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Abstract

Judgement aggregation is a model of social choice where the space of social alter-
natives is the set of consistent truth-valuations (‘judgements’) on a family of logically
interconnected propositions. It is well-known that propositionwise majority voting can
yield logically inconsistent judgements. We show that, for a variety of spaces, proposi-
tionwise majority voting can yield any possible judgement. By considering the geometry
of sub-polytopes of the Hamming cube, we also estimate the number of voters required to
achieve all possible judgements. These results generalize the classic results of McGarvey
(1953) and Stearns (1959).

Let K be a finite set of propositions or ‘properties’. An element x = (xk)k∈K ∈ {±1}K
is called a judgement, and interpreted as an assignment of a truth value of ‘true’ (+1) or
‘false’ (-1) to each proposition. Not all judgements are feasible, because there will be logical
constraints between the propositions (determined by the structure of the underlying decision
problem faced by the voters). Let X ⊆ {±1}K be the set of ‘admissible’ judgements —we refer
to X as a property space. An anonymous profile is a probability measure on X —that is, a
function µ : X−→[0, 1] such that

∑
x∈X µ(x) = 1. (Interpretation: for all x ∈ X , µ(x) is the

proportion of the voters who hold the judgement x). Let ∆(X ) be the set of all anonymous
profiles. Judgement aggregation is the problem of converting a profile µ ∈ ∆(X ) into the
element x ∈ X which best represents the ‘collective will’ of the voters. This problem (with
different terminology) was originally posed by Guilbaud [Gui52], and later investigated by
Wilson [Wil75], Rubinstein and Fishburn [RF86], and Barthelémy and Janowitz [BJ91]. Since
the work of List and Pettit [LP02], there has been an explosion of interest in this area; see List
and Puppe [LP09] for a recent survey of judgement aggregation research.

For example, let A be a finite set of social alternatives. A tournament on A is a complete
antisymmetric relation “≺” over A. A preference order is a transitive tournament (i.e. a linear
ordering) on A. Let K ⊂ A × A contain exactly one of the pairs (a, b) or (b, a) for each
distinct a, b ∈ A. Any x ∈ {±1}K represents a tournament “≺”, where a ≺ b iff xa,b = 1.
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marcuspivato@gmail.com

1



Every tournament on A corresponds to a unique element of {±1}K. Let X pr

A denote the subset
of all elements of {±1}K which correspond to preference orders. Thus, a profile µ ∈ ∆(X pr

A )
represents a group of voters who each assert some preference order over A. In this case, the
goal of judgement aggregation is to distill µ into some ‘collective’ preference order on A —this
is the familiar Arrovian model of preference aggregation.

Propositionwise majority vote is defined as follows. For any µ ∈ ∆(X ), any k ∈ K, let

µ̃k :=
∑

x∈X

µ(x) · xk (1)

be the µ-expected value of coordinate xk. Thus, µ̃k > 0 if and only if a strict majority of voters
assert ‘xk = 1’; whereas µ̃k < 0 if and only if a strict majority of voters assert ‘xk = −1’.
Let ∆∗ (X ) := {µ ∈ ∆(X ); µ̃k 6= 0, ∀k ∈ K} be the set of anonymous profiles where there is
a strict majority supporting either +1 or -1 in each coordinate.1 For any µ ∈ ∆∗ (X ), define
maj(µ) ∈ {±1}K as follows:

for all k ∈ K, majk(µ) :=

{
1 if µ̃k > 0;

−1 if µ̃k < 0.
(2)

Unfortunately, it is quite common to find that maj(µ) 6∈ X —the ‘majority will’ can be in-
consistent with the underlying logical constraints faced by the voters. (In the case of aggre-
gation over X pr

A with |A| ≥ 3, this problem was first observed by Condorcet [Con85].) Let
maj(X ) := {maj(µ) ; µ ∈ ∆∗ (X )}; this describes the set of all majoritarian voting patterns that
can result from some possible profile of judgements. Following McGarvey [McG53], we think of
maj(X ) \ X as the range of possible ‘voting paradoxes’ which can occur under propositionwise
majority vote.

Clearly X ⊆ maj(X ). We say that X is majority consistent if maj(X ) = X . This occurs
only when X satisfies a strong combinatorial/geometric condition, as we new explain. For any
x1,x2,x3 ∈ X , we define med(x1,x2,x3) := maj(µ), where µ ∈ ∆∗ (X ) is defined by µ(xj) = 1

3

for j = 1, 2, 3; this defines a ternary operator on {±1}K, called the median operator. Let
med1(X ) := {med(x,y, z) ; x,y, z ∈ X}. For all n ∈ N, we inductively define medn+1(X ) :=
{med(x,y, z); x,y, z ∈ medn(X )}. This yields an ascending chain X ⊆ med1(X ) ⊆ med2(X ) ⊆

· · ·. Let med∞(X ) :=
∞⋃

n=1

medn(X ) be the median closure of X . We say that X is a median

space if med1(X ) = X (equivalently: med∞(X ) = X ). At the opposite extreme, X is median-

saturating if med∞(X ) = {±1}K. For any X ⊆ {±1}K, we have:

X ⊆ med1(X ) ⊆ maj(X ) ⊆ med∞(X ). (3)

The first two inclusions are obvious by definition. The last inclusion is due to Nehring and
Puppe [NP07]; see also [NP10b].2 It follows that X is majority consistent if and only if X is a

1Usually, judgement aggregation is considered on all of ∆(X ). However, we will confine our attention to
profiles in ∆∗ (X ) for expositional simplicity. (If the set of voters is large (respectively odd), then a profile in
∆(X ) \ ∆∗ (X ) is highly unlikely (respectively impossible) anyways.)

2The close relationship between the median operator and majoritarian consensus on median graphs and
median lattices had earlier been explored by [Gui52, BJ91, MMP00] and others.
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median space. If X is not a median space, then eqn.(3) is is useful because it is relatively easy
to compute med∞(X ), as we now explain.

Let J ⊆ K and let w ∈ {±1}J ; we say that w is a word (or sometimes, J -word) and call J
the support of w, denoted supp (w). If I ⊆ J and v ∈ {±1}I , then we write v ⊑ w if vi = wi

for all i ∈ I. We define |w| := |J |. We say w is an X -forbidden word if, for all x ∈ X , we have
w 6⊑ x. Let W2(X ) be the set all X -forbidden words of length 2. We have:

Proposition 1.1 Let X ⊆ {±1}K.

(a) med∞(X ) :=
{
x ∈ {±1}K ; w 6❁ x, ∀ w ∈ W2(X )

}
.

(b) In particular, X is median-saturating if and only if W2(X ) = ∅.

(The proof of this and all other results are in Appendix A at the end of the paper.)

Example 1.2. Let N be a set and let K := {(n,m) ∈ N ×N ; n 6= m}; then any x ∈ {±1}K
represents a binary relation “�” on N such that n � m if and only if xn,m = 1. Let
X ⊂ {±1}K be any space of complete binary relations. Then W2(X ) 6= ∅, because for any
x ∈ X and (n,m) ∈ K, we cannot have both xn,m = −1 and xm,n = −1 (by completeness).
Thus, med∞(X ) 6= {±1}K. ♦

Given a property space X ⊆ {±1}K, Proposition 1.1 and eqn.(3) raise the question: is

maj(X ) = med∞(X )? (4)

Clearly, if X is a median space, then eqn.(3) implies that maj(X ) = med∞(X ). At the other
end of the spectrum, McGarvey [McG53] showed that maj(X pr

A ) = {±1}K whenever |A| ≥ 3;
this automatically implies that maj(X pr

A ) = med∞(X pr

A ). Shelah [She09] has recently extended
McGarvey’s result to the case when X represents any collection of tournaments on A which is
invariant under vertex permutations (see Proposition 3.5 below).3

Question (4) appears to be difficult to answer in full generality. We will thus focus on
the special case when equation (4) holds and X is median-saturating —in other words, when
maj(X ) = {±1}K. In this case, we say that X is McGarvey.

If X is McGarvey, then every conceivable ‘voting paradox’ can be obtained through propo-
sitionwise majority voting on X . The McGarvey property is also useful in establishing other
results about X . For example, Nehring, Pivato and Puppe [NPP10] consider other judgement
aggregation rules on X based on ‘Condorcet efficiency’ (a generalization of the ‘Condorcet prin-
ciple’ of preference aggregation). The McGarvey property of certain property spaces is part of
the reason that Condorcet efficient judgement aggregation can be quite indeterminate on those
spaces.

The central question of this paper is: What property spaces are McGarvey? Let conv(X )
denote the convex hull of X (seen as a subset of RK), and let int [conv (X )] denote its topological
interior. Let 0 := (0, 0, . . . , 0) ∈ RK. For any x ∈ {±1}K, the open orthant of x is the open set
Ox := {r ∈ RK; sign(rk) = xk, ∀ k ∈ K}. Most of the results in this paper are based on the
following characterization of McGarvey spaces:

3Shelah [She09] also proves other, more general results about maj(X ) when X represents a symmetric set of
tournaments.
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Theorem 1.3 Let X ⊂ {±1}K. Then

(a) maj(X ) =
{
x ∈ {±1}K ; Ox ∩ conv(X ) 6= ∅

}
.

(b) The following are equivalent:

(b1) X is McGarvey;

(b2) 0 ∈ int [conv (X )];

(b3) For every nonzero z ∈ RK, there exists x ∈ X with z • x > 0.

(b4) span(X ) = RK, and 0 is a strictly positive convex combination of elements of X .

(b5) cone(X ) = RK.

Conditions (b2) and (b5) locate the McGarvey problem in the theory of convex polytopes. In
applications, falsifying (b3) is often the easiest way to show that X is not McGarvey, while
(b4) is a handy method to show that X is McGarvey (in practice, most judgement aggregation
problems satisfy the hypothesis span(X ) = RK.) Condition (b5) implies that, not only can
we realize any x ∈ {±1}K by a majority vote, but further, we can realize any given ratio
of supermajorities supporting the various coordinates x; this is useful in the study of certain
‘supermajoritarian efficient’ judgement aggregation rules [NP10a].

The rest of this paper is organized as follows. In §2, we ask how small X can be while
still being McGarvey, or how large it can be without being McGarvey. In §3, we characterize
the McGarvey property for judgement aggregation spaces with many symmetries; this includes
spaces of preference relations, equivalence relations, and connected graphs, and also leads to a
simpler proof of a recent result of Shelah [She09]. In Sections 4, 5 and 6 we consider the Mc-
Garvey problem for comprehensive spaces, truth-functional aggregation spaces, and convexity
spaces, respectively. Finally, in §7, we consider a problem originally studied by Stearns [Ste59]:
how many voters are required to realize the McGarvey property of a space X ? We show that
several important families of aggregation spaces only require around 2K voters. However, us-
ing a result of Alon and Vũ [AV97], we also show that the required number of voters can be
extremely large for some McGarvey spaces.

Throughout this paper, we make the following assumption without loss of generality: for
all k ∈ K, there exist x,x′ ∈ X such that xk 6= x′

k (otherwise one can just remove k from K).
We will also assume |K| ≥ 3 (otherwise the McGarvey problem is trivial).

2 Minimal McGarvey spaces and maximal non-McGarvey

spaces

If X ⊆ Y ⊆ {±1}K, and X is McGarvey, then clearly Y is also McGarvey. It is therefore
interesting to study ‘minimal’ McGarvey spaces. We say that X is minimal McGarvey if X is
McGarvey, but no proper subset of X is McGarvey. For the next result and the rest of the
paper, we define K := |K|.

Proposition 2.1 (a) Suppose K ≥ 3. Then min{|X |; X ⊂ {±1}K is McGarvey} =
K + 1.
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(b) max{|X |; X ⊂ {±1}K is minimal McGarvey} = 2K.

Example 2.2. Suppose K ≥ 3. For all j ∈ K, define χ
j ∈ {±1}K by χj

j := 1, while

χj
k := −1 for all k ∈ K \ {j}. Define X := {±χ

j}j∈K. Then |X | = 2K. In Appendix A, we
show that X is a minimal McGarvey space. In particular, if K = 3, then X = {(1, 1,−1),
(1,−1, 1), (−1, 1, 1), (−1,−1, 1), (−1, 1,−1), (1,−1,−1)} is a minimal McGarvey set
with six elements. Let A := {a, b, c} and identify K with the set {(a, b), (b, c), (c, a)}; then
X = X pr

A .

(Another class of minimal McGarvey spaces is described in Appendix B.) ♦

By comparison, Carathéodory’s theorem says that if Y ⊂ {±1}K is a minimal set with 0 ∈
conv(Y), then 2 ≤ |Y| ≤ K + 1. The requirement that 0 be in the interior of conv(Y) instead
entails K + 1 ≤ |Y| ≤ 2K; this shows that the interiority condition is quite substantive.

For further comparison, we say that X is minimal median-saturating if X is median-saturating,
but no proper subset of X is median-saturating.

Proposition 2.3 Let K ∈ N.

(a) ⌈log2(K)⌉ + 1 ≤ min{|X |; X ⊆ {±1}K is median-saturating} ≤ 2⌈log2(K)⌉ + 2.

(b) If K ≥ 4, then K(K − 1)/2 ≤ max{|X |; X ⊆ {±1}K is minimal median-
saturating} ≤ 2K(K − 1).

A comparison of Propositions 2.1 and 2.3 indicates how median saturation is substantially
weaker than the McGarvey property.

