+e) (erd) (a+h) (a+c) (brd)(erd) 7 | 0.95, Reject, Accept],
at+b+c+d
a+b c+d

MarginalPr —» {MarginalPr(l) - {

}, MarginalPr(2) — { axe b+d }},

a+b+c+d’ a+b+c+d a+b+c+d’ a+b+c+d

(a+c) (c+d) (b+d) (c+d)
(a+b+c+d)? (a+b+c+d)?

(a+b) (a+c) (a+b) (b+d)
. . . . (a+b+c+d)? (a+b+c+d)?
NumberOfObservations —» a + b + ¢ + d, Partition — {1, 2}, ProbabilityMatrix — [ arore arore ],

SignificanceLevel - 0.05, Test » Pearson, TestStatistic —»

(a+b+c+d)(bc-ad)? }
(a+b)(a+c)(b+d)(c+d)

The key object of interest is the test statistic. We can select it from above output and give it a name that expresses its
distribution under the null hypothesis of independence.

chi2 = (TestStatistic /. test)

(a+b+c+d)(bc—ad)?
(a+b)(a+c)(b+d)(c+d)

The most useful existing measure for association in crosstables is Cramer’s V, defined for a m x n matrix, as the square
root of the y? value divided by the sample size p times ¢, where ¢ is the smaller of (m - 1) and (n - 1). Thus V =
Vx?/(pq).Fora2 x2 case we find g = 1, and then V reduces to Phi (that always takes g = 1).

Cramer’s V then is (for the 2 x 2 case):
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Sgrt[chi2 / (NumberOfObservations /. test)]

(bc—ad)
(a+b)(a+c)(b+d)(c+d)

Thinking about association within a 2 x 2 table along this route is not simple and plunges us into the deep waters of
statistical hypothesis testing. We can recognize that the 2 x 2 case has the same form as the suggested measure for
Nominal Correlation, yet, the reasoning behind it is quite different.

m A3 x 3 case

With respect to above 3 x 3 case, Cramer’s V suggests some modest association.

CramersV[Take[mat5, -3, -3]]

0.197584

This CramerV routine has been defined using the Test routine, its results have been stored and are still available. We
find that the hypothesis of independence would be rejected at the standard 5% significance level.

Do /. Results[CramersV]

Reject

Note however this crucial observation, Cool (2001:368) discussing some other examples: “The x? test is sensitive to the
number of observations per degree of freedom. (... When ...) there are more observations per degree of freedom, (...) the
test is stronger. (In the same manner, by increasing the sample size, acceptance tends to turn into rejection, and by
reducing the size, rejection can turn into acceptance.)” Thus a statistically significant deviation from independence in a
x? test does not imply that there would be much of an association.

The Cramer V outcome of 0.197584 differs importantly from the outcome of Nominal Correlation of 0.0285548. There
seems little to be said about this. Different measures, different results. But one cannot evade the impression that Cramer’
s V is too sensitive to the quirks of x? testing.

= A higher dimensional case

Cramer’s V is only defined for m x n matrices. But the x? test can handle higher dimensions. We can run the test on the
hat shop case and find that it tells us little about the amount of association. The hypothesis of independence is rejected
at the 5% significance level. And then ? The x? p-value does not impress as a good measure for association either.
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test = Test[Chi2, Pearson, mat]

Observed

5 8

1 2

2 1

8 5
Theoretical
4 4
4 4
4 4
4 4

Pearson (0 — )2/ t

0.25 4.

2.25 1.

1. 2.25

4. 0.25
16 16

{ArrayDepth - 3, BorderSums — | 16 16 |, Chi2PValue — 0.000107511,
16 16

DegreesOfFreedom — 1, Dimensions — {2, 2, 2}, Do — Reject,
MarginalPr —» {MarginalPr(1) - {0.5, 0.5}, MarginalPr(2) — {0.5, 0.5}, MarginalPr(3) — {0.5, 0.5}},
{0.125, 0.125} {0.125, 0.125})

NumberOfObservations — 32, Partition — {1, 2, 3}, ProbabilityMatrix — ({0‘125’ 0.125) {0125, 0.125)

SignificanceLevel - 0.05, Test » Pearson, TestStatistic —» 15.}

Appendix C: Overall correlation between real variables

= In general

With x; € R” real data vectors, i = 1, ..., k, the correlation matrix R contains the pairwise correlations between x; and x;.
Let R = det[R] the determinant of R and let R;; be that specific co-factor. Then the (squared) multiple correlation

