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Abstract

In game theory, there is a basic methodological dichotomy between Harsanyi�s

"game-theoretic" view and Aumann�s "Bayesian decision-theoretic" view of the world.

We follow the game-theoretic view, propose and study interim partially correlated ra-

tionalizability for games with incomplete information. We argue that the distinction

between this solution concept and the interim correlated rationalizability studied by

Dekel, Fudenberg and Morris (2007) is fundamental, in that the latter implicitly follows

Aumann�s Bayesian view.

Our main result shows that two types provide the same prediction in interim par-

tially correlated rationalizability if and only if they have the same in�nite hierarchy of

beliefs over conditional beliefs. We also establish an equivalence result between this

solution concept and the Bayesian solution�a notion of correlated equilibrium proposed

by Forges (1993).
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1 Introduction

In complete information games, rationalizability is an important solution concept. It was �rst

introduced independently by Bernheim (1984) and Pearce (1984). Intuitively, a rationalizable

action is one that a player may play given the minimal assumption of common knowledge

of rationality among players. We join the e¤ort in extending rationalizability to games with

incomplete information. In particular, we study interim rationalizable actions: actions that

are rationalizable to a player after she receives her private information. Harsanyi type spaces

(Harsanyi, 1967-1968), which model players� private information as their (private) types and

parameters of payo¤ functions as states of nature, are the basic tool for studying games with

incomplete information. With this tool, the problem transforms into studying rationalizable

actions for any given type of a player.

Similar to rationalizable actions in complete information games, interim rationalizable

actions can also be de�ned using the procedure of iterative elimination of never best response

actions. In this procedure, actions that are not a best response to any conjectures are

eliminated step by step, and the actions that survive to the end are called rationalizable. In

games with incomplete information, players need to conjecture on both the others� actions

and states of nature. If we �x a type space, how should we de�ne a player�s belief over both

the others� actions and states of nature?

There are generally two approaches to model such beliefs: Harsanyi�s game-theoretic view

(Harsanyi, 1967-1968), or principle, and Aumann�s Bayesian (decision-theoretic) view (Au-

mann, 1987)1. Harsanyi�s principle distinguishes states of nature as independent variables

and actions as type-contingent variables, and insists that subjective probabilities should

be assigned only to independent variables. Instead, Aumann�s Bayesian view holds that

1This distinction between Aumann�s Bayesian view and Harsanyi�s principle is also adopted by Forges
(1993) in de�ning correlated equilibria for games with incomplete information. In her terminologies, the two
viewpoints are named the universal Bayesian approach and the partial Bayesian approach, respectively.
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subjective probabilities are assignable to anything unknown, including the others� actions.

We use an example taken from Ely and P¾eski (2006) to illustrate the e¤ects of these

di¤erent approaches.

Example 1. This is a two-player game with incomplete information, with states of nature

parameterized by � = f�1; �2g: Each player has three actions, Ai = fai; bi; cig; i = 1; 2; and

players� payo¤s are given by

a2 b2 c2

a1 1; 1 �10;�10 �10; 0

b1 �10;�10 1; 1 �10; 0

c1 0;�10 0;�10 0; 0

�1

a2 b2 c2

a1 �10;�10 1; 1 �10; 0

b1 1; 1 �10;�10 �10; 0

c1 0;�10 0;�10 0; 0

�2

Figure 1.

Given the payo¤s, players would like to match, on a or b, in state �1 and mismatch in

state �2. Players can also play action c, which is a safe action and always pays 0.

Consider �rst a trivial type space T in which each player has just one type: T1 = T2 = f�g:

Assume it is common knowledge between players that �1 and �2 happen with equal probability.

Since players are symmetric, we concentrate on player 1.

With Harsanyi�s principle, players� actions must be type contingent. Since player 2 has

only one type, player 1 expect player 2 to play the same strategies (pure or mixed) in states

�1 and �2. Given any strategy of player 2, actions a1 and b1 give player 1 strictly negative

expected payo¤s and thus are strictly dominated by c1. As a result, c1 is the only rationalizable

action for player 1.
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If instead we follow Aumann�s Bayesian view, player 1 could legitimately conjecture that

player 2 plays a2 at state �1 and b2 at state �2: Given this conjecture, it is a unique best

response for player 1 to play a1. We can similarly check that the product set fa1; b1g�fa2; b2g

is a best reply set, and thus a subset of rationalizable action pro�les.

Previously, Dekel, Fudenberg and Morris (2007) proposed a notion of interim correlated

rationalizability. Their approach implicitly �ts with Aumann�s Bayesian view; they assume

that a player�s conjecture over the others� types, states of nature and the others� actions could

be an arbitrary probability measure over the product space, as long as it is consistent with

her belief in the type space. The type space that models incomplete information about states

of nature, in their view, is the marginal of an epistemic type space that models incomplete

information about both states of nature and the others� actions.

We, instead, adopt Harsanyi�s principle and de�ne interim partially correlated rationaliz-

ability. We assume that actions are type-contingent variables, and that a player�s conjecture

over the others� actions and states of nature are induced by her belief in the type space

together with a type-correlated strategy of the others�. A type-correlated strategy of the

others� maps each pro�le of their types to a probability measure on their action pro�les. If

we take the agent-normal-form view of a type space, i.e., if we view each type as an agent, the

correlation is exactly the same as that in correlated rationalizability in complete information

games. In other words, the correlation we permit can be viewed as interim correlation, while

that permitted by Dekel et al. can be viewed as ex post correlation.