Proposition 2.4 (a) max{|X |; X ⊂ {±1}K is not McGarvey} = 3
4
2K.

(b) max{|X |; X ⊂ {±1}K is not median-saturating} = 3
4
2K.

Example 2.5. Let K = {1, 2, . . . , K} and let X :=
{
x ∈ {±1}K ; (x1, x2) 6= (−1,−1)

}
. Then

X is a median space (hence, neither McGarvey nor median-saturating) but |X | = 3
4
2K .

(Also, note that 0 ∈ conv(X ) and int [conv (X )] 6= ∅; this shows that the McGarvey property
is stronger than the conjunction of these two conditions.) ♦

Propositions 2.1 and 2.4 show that the McGarvey property places only very loose constraints
on the cardinality of X . Much more important is how ‘dispersed’ X is as a subset of {±1}K.

3 Symmetric property spaces

For any X ⊂ RK, the symmetry group of X is the set ΓX of all invertible linear transformations
γ : RK−→RK such that γ(X ) = X . Let Fix (ΓX ) :=

{
r ∈ RK ; γ(r) = r, ∀ γ ∈ Γ

}
. For

example, 0 ∈ Fix (ΓX ), because γ(0) = 0 for any linear transformation γ : RK−→RK.

Proposition 3.1 Let X ⊂ {±1}K and suppose span(X ) = RK.
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(a) If Fix (ΓX ) = {0}, then X is McGarvey.

(b) In particular, if −X = X , then X is McGarvey.

Clearly, X cannot be McGarvey unless span(X ) = RK. One advantage of Proposition 3.1 over
Theorem 1.3(b2) is that it is generally easier to verify that span(X ) = RK than it is to verify
that 0 ∈ int [conv (X )]. For instance, the next result is often sufficient.

Lemma 3.2 Let X ⊆ {±1}K. Suppose that, for every j ∈ K, there exist x,y ∈ X such that
xj 6= yj, but xk = yk for all k ∈ K \ {j}. Then int [conv (X )] 6= ∅, and thus span(X ) = RK.

Example 3.3. (Preference aggregation) As discussed in the introduction, let A be a set with
|A| ≥ 3, and let K ⊂ A × A be a subset containing exactly one of (a, b) or (b, a) for each
a 6= b ∈ A, so that {±1}K represents the set of all tournaments on A. Let X pr

A ⊂ {±1}K
be the space of preference orders on A. For any (a, b) ∈ K, there exist x,y ∈ X pr

N such
that xa,b 6= ya,b, but x and y agree in every other coordinate. (For example: let x represent
an ordering of the form a ≺ b ≺ c3 ≺ c4 ≺ · · · ≺ cN , and let y represent the ordering
b ≺ a ≺ c3 ≺ c4 ≺ · · · ≺ cN .) Thus, Lemma 3.2 implies that span(X pr

A ) = RK.

Clearly, −X pr

A = X pr

A (if x represents the ordering a1 ≺ a2 ≺ · · · ≺ aN , then −x represents
the ordering a1 ≻ a2 ≻ · · · ≻ aN). Thus, Proposition 3.1(b) implies McGarvey’s original
result: X pr

A is McGarvey. ♦

Example 3.4. (Linear classification) Let D ∈ N, and let K ⊂ RD be a finite set of points. For
any r ∈ RK and q ∈ R, let Hr

q := {k ∈ K; r •k ≤ q} (the intersection of K with a half-space
in RD). Then define xr

q ∈ {±1}K by (xr
q)k = 1 if k ∈ Hr

q, and (xr
q)k = −1 if k 6∈ Hr

q. Let
X := {xr

q; r ∈ RK and q ∈ R}. Intuitively, each element of X represents a ‘classification’ of
the elements of K into two subsets separated by an affine hyperplane in RD.

Note that −X = X . To see this, let r ∈ RK and q ∈ K. We have −xr
q = x−r

−q if there is
no k ∈ K with r • k = q. If there is such a k, then we have −xr

q = x−r
−q′ for any q′ < q

sufficiently close to q (because K is finite).

In the Appendix, we prove span(X ) = RK. Thus, Proposition 3.1(b) implies that X is
McGarvey. ♦

3.1 Symmetric sets of tournaments

Let A and K be as in Example 3.3. Let ΠA be the group of all permutations of A; then ΠA acts
on the set of tournaments on A by permuting vertices in the obvious way. (Note: permutations
of A do not correspond to permutations of K.) If T is a collection of tournaments on A,
then we say T is symmetric if π(T ) = T for all π ∈ ΠA. For any x ∈ {±1}K, let Tx be the
tournament defined by x. Define XT :=

{
x ∈ {±1}K ; Tx ∈ T

}
. (For example, X pr

A = XT pr

where T pr is the set of all preference orders on A. Observe that T pr is symmetric.)
Let T ∈ T . Regard T as a digraph. For any a ∈ A, let #Ina(T) be the number of

edges going into vertex a, while #Outa(T) is the number of edges coming out of a. (Thus,
#Ina(T) + #Outa(T) = |A| − 1.) A directed Eulerian trail on T is a directed path through T
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which crosses every directed edge (in the correct direction) exactly once. It is well-known that
T admits a directed Eulerian trail if and only if #Ina(T) = #Outa(T) for every a ∈ A. Shelah
[She09] has recently proved the following generalization of McGarvey’s theorem:

Proposition 3.5 (Shelah, 2009) Suppose |A| ≥ 3. Let T be a symmetric set of tournaments
on A. Then
(
XT is McGarvey

)
⇐⇒

(
There exists some T ∈ T which does not admit a directed Eulerian trail

)
.

In the Appendix, we give a simple proof of Proposition 3.5 as a consequence of Proposition
3.1(a). (Most of the work is devoted to showing that the right hand side implies that span(XT ) =
RK.)

3.2 Coordinate permutations

Let 1 := (1, 1, . . . , 1) ∈ RK, and let R1 ⊂ RK be the linear subspace it generates.

Proposition 3.6 Let X ⊂ {±1}K and suppose Fix (ΓX ) ⊆ R1. Then X is McGarvey if and
only if span(X ) = RK and there exist r < 0 < t ∈ R such that r1, t1 ∈ conv(X ).

A coordinate permutation of RK is a linear map γ : RK−→RK which maps any vector
(rk)k∈K ∈ RK to the vector (rπ(k))k∈K, for some fixed permutation π : K−→K. The set of
all coordinate permutations in ΓX forms a subgroup, which is isomorphic to a group ΠX of
permutations on K in the obvious fashion. We say that ΠX is transitive if, for any j, k ∈ K,
there is some π ∈ ΠX such that π(j) = k. For any x ∈ {±1}K, let #(x) := #{k ∈ K ; xk = 1}.

Corollary 3.7 Let X ⊂ {±1}K and suppose ΠX is transitive. Then X is McGarvey if and
only if span(X ) = RK and there exist x,y ∈ X with #(x) < K/2 < #(y).

Example 3.8. (Symmetric binary relations) Let N be a set, and let K be the set of all subsets
{n,m} ⊆ N containing exactly two elements. Interpret each element of x ∈ {±1}K as
encoding a symmetric, reflexive binary relation “∼” (i.e. for any {n,m} ∈ K, we have n ∼ m
if xn,m = 1 and n 6∼ m if xn,m = −1). For any permutation π : N−→N , define π∗ : K−→K
by π{n,m} := {π(n), π(m)} for all {n,m} ∈ K. Let Π∗ be the set of all such permutations;
then Π∗ acts transitively on K (for any {n1,m1} ∈ K and {n2,m2} ∈ K, let π : N−→N be
any permutation such that π(n1) = n2 and π(m1) = m2; then π∗{n1,m1} = {n2,m2}).

(a) (Equivalence relations) Let X eq

N ⊂ {±1}K be the set of equivalence relations. Then ΠX eq
N

is
transitive because it contains Π∗.

For any {n,m} ∈ K, there exist x,y ∈ X eq

N such that xn,m 6= yn,m, but x and y agree in
every other coordinate. (For example: let x represent an equivalence relation where n and
m are both in singleton equivalence classes, and let y represent the relation obtained from
x by joining n and m together into one doubleton equivalence class). Thus, Lemma 3.2
implies that span(X eq

N ) = RK.
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Note that ±1 ∈ X eq

N (1 represents the ‘complete’ relation “∼” such that n ∼ m for all
n,m ∈ N , whereas −1 represents the ‘trivial’ relation such that n 6∼ m for any n 6= m ∈ N ).
Thus, Corollary 3.7 implies that X eq

N is McGarvey.

This result (and Example 3.3) do not really require Corollary 3.7; in fact, we can obtain
more refined results about X pr

A and X eq

N by using special structural properties of these spaces
which have nothing to do with symmetry per se (see Example 7.4 below). However, the
next four examples do make essential use of symmetry.

(b) (Restricted Equivalence Relations) For any x ∈ X eq

N , let rank(x) be the number of distinct
equivalence classes of the relation defined by x. Suppose 2 ≤ r < R ≤ N , and let X eq

N (r, R)
be the set of all x ∈ X eq

N with r ≤ rank(x) ≤ R; this is the set of all equivalence relations on
N satisfying certain constraints on the ‘coarseness’ or ‘fineness’ of the equivalence partition.
Clearly ΠX eq

N (r,R) ⊇ Π∗, so it is transitive. One can show span [X eq

N (r, R)] = RK through a
very similar argument to example (a). Thus, we can apply Corollary 3.7. Define

r(N) := N + 1 − 1 +
√

2N2 − 2N + 1

2
.

(Thus, if N is large, then r(N) ≈ N − N/
√

2.) In Appendix A, we show that X eq

N (r, R) is
McGarvey if and only if r < r(N).

(c) (Connected graphs) We can also interpret any x ∈ {±1}K as encoding a graph. Let X cnct
N ⊂

{±1}K be the set of all elements of {±1}K representing connected graphs on N . Then ΠX cnct
N

is transitive because it contains Π∗.

For any {n,m} ∈ K, there exist x,y ∈ X cnct
N such that xn,m 6= yn,m, but x and y agree in

every other coordinate. (For example: let x represent a connected graph where vertices n
and m are not linked. Let y represent the graph obtained from x by adding a link from n
to m). Thus, Lemma 3.2 implies that span(X cnct

N ) = RK.

There exists x ∈ X cnct
N with #(x) < K/2 (for example, let x represent a graph where

the elements of N are arranged in a loop —then #(x) = |N | < K/2). There also exists
y ∈ X cnct

N with #(y) > K/2 (for example: 1 ∈ X cnct
N ). Thus, Corollary 3.7 says that X cnct

N is
McGarvey.

(d) (Trees) A graph is a tree if it is connected but contains no loops. Let X tree
N ⊂ X cnct

N be the
space of all trees. Let N := |N |; then #(x) = N − 1 for every x ∈ X tree

N (because every tree
has exactly N − 1 activated edges). Thus, Corollary 3.7 implies that X tree

N is not McGarvey.

Interestingly, however, X tree
N is median-saturating. To see this, note that any loop in a graph

must involve at least three activated edges, and if |N | ≥ 4, then any disconnected graph
must have at least three deactivated edges. Thus, W2(X tree

N ) = ∅; hence Proposition 1.1(b)
implies that med∞(X tree

N ) = {±1}K. Thus, equation (4) is false for X tree
N .

(Two more examples of symmetric McGarvey spaces are described in Appendix B.) ♦

An interesting open question: what is the correct analog of Proposition 3.5 when T is a sym-
metric set of symmetric binary relations (i.e. graphs) on A?
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4 Comprehensive property spaces

For any r, s ∈ RK, write r ≤ s if rk ≤ sk for all k ∈ K. Write r ≪ s if rk < sk for all k ∈ K.
The space X is comprehensive if, for all x ∈ X and all y ∈ {±1}K, if x ≤ y, then y ∈ X also.

Example 4.1. Let K be a set of ‘candidates’. Each x ∈ {±1}K represents a ‘committee’
drawn from K. Suppose X is the set of all committees satisfying a certain minimum level
of representation from certain subgroups of candidates (e.g. “at least 3 female commit-
tee members”), with no upper bounds on the size of the whole committee. Then X is
comprehensive. ♦

Proposition 4.2 Let X ⊆ {±1}K be comprehensive. The following are equivalent: (a) X is
McGarvey; (b) There exists c ∈ conv(X ) with c ≪ 0; (c) −1 ∈ maj(X ).

Example 4.3. Suppose X ⊆ {±1}K is comprehensive and there is a subset Y ⊆ X such that,
for each k ∈ K, we have #{y ∈ Y ; yk = 1} < |Y|/2. Let c := 1

|Y|

∑
y∈Y y; then c ∈ conv(X )

and c ≪ 0; hence X is McGarvey. ♦

In comprehensive spaces, median saturation is substantially weaker than the McGarvey
property.

Proposition 4.4 Let X ⊆ {±1}K be comprehensive. Then X is median-saturating if and only
if, for every j, k ∈ K, there exists x ∈ X with xj = 0 = xk.

Example 4.5. Let K/2 ≤ M ≤ K − 2, and let X com
≥M :=

{
x ∈ {±1}K ; #(x) ≥ M

}
. Then

X com
≥M is median-saturating (by Proposition 4.4) but not McGarvey (by Corollary 3.7); thus,

eqn.(4) is false for X com
≥M . ♦

5 Truth-functional aggregation

Let J be a set of logically independent propositions, and let f : {±1}J−→{±1} be some
function. Let K := J ⊔ {0}, and define Xf := {(x, y); x ∈ {±1}J and y = f(x)}; a subset of
{±1}K; this is called a truth-functional space; see [NP08, DH09].