It is not customary to use a measure for overall correlation between real variables, or to summarize the correlation
matrix by one number. However, in the light of the discussion of nominal variables, it is not insensible to do so. A
possible measure is R?= 1 - R. For example, when all variables are uncorrelated then the off-diagonal elements in R are
zero and det[R] = 1, and then we see an overall correlation of R* = 0. Similarly, when two variables are fully correlated
ina2 x2case R={{1, -1}, {-1, 1}} then the determinant is zero and R?> = 1 - det[R] = 1 reflects that overall correla-
tion. However, the choice of R*= 1 - R might be less informative when we are not used to interpreting such values.
Given that we are most accustomed to the (squared) multiple correlation coefficient, we can consider the whole series
(R?),; = (Rz)i,z,“,k =1-R/R;;,i=1, .., k, and take the maximal value. In the case that for one i that R, ; =1 then this
again collapses to 1 - R. It seems to make most sense to say that the correlation within a block of data is given by the
maximal value that we can find in it. Of course, we might consider a normal or geometric average. Considering the
options it seems that using R?>= 1 - R or such averages lose out against simply taking the maximal value.
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m Derivation of 0 < det[R] < 1

As said, a possible measure for overall correlation is R*= 1 - R where R = det[R]. Whatever we said about taking the
maximal multiple correlation as the superior measure, there can still be value in just this determinant measure. The
measure is valid if we can show that 0 < R>=1-R < 1 or 0 < det[R] < 1.

The correlation matrix is by definition a symmetric and positive semi-definite matrix, so that det{R] = 0. What about the
upper bound, such that R?= 1 - R = 0 or det[R] < 1 ? It took me a moment to find the following proof. Since R is a
symmetric and positive semi-definite matrix, its determinant is given by the product of all its (nonnegative) eigenvalues
A;, while the sum of those is also given by the trace of the diagonal, i.e. the dimension, see Johnston (1972:105-109).
Thus we have det[R] = A,... A; while k= A+ ... + A; and A; = 0. For singular R we trivially have R = 0. For regular R
and k£ < 2 we trivially have 0 < R < 1. For example for £ = 2, we know that the correlation » between two variables
satisfies -1 < » < 1 and the determinant is:

Det[{{1, r}, {r, 1}}]

1-7
At issue is only regular R and k > 2. A step in the proof is that the maximal determinant is given by A; = A. We might
show this by calculus, maximizing R subject to the given constraints, but it is simpler to assume that all eigenvalues are
at their maximal value except for the first two. Then we get R = 1; A, A"2. Since the sum is given, the difference

between A and A;is reflected in Ay, thus R = (A - x) (A + x) 1”72 = (A? - ¥?) A"~2 = A" - X, where X is a nonnegative
amount. Thus the determinant is maximal when x =0, and then all ; = A. Then alsok=kA,orA=1,and R=1.

This proof can be supported by a drawing in the 2D plane where 2 = A;+ A, and their product finds a maximumin A;=
A; =1, meaning that » = 0.

Hence, an option is to use R = Sqrt[1 - det[R]]. Yet its usefulness must show in practice.

PM 1. Det[R] is also used in tests on (multi-) collinearity (Farrar-Glauber). PM 2. Testing that all correlations are zero
gives a test statistic - n Log[det[R]]. PM 3. It can also be mentioned that there are other measures for overall correla-
tion, notably in the area of entropy. This however seems to lead too far from the correlation paradigm.

= Numerical example: Klein | model

The Klein I model is a good example, see Theil (1971:432). Data and regressions can be found at UCLA ATS (2007).
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lis =
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941

Partition[TextToMatrix["

39.
41.
45.
49.
50.
52.
55.
56.
57.
57.
55.
50.
45.
46.
48.
51.
57.
58.
57.
61.
65.
69.