Although interim partially correlated rationalizability may seem to be a re�nement of

interim correlated rationalizability at the �rst sight, the distinction between them is purely

methodological and therefore more fundamental. A type space is an arti�cially constructed

object used to model incomplete information. In order to de�ne the "right" solution concept

on it, we need to know beforehand what information is incorporated into the types; more
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precisely, we need to know whether types contain enough information to tell if the others�

actions are type-contingent or not. Conventional construction of types (Mertens and Za-

mir, 1986) relies on eliciting players� beliefs and higher-order beliefs about states of nature.

These type spaces, although su¢cient for Aumann�s Bayesian view of modeling games, are

insu¢cient for Harsanyi�s principle. Indeed, a player�s hierarchy of beliefs about states of

nature does not contain any information about whether there is direct correlation between

the others� actions and states of nature. This can be illustrated with a simple type space

presented in Ely and P¾eski (2006).

Example 2. Fix the type space T in Example 1; we describe a type space T̂ that has the

same set of hierarchies of beliefs about states of nature. Let T̂1 = T̂2 = f+1;�1g; and assume

there is a common prior on T̂1 � T̂2 ��:

�1 :

t1nt2 +1 �1

+1 1
4

0

�1 0 1
4

�2 :

t1nt2 +1 �1

+1 0 1
4

�1 1
4

0

Figure 2.

Given the prior, two players have the same type if and only if the state is �1 and two

players have di¤erent types if and only if the state is �2. At both +1 and �1 in T̂ , each player

has the same hierarchy of beliefs about states of nature, i.e., common knowledge that �1 and �2

happen with equal probability, which is the same as that at type � in T . Thus T̂ is redundant

with respect to conventional hierarchies of beliefs2. The information we elicited from players

is insu¢cient for us to tell which of T and T̂ models the actual game environment.

We return to the game in Example 1. If player 1 believes that the distribution on ��A2

2See Liu (2005) for a general study on the redundancy of hierarchies of beliefs in type spaces and the
state-dependent correlating mechanism that characterizes it.
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is 1
2
(�1; a2) and

1
2
(�2; b2); in T she must conjecture that player 2�s action directly depends on

states of nature; however, in T̂ , at her type +1 for example, the belief can be justi�ed by the

conjecture that player 2 plays a type-contingent strategy: a2 at +1 and b2 at �1. Because

from a player�s conventional hierarchy of beliefs we cannot tell apart T and T̂ , we cannot

tell from it whether the others� actions are type-contingent or not.

Since Harsanyi�s principle is almost always implicitly assumed in applications, it is im-

portant to know that in order for a type space to satisfy the principle, what additional

information needs to be gathered to incorporate into it? The other side of the same ques-

tion, which is more straightforward, is to study how we represent such information, in some

form of hierarchies of beliefs, after the construction of the type space. Example 2 suggests

that the representation must be sensitive to correlated signals that directly depend on states

of nature. The hierarchy of beliefs constructed in following way is called �-hierarchy of

beliefs, and was �rst introduced by Ely and P¾eski (2006): if we �x a type of a player, then,

conditional on each pro�le of types of the others, the player will have a conditional belief

about states of nature, and her belief about the others� types induces sequentially her belief

and higher-order beliefs on the set of conditional beliefs.

Our main result shows that two types have the same interim partially correlated ratio-

nalizable behavior if and only if they have the same �-hierarchy of beliefs. Not only does

this result identify the information that characterizes rationalizable behavior, but also, it

provides us with the representation of information necessary for Harsanyi�s principle. The

su¢ciency part of this result can be contrasted with Proposition 1 in Dekel et al. (2007).

They show that the identi�cation of interim correlated rationalizability requires only in�nite

hierarchies of beliefs over states of nature. The distinction between the two identi�cations

explicitly describes the distinction between the methodological viewpoints behind the two

solution concepts.
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This paper directly extends Ely and P¾eski (2006). Ely and P¾eski study interim inde-

pendent rationalizability in two-player games, and introduce �-hierarchies of beliefs for its

identi�cation. There are multiple extensions of their de�nition to games with more than

two players, due to the existence of multiple ways to formulate correlations; our de�nition is

exactly the one that retains the full implication of �-hierarchies of beliefs. The key di¤er-

ence is that we study interim "correlated" rationalizability, instead of interim independent

rationalizablity. Naturally, the proof to our main result can be readily extended from Ely

and P¾eski�s work. Nevertheless, we adopt approaches from theirs and make our proofs to

both the necessity part and su¢ciency part of the main result more direct and accessible.

To justify interim partially correlated rationalizability, we also establish an equivalence

result between it and the Bayesian solution�a notion of correlated equilibrium proposed by

Forges (1993). The Bayesian solution is de�ned obeying the partial Bayesian approach,

which is equivalent to Harsanyi�s principle. We show that type-correlated strategies of the

others� can be justi�ed by the Bayesian solution; this result describes explicitly how corre-

lations in the others� actions can be achieved. Brandenburger and Dekel (1987) show, for

complete information games, the payo¤ equivalence between correlated rationalizability and

a posteriori equilibrium. As an analogue of their result, we show the payo¤ equivalence

between interim partially correlated rationalizability and the Bayesian solution.

Some other research are also related to this paper. Liu (2005) and Liu (2009) study

type spaces with the same set of conventional hierarchies of beliefs and Liu (2005) char-

acterize the redundancy with state-dependent correlating mechanisms. The type space T̂

in Example 2 can be explained as one such mechanism. Tang (2010) further characterizes

the correlation embedded in type spaces with the same set of �-hierarchies of beliefs, and

studies its implication for the Bayesian solution. These characterizations make more explicit

the connections between interim correlated rationalizability and interim partially correlated
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rationalizability3. Using garblings instead of correlating devices, Lehrer, Rosenberg and

Shmaya (2006) examine the connections between type spaces that are payo¤ equivalent in

all Bayesian games, for various notions of correlated equilibrium, including the Bayesian so-

lution. The non-communicating garblings they use are inherently equivalent to information

mappings that preserve conditional beliefs.