Many truth-functional spaces are not McGarvey. For example, let & : {±1}2−→{±1}
be the Boolean ‘and’ operation (i.e. &(x1, x2) = 1 if and only if x1 = 1 = x2; otherwise
&(x1, x2) = −1), and let X& ⊂ {±1}3 be the corresponding truth-functional space. Then X& is
not McGarvey. Indeed, X& is not even median-saturating (this follows from Proposition 1.1(b),
because W2(X&) contains the forbidden word (∗, 0; 1)).

Proposition 5.1 Suppose |J | ≥ 2, and suppose f : {±1}J−→{±1} depends nontrivially on

more than one J -coordinate. If
∑

x∈{±1}J

f(x) = 0, then Xf is McGarvey.

For example, let ⊕ : {±1}J−→{±1} be the J-ary ‘exclusive or’ function. That is: ⊕(x) = 1
if and only if #{j ∈ J ; xj = 1} is odd. Then X⊕ is McGarvey.
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Proposition 5.2 Let f : {±1}J−→{±1} be a truth function. Suppose f−1{1} and f−1{−1}
are both McGarvey, when seen as subsets of {±1}J . Then Xf is McGarvey.

A truth-function f : {±1}J−→{±1} is monotone if, for all x,y ∈ {±1}J ,
(
f(x) = 1 and x ≤ y

)
=⇒

(
f(y) = 1

)
.

Combining Propositions 4.2 and 5.2, we see that even monotone truth functions can be Mc-
Garvey.

Proposition 5.3 Let f : {±1}J−→{±1} be monotone. Suppose that:

1. there exists Y+ ⊆ f−1{1} such that for each j ∈ J , we have #{y ∈ Y+; yj = 1} < |Y+|/2;
and

2. there exists Y− ⊆ f−1{−1} such that for each j ∈ J , we have #{y ∈ Y−; yj = −1} <
|Y−|/2.

Then Xf is McGarvey.

For example, let J ≥ 7 be odd, and let I := (J − 1)/2. Let J := [1...J ]. For any n ∈ N,
let [n] be the unique element of J which is congruent to n, mod J . For all j ∈ J , define
yj ∈ {±1}J by yj

[j+i] = 1 for all i ∈ [1...I], and yj
k = −1 for all other k ∈ J . Then define

f : {±1}J−→{±1} as follows: f(x) = 1 if and only if x ≥ yj for some j ∈ J . Then f is
monotone, and the set Y+ := {yj ; j ∈ J } satisfies hypothesis #1 of Proposition 5.3. On the
other hand, let z1 := (1, 1,−1, 1, 1,−1, 1, 1,−1, . . .), let z2 := (1,−1, 1, 1,−1, 1, 1,−1, 1, . . .),
and let z3 := (−1, 1, 1,−1, 1, 1,−1, 1, 1, . . .). Then Y− := {z1, z2, z3} satisfies hypothesis #2 of
Proposition 5.3. Thus, Xf is McGarvey.

6 Convexities

A convexity structure on K is a collection C of subsets of K such that ∅ ∈ C, K ∈ C, and C is
closed under intersections [vdV93]. Convexity structures often represent the ‘convex’ subsets
of some geometry on K.

Example 6.1. A metric graph is a graph where each edge is assigned a positive real number
specifying its ‘length’. Let K be the vertices of a metric graph. For any j, k ∈ K, a geodesic

between j and k is a minimal-length path from j to k. A subset C ⊆ K is convex if it
contains all the geodesics between any pair of points in C. The set C of all convex subsets
of K is then a convexity structure on K. ♦

For any J ⊆ K, define χ
J ∈ {±1}K by χJ

j := 1 for all j ∈ J and χJ
k := −1 for all k ∈ K \ J .

Given a convexity structure C on K, let XC :=
{
χ

C ; C ∈ C
}
. Thus, judgement aggregation on

XC is the problem of democratically selecting a convex subset of K. (This problem arises, for
example, when a jury wishes to award prizes to some selected subset of contestants according
to some ‘quality metric’, or when an expert committee tries to classify an unfamiliar entity
within a taxonomic hierarchy.)
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Proposition 6.2 Let C be a convexity on K, and let XC be as above.

(a) For any J ⊆ K,
(
χ

J ∈ maj(XC)
)

⇐⇒
(
J is a union of elements of C

)
.

(b) The following are equivalent:

[i] XC is McGarvey.

[ii] XC is median-saturating.

[iii] C includes all the singleton subsets of K.

For example, the metric graph convexity in Example 6.1 is McGarvey.

7 Stearns numbers

Even if X is McGarvey, the hypothesis of Theorem 1.3(b) leaves the possibility that we can
only realize this McGarvey property using very precisely engineered profiles involving an as-
tronomically large number of voters. This would greatly diminish the practical relevance of
the McGarvey property. So we now ask: what is the smallest number of voters required to
realize the McGarvey property of X ? This question was first studied by Stearns [Ste59] for
preference-aggregation on X pr

A . For any N ∈ N, let

∆∗
N (X ) :=

{
µ ∈ ∆∗ (X ) ; ∀ x ∈ X , µ(x) =

n

N
for some n ∈ [0 . . . N ]

}
.

In other words, ∆∗
N (X ) is the set of profiles which can be generated by a population of exactly

N voters. Let X ⊆ {±1}K be McGarvey. We define the Stearns number S(X ) to be the
smallest integer such that, for any x ∈ {±1}K, there exists some N ≤ S(X ) and µ ∈ ∆∗

N (X )
with maj(µ) = x. (Define S(X ) := ∞ if X is not McGarvey). For example, if A := |A|,
then Stearns [Ste59] showed that 0.55 · A/ log(A) ≤ S(X pr

A ) ≤ A + 2. Erdös and Moser [EM64]
refined Stearn’s estimate by showing that S(X pr

A ) = Θ(A/ log(A)). We now investigate the
Stearns numbers of other McGarvey spaces. For any r ∈ RK, let ‖r‖∞ := sup

k∈K
|rk|. For any

ǫ > 0, let B(ǫ) :=
{
r ∈ RK ; ‖r‖∞ ≤ ǫ

}
. For any X ⊆ {±1}K, let σ(X ) := min{N ∈ N;

B( 1
N

) ⊆ conv(X )}. The next result can be seen as a ‘quantitative’ refinement of Theorem 1.3.

Theorem 7.1 For any X ⊆ {±1}K, we have σ(X ) ≤ S(X ) ≤ 4(K + 1)σ(X ).

The upper bound in Theorem 7.1 is an overestimate, in general. For example, Alon [Alo02]
has shown that σ(X pr

A ) = Θ(
√

A); and in the case of X pr

A , we have K := A(A − 1)/2; thus
Theorem 7.1 yields S(X pr

A ) ≤ O(A5/2), which is much worse than the estimate of Θ(A/ log(A))
obtained by Erdös and Moser [EM64]. Nevertheless, it may not be possible to improve the esti-
mate in Theorem 7.1, without making further assumptions about the structure of X . The next
result provides some bounds on the size of σ(X ) and S(X ). For any x1, . . . ,xK ∈ {±1}K,
let δ(x1, . . . ,xK) := min{‖c‖∞; c ∈ conv(x1, . . . ,xK)}. Let δ(X ) := min{δ(x1, . . . ,xK);
x1, . . . ,xK ∈ X and 0 6∈ conv(x1, . . . ,xK)}. Finally, let δ(K) := δ({±1}K).
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Proposition 7.2 Let X ⊂ {±1}K.

(a) If X is McGarvey, then σ(X ) ≤ ⌈1/δ(X )⌉.

(b) For every McGarvey X ⊆ {±1}K, we have S(X ) ≤ 4(K + 1) ⌈1/δ(K)⌉.
However, there exist McGarvey X ⊂ {±1}K with S(X ) ≥ 1/δ(K).

(c)
KK/2

22K+O(K)
≤ 1

δ(K)
≤ K2+K/2

2K−1
.

The inequalities in Proposition 7.2(c) are derived from inequalities obtained by Alon and Vũ
[AV97] for the inverses of {0, 1}-matrices; these inequalities have many implications for the
geometry of sub-polytopes of {±1}K [Zie00, §5.2]. Proposition 7.2(b,c) imply that the Stearns
numbers of some McGarvey spaces can be extremely large. However, for the McGarvey spaces
typically encountered in practice, the Stearns numbers are often much smaller, as shown by the
next result and following examples.

Proposition 7.3 (a) If 1 ∈ X , and χ
k ∈ X for all k ∈ K, then S(X ) ≤ 2K − 3.

(b) Suppose that −1 ∈ X , and suppose that, for all k ∈ K, there exist x,y ∈ X such that
xk = 1 = yk, but x and y differ in every other coordinate. Then S(X ) ≤ 2K + 1.

(c) Suppose −X = X and suppose that, for all k ∈ K, there exist x,y ∈ X such that
xk 6= yk, but x and y agree in every other coordinate. Then S(X ) ≤ 2K.

Example 7.4. (a) (Convexities) Let C be a convexity on K. Then 1 ∈ XC (because K ∈ C).
If XC is McGarvey, then Proposition 6.2(b) says χ

k ∈ X for all k ∈ K; thus, Proposition
7.3(a) says S(XC) ≤ 2K − 1.

(b) (Equivalence Relations) Let N be a set, and let K and X eq

N ⊂ {±1}K be as in Example
3.8(a). Observe that 1 ∈ X eq

N (it represents the ‘complete equivalence’ relation such that
n ∼ m for all n,m ∈ N ). Also, for all {n,m} ∈ N , χ

n,m ∈ X eq

N (it represents the equivalence
relation such that n ∼ m, but no other pair of elements are equivalent). Thus, Proposition
7.3(a) implies that X eq

N is McGarvey, and S(X eq

N ) ≤ N(N − 1) − 1.

(c) (Preorders) Let K := {(n,m) ∈ N ×N ; n 6= m}. Thus, an element of {±1}K can represent
a reflexive binary relation “�” on N . A preorder is a reflexive, transitive binary relation on
N (note that we do not assume preorders are complete). Let X preo

N ⊂ {±1}K be the set of
all preorders on N . Thus, 1 ∈ X preo

N (it represents the relation of total indifference). Also,
for all (n,m) ∈ N , χ

n,m ∈ X preo

N (it represents the preorder such that n � m, but no other
pair of elements are comparable). Thus, Proposition 7.3(a) implies X preo

N is McGarvey, and
S(X preo

N ) ≤ 2N(N − 1) − 1.

(d) (Complete preorders) Now let X ∗ ⊂ X preo

N be the set of all complete preorders. Then X ∗ is
not McGarvey. Indeed, Example 1.2 shows that X ∗ is not even median-saturating.
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(e) (Committees) Let K be a set of candidates; then any element of {±1}K represents a ‘com-
mittee’ formed from these candidates. Let K1,K2, . . . ,KL ⊆ K be disjoint subsets with car-
dinalities K1, K2, . . . , KL, respectively. Fix I, J ∈ N with 0 ≤ I < K/2 < J ≤ K. Likewise,
for all ℓ ∈ [1...L], fix Iℓ, Jℓ ∈ N with 0 ≤ Iℓ < Kℓ/2 < Jℓ ≤ Kℓ. For any x ∈ {±1}K
and ℓ ∈ [1...L], define #ℓ(x) := #{k ∈ Kℓ ; xk = 1}. The set X com := {x ∈ {±1}K;
I ≤ #(x) ≤ J and Iℓ ≤ #ℓ(x) ≤ Jℓ, ∀ ℓ ∈ [1...L]} represents the set of all commit-
tees formed from the candidates in K, with upper and lower bounds on the size of the
whole committee, and also upper/lower bounds on the level of representation from various

‘constituencies’ K1, . . . ,KL. Note that X com 6= ∅ as long as
L∑

ℓ=1

Iℓ ≤ J and
L∑

ℓ=1

Jℓ ≥ I. In

the Appendix, we use Proposition 7.3(c) to show that S(X com) ≤ 2K.

(f) Let X be the ‘linear classification’ space from Example 3.4. We have already seen that
−X = X . The proof that span(X ) = RK (in the Appendix) defines a linear ordering on K
and then constructs a subset {xk}k∈K ⊂ X such that, for all j, k ∈ K, if j is the immediate
predecessor to k, then xj and xk differ only in coordinate k. Thus, Proposition 7.3(c) implies
that S(X ) ≤ 2K.

In view of the tight ‘linearity’ structure imposed on individual classification judgments, one
would intuitively expect S(X ) to be quite ‘large’. Our conclusion does not contradict this
intuition. While S(X ) is linear in K, the value of K —given by the number of elements
to be classified —will typically itself be ‘large’ relative to |X | (i.e. the number of linear
classifications on K). ♦

Conclusion

In this paper, we have investigated when the aggregation of judgments by proposition-wise
majority votes results in a complete loss of structure at the group level. For this to occur, at
the individual level, any pairwise combination of judgments on specific propositions must be
admissible; this yields the property of median saturation. We showed that, for many (but not all)
median-saturated spaces, McGarvey’s original result about preference aggregation generalizes,
and a complete loss of structure in fact occurs.

Median saturation is obviously restrictive, and in many contexts, there are built-in con-
straints on the judgments on pairs of propositions. For instance, if incomplete preferences (i.e.
asymmetric and transitive binary relations) are aggregated, then asymmetry imposes such a
pairwise constraint, which will be preserved by pairwise majority voting. On the other hand,
in analogy to McGarvey’s original result on linear orders, one would expect asymmetry to be
the only restriction on the binary relation that is preserved by majoritarian voting. That is,
one would expect equation (4) to be true: maj(X ) = med∞(X ).