{year,

8

N OO U1l 9N WY Oy OO WDNMEFHF OoOOD OV

12.7 28.8 2.
12.4 25.5-0.
16.9 29.3 1.
18.4 34.1 5.
19.4 33.9 3.
20.1 35.4 5.
19.6 37.4 5.
19.8 37.9 4.
21.1 39.2 3.
21.7 41.3 5.
15.6 37.9 1.
11.4 34.5-3.
7.0 29.0-6.2
11.2 28.5-5.
12.3 30.6-3.
14.0 33.2-1.
17.6 36.8 2.
17.3 41.0 2.
15.3 38.2-1.
19.0 41.6 1.
21.1 45.0 3.
23.5 53.3 4.

7

w» O Rr ODNMNOEFE ODNON

W W wwwor wonm®Rr

cons, profit, wpriv,

180.1 44.9 2.
182.8 45.6 2.
182.6 50.1 2
184.5 57.2 2.
189.7 57.1 3.
192.7 61.0 3.
197.8 64.0 3.
203.4 64.4 3
207.6 64.5 3.
210.6 67.0 4.
215.7 61.2 4.
216.7 53.4 4.
213.3 44.3 5.3
207.1 45.1 5.
202.0 49.7 6.
199.0 54.4 6.
197.7 62.7 7.
199.8 65.0 6.
201.8 60.9 7.
199.9 69.5 7.
201.2 75.7 8.
204.5 88.4 8.
invest,

W NO JdJOo WNKEF VW WVONNDN

U0 O 0 N4 N b B OO

2.4 3.4
3.9 7.7
3.2 3.9
2.8 4.7
3.5 3.8
3.3 5.5
3.3 7.0
4.0 6.7
4.2 4.2
4.1 4.0
5.2 7.7
5.9 7.5
4.9 8.3
3.7 5.4
4.0 6.8
4.4 7.2
2.9 8.3
4.3 6.7
5.3 7.4
6.6 8.9
7.4 9.6
13.8 11.6", Number], 10];

klag, xprod, wgov, govt, taxes} = Transpose[lis] ;

Currently, we just take the example of the regression of consumption on profits, lagged profits and the total wage sum

(table 16.4). According to the references, the OLS estimate gives an R-Square of 0.9810. We can verify this as follows:

dat = {cons, profit, Lag[profit], wpriv + wgov} // Transpose // Rest;

cm =

1.

0.715338

CorrelationMatrix[dat]

0.65205

0.982703

0.715338 0.65205

1.

0.769128

0.769128
1.
0.634156 0.579332

0.982703
0.634156
0.579332

1.

The routine MultipleRSquared[R, i] calculates RSquared[i] =1 - R/ R; ;. Taking i = 1 gives us the squared multiple

correlation coefficient of the OLS regression of the first variable, consumption, on the other three variables including a

constant. The value we get fits the one reported in the literature.

MultipleRSquared[cm,

0.981008

1]

If we want to summarize the correlation matrix into one number, we might consider 1 - det[cm]. Note that the following

still is a squared value.

1 - Det[cm]

0.995522
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However, since we are more used to consider multiple correlations, the routine MultipleSquared[mat] by default puts
out the maximal value of those. The routine allows the option Function — ... to use on the list of multiple correlations
and the default value is Function - Max.

MultipleRSquared[cm]

0.981008
PM. While evaluating MultipleRSquared[mat] the routine stores all possible RSquared[i] in MultipleRSquared|List].

MultipleRSquared[List]

{0.981008, 0.719033, 0.627152, 0.976314}

Appendix D: Other relations for the 2 x 2 case

m 1. Just recall

This is just to recall that the 2 x 2 case is generated both by the Volume Ratio measure and Cramer’s V.

m 2. Epidemiology

However, in epidemiology, the following approach is possible. Let pg =a /(a + ¢), py = b/ (b + d) and p the pooled
probability found in the sum column. Then a test statistic for py = p; differs from the VolumeRatio measure only in
VNwithN=a+b+c+d.

0 -pl
P P /.
1 1
Ve -p) (7 + 55)

{p0 » a/(a+c), pl » b/ (b+d), p > (a+b)/ (a+b+c+d)} ;

FullSimplify[%, Assumptions -» {a 2 0, b 2 0, ¢ 2 0, d 2 0}]

ad-bc

[ (a+b) (a+c) (b+d) (c+d)
a+b+c+d

= 3. Assigning values {-1, 1}

For a 2 x 2 table, the suggested measure collapses to the Pearson coefficient of correlation when the nominal values are
replaced by {1, -1}.

Note that values {1, 0} are allowed in logic and that operations are defined on them, see Colignatus (2007a).