We organize the paper as follows. We introduce notations and models and de�ne solution

concepts in Section 2. Examples are also given to distinguish di¤erent solutions. We describe

the constructions of hierarchies of beliefs in Section 3, and present our main results and results

on the connections between solution concepts in Section 4. Section 5 studies the equivalence

between the Bayesian solution and our solution. Section 6 concludes.

2 Model

2.1 Set up

We begin with some notations. For any metric space X; let �X denote the space of prob-

ability measures on the Borel �-algebra of X endowed with the weak�-topology. Let the

product of two metric spaces be endowed with the product Borel �-algebra. Let supp� be

the support of a probability measure �; i.e., the smallest closed set with probability 1 under

�. For any measure � 2 �(X � Y ); denote margX � the marginal distribution of � on X.

For any measure � 2 �X and integrable function f : X ! R, denote �[f ] the expectation

of f under �.

We study games with incomplete information with n players. The set of players is

N = f1; 2; :::; ng: For each i 2 N; let �i denote the set of i�s opponents. Players play a game

in which the payo¤s are uncertain and parameterized by a �nite set �: Each element � 2 �

3And also the connections between the universal Bayesian solution (Forges, 1993) and the Bayesian
solution.
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is called a state of nature. For each i 2 N; denote Ai the set of actions for player i, and

A � �i2NAi the set of action pro�les: A (strategic form) game is a pro�le G = (gi; Ai)i2N .

For each i 2 N; we assume the payo¤ function is bounded: gi : A��! [�M;M ]; for some

positive real number M . The set of �nite bounded games is denoted by G.

A type space over � is de�ned as T = (Ti; �i)i2N ; where for each i; Ti is a compact

metric space of types for player i and �i : Ti ! �(T�i � �) is a measurable mapping that

describes player i�s belief over the others� types and states of nature for any type of player

i. A strategy of player i is a mapping �i : Ti ! �Ai: Let � = (�i)i2N be a strategy pro�le,

and with a little abuse of notation, let ��i : T�i ! �A�i be a type-correlated strategy of

the others. The intuition behind type-correlated strategies is provided in the next section.

Throughout, given arbitrary x 2 X and y 2 Y; we use the notation �i(x)[y] to denote

player i�s belief about y conditional on x. More precisely, the object in the round bracket

always denotes the object that player i conditions on, and the object in the square bracket

always denotes the object that player i assigns probability to.

2.2 Solution concepts

We propose and study interim partially correlated rationalizability, or IPCR, for games with

incomplete information. Previously, Dekel, Fudenberg and Morris (2007, DFM, hereafter)

propose both interim correlated rationalizability (ICR) and interim independent rationaliz-

ability (IIR); and for two-player games, Ely and P¾eski (2006) independently de�ne IIR in a

formulation equivalent to DFM�s. In this section, we �rst de�ne our new solution concept

and then compare it with the other two. Examples are given at the end of the section.
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2.2.1 Interim partially correlated rationalizability

Rationalizability can be de�ned in many equivalent approaches; we start with the iterative

elimination of never best response actions procedure. Player i�s (joint) conjecture on the

others� types, states of nature and the others� actions is a joint distribution v 2 �(T�i���

A�i). Let m
v[(�; a�i)] �

R

T�i
v[(dt�i; �; a�i)] denote the marginal probability of v at (�; a�i),

i.e., mv = marg��A�i v. An action ai 2 Ai is a best response to a conjecture v if

ai 2 arg max
a0i2Ai

X

�;a�i

gi((a
0
i; a�i); �)m

v(�; a�i):

Without referring to speci�c constraints on conjectures, interim rationalizability can in gen-

eral be de�ned as follows: for each player i 2 N; the �rst round of elimination eliminates

actions in Ai that are not a best response to any conjectures about the others� play. In

the k + 1-th round, a level-k conjecture assigns positive probability only to actions of the

others� that are level-(k � 1) rationalizable, and actions that are not a best response to any

level-k conjectures are eliminated. The elimination procedure stops in �nite rounds. Actions

that survive k rounds of elimination are called level-k rationalzable actions and actions that

survive to the end are called rationalizable actions. Di¤erent notions of interim rationaliz-

ability may be de�ned using the same procedure. We �rst de�ne interim partially correlated

rationalizability.

De�nition 1. Fix a game G and a type space T . For all ti 2 Ti; R
T
i;0(tijG) � Ai: An action

is level-k rationalizable at ti, i.e., ai 2 R
T
i;k(tijG); if there exists v 2 �(T�i ��� A�i) such

that

1. (t�i; �; a�i) 2 supp v ) a�i 2 R
T
�i;(k�1)(t�i); where R

T
�i;(k�1)(t�i) � (R

T
j;(k�1)(tj)jG)j 6=i;

2. ai 2 argmaxa0i2Ai
P

�;a�i
gi((a

0
i; a�i); �)m

v[(�; a�i)];
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3. (constraint on conjectures) There exists a type-correlated strategy ��i : T�i ! �A�i

such that

mv[(�; a�i)] =

Z

T�i

��i(t�i)[a�i] � �i(ti)[(dt�i; �)]: (2.1)

Let RTi (tijG) =
1
T

k=1

RTi;k(tijG): Actions in R
T
i (tijG) are said to be interim partially corre-

lated rationalizable at type ti:

By de�nition, RTi (tijG) is always non-empty. Hereafter, we suppress the notation G in

RTi (tijG) unless it is necessary for clarity.