Let’s call equation (4) the Generalized McGarvey Property. The investigation of conditions
under which this property obtains is an important task for future research, because it frequently
seems natural and plausible. Theorem 1.3(a) implies that, like the McGarvey Property, the
Generalized McGarvey Property is a property of convex polytopes in {±1}K —namely the
property that conv(X ) intersect the open orthant Ox for every x ∈ med∞(X ). The further
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analysis of this property and its applications to specific types of aggregation problems will yield
interesting new challenges and rewards.

Appendix A: Proofs

Proof of Proposition 1.1. Part (b) follows immediately from (a). Part (a) follows (after some
decryption) from Lemma I.6.20(1) on p.130 of [vdV93]. We will give another proof of part
(a), using ‘critical words’. For any Y ⊆ {±1}K, let W(Y) be the set of all Y-forbidden
words. A word w ∈ W(Y) is Y-critical if no proper subword of w is in W(Y). Let W∗(Y)
be the set of Y-critical words. For any X ,Y ⊆ {±1}K, we have:

(
W∗(Y) ⊆ W∗(X )

)
=⇒

(
W(Y) ⊆ W(X )

)
⇐⇒

(
X ⊆ Y

)
. (5)

Proposition 4.1 of [NP07] states:

(
Y is a median space

)
⇐⇒

(
All Y-critical words have order 2

)
. (6)

Let Y :=
{
x ∈ {±1}K ; w 6❁ x, ∀ w ∈ W2(X )

}
. We must show that med∞(X ) = Y . By

construction, W∗(Y) = W2(X ). Thus, every Y-critical word has order 2, so statement (6)
says Y is a median space. Also, W(Y) ⊆ W(X ), so (5) implies X ⊆ Y . But by definition,
med∞(X ) is the smallest median space containing X . Thus, med∞(X ) ⊆ Y .

To see the reverse inclusion, note that med∞(X ) is a median space; thus, statement (6)
says every med∞(X )-critical word has order 2. However, X ⊆ med∞(X ), so (5) implies
W [med∞(X )] ⊆ W(X ). Thus, W∗[med∞(X )] ⊆ W2(X ) = W∗(Y). Thus, (5) implies that
Y ⊆ med∞(X ). Thus, Y = med∞(X ). ✷

Proof of Theorem 1.3. (a) Let µ ∈ ∆∗ (X ). For all k ∈ K, define µ̃k as in eqn.(1), and let
µ̃ := (µ̃k)k∈K ∈ RK. Let x ∈ {±1}K be the unique element such that µ̃ ∈ Ox; then eqn.(2)
implies that maj(µ) = x.

If we treat X ⊂ {±1}K as a subset of RK, then µ̃ :=
∑

x∈X

µ(x)x; thus, µ ∈ conv(X ).

Furthermore, every element of conv(X ) can be represented in this way. Thus, for any
x ∈ {±1}K,

(
x ∈ maj(X )

)
⇐⇒

(
∃ µ ∈ ∆∗ (X ) such that µ̃ ∈ Ox

)
⇐⇒

(
conv(X ) ∩ Ox 6= ∅

)
.

(b) “(b2) ⇐⇒ (b3)” The Separating Hyperplane Theorem says that 0 ∈ int [conv (X )] if and
only if, for all nonzero z ∈ RK, there exists c ∈ conv(X ) such that z • c > 0. This, in turn,
occurs if and only if there exists x ∈ X such that z •x > 0 (because X is the set of extreme
points of conv(X )).

“(b2) ⇐⇒ (b5)” is immediate.
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“(b1) ⇐= (b2)” If 0 ∈ int [conv (X )], then conv(X ) intersects every open orthant of RK, so (a)
implies that maj(X ) = {±1}K.

“(b1) =⇒ (b2)” (by contrapositive) int [conv (X )] is an open convex subset of RK. Suppose
0 6∈ int [conv (X )]. Then the Separating Hyperplane Theorem says there is some vector
r ∈ RK such that r • c < 0 for all c ∈ int [conv (X )]. Pick x ∈ {±1}K such that the open
orthant Ox contains r (if r sits on a boundary between two or more orthants, then pick
one). Then we must have int [conv (X )] ∩ Ox = ∅. Thus, conv(X ) ∩ Ox = ∅ (because
conv(X ) is the closure of int [conv (X )], and Ox is an open set). Thus, part (a) implies that
x 6∈ maj(X ); hence X is not McGarvey.

“(b4) =⇒ (b2)” Suppose 0 = µ̃ for some µ ∈ ∆∗ (X ) such that µ(x) > 0 for all x ∈ X . Then
for any x ∈ X , we have

−x =
1

µ(x)

∑

y∈X\{x}

µ(y) · y, (7)

which is a strictly positive linear combination of the elements in X \ {x}.
Fix r ∈ RK. We can write r =

∑

x∈X

sxx for some real-valued coefficents {sx}x∈X (because

span(X ) = RK). For any x ∈ X , if sx < 0, then replace the term “sxx” with −sx times

the right side of eqn.(7). In this way, we can write r =
∑

x∈X

s′xx for some positive coefficents

{s′x}x∈X . Now let S :=
∑

x∈X

s′x. Then 0 < S < ∞, and r/S ∈ conv(X ).

Thus, for any r ∈ RK, the ray from 0 through r passes through conv(X ) at some point.
Since conv(X ) is convex, this implies that conv(X ) contains a neighbourhood around 0.

“(b2) =⇒ (b4)” If int [conv (X )] 6= ∅, then span(X ) = RK. Now, let ν ∈ ∆∗ (X ) be any profile
such that ν(x) > 0 for all x ∈ X . Since 0 ∈ int [conv (X )], there exists some ǫ > 0
such that −ǫν̃ ∈ conv(X ), so find some η ∈ ∆∗ (X ) such that η̃ = −ǫν̃. Now define
µ :=

(
ǫ

1+ǫ

)
ν +

(
1

1+ǫ

)
η. Then µ ∈ ∆∗ (X ), and µ̃ :=

(
ǫ

1+ǫ

)
ν̃ +

(
1

1+ǫ

)
η̃ = 0. Finally,

µ(x) > 0 for all x ∈ X , because ν(x) > 0 and η(x) ≥ 0 for all x ∈ X . ✷

Proof of Proposition 2.1. (a) Let M := min{|X |; X ⊂ {±1}K is McGarvey}.
“M ≥ K +1”: Suppose |X | = J ≤ K. Let X = {x1, . . . ,xJ}. Define yj := xj −xJ for all

j ∈ [1 . . . J − 1], and let Y be the linear subspace of RK spanned by {y1, . . . ,yJ−1}. Then
dim(Y) ≤ J − 1 < K. However, conv(X ) ⊂ Y + xJ ; thus, int [conv (X )] = ∅, so X is not
McGarvey.

“M ≤ K + 1”: Let 1 := (1, 1, . . . , 1). For all k ∈ K, define χ
k ∈ {±1}K as we did

prior to Proposition 6.2. Let X := {χk}k∈K ⊔ {1}. Then |X | = K + 1, and it is clear that
span(X ) = RK. We have

(
K − 2

2K − 2

)
1 +

(
1

2K − 2

)∑

k∈K

χ
k =

(
K − 2

2K − 2

)
1 −

(
K − 2

2K − 2

)
1 = 0,
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verifying condition (b4) of Theorem 1.3. Thus, X is McGarvey.

(b) Let M := max{|X |; X ⊂ {±1}K is minimal McGarvey}.
“M ≥ 2K” follows from Example 2.2. To see “M ≤ 2K”, let X ⊆ {±1}K be McGarvey.

Then Theorem 1.3(b2) says 0 ∈ int [conv (X )].

Claim 1: There exists some Y ⊆ X with |Y| ≤ 2K such that 0 ∈ int [conv (Y)].

Proof: For any nonzero v ∈ RK, consider the line Lv := {rv ; r ∈ R}. This line intersects
the boundary of conv(X ) in exactly two places —say at u = −sv and w = tv, for some
−s < 0 < t. For a generic choice of v ∈ RK, the points u and w are each contained in
the relative interior of some (K−1)-dimensional face of conv(X ) —that is, there are sets
U = {u1, . . . ,uK} ⊆ X and W = {w1, . . . ,wK} ⊆ X , such that conv(U) and conv(W)
each have dimension (K − 1), and such that u =

∑K
k=1 qkuk and w =

∑K
k=1 rkwk, for

some q1, . . . , qK , r1, . . . , rK > 0 with
∑K

k=1 qk = 1 =
∑K

k=1 rk.

Let Y := U ∪W. Then conv(Y) contains the (K − 1)-dimensional sets conv(U) and
conv(W), and it also contains two different points on the line L transversal to these sets
(because conv(U) and conv(W) intersect L at two different points). Thus conv(Y) must
have dimension K (hence, nonempty interior). Furthermore, |Y| ≤ |U|+ |W| = 2K. Let
R := 1

s
+ 1

t
, let S := 1

sR
> 0 and let T := 1

tR
> 0. Then S + T = 1, and

K∑

k=1

Sqk uk +
K∑

k=1

Trk uk = S

K∑

k=1

qk uk + T

K∑

k=1

rk uk

=
−sv

sR
+

tv

tR
=

−v

R
+

v

R
= 0.

By construction, we have Sq1, . . . , SqK , T r1, . . . , T rK > 0, and
∑K

k=1 Sqk +
∑K

k=1 Trk =
1. Thus, 0 is a strictly positive convex combination of the elements of Y , so 0 ∈
int [conv (Y)], as claimed. ✸ Claim 1

If 0 ∈ int [conv (Y)], then Theorem 1.3(b2) implies that Y is McGarvey. But if X is
minimal McGarvey, then this means that Y = X . Thus, |X | ≤ 2K, as claimed. ✷

Remark. The proof of Claim 1 in Proposition 2.1(b) easily generalizes to prove the following
‘relative interior’ version of Carathéodory’s theorem: Let X ⊂ RK be finite, let dim(conv(X )) =
D ≤ K, and let x be in the relative interior of conv(X ). Then there exists some Y ⊆ X with
|Y| ≤ 2D such that x is in the relative interior of conv(Y).

Proof of Example 2.2. We must show that X is McGarvey, but no proper subset of X is
McGarvey.

X is McGarvey: Clearly, 2χj ∈ (X − X ) for all j ∈ K. Thus, span(X − X ) = RK, so
int [conv (X )] 6= ∅.

Recall from §3 that ΠX is the set of coordinate permutation symmetries of X . In this case,
ΠX contains every possible permutation of K, so ΠX is transitive. Clearly #(χj) = 1 < K/2,
whereas #(−χ

j) = K − 1 > K/2. Thus, Corollary 3.7 implies that X is McGarvey.
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No proper subset of X is McGarvey: Suppose K := [1...K]. Let Y := X \ {χ1}. To see
that Y is not McGarvey, let z := (K − 3; −1,−1, . . . ,−1); then z • y ≤ 0 for all y ∈ Y ,
violating condition (b3) of Theorem 1.3(b). Thus, Y is not McGarvey.

A similar argument shows that X \{χk} and X \{−χ
k} are not McGarvey, for any k ∈ K.

✷

Proof of Proposition 2.3. (a) Fix K ∈ N. Let m := min{|X |; X ⊆ {±1}K is median-
saturating}, and let L := ⌈log2(K)⌉.

“m ≤ 2L + 2” Let K := [0 . . . K−1]. For any ℓ ∈ [0 . . . L] and any k ∈ K, let βℓ(k) ∈ {0, 1}
be the ℓth digit in the binary expansion of the number k (so that k =

∑L−1
ℓ=0 βℓ(k) · 2ℓ).

Then define xℓ ∈ {±1}K by xℓ
k := (−1)βℓ(k) for all k ∈ K. (For example, if K = 8, then

L = 3, and we have: x0 := (1,−1, 1,−1, 1,−1, 1,−1), x1 := (1, 1,−1,−1, 1, 1,−1,−1),
x2 := (1, 1, 1, 1,−1,−1,−1,−1), and x3 := (1, 1, 1, 1, 1, 1, 1, 1).) Now let X := {±xℓ}L

ℓ=0.

Claim 1: W2(X ) = ∅.

Proof: Let j, k ∈ K be distinct. Then j and k must have different binary expansions. Thus,
there exists some ℓ ∈ [0 . . . L−1] such that βℓ(k) 6= βℓ(j), and hence xℓ

k 6= xℓ
j. Thus,

±xℓ realize the {j, k}-words (−1, 1) and (1,−1). On the other hand xL = 1, so that
±xL = ±1 realize the {j, k}-words (1, 1) and (−1,−1). Thus, none of the four possible
{j, k}-words is X -forbidden. This holds for all j, k ∈ K; hence W2(X ) = ∅. ✸ Claim 1

Proposition 1.1(b) and Claim 1 imply that X is median-saturating. Clearly, |X | = 2L + 2.

“m ≥ L + 1” Let X ⊆ {±1}K be median-saturating. Define a function β : K×{±1}−→{±1}X
as follows: for any k ∈ K, a ∈ {±1}, and x ∈ X , let β(k, a)x := a · xk.

Claim 2: β is injective.

Proof: Let (j, a) ∈ K × {±1} and (k, b) ∈ K × {±1} be distinct. We must show that
β(j, a) 6= β(k, b).