(i) A variable gets assigned the values {1, -1} rather than {1, 0} or True | False as in logic. A reason to avoid zero is that
it might needlessly destroy information. A reason to use 1 versus -1 is that equal numbers of observations might be
thought to balance each other, with an average outcome of zero.
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(i1) The data points {1, 1}, {1, -1}, {-1, 1}, {-1, -1} generate x = {1, 1, -1, -1} and y = {1, -1, 1, -1} with frequencies {a,
¢, b, d}. Indeed, we might as well give a lists of {1, 1}, b lists of {1, -1} etcetera.

(iii) Thus we get the normal correlation between x = {1, 1, -1, -1} and y = {1, -1, 1, -1} with frequencies {q, c, b, d}.

(iv) Using formal parameters {a, ¢, b, d} and simplification shows that the determinant is used in the numerator and the
row sums and column sums in the denominator. The values 1 and -1 assigned to the nominal data do not occur any
more, at least, not in an obvious manner.

It may be mentioned that it was this relation that caused the author to investigate the issue into the direction that resulted
into the general measure suggested above. This case was generalized first to n X n, then m x n, then n; x ny x ... X ng
(and the latter first to bordermatrices and then to the inner submatrices).

Appendix E: An example in a higher dimension

The following shows an example of the Nominal Correlation measure in a higher dimension. The example shows that
the algorithm is straightforward. It also indicates that, especially considering higher dimensions, a weighted average is a
sensible choice.

mat2 = Table[i + 103 + 100k + 1000m, {i, 2}, {j, 3}, {k, 4}, {m, 2}]

1111 2111 1121 2121 1131 2131
1211 2211 1221 2221 1231 2231
1311 2311 1321 2321 1331 2331
1411 2411 1421 2421 1431 2431
1112 2112 1122 2122 1132 2132
1212 2212 1222 2222 1232 2232
1312 2312 1322 2322 1332 2332
1412 2412 1422 2422 1432 2432

This is the border matrix for dimension 3 and 4 (that should have sizes m =4 and n = 2).

BorderMatrix[mat2, {3, 4}]

6729 12729
7329 13329
7929 13929
8529 14529

These are the 4 by 2 submatrices used in the summation of the border matrix.
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TabledBorderMatrix[mat2, {3, 4}]

Mat

Mat

Mat

Check that it fits.

(% 7/

6729
7329
7929
8529

1111 2111 1121 2121
1211 2211 1221 2221
1311 2311 Mat 1321 2321
1411 2411 1421 2421
1131 2131 1112 2112
1231 2231 1212 2212
1331 2331 Mat 1312 2312
1431 2431 1412 2412
1122 2122 1132 2132
1222 2222 1232 2232
1322 2322 Mat 1332 2332
1422 2422 1432 2432

Add) /. Mat - Identity

12729
13329
13929
14529

These are all the submatrices.
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VolumeRatioMatrix[mat2, Method - Show]
1
VR 1111 1121 1131 VR 2111 2121 2131 VR 1211 1221 1231 VR 2211 2221 22
Add [(1112 1122 1132)] [(2112 2122 2132]] [(1212 1222 1232)] [(2212 2222 22
[VR 1311 1321 1331 VR 2311 2321 2331 VR 1411 1421 1431 VR 2411 2421 24
[(1312 1322 1332)] [(2312 2322 2332)] [(1412 1422 1432 )] [(2412 2422 24
VR 1111 1211 1311 1411 VR 2111 2211 2311 2411 VR 1121 1221 1321 1421
Add [(1112 1212 1312 1412 [(2112 2212 2312 2412)] [(1122 1222 1322 1422]]
[ 2121 2221 2321 2421 VR 1131 1231 1331 1431 VR 2131 2231 2331 2431 ]
[(2122 2222 2322 2422 [(1132 1232 1332 1432 )] [(2132 2232 2332 2432 )]
VR 1111 2111 VR 1211 2211 VR 1311 2311
[(1112 2112 )] [(1212 2212 )] [(1312 2312 )]
VR 1411 2411 VR 1121 2121 VR 1221 2221
Add [( 1412 2412 )] [( 1122 2122 )] [( 1222 2222 )]
[ VR 1321 2321 VR 1421 2421 VR 1131 2131 ]
[( 1322 2322 )] [( 1422 2422 )] [( 1132 2132 )]
VR 1231 2231 VR 1331 2331 VR 1431 2431
[( 1232 2232 )] [( 1332 2332 )] [( 1432 2432 )]
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NominalCorrelationMatrix[mat2] // N

1. 1.42186 x 1075 0.0000194491  0.0000834515
1.42186 %107 1. 0. 0.00136274
0.0000194491 0. 1. 0.0186297

0.0000834515  0.00136274 0.0186297 1.
And the total measure of association comes from taking the determinant from the latter matrix.