In the de�nition of IPCR, each joint conjecture v 2 �(T�i���A�i) is induced by player

i�s belief �i(ti) 2 �(T�i��) in the type space and a type-correlated strategy ��i(t�i) 2 �A�i

of the others�. When type spaces are �nite, item 2.1 can be simpli�ed as

v[(t�i; �; a�i)] = �i(ti)[(t�i; �)] � ��i(t�i)[a�i]:

By adopting this constraint on conjectures, we are following Harsanyi�s principle on mod-

eling games with incomplete information. Harsanyi models actions as variables dependent

on types. This expression also connects interim partially correlated rationalizability with

Forges�s partial Bayesian approach (Forges, 1993): players form subjective beliefs about the

others� types and states of nature, but their beliefs over the others� actions are not subjec-

tively formed. See subsubsection 4.2.1 for more discussions.

The type-correlated strategy ��i : T�i ! �A�i also deserves some clari�cation. We

are not assuming that the others are sharing information with each other and playing in a

coordinated fashion; instead, we take the view that the correlation may come from possibly

correlated type-contingent extraneous signals that other players receive (see Section 5), or

from player i�s ignorance over the others� beliefs about each other�s action (Aumann, 1987,

section 6).
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2.2.2 Interim correlated rationalizability and interim independent rationaliz-

ability

To promote understanding, we present the de�nitions of ICR and IIR proposed by DFM.

Since the de�nitions di¤er only in constraint on conjectures (item 3 in De�nition 1), it su¢ces

for us to present the respective variations of item 3.

De�nition 2. Fix a game G and a type space T . We can de�ne the set of interim correlated

rationalizability actions at ti, denoted as ICR
T
i (tijG), and the set of interim independent

rationalizability at ti, denoted as IIR
T
i (tijG), by replacing item 3 in De�nition 1, respectively,

1. ICR (constraint on conjectures) margT�i�� v = �i(ti):

2. IIR (constraint on conjectures) There exist independent strategies �j : Tj ! �Aj; j 6=

i; such that

mv =

Z

T�i

Y

j 6=i

�j(tj)[aj] � �i(ti)[dt�i; �]: (2.2)

In the de�nition of ICR, the constraint requires only that the conjecture v 2 �(T�i �

� � A�i) be consistent with player i�s belief �i(ti) over T�i � � in the type space. DFM

follow Aumann�s Bayesian view and treat every player as a Bayesian decision maker who

faces three uncertainties: states of nature, the others� types and their actions. Conjectures

are explained as players� subjective beliefs over these uncertainties; actions are not treated

as type-contingent variables anymore. In Forges�s terminology, this approach is called the

universal Bayesian approach, as in contrast with the partial Bayesian approach.

In the de�nition of IIR, the constraint is that player i believes that the others are playing

independently. Correlations among the others� actions, if there is any, are characterized by

the correlations among the types of the others�, which have already been incorporated in
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�i(ti). When type spaces are �nite, item 2.2 can be simpli�ed as

v[(t�i; �; a�i)] = �i(ti)[(t�i; �)] �
Y

j 6=i

�j(tj)[aj]:

By de�nition, IIR and IPCR coincide in two-player games.

2.3 Examples

We now show in examples how distinct notions of rationalizability di¤er in predictions. The

distinction between IPCR and ICR has been illustrated in Example 1 in the introduction.

For player 1, the set of interim partially correlated rationalizable actions at the type t1 = �

is fc1g, while the set of interim correlated rationalizable actions at that type is fa1; b1; c1g.

Now we illustrate with an example the distinction between IPCR and IIR. To do that, we

need a game with at least three players

Example 3. Consider a three-player game with no payo¤ uncertainty, � = f�g: The action

sets are A1 = fa1; b1g; A2 = fa2; b2g; A3 = fa3; b3; c3g; and the payo¤s are given by

a2 b2

a1 1; 1; 2 0; 0; 2

b1 0; 0; 2 0; 0; 0

a3

a2 b2

a1 0; 0; 0 0; 0; 2

b1 0; 0; 2 1; 1; 2

b3

a2 b2

a1 1; 1; 1 0; 0; 0

b1 0; 0; 0 1; 1; 1

c3

Figure 3.

The type space is also trivial: T1 = T2 = T3 = f�g. In fact, this is a complete informa-

tion game. As both strategy pro�les (a1; a2; a3) and (b1; b2; b3) are Bayesian Nash equilibria,

fa1; b1g � fa2; b2g � fa3; b3g is a subset of rationalizable action pro�les (for any notion of

rationalizability).
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With IIR, for player 3, actions a3 and b3 strictly dominate c3; because for any product

conjecture on player 1 and player 2�s actions, the maximal payo¤ of player 3 from playing a3

and b3 is at least
3
2
; while playing c3 pays at most 1: As a result, c3 is never a best response,

and hence is not rationalizable for player 3.

With IPCR, c3 is rationalizable. Player 3 may conjecture that player 1 and 2 play the

following correlated strategy: each of (a1; a2) and (b1; b2) is played with probability half. Given

this correlated strategy, the payo¤ for player 3 is 1, no matter which strategy in �A3 she

takes: In other words, c3 also becomes rationalizable.

3 Hierarchies of beliefs

We �rst present Mertens and Zamir�s conventional formulation of hierarchies of beliefs (see

also Brandenburger and Dekel (1993)), and based on that present Ely and P¾eski�s construc-

tion of �-hierarchies of beliefs.

3.1 Mertens-Zamir�s formulation of hierarchies of beliefs

Type spaces are objects arti�cially constructed by the modeler to overcome the di¢culty of

working with players� in�nite hierarchies of beliefs. An in�nite hierarchy of beliefs describes

a player�s belief and higher-order beliefs about states of nature. For any type space, the

following de�nition recovers for us the hierarchy of beliefs that each type ti of player i

represents.