If j = k but a 6= b, then β(j, a) = −β(k, b); thus, β(j, a) 6= β(k, b).

Now suppose j 6= k and a = b. Proposition 1.1(b) says W2(X ) = ∅. Thus, there
exists x ∈ X with (xj, xk) = (1,−1) Thus, β(j, a)x = a = b 6= −b = β(k, b)x, so
β(j, a) 6= β(k, b).

Finally, suppose j 6= k and a = −b. Proposition 1.1(b) says W2(X ) = ∅. Thus, there
exists x ∈ X with (xj, xk) = (1, 1) Thus, β(j, a)x = a 6= b = β(k, b)x, so β(j, a) 6= β(k, b).
✸ Claim 2

Claim 2 implies that |{±1}X | ≥ |K × {±1}| = 2K. Thus, |X | ≥ log2(2K) = log2(K) + 1.

(b) Let M := max{|X |; X ⊆ {±1}K is minimal median-saturating}.

“M ≥ K(K − 1)/2” For all distinct j, k ∈ K, define x{j,k} ∈ {±1}K by x
{j,k}
j = x

{j,k}
k = 1, while

x
{j,k}
i = −1 for all i ∈ K \ {j, k}. Let X := {x{j,k}; {j, k} ⊂ K}. Then |X | = K(K − 1)/2.

Claim 3: W2(X ) = ∅.
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Proof: Fix {j, k} ⊂ K. Clearly, x
{j,k}
j,k = (1, 1). For any i ∈ K\{j, k}, we have x

{i,k}
j,k = (−1, 1)

and x
{j,i}
j,k = (1,−1). Finally, for any h, i ∈ K \ {j, k}, we have x

{h,i}
j,k = (−1,−1)

(recall K ≥ 4). Thus, all four words in {±1}{j,k} are X -admissible. This holds for any
{j, k} ⊂ K. Thus, W2(X ) = ∅. ✸ Claim 3

Proposition 1.1(b) and Claim 3 imply that X is median-saturating. But if we remove any
element from X , then this argument breaks down. For example, let X ′ := X \ {x{j,k}} for
some {j, k} ⊂ K. Then xj,k 6= (1, 1) for all x ∈ X ′ Thus, W2(X ′) 6= ∅, so Proposition
1.1(b) implies that X ′ is not median-saturating. Thus, X is minimal median-saturating;
thus, M ≥ |X | = K(K − 1)/2.

“M ≤ 2K(K − 1)” Suppose X ⊆ {±1}K is minimal median-saturating. For every x ∈ X , let
W(x) := W2(X \ {x}).
Claim 4: (a) For all x ∈ X , we have W(x) 6= ∅.

(b) For all x,y ∈ X , the sets W(x) and W(y) are disjoint.

Proof: (a) For every x ∈ X , the set X \ {x} is not median saturating, so Proposition 1.1(b)
says W2(X \ {x}) 6= ∅.

(b) Let w ∈ W2(x). Then w 6❁ y for any y ∈ X \ {x}. However, w 6∈ W2(X ); hence
we must have w ❁ x. If w ∈ W(y) for some other y ∈ X , then the same argument
shows that w ❁ y but w 6❁ x. Contradiction. ✸ Claim 4

Let W2 be the set of all words of length 2. Then |W2| = 4
(

K
2

)
= 2K(K − 1). Claim 4

shows that
|W2| ≥

(b)

∑

x∈X

|W(x)| ≥
(a)

∑

x∈X

1 = |X |.

Thus, |X | ≤ 2K(K − 1). ✷

Lemma A.1 Let S ⊂ RK be an affine subspace of dimension D ≤ K. Then |S ∩{±1}K| ≤ 2D.

Proof: Suppose K = [1...K], and identify RK with RD×RK−D in the obvious way. If dim(S) = D,
then there exists some affine function φ : RD−→RK−D such that (after some permutation
of K), we have S = {(r, φ(r)); r ∈ RD}. This means that S ∩ {±1}K = {(x, φ(x));
x ∈ {±1}D and φ(x) ∈ {±1}K−D}. Thus,

∣∣S ∩ {±1}K
∣∣ ≤

∣∣{±1}D
∣∣ = 2D. ✷

Proof of Proposition 2.4. (a) Let M0 := max{|X |; X ⊂ {±1}K is not McGarvey}.
“M0 ≥ 3

4
2K” follows immediately from Example 2.5. To see “M0 ≤ 3

4
2K”, suppose

X ⊆ {±1}K is not McGarvey. Then Theorem 1.3(b3) says there exists nonzero z ∈ RK,
such that z•x ≤ 0 for all x ∈ X . Let Y+ := {y ∈ {±1}K; z•y > 0}, let Y− := {y ∈ {±1}K;
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z •y < 0}, and let Y0 := {y ∈ {±1}K; z •y = 0}. Now, |Y−| = |Y+| (because these sets are
images of one another under negation). Thus,

|Y−| =
1

2

∣∣∣{±1}K \ Y0

∣∣∣ =
1

2

(
2K − |Y0|

)
= 2K−1 − 1

2
|Y0|. (8)

Also, X ⊆ Y− ⊔ Y0.

Thus, |X | ≤ |Y− ⊔ Y0| = |Y−| + |Y0| (†)
2K−1 − 1

2
|Y0| + |Y0| = 2K−1 +

1

2
|Y0|

≤
(∗)

2K−1 +
1

2
2K−1 =

3

4
2K ,

as claimed. Here, (†) is by eqn.(8), and (∗) is because |Y0| ≤ 2K−1 by Lemma A.1.

(b) Let M1 := max{|X |; X ⊂ {±1}K is not median-saturating}.
“M1 ≥ 3

4
2K” follows immediately from Example 2.5. To see “M1 ≤ 3

4
2K”, observe that

{X ⊆ {±1}K; X is not median-saturating} ⊆ {X ⊆ {±1}K; X is not McGarvey} (because
McGarvey implies median-saturating). Thus, M1 ≤ M0, and we have already verified that
M0 ≤ 3

4
2K . ✷

Proof of Proposition 3.1. (a) Let z :=
∑

x∈X

x. Then γ(z) = z for all γ ∈ ΓX ; hence z ∈ Fix (ΓX ),

which means z = 0 (by hypothesis). Thus,
1

|X |
∑

x∈X

x = 0, so Theorem 1.3(b4) says X is

McGarvey.

(b) If −X = X , then −I ∈ ΓX . Thus, for any r ∈ Fix (ΓX ), we have −r = r, which means
r = 0. Thus, Fix (ΓX ) = {0}. Thus, part (a) says X is McGarvey. ✷

Proof of Lemma 3.2. Let Y := {x − y ; x,y ∈ X}. For all j ∈ K, let ej := (0, 0, . . . , 0, 1, 0, . . . , 0),
where the ‘1’ appears in the jth coordinate. If x,y ∈ X are such that xj 6= yj, but xk = yk

for all k ∈ K \ {j}, then x − y = ±ej. Thus, by hypothesis, Y contains {±ej}j∈K. Thus,
span(Y) = RK. Thus, int [conv (X )] 6= ∅. ✷

Proof of Example 3.4. We must show that span(X ) = RK. Let “ ≺
lex

” be the lexicographical order

on K. That is: j ≺
lex

k if there is some C ∈ [1 . . . D] such that jd = kd for all d ∈ [1 . . . C−1],

while jC < kC . This is a well-ordering of K. For all d ∈ [2 . . . D], let Md > (D−1) ·(max{kd;
k ∈ K} − min{kd; k ∈ K}). (The max and min are well-defined and finite because K is

finite.) Define r :=
(
1, 1

M2
, 1

M2 M3
, 1

M2 M3 M4
, . . . , 1

M2···MD

)
. Then for all j,k ∈ K, we have

(j ≺
lex

k) ⇐⇒ (r • j < r • k). Thus, for any j ∈ K, if q(j) := r • k, then Hr
q(j) = {k ∈ K;

k �
lex

j}. Thus, if k is lexicographically minimal in the set {k ∈ K; j ≺
lex

k}, then xr
q(j) and

xr
q(k) differ only in coordinate j. Now apply Lemma 3.2. ✷
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Proof of Proposition 3.5. “=⇒” (by contrapositive). Suppose every element of T has an

Eulerian trail. Let V := {r ∈ RK;
A∑

b=2

r1,b = 0}. Then V is a linear subspace of RK, with

dim(V) = K − 1.

Now, for all x ∈ XT , we have #In1(Tx) = #Out1(Tx), which means
A∑

b=2

x1,b = 0, so

x ∈ V. Thus, XT ⊂ V. Thus, conv(XT ) ⊂ V. Thus, int [conv (XT )] = ∅. Thus, XT cannot
be McGarvey.

“⇐=” We will prove X is McGarvey using Proposition 3.1(a). Let A := |A|, and suppose without
loss of generality that A := [1 . . . A] and K := {(a, b) ; a, b ∈ A and a < b}. For any r ∈ RK

and any a < b ∈ A, we will abuse notation by defining

rb,a := −ra,b. (9)

For any π ∈ ΠA, define linear transformation π∗ : RK−→RK as follows: for any r ∈ RK and
a < b ∈ A, we define π∗(r)a,b := rπ(a),π(b) (following convention (9) above). If x ∈ {±1}K
and π∗(x) = y, then π(Tx) = Ty. Thus, π∗(XT ) = XT because π(T ) = T . Thus, if
Π∗

A := {π∗ ; π ∈ ΠA}, then Π∗
A ⊆ ΓXT

.

Claim 1: Fix (Π∗
A) = {0}.

Proof: Let r ∈ RK and suppose π∗(r) = r for all π∗ ∈ Π∗
A; we must show that r = 0. So, let

(a, b) ∈ K. Find π ∈ ΠA with π(a) = b and π(b) = a. Then π∗(r) = r, because π∗ ∈ Π∗
A.

Thus, ra,b = π∗(r)a,b = rb,a = −ra,b. Thus, ra,b = 0. This holds for all a, b ∈ A. Thus,
r = 0. ✸ Claim 1

At this point it remains to show that span(XT ) = RK.

Claim 2: Suppose X is not McGarvey. Then for any a, b ∈ A, there exists some y ∈ X
with ya,b = 1, such that #Ina(Ty) ≥ #Inb(Ty) and #Outa(Ty) ≤ #Outb(Ty).

Proof:

Claim 2.1: Let y ∈ {±1}K. Suppose that, for all a, b ∈ A, if ya,b = 1, then

#Ina(Ty) < #Inb(Ty) and #Outa(Ty) > #Outb(Ty). Then Ty is a preference order.

Proof: Define the complete, antisymmetric relation “≻” on A by (a � b) ⇐⇒ (ya,b = 1).
We must show that “≻” is transitive. Define u : A−→R by u(a) := #Outa(Ty) −
#Ina(Ty). Then by hypothesis, for all a, b ∈ A, we have: (a ≻ b) =⇒ (u(a) > u(b)).
Since “≻” is complete and antisymmetric, we can strengthen this to (a ≻ b) ⇐⇒
(u(a) > u(b)). Thus, u is a utility function for “≻”, so “≻” must be a preference
relation. ▽ Claim 2.1

Claim 2.2: For all x ∈ X , there exist c, d ∈ A such that xc,d = 1, while #Inc(Tx) ≥
#Ind(Tx) and #Outc(Tx) ≤ #Outd(Tx).

Proof: (by contradiction) Suppose not. Then there exists some y ∈ X satisfying the
hypotheses of Claim 2.1, so that Ty is a preference order. By applying Π∗

A to y,
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we can obtain all preference orders on A. But X is Π∗
A-invariant, so this means

that X pr

A ⊆ X ; thus X is McGarvey because X pr

A is McGarvey, which contradicts the
hypothesis of Claim 2. ▽ Claim 2.2

Now, take any x ∈ X , and find c, d ∈ A as in Claim 2.2. Then find π ∈ ΠA such that
π(c) = a and π(d) = b. Let y := π∗(x). Then ya,b = 1, while #Ina(Ty) ≥ #Inb(Ty) and
#Outa(Ty) ≤ #Outb(Ty), as desired. ✸ Claim 2

Claim 3: For any x ∈ XT , if x :=
∑

π∈ΠA

π∗(x), then x = 0.

Proof: Clearly, x ∈ Fix (Π∗
A). Now apply Claim 1. ✸ Claim 3

Recall A = |A|. For any a ∈ A, let Π−a ⊂ ΠA be the set of permutations fixing a
(effectively: the permutations of A \ {a}), and let Π∗

−a := {π∗ ; π ∈ Π−a}.

Claim 4: Let x ∈ XT , and let r :=
1

|Π−a|
∑

π∈Π−a

π∗(x). Let xa :=
1

A − 1

∑

b∈A\{a}

xa,b. Then:

(a) rb,c = 0 for all b, c ∈ A \ {a}.
(b) ra,b = xa for all b ∈ A \ {a}.

Proof: (a) Let A′ := A \ {a}, let K′ := {(b, c) ; b, c ∈ A′ and b < c}; then the set of all
tournaments on A′ bijectively maps to {±1}K′

in the obvious way. If x ∈ XT , and x′ is
the projection of x onto {±1}K′

, then x′ represents the tournament on A′ obtained by
deleting vertex a (and all adjoining edges) from Tx. Let X ′ := {y′; y ∈ XT } ⊂ {±1}K′

.
The group Π−a is isomorphic to the group ΠA′ in the obvious way, and Π∗

A′ ⊆ ΓX ′

because Π∗ ⊆ ΓXT
. Claim 3 (applied to ΠA′ and X ′) implies that x′ :=

∑

π∈ΠA′

π∗(x′) = 0′

Thus, for all b, c ∈ A′, we have

rb,c =
1

|Π−a|
∑

π∈Π−a

π∗(x)b,c =
1

|Π−a|
x′

b,c = 0,

which proves part (a). Part (b) follows because Π−a acts transitively on the (A − 1)
edges connecting to a. ✸ Claim 4

Claim 5: span(XT ) = RK.