MultipleRSquared[%] // Sqrt

0.0186796

Or directly:

NominalCorrelation[mat2] // N

0.0186796

Appendix F: A note on the Frobenius theorems

A contingency matrix is a nonnegative matrix, so that the Frobenius theorems apply. It is not quite clear how the
eigenvectors come into play. There might be a relation here. The Frobenius eigenvalue A = 0 is a real value that is at
least as large as the absolute value of any other (possibly complex) eigenvalue. (Takayama (1974: 375)). Thus det(4) =
Aj... A, < A" and thus, if A > 0 (which is definitely the case when 4 is indecomposable) then the implied Frobenius ratio
measure is FrobRatio(4) = det(4) / A" < 1. It is not clear however how this relates to the notion of the volume ratio.

With square matrix 4, if 4 x = A x for vector x # 0 and scalar A, then we say that A is an eigenvalue and x its eigenvec-
tor. Let = A4 1 the row sums and ¢ = 1' 4 the column sums. Then I' 4 x=A1'xorA=cx/1'x = ¢x* when 1' x # 0,
and x* = x / 1'x a normalized vector. Since 4 and A' have the same eigenvalues, there isalsoay’4 =4y or A =37/ 1.
When x # 0 (everywhere) and in particular x > 0 then there is also the possibility of a change in dimensions such that
D7 '=diag(x)and B=D A D ! suchthat B1=21.

In general det(4) = A;... A,,. Collecting all eigenvalues on the diagonal in A, zero everywhere else, and all eigenvectors
in X (also using spanning vectors for higher multiplicity) then 4 X =X A.

Appendix G: On inference and causality

This discussion originated from considering the links between logic (Colignatus (2007a)) and causality (Pearl (2000)).
Suppose that rain is a cause and wetness of streets is an effect. Is the observation that the streets are wet a good predic-
tor of what was the cause ?

"Observation count" "It rains" "It doesn't rain" "Total"
& "The streets are wet" 25 3 m]
mat = ;
"The streets are not wet" 0 m] m]

"Total" O m] 100
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mat = Headed2DTableSolve[mat]

Observation count It rains It doesn't rain Total
The streets are wet 25 3 28
The streets are not wet 0 72 72
Total 25 75 100

Instead of remembering all these 100 cases either individually or by frequency distribution, the memory processing unit
might save on storage and retrieval costs by adopting a general rule (induction) that “If it rains then the streets are wet”.
This can become a general rule for which we can use a truthtable. The truthtable tests the condition whether the fre-
quency is zero or non-zero, with entries True or False in the table.

In the course of considering these issues, the author noted that the common notion “correlation doesn’t mean causation”
has little use for such nominal data - since there is no standard measure of correlation. But now there is:

CorrelationPr2By2[Take[mat, -3, -3]] // N

0.92582

PM. The author may now continue considering the links between logic and causality. His hypothesis is that causality
cannot be inferred from common statistics and has to do with the model and the order of calculation (time’s arrow). In
logic, there is a difference between implication = and inference . In causal models, there is a difference between
equality == and assignment = (using Mathematica's notation; other notations use = for equality and := for assignment).
What causality is in Nature, inference is in the Mind. The overall umbrella would be the difference between statics and

dynamics.

Appendix H: Routines

This discussion uses The Economics Pack, Cool (2001). The proper routines are all defined with the more technical
term “VolumeRatio” but for statistical usage the term “NominalCorrelation” will be more suitable.

This analysis started out with a small case, clarified and simplified by Mathematica. The subsequent steps in generaliza-
tion benefitted from that testing and prototyping environment as well. The availability of linear algebra routines and
matrix manipulations was essential. The routines rely on symbolic operations. The environment also allowed the quick
creation of user friendly routines, that not only have a clear logical structure but also come with help support and all.
Finally, these routines also form building blocks that can be used immediately within other routines. All in all, there is
yet another reason to thank the makers of Mathematica.