Let X0 = �; and for k � 1; Xk = Xk�1 � �j 6=i�(Xk�1): Let h
1(ti) = marg� �i(ti);

which is player i�s belief over � at type ti: For each k � 1; let hk(ti)[S] = �i(ti)[f(�; t�i) :

(�; (hl(t�i))1�l�k�1) 2 Sg]; for any measurable subset S � Xk. In the construction, h
k(ti) 2

�(Xk�1) represents player i�s k-th order belief at ti. The pro�le h(ti) = (h
1(ti); :::; h

k(ti); :::) 2

�1k=0�Xk is called player i�s hierarchy of beliefs at type ti:Mertens and Zamir show the exis-
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tence of a universal type space4 into which all other belief-closed subspaces5 can be embedded

through a belief preserving mapping.

The main result from DFM sets up a connection between conventional hierarchies of

beliefs and interim correlated rationalizability:

Proposition 1 (Dekel, Fudenberg and Morris, 2007). If ti 2 T , t
0
i 2 T

0, and h(ti) = h(t0i);

then ICRTi (tijG) = ICRTi (t
0
ijG);8G 2 G.

Thus if two types induce the same conventional hierarchy of beliefs, no matter which

type spaces they belong to, an action that is interim correlated rationalizable at one must

also be interim correlated rationalizable at another.

3.2 �-hierarchy of beliefs

A �-hierarchy of beliefs describes a player�s belief and higher-order beliefs about conditional

beliefs on states of nature. The concept was introduced by Ely and P¾eski (2006) in their

study of interim independent rationalizability. Ely and P¾eski observe that conditional beliefs

over the states of nature play a key role in identifying the information that is necessary and

su¢cient for the behavioral prediction of IIR, and that hierarchy of beliefs over conditional

beliefs fully identi�es such information.

We begin with de�ning conditional beliefs. Given a belief �i(ti) 2 �(T�i��); the condi-

tional belief6 of type ti over�; conditioning on the others� types being t�i; is �i(ti)(t�i) 2 ��,

also written as �i(ti; t�i): For any type ti in a type space T , denote the set of all possible

conditional beliefs at ti as Bi(ti) = f�i(ti; t�i) 2 �� : t�i 2 T�ig: Type ti�s belief over T�i

4Throughout, we do not actually work on the universal type space, and thus explicit construction of it is
omitted.

5A subspace (Ti; �i)i2N is belief-closed if 8i 2 N; each type ti 2 Ti; �i(ti)[T�i] = 1.
6Since �(T�i ��) is a complete metric space, there always exists a version of regular conditional proba-

bility (cf., e.g., Durrett (2004)).
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then induces a belief over �� : for any measurable subset S � ��; �i(ti)[S] = �i(ti)[ft�i :

�i(ti; t�i) 2 Sg]:

Now we de�ne �-hierarchy of beliefs at ti by treating the set of possible conditional

beliefs, i.e., ��; as the set of basic uncertainty. Let the �rst-order belief be player i�s belief

over the set of conditional beliefs, second-order belief be player i�s belief over the others�

beliefs over the set of conditional beliefs, and so on.

Formally, �x any type space T = (Ti; �i)i2N on �, we transform it into a type space

T� = (Ti; �
�
i )i2N on ��. In the new type space, players� type sets are unchanged, and

��i (ti) 2 �(T�i ���) is given by

��i (ti)[S] = �i(ti)[ft�i : (t�i; �i(ti; t�i)) 2 Sg];

for any measurable subset S � �(T�i ���):

Ely and P¾eski show that if conditional beliefs are jointly measurable in ti and t�i, then

��i (ti) 2 �(T�i � ��) is measurable and hierarchies of beliefs over conditional beliefs can

be constructed7.

Lemma 1 (Ely and P¾eski, 2006). If �i(�; �) : Ti � T�i ! �� is jointly measurable in ti and

t�i, then �
�
i (�) : Ti ! �(T�i ���) is measurable.

Denote the conventional hierarchy of beliefs at ti in the type space T
� as h(tijT

�).

De�nition 3. In any type space T , for any k � 1; let the k-th order �-hierarchy of beliefs

at ti 2 Ti be h
k(tijT

�) and denote it as �k(ti). Also, denote the �-hierarchy of beliefs at ti

as �(ti) = (�
1(ti); :::; �

k(ti); :::).

By de�nition, �(ti) = h(tijT
�).8

7Shmaya (2007) shows the existence of a regular conditional probability that is jointly measurable in ti
and t�i; given that �(T�i �A�i) is Polish.

8Although Ely and P¾eski (2006) constructs �-hiearchies of beliefs only for two players, the construction
and all relevant proofs extend in an obvious way for type spaces with more than two players.
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4 Rationalizability and hierarchies of beliefs

Let us illustrate intuitively how conditional beliefs matter for players� rational behavior. At

the interim stage of the game, player i knows her type ti; but does not know the types

of other players t�i and the state of nature �. We can view (ti; t�i; �) as an ex post state

of the world, and (ti; t�i) an interim scenario. At ti; before making the decision on which

action to play, player i will take the following thought process: �rst she assigns probability

�i(ti)[t�i] to the interim scenario (ti; t�i); then conditional on the others� types being t�i,

she conjectures that they will play some correlated strategy ��i(t�i)[�] 2 �A�i; and at the

same time, she updates her belief over � to be �i(ti; t�i) 2 ��: The thought process helps

us to further decompose a conjecture v of player i such that its marginal on ��A�i can be

written as

mv =

Z

T�i

�i(ti; t�i)[�] � ��i(t�i)[a�i] � �i(ti)[dt�i];

where �i(ti; t�i) 2 �� is player i�s conditional belief at ti given t�i; as previously de�ned.