Proof: By hypothesis, there exists some T ∈ T and some a ∈ A such that #Ina(T) 6=
#Outa(T). Since T is invariant under vertex permutations, we can permute T to move
a to the vertices of our choice.

So, let a ∈ A. Find x ∈ XT such that #Outa(Tx) 6= #Ina(Tx). Then xa 6= 0 in the
notation of Claim 4. Define

r :=
1

|Π−a|
∑

π∈Π−a

π∗(x).
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Then Claim 4 implies that rc,d = 0 for all c, d ∈ A\{a}, while ra,c = xa for all c ∈ A\{a}.
Clearly r ∈ span(XT ), because π∗(x) ∈ XT for all π ∈ Π−a because Π∗

−a ⊂ Π∗
A ⊂ ΓXT

.

Next, let b ∈ A \ {a}, find π ∈ ΠA be such that π(a) = b, and let x′ := π∗(x) ∈ XT .
Then x′

b = xa 6= 0 in the notation of Claim 4. Thus, if we define

r′ :=
1

|Π−b|
∑

π∈Π−b

π∗(x′),

then Claim 4 implies that r′c,d = 0 for all c, d ∈ A\{b}, while r′b,c = x′
b for all c ∈ A\{b}.

Now, let y be as in Claim 2. Let Π−a,b ⊂ ΠA be the group of all permutations of A
which fix both a and b, and define

s :=
1

|Π−a,b|
∑

π∈Π−a,b

π∗(y), ya :=
1

A − 2

∑

c∈A\{a,b}

ya,c, and yb :=
1

A − 2

∑

c∈A\{a,b}

yb,c.

Then by an argument similar to Claim 4, we have sa,c = ya and sb,c = yb for all c ∈
A \ {a, b}, and sc,d = 0 for all c, d ∈ A \ {a, b}, while sa,b = 1. Thus, if we define

za,b := s − ya

xa

r − yb

x′
b

r′,

then za,b
c,d = 0 whenever either c 6= a or d 6= b. However,

za,b
a,b = sa,b −

ya

xa

ra,b −
yb

x′
b

r′a,b (⋄)
sa,b −

ya

xa

ra,b +
yb

x′
b

r′b,a (∗)
1 − ya + yb ≥

(†)

1.

Here, (⋄) is by convention (9), and (∗) is because ra,b = xa and r′b,a = x′
b. Meanwhile,

(†) is because yb − ya ≥ 0 because

ya =
#Outa(y) − #Ina(y) − 1

A − 2
≤
(†)

#Outb(y) − #Inb(y) − 1

A − 2

≤ #Outb(y) − #Inb(y) + 1

A − 2
= yb,

where (†) is by the inequalities in Claim 2.

Clearly, za,b ∈ span(XT ). We can do this for any a 6= b ∈ A. The collection {za,b;
a 6= b ∈ A} clearly spans RK. Thus, span(XT ) = RK. ✸ Claim 5

Proposition 3.1(a), plus Claims 1 and 5, imply that XT is McGarvey. ✷

Proof of Proposition 3.6. “=⇒” (by contrapositive) Suppose there do not exist r < 0 < t ∈ R

such that r1, t1 ∈ conv(X ). Then 0 6∈ int [conv (X )]. Thus, Theorem 1.3(b2) says X is not
McGarvey.

Likewise, if span(X ) 6= RK, then Theorem 1.3(b4) says X is not McGarvey.
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“⇐=” Let y :=
1

|X |
∑

x∈X

x. Then y ∈ int [conv (X )] (same argument as Theorem 1.3 “(b4)=⇒(b2)”).

However, y ∈ Fix (ΓX ), as in part (a). Thus, y = s1 for some s ∈ R (by hypothesis). If
s = 0, then y = 0, so Theorem 1.3(b4) says X is McGarvey. So suppose s 6= 0.

By hypothesis, there exist r < 0 < t ∈ R such that r1, t1 ∈ conv(X ). If s < 0, then
0 =

(
−s
t−s

)
t1 +

(
t

t−s

)
y (a stictly positive convex combination), so Theorem 1.3(b4) says X

is McGarvey. If s > 0, then 0 =
(

s
s−r

)
r1 +

(
−r
s−r

)
y, so again Theorem 1.3(b4) says X is

McGarvey. ✷

Proof of Corollary 3.7 “=⇒” (by contrapositive) Suppose there does not exist any x ∈ X with
#(x) < K/2. Then #(x) ≥ K/2 for all x ∈ X . This means

∑
k∈K xk ≥ 0 for all x ∈ X

—i.e. 1 • x ≥ 0 for all x ∈ X . Thus, Theorem 1.3(b3) says X is not McGarvey.

Similarly, if #(y) ≤ K/2 for all y ∈ X , then X cannot be McGarvey.

“⇐=” First note that Fix (ΠX ) ⊆ R1. To see this, let r ∈ Fix (ΠX ); then π(r) = r for all π ∈ ΠX .
If ΠX is transitive, then all coordinates of r must be equal; hence r ∈ R1.

By hypothesis, there exist x,y ∈ X with #(x) < K/2 < #(y). Observe that #[π(x)] =
#(x) and #[π(y)] = #(y) for all π ∈ ΠX . Let

x∗ :=
1

|ΠX |
∑

π∈ΠX

π(x) and y∗ :=
1

|ΠX |
∑

π∈ΠX

π(y);

Then x∗,y∗ ∈ Fix (ΠX ), so x∗ = r1 and y∗ = t1, where r := 2#(x)/K − 1 < 0 and
t := 2#(y)/K − 1 > 0.

Finally, ΓX ⊇ ΠX , so Fix (ΓX ) ⊆ Fix (ΠX ) ⊆ R1. At this point, all hypotheses of
Proposition 3.6 are verified; thus, X is McGarvey. ✷

Proof of Example 3.8(b). Clearly ΠX eq
N (r,R) ⊇ Π∗, so it is transitive. Thus, Corollary 3.7 says

that X eq

N (r, R) is McGarvey if and only if there exist x,y ∈ X eq

N (r, R) with #(x) < K/2 <
#(y).

Claim 1: There always exists x ∈ X eq

N (r, R) with #(x) < K/2.

Proof: Recall that R ≥ 2. Let r′ := max{r, 2}; then r ≤ r′ ≤ R (because R ≥ r by
hypothesis). In fact, we will construct x ∈ X eq

N (r′, R).

Note that N − r′ ≥ 0 because r′ ≤ R ≤ N . If N − r′ is even, then let L :=
N + 2 − r′

2
(≥ 1), and let x ∈ X eq

N describe an equivalence relation where N splits into

two equivalence classes of size L, along with r′ − 2 singleton classes. Then

#(x) = 2

(
L(L − 1)

2

)
= L(L−1) < L(L− 1

2
) ≤

(∗)

N(N − 1)

4
=

K

2
,
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as desired. Here (∗) is because L ≤ N/2 because r′ ≥ 2.

If N − r′ is odd, then N − r′ ≥ 1. Let L :=
N + 1 − r′

2
(≥ 1), and let x ∈ X eq

N describe

an equivalence relation where N splits into one equivalence class of size L, one class of
size L + 1, and r′ − 2 singleton classes. Then

#(x) =
L(L − 1)

2
+

(L + 1)L

2
=

2L2

2
= L2 <

(∗)

N(N − 1)

4
=

K

2
,

as desired. Here (∗) is because L ≤ (N − 1)/2 because r′ ≥ 2.

In either the even or odd case, we have rank(x) = r′ ∈ [r . . . R] so x ∈ X eq

N (r, R).
✸ Claim 1

Claim 1 and Corollary 3.7 imply that X eq

N (r, R) is McGarvey if and only if there exists
y ∈ X eq

N (r, R) with #(y) > K/2. We must show this occurs if and only if r < r(N).

Let M := N − r + 1, and let M ⊂ N be a subset of cardinality M , so that |N \M| =
N − M = r − 1. Let y ∈ X eq

N describe the equivalence relation where M forms one
equivalence class, and each element of N \ M forms a singleton equivalence class, for r
equivalence classes in total. Thus, rank(y) = r, so y ∈ X eq

N (r, R). It is easy to see that
#(y) = max{#(x); x ∈ X eq

N (r, R)}. Thus, it suffices to show that #(y) > K/2 if and only
if r < r(N). To see this, let

M := N − r(N) + 1 =
1 +

√
2N2 − 2N + 1

2
.

Then M is the positive root of the polynomial f(M) = M2 − M − (N2 − N)/2. Thus, for
any M ∈ N, we have

(
r < r(N)

)
⇐⇒

(
M > M

)
⇐⇒

(
f(M) > 0

)
⇐⇒

(
M2 − M >

N2 − N

2

)

⇐
(∗)
⇒

(
M(M − 1)

2
>

K

2

)
⇐

(†)
⇒

(
#(y) >

K

2

)
,

as claimed. Here, (∗) is because K = N(N − 1)/2, and (†) is because #(y) = M(M − 1)/2.
✷

Proof of Proposition 4.2. “(a) =⇒ (c)” is clear.

“(c) =⇒ (b)” (by contrapositive) Let O−1 be the open orthant containing −1. If there is no
c ∈ conv(X ) with c ≪ 0, then conv(X )∩O−1 = ∅; thus, Theorem 1.3(a) says −1 6∈ maj(X ).

“(b) ⇐= (a)” If X is comprehensive, then conv(X ) is also comprehensive. That is, for all
c ∈ conv(X ) and r ∈ [−1, 1]K, if c ≤ r, then r ∈ conv(X ) also. If c ∈ conv(X ) and

c ≪ 0, then the set
{
r ∈ [−1, 1]K ; r ≫ c

}
⊆ conv(X ) is an open neighbourhood of 0;

thus, Theorem 1.3(b2) says X is McGarvey. ✷
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Proof of Proposition 4.4. Proposition 1.1(b) says X is median-saturating if and only if W2(X ) =
∅. If X is comprehensive, then any X -forbidden word must be all zeros. Thus, any element
of W2(X ) has the form (0j, 0k) for some j, k ∈ K. Thus, W2(X ) = ∅ if and only if, for all
j, k ∈ K, there exists x ∈ X with xj = 0 = xk. ✷

Proof of Proposition 5.1. First we must show that span(Xf ) = RK.

Claim 1: If span(Xf ) 6= RK, then there is some j ∈ J and sj ∈ {±1} such that

f(x) = sjxj for all x ∈ {±1}J .

Proof: If span(Xf ) 6= RK, then for all (x, y) ∈ Xf , the coordinate y must be an affine
function of x; in other words, f must be an affine function. Thus, there are constants
sj ∈ R for all j ∈ J , and another constant r ∈ R such that f(x) = r +

∑
j∈J sjxj for all

x ∈ {±1}J .

Claim 1.1: For all j ∈ J , we have sj ∈ {−1, 0, 1}.
Proof: Let I := J \ {j}, Fix xI ∈ {±1}I . Then either f(xI ,−1j) = f(xI , 1j), or

f(xI ,−1j) = −f(xI , 1j). But clearly,

f(xI , 1j)−f(xI ,−1j) = r+
∑

i∈I

sixi +sj(+1) − r−
∑

i∈I

sixi−sj(−1) = 2sj.

Thus, if f(xI ,−1j) = f(xI , 1j), then sj = 0. If f(xI ,−1j) = −f(xI , 1j), then
sj = ±1. ▽ Claim 1.1

Claim 1.2: There is at most one j ∈ J such that sj 6= 0.

Proof: (by contradiction) Suppose sj 6= 0 6= sk for some j 6= k ∈ J . Let I := J \ {j, k}.
Fix xI ∈ {±1}I . If sj = sk, then f(xI , 1j, 1k)−f(xI ,−1j,−1k) = sj(1+1− (−1−

1)) = 4sj, which is impossible because f({±1}J ) ⊆ {±1} while sj = ±1 (by Claim
1.1).

If sj = −sk, then f(xI ,−1j, 1k)−f(xI , 1j,−1k) = sk(−(−1)+1− (−1−1)) = 4sk,
which is again impossible because f({±1}J ) ⊆ {±1} while sk = ±1 (by Claim 1.1).

Either way, we have a contradiction. Thus, either sj = 0 or sk = 0. ▽ Claim 1.2

Claim 1.2 implies that f(x) = sjxj +r for all x ∈ {±1}J . Claim 1.1 says that sj = ±1,
while f(x) = ±1 and xj = ±1 by definition. Thus, r = 0; hence f(x) = sj xj. ✸ Claim 1

Thus, if f(x) depends nontrivially on more than one coordinate of x, then the conclusion
of Claim 1 is contradicted; hence span(Xf ) 6= RK. Now,

∑

y∈Xf

y =
∑

x∈{±1}J

(x, f(x)) = (0J , 0) = 0K,

because
∑

x∈{±1}J f(x) = 0 by hypothesis, and clearly 1
2J

∑
x∈{±1}J x = 0J . Thus, Theorem

1.3(b4) says Xf is McGarvey. ✷
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Proof of Proposition 5.2. Let x ∈ {±1}K; we want µ ∈ ∆(Xf ) such that maj(µ) = x.
Recall K = J ⊔ {0}; write x = (xJ , x0) for some xJ ∈ {±1}J . Let Y+ := f−1{1} and
Y− := f−1{−1}; by hypothesis, both these spaces are McGarvey.