? CorrelationPr2By2

CorrelationPr2By2[{{nll, nl2}, {n2l1, n22}}] gives the measure
of association for a contingency table of two binary nominal variables
CorrelationPr2By2[mat] may also take a 3x3 matrix but then
the borders are seen as sum totals, and dropped
CorrelationPr2By2[Definition, mat] gives the original definition
without simplification based upon the nonnegative values
Let C (cause) be the column variable and E (effect) the row variable. In logic,
the variables take values {1, 0}. Here it is better to take {1, -1} so that
equal numbers of observations give a zero mean. Output then is the normal
Pearson CorrelationPr({1, 1, -1, -1}, {1, -1, 1, -1}, {nll, n21, nl2, n22}].
See SquareMatrixNormedDet for larger {n, n} and VolumeRatio for
{n, m} contingency tables (Cramer's V is in the Chi2 package)
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? SquareMatrixNormedDet

SquareMatrixNormedDet[mat] gives Det[NormalizedMatrix[mat]] for square mat normalized by
Sgrt[rs x cs] where the latter are the products of the row and column sums. See
VolumeRatio. That measure can be simplified for square matrices with a sign retained

for the direction. For 2 by 2 matrices, see CorrelationPr2By2 in Cool Statistics Common’

?NormalizedMatrix

NormalizedMatrix[mat] divides the elements of a n by m matrix by
the squares of the row and column sums. Note that repeated application
doesn't generate the same result. Is primarily used in VolumeRatio

? NominalCorrelation

NominalCorrelation[...] translates into VolumeRatio[...]

?NominalCorrelationMatrix

NominalCorrelationMatrix[...] translates into VolumeRatioMatrix[...]

? VolumeRatio

VolumeRatio[mat] does (1) ma = NormalizedMatrix[mat], (2) m = ma.ma' or m = ma'.ma
whichever has smaller dimensions and nonzero determinant, (3) output Sgrt[Det[m]].
PM. The absolute value of the determinant of real vectors gives the volume of the
parallelepipedum created by those vectors. Let f: Rn -> Rm be defined by matrix
A, so that f[x] = A x, and let S be a subset of Rn, then volume[f[S]] = Sqgrt[Det]|
A'.A]]* volume[S]. Hence Sqgrt[Det[m]] gives a normalized volume ratio. PM. If
mat is a contingency table with nonnegative numbers, for nominal variables, then
VolumeRatio gives a measure of association comparable to a correlation coefficient

VolumeRatio[mat] gives Sqgrt[MultipleRSquared[VolumeRatioMatrix[mat]]] if mat is more-
dimensional (MatrixQ[mat] is false). In that latter case the Method option is passed
on to VolumeRatioMatrix, and the Function option passed on to MultipleRSquared

? VolumeRatioMatrix

VolumeRatioMatrix[mat] for a {nl, ..., nm} matrix gives a m by
m correlation matrix, containing the VolumeRatio[m[ni, nj]] measures of
association. There are three ways to obtain that latter individual measure:
Method -> BorderMatrices sums the other dimensions
Method -> All (default) determines all individual k
by p matrices in the lower dimensions, determines their association,
and gives the sum, weighted by total numbers in those submatrices
Method -> Show shows that latter method

? TabledBorderMatrix

TabledBorderMatrix[mat, {i, j}] decomposes the {i, j} border matrix into the submatrices
that cause its sum value. These submatrices are indicated with label Mat. PM

o

Check the same outcome as BorderMatrix by using (% // Add) /. Mat -> Identity

? MultipleRSquared
MultipleRSquared[mat, i] = 1 - Det[mat] / CoFactor[mat, i, i], and gives R"2[i;
2, ..., i-1, i+1l, ..., n] or the squared multiple correlation coefficient from

the OLS regression of ith (dependent) variable upon the other (independent)
variables, provided that mat is the CorrelationMatrix between all variables
MultipleRSquared[mat] takes a function of values for all i;
such results can be found in MultipleRSquared[List]
Options are Function -> (default Max) and Range -> (default True);
the latter for a test whether mat indeed has values -1 <= # <=1
A special case is Function -> Det, which just returns 1 - Det[mat]
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