Since type-correlated strategies ��i(�) can be arbitrary, the set of conjectures is determined

by a player�s belief on conditional beliefs.

4.1 Main theorem

The following result shows that two types provide the same IPCR prediction if and only if

they have the same �-hierarchy of beliefs.

Theorem 1. If ti 2 T; t
0
i 2 T

0, then �(ti) = �(t0i) if and only if R
T
i (tijG) = RT

0

i (t
0
ijG);8G 2 G.

Proof. We present the proof for su¢ciency here. The proof necessity, preceded with a sketch

of its key idea, is presented in the appendix.

Fix a game G 2 G. We need to show that if �(ti) = �(t0i), then R
T
i (ti) = RT

0

i (t
0
i): Denote

the set of all possible conjectures of player i in the k-th round of the elimination procedure
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by

V k
i (ti) =

8

>

>

>

>

<

>

>

>

>

:

v 2 �(T�i ��� A�i) such that:

(1)v[(t�i; �; a�i)] > 0) a�i 2 R
T
�i;(k�1)(t�i);

(2)
R

T�i
v[(t�i; �; a�i)]dt�i =

R

T�i
�i(ti; t�i)[�]��i(t�i)[a�i]�i(ti)[dt�i]:

:

Denote the set of marginals of V k
i (ti) on �� A�i by marg��A�i V

k
i (ti): From the de�nition

of rationalizability, the set of marginals on ��A�i determines the set of justi�able expected

payo¤s, thus determines the set of rationalizable actions. That is, if marg��A�i V
k
i (ti) =

marg��A�i V
k
i (t

0
i); then R

T
i;k(ti) = RT

0

i;k(t
0
i):

Step 1. We start with the case of k = 1 and then prove the rest inductively. Consider

the probability space (T�i; �i(ti)[�]; T�i); where �i(ti)[�] 2 �T�i is the marginal of �i(ti) 2

�(T�i��) over T�i and T�i is the usual Borel �-algebra. View �i(ti; �) : T�i ! Bi(ti) � ��

as a random variable on T�i, and denote the �-algebra generated by it by �(�i(ti; �)). Since

T�i is a compact metric space, there exists a regular conditional probability that maps from

T�i � T�i to [0; 1] given �(�i(ti; �)) (see, for example, Durrett (2004)). Since the conditional

probability is �(�i(ti; �)) measurable, by a little abuse of notation, we can write it as �i(ti; �) :

Bi(ti)! �T�i. Now, the marginal distribution for a given conjecture v 2 �(T�i���A�i)

over �� A�i can be expressed as

mv =

Z

T�i

�i(ti; t�i)[�]��i(t�i)[a�i]d�i(ti)[t�i]

=

Z

Bi(ti)

Z

ft�i:�i(ti;t�i)=�g

�i(ti; t�i)[�]��i(t�i)[a�i]�i(ti; �)[dt�i]�
1(ti)[d�]

=

Z

Bi(ti)

�[�]�i(ti; �)[��i(t�i)[a�i]]�
1(ti)[d�]

We are ready to construct a conjecture v0 for type t0i such that v
0 = v. Suppose t0i

believes that the others play the following type-correlated strategy: for any type t0�i such
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that �0i(t
0
i; t

0
�i) = �,

�0�i(t
0
�i)[a�i] =

Z

ft�i:�i(ti;t�i)=�g

��i(t�i)[a�i]�i(ti; �)[dt�i]

= �i(ti; �)[��i(t�i)[a�i]];8a�i 2 A�i:

Intuitively, t0i believes that at all types t
0
�i; �

0
i(t

0
i; t

0
�i) = �, action a�i is played with the

average of the probabilities it is played with at types t�i; �i(ti; t�i) = �. The marginal

distribution over �� A�i of the conjecture v
0 is

mv0 =

Z

T 0
�i

�0i(t
0
i; t

0
�i)[�]�

0
�i(t

0
�i)[a�i]�

0
i(t

0
i)[dt

0
�i]

=

Z

Bi(t0i)

Z

ft0
�i:�

0

i(t
0

i;t
0

�i)=�g

�0i(t
0
i; t

0
�i)[�]�

0
�i(t

0
�i)[a�i]�

0
i(t

0
i; �)[dt

0
�i]�

1(t0i)[d�]

=

Z

Bi(t0i)

�[�]

Z

ft0
�i:�

0

i(t
0

i;t
0

�i)=�g

�i(ti; �)[��i(t�i)[a�i]]�
0
i(t

0
i; �)[dt

0
�i]�

1(t0i)[d�]

=

Z

Bi(ti)

�[�]�i(ti; �)[��i(t�i)[a�i]]�
1(ti)[d�]

= mv,

where the �rst and second equality are natural, the third equality comes the construction

of �0�i(t
0
�i)[a�i]; and the fourth equality due to Bi(ti) = Bi(t

0
i); �

1(ti) = �1(t0i) and that
R

ft0
�i:�

0

i(t
0

i;t
0

�i)=�g
�0i(t

0
i; �)[dt

0
�i] = 1.

We have shown that any marginal in marg��A�i V
1
i (ti) also belongs to marg��A�i V

1
i (t

0
i);

i.e.,marg��A�i V
k
i (ti) � marg��A�i V

k
i (t

0
i). By symmetry,marg��A�i V

1
i (t

0
i) � marg��A�i V

1
i (ti);

and hence marg��A�i V
1
i (ti) = marg��A�i V

1
i (t

0
i): By de�nition, R

T
i;1(ti) = RT

0

i;1(t
0
i); for all

G 2 G.