If x0 = 1, then find some µJ ∈ ∆(Y+) such that maj(µ) = xJ . Define µ ∈ ∆(X ) by
µ(y, 1) = µJ (y) for all y ∈ Y+. Then maj(µ) = x. If x0 = −1, then perform a similar
construction using some µJ ∈ ∆(Y−). ✷

Proof of Proposition 5.3. If f is monotone, then f−1{1} is a comprehensive subset of {±1}J .
Thus, hypothesis #1 and Proposition 4.2 imply that f−1{1} is McGarvey.

If f is monotone, then −f−1{−1} is also a comprehensive subset of {±1}J . Thus, hy-
pothesis #2 and Proposition 4.2 imply that f−1{−1} is McGarvey.

At this point, Proposition 5.2 implies that Xf is McGarvey. ✷

Proof of Proposition 6.2. (a) “=⇒” It suffices to show that, for any j ∈ J , there is some
C∗

j ∈ C such that j ∈ C∗
j ⊆ J ; it follows that J is a union of C-elements.

Let µ ∈ ∆∗(XC) be such that maj(µ) = χ
J . Let j ∈ J . Then majj(µ) = 1, so µ̃j > 0. Let

Cj := {C ∈ C ; j ∈ C}; then µ̃j =
∑

C∈Cj

µ(χC) −
∑

C∈C\Cj

µ(χC). Let C∗
j =

⋂

C∈Cj

C; then C∗
j ∈ C,

and for all k ∈ C∗
j , we have µ̃k ≥

∑

C∈Cj

µ(χC) −
∑

C∈C\Cj

µ(χC) = µ̃j > 0; hence majk(µ) = 1,

which means k ∈ J . Thus, C∗
j ⊆ J , as claimed.

“⇐=” Let C1, . . . , CN ∈ C, and let J := C1 ∪ · · · ∪ CN ; we will construct µ ∈ ∆∗(XC) such that
maj(µ) = χ

J . Define µ ∈ ∆∗(XC) as follows:

• Set µ[1] :=
N − 1

2N − 1
.

• For all n ∈ [1...N ], set µ[χCn ] :=
1

2N − 1
.

Thus, for all n ∈ [1...N ] and j ∈ Cn, we have µ̃j ≥ 2
(

N−1
2N−1

+ 1
2N−1

)
−1 = 1

2N−1
> 0, whereas

for all k ∈ K \ J , we have µ̃j = 2
(

N−1
2N−1

)
− 1 = −1

2N−1
< 0. Thus, maj(µ) = χ

J .

(b) “[i]=⇒[ii]” is immediate because equation (3) asserts maj(X ) ⊆ med∞(X ).

“[ii]=⇒[iii]” (by contrapositive) Let k ∈ K, but suppose {k} 6∈ C. Define C∗
k as in part

(a); then k ∈ C∗
k and C∗

k is the smallest element of C which contains k. Now, C∗
k 6= {k},

because {k} 6∈ C. Thus, there exists j ∈ C∗
k \ {k}. Define the word w ∈ {±1}{k,j} by wk = 1

and wj = −1; then w is XC-forbidden. Thus, W2(XC) 6= ∅; thus, Proposition 1.1(b) implies
that XC is not median-saturating.

“[iii]=⇒[i]” follows immediately from part (a), because any subset of K can be written
as a union of singleton sets. ✷
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Proof of Theorem 7.1. “S(X ) ≤ 4(K +1)σ(X )” Let U ⊂ conv(X ), and let ǫ > 0. We say that
U is ǫ-dense in conv(X ) if, for all c ∈ conv(X ), there exists some u ∈ U with ‖u − c‖∞ < ǫ.

Claim 1: For any M ∈ N, let CM := {µ̃ ; µ ∈ ∆∗
M(X )}. Then CM is a

(
2(K+1)

M

)
-dense

subset of conv(X ).

Proof: Let QM :=
{

n
M

; n ∈ N
}
, and let QX

M be the set of all functions µ : X−→QM (thus,

∆∗
M(X ) ⊂ QM). For any r ∈ R+, we define ⌊r⌋M :=

⌊M r⌋
M

; this is the largest element

of the set QM which is no greater than r. Note that 0 ≤ r − ⌊r⌋M ≤ 1/M .

Let c ∈ conv(X ); we must find some µ ∈ ∆∗
M(X ) such that ‖µ̃ − c‖∞ < 2(K + 1)/M .

Carathéodory’s theorem says there exists some subset Y ⊆ X with |Y| = K + 1, and
some ν ∈ ∆(Y), such that ν̃ = c. Now define λ ∈ QY

M by λ(y) := ⌊ν(y)⌋M for all y ∈ Y .
Let

q :=
∑

y∈Y

∣∣∣ν(y) − λ(y)
∣∣∣ ≤ |Y|

M
=

K + 1

M
. (10)

Then ∥∥∥λ̃ − c
∥∥∥
∞

=
∥∥∥λ̃ − ν̃

∥∥∥
∞

≤ q. (11)

Observe that

1 −
∑

y∈Y

λ(y) =
∑

y∈Y

ν(y) −
∑

y∈Y

λ(y) =
∑

y∈Y

(
ν(y) − λ(y)

)

=
∑

y∈Y

∣∣∣ν(y) − λ(y)
∣∣∣ = q. (12)

Thus, q ∈ QM (because λ ∈ QY
M). However, in general q > 0, so λ 6∈ ∆∗ (X ). Fix some

y0 ∈ Y , and define µ ∈ ∆∗
M(X ) as follows: µ(y0) := λ(y0) + q ∈ QM , and µ(y) := λ(y)

for all other y ∈ Y \ {y0} (and of course µ(x) := 0 for all x ∈ X \ Y). Then equation

(12) implies that
∑

x∈X

µ(x) =
∑

y∈Y

µ(y) = 1, so µ ∈ ∆∗
M(X ). Furthermore,

∥∥∥µ̃ − λ̃
∥∥∥
∞

≤ |µ(y0) − λ(y0)| = q. (13)

Combining equations (10), (11), and (13), we have ‖µ̃ − c‖∞ ≤
∥∥∥µ̃ − λ̃

∥∥∥
∞

+
∥∥∥λ̃ − c

∥∥∥
∞

≤
q + q ≤ 2(K + 1)/M , as desired. ✸ Claim 1

Now, let M := 4(K + 1)σ(X ); Then conv(X ) contains the ball B
(

4(K+1)
M

)
. Given

x ∈ {±1}K, let x′ := 2(K+1)
M

x; then conv(X ) ∩ Ox must contain the ball B′ := {r ∈ RK;

‖r − x′‖∞ ≤ 2(K+1)
M

}. But CM is (2(K+1)
M

)-dense in conv(X ) (by Claim 1), so CM must
intersect B′. Thus, CM intersects conv(X ) ∩ Ox; thus, there is some µ ∈ ∆∗

M(X ) with
maj(µ) = x.

“σ(X ) ≤ S(X )” For every x ∈ {±1}K, there exists N ≤ S(X ) and some µx ∈ ∆∗
N (X )

such that maj(µx) = x. This means that µ̃x ∈ Ox. However, if µ ∈ ∆∗
N (X ), then every
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coordinate of µ̃ is an integer multiple of 1/N . Thus, if µ̃ ∈ Ox, then for all k ∈ K we
have µ̃k ≥ 1/N ≥ 1/S(X ) if xk = 1, while µ̃k ≤ −1/N ≤ −1/S(X ) if xk = −1. Thus, if

C = conv{µ̃x; x ∈ {±1}K}, then B
(

1
S(X )

)
⊆ C ⊆ conv(X ). Thus, S(X ) ≥ σ(X ). ✷

Proof of Proposition 7.2. (a) If X is McGarvey, then 0 ∈ int [conv (X )]. Thus, the boundary
of conv(X ) does not include 0. The boundary of conv(X ) is a union of (K − 1)-dimensional
faces, each of which is a union of one or more simplices of the form conv(x1, . . . ,xK) for
some x1, . . . ,xK ∈ X (by Carathéodory’s theorem).

Now, if M := ⌈1/δ(X )⌉, then 1
M

≤ δ(X ). Thus, B( 1
M

) is disjoint from every boundary
simplex of X . Thus, B( 1

M
) ⊆ conv(X ). Thus, M ≥ σ(X ).

(b) Let δ := δ(K). For all McGarvey X ⊂ {±1}K, we have

S(X ) ≤
(†)

4(K + 1)σ(X ) ≤
(@)

4(K + 1) ⌈1/δ(X )⌉ ≤
(∗)

4(K + 1) ⌈1/δ⌉,

where (†) is by Theorem 7.1, (@) is by part (a), and (∗) is because δ(X ) ≥ δ for any
X ⊂ {±1}K (by their definitions).

Now, find x1, . . . ,xK ∈ {±1}K such that δ(x1, . . . ,xK) = δ, and let y ∈ conv{x1, . . . ,xK}
be such that ‖y‖∞ = δ. Let z ∈ {±1}K be such that y ∈ Oz. Let P ⊂ RK be the
hyperplane containing conv{x1, . . . ,xK}; then P cuts RK into two open halfspaces, H+ and
H−, where z ∈ H+ and 0 ∈ H−. Let X ′ := {±1}K ∩ (H− ∪ P). Then X ′ is McGarvey
(because 0 ∈ int [conv (X ′)]). Also, x1, . . . ,xK ∈ X ′, and conv{x1, . . . ,xK} is one of the
boundary faces of conv(X ′) (because conv(X ′) ⊂ H− ∪ P). Thus, σ(X ′) ≥ 1/δ (because
y ∈ conv{x1, . . . ,xK}). Thus S(X ′) ≥ 1/δ, by Theorem 7.1.

(c) Without loss of generality, let K = [1...K]. If B := [bjk]j,k∈K is a K × K matrix, then
let ‖B‖∞ := max

j,k∈K
|bj,k|. We then define χ(K) := max{‖A−1‖∞; any invertible matrix

A ∈ {±1}K×K}. We will use a result of Alon and Vũ [AV97], which says that

KK/2

22K+O(K)
≤ χ(K) ≤ KK/2

2K−1
. (14)

Left-hand inequality. Let A ∈ {±1}K×K be such that ‖A−1‖∞ = χ(K). Let B := A−1,
and find ℓ,m ∈ [1...K] such that |bℓm| = χ(K). Let R6− := {r ∈ R; r ≥ 0}.

Let y := B · 1. For any k ∈ [1...K], if A′ is obtained by negating the kth row of A, then
(A′)−1 is obtained by negating the kth column of B, which in particular negates bℓk. By
negating the rows of A and columns of B as required, we can assume that bℓk ≥ 0 for all

k ∈ [1...K]. Thus, yℓ =
K∑

k=1

bℓk ≥ bℓm = χ(K).

For any k ∈ [1...K], if A′ is obtained by negating the kth column of A, then (A′)−1 is
obtained by negating the kth row of B, and hence, the kth entry in y. By negating the
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columns of A and rows of B as required, we can assume that y ∈ RK
6− . Thus, if Y :=

K∑

j=1

yj,

then Y ≥ yℓ ≥ χ(K).

Let s :=
1

Y
y; then s ∈ RK

6− and
K∑

k=1

sk = 1. Let x1,x2, . . . ,xK ∈ {±1}K be the column

vectors of A; then 0 6∈ conv{x1, . . . ,xK}, because A is invertible. Now, As =
K∑

k=1

skx
k, so

As ∈ conv{x1, . . . ,xK}. However, As = 1
Y

1, so δ(x1, . . . ,xK) ≤ ‖As‖∞ = 1
Y

. Thus,

1

δ(K)
≥ 1

δ(x1, . . . ,xK)
≥ Y ≥ χ(K) ≥

(∗)

KK/2

22K+O(K)
,

where (∗) is by the left-hand Alon-Vũ inequality (14).

Right-hand inequality. Let x1, . . . ,xK ∈ {±1}K be any points such that 0 6∈ conv{x1, . . . ,xK},
and let δ := δ(x1, . . . ,xK). Let c ∈ conv{x1, . . . ,xK} be such that ‖c‖∞ = δ, and let
Y ⊆ {x1, . . . ,xK} be a minimal subset such that c ∈ conv(Y).

Claim 1: Y is linearly independent.

Proof: (by contradiction) Suppose Y is linearly dependent. Let C := conv{Y} and V :=
span{Y}. Then x ∈ C ⊂ V. Let D := dim(V) and C := dim(C); then C ≤ D. Let
Y := |Y|; then C ≤ Y − 1. If Y is linearly dependent, then D ≤ Y − 1. There are now
two cases:

• Suppose C = D. Then C has nonempty relative interior in V , so the relative boundary
of C in V is a union of faces of dimension D − 1. The point c lies on this relative
boundary (because it minimizes ‖•‖∞); thus c lies in some (D − 1)-dimensional face,
so Carathéodory’s theorem says c ∈ conv(Z) for some Z ⊆ Y with |Z| ≤ D. But
D = C ≤ Y − 1; thus, Z is a proper subset of Y , contradicting the minimality of Y .