Step 2. We prove inductively for cases of k > 1. Suppose RTi;(k�1)(ti) = RT
0

i;(k�1)(t
0
i) for all

G 2 G, and �k(ti) = �k(t0i). Denote the support of �
k(ti) and �

k(t0i) as D
k�1(ti) and D

k�1(t0i);
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respectively. We know instantly that Dk�1(ti) = Dk�1(t0i). Denote a typical element in

Dk�1(ti) as (�; �
k�1
1 ) � (�; (�l)1�l�k�1): Similar to step 1, we can express the marginal of any

conjecture v 2 �(T�i ���RT�i;(k�1)) as

marg
��RT

�i;(k�1)

v =

Z

Dk�1(ti)

Z

ft�i:�i(ti;t�i)=�;�
k�1
1 (t�i)=�

k�1
1 g

�i(ti; t�i)[�]

��i(t�i)[a�i]�i(ti; (�; �
k�1
1 ))[dt�i]�

k(ti)[d(�; �
k�1
1 )]

=

Z

Dk�1(ti)

�[�]

Z

ft�i:�i(ti;t�i)=�;�
k�1
1 (t�i)=�

k�1
1 g

��i(t�i)[a�i]

�i(ti; (�; �
k�1
1 ))[dt�i]�

k(ti)[d(�; �
k�1
1 )];

where �i(ti; (�; �
k�1
1 )) is the conditional belief of ti over t�i at (�; �

k�1
1 ). To construct the

corresponding v0 2 �(T 0�i ��� A�i) for v, for any t
0
�i such that �

0
i(t

0
i; t

0
�i) = �; �k�11 (t0�i) =

�k�11 (t�i); let

�0�i(t
0
�i)[a�i] =

Z

ft�i:�i(ti;t�i)=�;�
k�1
1 (t�i)=�

k�1
1 g

��i(t�i)[a�i]�i(ti; (�; �
k�1
1 ))[dt�i];

for all a�i 2 RT�i;(k�1); and 0 otherwise. We can check that again the induced marginal

on ��A�i from the conjecture v
0 coincides with that from v. Following the same argument

as in step 1; RTi;k(ti) = RTi;k(t
0
i); for all G 2 G.

The proof above also indicates that if �k(ti) = �k(t0i); then R
T
i;k(tijG) = Ri;k(t

0
ijG);8G 2 G.

That is, k-th order of beliefs over conditional beliefs characterize level-k interim partially

correlated rationalizable actions. To see the intuition, notice that whether an action is �rst-

order rationalizable is determined by the set of conjectures that can be supported by type-

correlated strategies, and this set is in turn characterized by players� beliefs over conditional

beliefs. The k-order conjectures depend on both beliefs on conditional beliefs and beliefs on

the others� level-(k� 1) rationalizable actions, thus are determined by the k-th order beliefs.
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The su¢ciency part of Theorem 1 parallels with Proposition 1, and the whole theorem

is an extension of Ely and P¾eski�s main result (Ely and P¾eski, 2006, section 4, theorem 2:)

from two-player games to n-player games. Our proof of the su¢ciency part di¤ers from that

of Ely and P¾eski�s; and the proof of necessity, which we present in the appendix, adapts Ely

and P¾eski�s, but uses a di¤erent approach that is more direct and accessible. We refrain from

working with abstract structures like conditional belief preserving mappings, the universal

type space of �-hierarchies of beliefs, the universal type space for rationalizability, and so

on.

4.2 Connections between IPCR and ICR

4.2.1 Harsanyi vs. Aumann

The de�nitions of IPCR and ICR adopt Harsanyi�s principle and Aumann�s Bayesian view,

respectively. The two approaches di¤er mainly in whether actions are treated as type-

contingent variables or not. In Harsanyi�s principle, it is common knowledge among players

that all players believe that the others� actions depend only on their types and nature a¤ects

actions only indirectly through types; that is, it is common knowledge that for all i, player

i believes that conditional on t�i; a�i is independent of �. However, common knowledge of

such beliefs is not inherent in Aumann�s Bayesian view; according to this viewpoint, player

i forms a subjective belief v 2 �(T�i � � � A�i), and a�i can correlate with t�i and �

arbitrarily. The distinction is indicated more clearly in the following corollary:

Corollary 1 (Dekel, Fudenberg and Morris, 2007). The constraint on a conjecture v in the

de�nition of ICR can be equivalently expressed as: there exists a state-and-type correlated

strategy ���i : T�i ��! �A�i such that

mv =

Z

T�i

�i(ti)[(t�i; �)] � �
�
�i(t�i; �)[a�i] � �i(ti)[dt�i]:
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An ICR conjecture needs to be supported by some strategy which depends also on states

of nature. In other words, there is information about � that a¤ects the others� decision but

is not incorporated in the type pro�le t�i. A "deep" Bayesian player
9 would be able to locate

such information and incorporate it into the others� types such that conditional on the new

types of the others�, player i believes that a�i is independent of �. As a result, the new type

space which is a (an) re�nement (enlargement) of T satis�es Harsanyi�s principle.

To de�ne solution concepts based on di¤erent viewpoints, Harsanyi�s and Aumann�s, we

need to construct type spaces that incorporate di¤erent amounts of information. Alterna-

tively, �x any arti�cially constructed type space, the choice of the "right" solution concept

should be determined by the information incorporated in the types. The distinction between

IPCR and ICR is methodological.

The following proposition describes a consistency between the two solution concepts: the

set of ICR actions at any type is exactly the union of the IPCR actions in its re�nements.