• Suppose C ≤ D − 1. Carathéodory’s theorem says c ∈ conv(Z) for some Z ⊆ Y with
|Z| ≤ C + 1. But C + 1 ≤ D ≤ Y − 1, so again Z is a proper subset of Y , contradicting
the minimality of Y . ✸ Claim 1

By re-ordering if necessary, we can assume Y = {x1, . . . ,xN} for some N ≤ K. Then,
by replacing xN+1, . . . ,xK with some other x̃N+1, . . . , x̃K ∈ {±1}K if necessary, we can
ensure that the set {x1, . . . ,xK} is linearly independent. Let A be the K×K matrix whose
columns are x1, . . . ,xK ; then A is nonsingular. Let B := A−1. Since c ∈ conv{x1, . . . ,xK},
we have c = As for some s ∈ RK

6− with
∑K

k=1 sk = 1. Thus, s = Bc. Thus,

1 =
K∑

j=1

sj =
K∑

j=1

K∑

k=1

bjkck,
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where c = (c1, . . . , cK). For all k ∈ [1 . . . K], we have |ck| ≤ ‖c‖∞ = δ. Thus,

1 =

∣∣∣∣∣

K∑

j=1

K∑

k=1

bjkck

∣∣∣∣∣ ≤
K∑

j=1

K∑

k=1

|bjk||ck| ≤ δ
K∑

j=1

K∑

k=1

|bjk| ≤ δ K2 · χ(K).

Thus,
1

δ
≤ K2 · χ(K) ≤

(∗)

K2+K/2

2K−1
,

where (∗) is by the right-hand Alon-Vũ inequality (14). Since this holds for all x1, . . . ,xK ∈
{±1}K, we conclude that

1

δ(K)
≤ K2+K/2

2K−1
, as claimed. ✷

Proof of Proposition 7.3. (a) (Similar to the proof of Proposition 6.2(a) “⇐=”) First we show
−1 ∈ maj(X ). Pick distinct i, j, k ∈ K, and define µ ∈ ∆3(X ) by µ[χi] = µ[χj] = µ[χk] =
1/3; then µ̃ℓ = −1/3 or −1 for all ℓ ∈ K, so maj(µ) = −1. Note that 3 ≤ 2K − 3 because
K ≥ 3.

Now let x ∈ {±1}K \ {−1}. Let J := {j ∈ K ; xj = 1} and let J := |J | (hence J ≥ 1,
since x 6= −1). If J = 1 or K, then x = χ

k for some k ∈ K or x = 1; hence x ∈ X by
hypothesis, and hence x ∈ maj(X ). Thus, we can assume that 2 ≤ J ≤ K − 1. Define
µ ∈ ∆∗

2J−1(X ) as follows:

• Set µ[1] :=
J − 1

2J − 1
.

• For all j ∈ J , set µ[χj] :=
1

2J − 1
.

Thus, for all j ∈ J we have µ̃j = 1
2J−1

, whereas for all k ∈ K\J , we have µ̃j = −1
2J−1

. Thus,
maj(µ) = x. This works for any x ∈ X . Note that 2J − 1 ≤ 2K − 3 because J ≤ K − 1.
Thus, S(X ) ≤ 2K − 3.

(b) Suppose without loss of generality that K = [1 . . . K]. For all k ∈ K, let ek := (0, 0, . . . , 0, 1, 0, . . . , 0),
where the “1” appears in the kth coordinate. By hypothesis, there exist xk,yk ∈ X such
that xk

k = 1 = yk
k , but xk and yk differ in every other coordinate. Thus, 1

2
(xk + yk) = ek.

Now, let x ∈ {±1}K be arbitrary. Let J := {j ∈ K ; xj = 1} and let J := |J |. Define
µ ∈ ∆2J+1(X ) by

µ :=
1

2J + 1

(
δ−1 +

∑

j∈J

(
δxj + δyj

)
)

.

(Here δy ∈ ∆∗ (X ) is the point mass at y.) Thus, for all j ∈ J , we have µ̃j = 2/(2J + 1)−
1/(2J + 1) = 1/(2J + 1) > 0. Meanwhile for all k ∈ K \ J , we have µ̃k = −1/(2J + 1) < 0.
Thus, maj(µ) = x, as desired.

(c) For all k ∈ K, let ek be as in part (b). By hypothesis, there exist xk,yk ∈ X such that xk
k 6=

yk
k , but xk and yk agree in every other coordinate. Now −X = X , so −yk ∈ X also. Note
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that xk
k = −yk

k , and xk and −yk differ in every other coordinate. Thus, 1
2
(xk − yk) = sk ek,

for some sk ∈ {±1}. Likewise, −xk ∈ X , and 1
2
(yk − xk) = −sk ek.

Now, given any z ∈ {±1}K, define µ ∈ ∆∗
2K(X ) by:

µ :=
1

2K



∑

k∈K
zk=sk

(δxk + δ−yk
) +

∑

k∈K
zk=−sk

(δ−xk + δyk
)




Thus, for every k ∈ K, we have µ̃k = zk

K
, so maj(µ) = z, as desired. ✷

Proof of Example 7.4(e). Let I ′ := max{I,K − J} and J ′ := min{J,K − I}, and for all
ℓ ∈ [1...L], let I ′

ℓ := max{Iℓ, Kℓ − Jℓ} and J ′ := min{Jℓ, Kℓ − Iℓ}. Suppose that

L∑

ℓ=1

I ′
ℓ < J ′ and

L∑

ℓ=1

J ′
ℓ ≥ I ′. (15)

We claim that S(X com) ≤ 2K.

To see this, let X ′ := {x ∈ {±1}K; I ′ ≤ #(x) ≤ J ′ and I ′
ℓ ≤ #ℓ(x) ≤ J ′

ℓ, for all
ℓ ∈ [1...L]}. Then X ′ ⊆ X com, and condition (15) ensures that X ′ 6= ∅. Note that −X ′ = X ′

(because I ′ = K − J ′ and I ′
ℓ = Kℓ − J ′

ℓ for all ℓ ∈ [1...L]). For all k ∈ X , let xk ∈ X ′ be
an admissible committee of minimal size not involving k. Thus, #ℓ(x

k) = I ′
ℓ < J ′

ℓ for all
ℓ ∈ [1...L], and I ′ ≤ #(xk) ≤ J ′. Condition (15) implies that actually #(xk) < J ′. Let yk

be the committee obtained from xk by adding k; then I ′ < #(yk) ≤ J ′ and I ′
ℓ ≤ #ℓ(y

k) ≤ J ′
ℓ

for all ℓ ∈ [1...L], so yk ∈ X ′ also. We can do this for any k ∈ K; thus, the hypotheses of
Proposition 7.3(c) are satisfied, so S(X ′) ≤ 2K. But X ′ ⊆ X com; thus, S(X com) ≤ 2K also.
✷

Appendix B: More examples.

This appendix contains further examples of some of the themes of this paper. First, here
is another class of ‘minimal’ McGarvey spaces, somewhat different to the class presented in
Example 2.2.

Example B.1. Let K = 2N + 1, and let K = [0 . . . 2N ]. Define

x0 := (+1; +1,−1, +1,−1, +1,−1, . . . , +1,−1).

In other words, set x0
0 := 1, and for all k ∈ [1 . . . 2N ], set x0

k := 1 if k is odd, while x0
k := −1 if

k is even. Define x1,x2, . . . ,x2N by cyclically permuting the coordinates of x0 (i.e. identify
K with the group Z/K). Let X := {±x0,±x1, . . . ,±x2N}. Then |X | = 2K.

Claim 1: X is minimal McGarvey.
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Proof: X is McGarvey: It can be checked that span(X − X ) = RK, so int [conv (X )] 6= ∅.
Recall that K := [0 . . . 2N ]. In this case, ΠX consists of all cyclic permutations of

K (obtained by identifying K with the group Z/K); Thus, ΠX is transitive. Clearly
#(x0) = N + 1 > K/2, whereas #(−x0) = N < K/2. Thus, Corollary 3.7 implies that
X is McGarvey.

No proper subset of X is McGarvey: Let Y := X \ {x0}. To see that Y is not
McGarvey, let z := (1, 1, 0, 0, . . . , 0). Then z • y ≤ 0 for all y ∈ Y . Thus, Theorem
1.3(b3) implies that Y is not McGarvey.

A similar argument shows that the sets X \ {xk} and X \ {−xk} are not McGarvey,
for any k ∈ K. ✸ Claim 1

In particular, if K = 3, then once again, X = {(1, 1,−1), (1,−1, 1), (−1, 1, 1), (−1,−1, 1),
(−1, 1,−1), (1,−1,−1)} is a minimal McGarvey set with six elements. Let A := {a, b, c}
and identify K with the set {(a, b), (b, c), (c, a)}; then X = X pr

A . ♦

Next, here are two more applications of Corollary 3.7.

Example B.2. (Connected digraphs) Let N be a finite set, and let K := {(n,m) ∈ N × N ;
n 6= m}. Thus, an element of {±1}K can represent a directed graph (digraph) with vertex
set N . For any permutation π : N−→N , define π∗ : K−→K by π(n,m) := (π(n), π(m))
for all (n,m) ∈ K. Let Π∗ be the set of all such permutations; then Π∗ acts transitively on
K (for any (n1,m1) ∈ K and (n2,m2) ∈ K, let π : N−→N be any permutation such that
π(n1) = n2 and π(m1) = m2; then π∗(n1,m1) = (n2,m2)).

A digraph is connected if any two vertices can be connected with a directed path. Let
~X cnct
N ⊂ {±1}K be the set of connected digraphs. Then Π ~X cnct

N
is transitive, because it

contains Π∗.

Through a similar argument to Example 3.8(c), one can show that span( ~X cnct
N ) = RK. There

exists x ∈ ~X cnct
N with #(x) < K/2 (for example, let x represent a digraph where the elements

of N are arranged in a directed loop —then #(x) = |N | < K/2). There also exists y ∈ ~X cnct
N

with #(y) > K/2 (for example: 1 ∈ ~X cnct
N ). Thus, Corollary 3.7 says that ~X cnct

N is McGarvey.
♦

Example B.3. (Committee Selection) As in Example 7.4(e), let K be a set of ‘candidates’,
so that any element of {±1}K represents a ‘committee’ formed from these candidates. Let
K1,K2, . . . ,KL be disjoint subsets of K, with cardinalities K1, K2, . . . , KL, respectively. Let
N ⊆ [0...K], and for all ℓ ∈ [1...L], let Nℓ ⊆ [0...Kℓ]. For any x ∈ {±1}K and ℓ ∈ [1...L],
recall that #ℓ(x) := #{k ∈ Kℓ ; xk = 1}. Consider the set:

X com :=
{
x ∈ {±1}K ; #(x) ∈ N and #ℓ(x) ∈ Nℓ, ∀ ℓ ∈ [1...L]

}
.

Thus, X com represents the set of all committees formed from the candidates in K, with
certain restrictions on the size of the whole committee, and also certain restrictions on the
level of representation from various ‘constituencies’ K1, . . . ,KL. For example, N might be a
subinterval of [0...K], encoding a minimum and/or maximum size for the whole committee.
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Also, we might restrict N to contain only odd values (e.g. to reduce the likelihood of
tied votes). Meanwhile, Nℓ might be a subinterval of [0...Kℓ], encoding minimum and/or
maximum admissible levels of representation from constituency Kℓ.

(a) Suppose that int [conv (X com)] 6= ∅, and also that:

(a1) K =
L⊔

ℓ=1

Kℓ; (a2) K1 = K2 = · · · = KL =
K

L
;

(a3) N1 = · · · = NL = N∗ for some subset N∗ ⊆
[
0 . . . K

L

]
; and

(a4) If N† := N ∩ {n1 + · · · + nL ; n1, . . . , nL ∈ N∗}, then min(N†) < K/2 < max(N†).

Then X com is McGarvey. To see this, let π : K−→K be any permutation. Suppose that,
for all ℓ ∈ [1...L], there is some i ∈ [1...L] such that π(Kℓ) = Ki. Then π ∈ ΠX com by (a3).
The set of all such permutations is transitive (by (a1) and (a2)). Thus, ΠX com is transitive.
Meanwhile, (a4) means that there exist x,y ∈ X com such that #(x) < K/2 < #(y). Thus,
Corollary 3.7 implies that X com is McGarvey.

(b) More generally, let K∗ be the largest divisor of K which is no greater than min{K1, . . .,
KL}. Let N∗ := N1 ∩ · · · ∩NL ∩ [0...K∗]. Suppose that N∗ 6= ∅, and suppose condition (a4)
holds (in particular, we suppose N† 6= ∅). Then X com is McGarvey.

To see this, for each ℓ ∈ [1...L], let K′
ℓ ⊆ Kℓ be a subset with |K′

ℓ| = K∗. Let Q := K/K∗ (an

integer), and find Q − L further disjoint subsets K′
L+1, . . . ,K′

Q ⊂ K such that K =

Q⊔

q=1

K′
q.

Define N ′
1 = · · · = N ′

Q := N∗. Let X ′ be the committee space constructed using the
constituencies K′

1, . . . ,K′
Q and the cardinality constraint sets N ,N ′

1, . . . ,N ′
Q. Then X ′ 6= ∅

(because N† 6= ∅), and X ′ satisfies the hypotheses of Example (a), so X ′ is McGarvey. But
X ′ ⊆ X com; hence X com is also McGarvey. ♦
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pluralité des voix. Paris, 1785.

[DH09] Elad Dokow and Ron Holzman. Aggregation of binary evaluations for truth-functional agendas. Soc.
Choice Welf., 32(2):221–241, 2009.
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