Proposition 2. Fix any game G 2 G. For any type ti;

S

ft0i:h(t
0

i)=h(ti)g

Ri(t
0
i) = ICRi(ti):

Proof. We �rst prove that LHS � RHS: Since ICR and IPCR can be identi�ed by con-

ventional hierarchies of beliefs and �-hierarchies of beliefs, respectively, and that two types

have the same �-hierarchy of beliefs only if they have the same conventional hierarchy of

beliefs, it is su¢cient to show that for any ti;

Ri(ti) � ICRi(ti):

This is trivially true as the set of marginals of conjectures over ��A�i of IPCR in each

9Equivalently, we may view that a player modeled by the partial Bayesian approach reasons "deeper"
than one modeled by the universal Bayesian approach.
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round of elimination is a subset of that of ICR, which means fewer actions can be justi�ed

and more actions are to be eliminated.

Second, RHS � LHS. We need to show that for any ai 2 ICRi(ti); there exists t
0
i with

h(t0i) = h(ti) such that ai 2 Ri(t
0
i). We start with constructing a hierarchy of beliefs over

conditional beliefs. Suppose ti belongs to some type space (Ti; �i)i2N on �. Now consider a

new type space ~T de�ned on ��; with the same set of types for each player, and states of

nature replaced with point masses, i.e., replace � with 1f�g: And for any measurable subset

S of T�i, ~�i(ti)[(S;1f�g)] = �i(ti)[(S; �)]. Now let t0i be some type such that �(t
0
i) equals

h(tij ~T ); the conventional hierarchy of beliefs of ti in ~T . Since �(t
0
i) characterizes exactly the

same information as h(ti), Ri(t
0
i) necessarily equals ICRi(ti). To see this, suppose t

0
i is in

some type space T 0: If at ti; ai 2 ICR1i (ti) is justi�ed by some conjecture supported by a

state-and-type correlated strategy ���i; we can construct �
0
�i for t

0
i as follows: for any t

0
�i

such that �i(t
0
i; t

0
�i) = 1f�g; let �

0
�i(t

0
�i)[a�i] = ���i(t�i; �)[a�i];8a�i 2 A�i.

4.2.2 Nature as another player

An example in DFM (2007, section 3.2) suggests that IPCR is potentially sensitive to the

addition of an omniscient player (e.g., nature) and may not be a good solution concept. We

argue that there is a very bright side behind that example, by showing that when nature is

added as another player, IPCR coincides with ICR. Therefore, compared with ICR, for any

�xed type space, adopting IPCR as the solution concept is more general.

Consider that we add nature as another player into a game G with type space T . Nature�s

type space is �: Since nature knows her own type, at each type � she knows the true state

is �. Suppose that nature�s action does not a¤ect the payo¤ of the others�, and that players�

beliefs over nature�s types are consistent with their beliefs on T�i � � in T: Denote the

expanded game as GN and the expanded type space as TN .

It is obvious from Corollary 1 that the set of IPCR actions GN is the same as the set of
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ICR actions in G; at any type ti. This is because for player i, a type-correlated strategy of

the others� in GN becomes ��i : T�i � � ! �A�i; which is the same as a state-and-type

correlated strategy in G. In accordance, the �-hierarchy of beliefs at any type ti in T
N

reduces into its conventional hierarchy of beliefs in T . Denote the �-hierarchy of type ti in

the expanded type space TN as �(tijT
N).

Proposition 3. Fix a game G and type spaces T; T 0:

1. RT
N

i (tijG
N) = ICRTi (tijG);8ti 2 Ti.

2. For any ti 2 Ti; t
0
i 2 T

0
i ; h(ti) = h(t0i) if and only if �(tijT

N) = �(t0ijT
0N
i ).

Proof. Part 1 is by de�nition. For part 2, observe that when nature is added as another

player, the conditional belief at ti conditioning on the others� types (t�i; �) reduces to point

mass on �.

The proposition is directly implied by the fact that when nature is added in to the game,

Harsanyi�s principle and Aumann�s Bayesian view are equivalent.

4.3 Relevant issues

4.3.1 Equivalent formulations of IPCR

Recall that in complete information games, correlated rationalizability can be de�ned in

multiple equivalent ways. There are also multiple equivalent ways of de�ning ICR, as dis-

cussed and checked in DFM (2007). To show that IPCR is as legitimate as ICR as an

extension of correlated rationalizability in complete information games, we present its itera-

tive elimination of strictly dominated actions formulation and check its equivalence with the

iterative elimination of never best response actions formulation. Its equivalence with other

formulations can be routinely checked.
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De�nition 4. Fix a game G and a type space T . For all ti 2 Ti; U
T
i;0(ti) = Ai: An action

is level-(k + 1) rationalizable at ti, i.e., ai 2 U
T
i;k+1(ti); if there does not exist �i 2 �Ai such

that
X

a�i;�

gi(ai; a�i; �)m
v[(a�i; �)] <

X

a�i;�

gi(�i; a�i; �)m
v[(a�i; �)];

for all v 2 �(T�i � � � A�i) that satis�es (t�i; �; a�i) 2 supp v ) a�i 2 (U
T
j;k(tj))j 6=i and

the constraint on conjectures (item 3). And UTi (ti) = \
1
k=1U

T
i;k(ti):

Proposition 4. UTi (ti) = RTi (ti):

Proof. If an action is strictly dominated, it is never a best response. Therefore, Uki (ti) �

Rki (ti);8k � 1. We only need to show the other direction, that 8k � 1; R
k
i (ti) � Uki (ti): We

prove by induction. First notice that RTi;0(ti) = UTi;0(ti). Suppose for some k � 1; R
T
i;k(ti) =

UTi;k(ti), we show that R
T
i;k+1(ti) � UTi;k+1(ti). If ai =2 Ri;k+1(ti); given any ICR conjecture

v 2 �(T�i ���RT�i;k(t�i)), there exists �i 2 �Ai such that

v[gi(ai; a�i; �)] < v[gi(�i; a�i; �)]:

Since the inequality holds for all ICR conjectures v, and the set of �i�s is compact,

inf
v
sup
�i

(v[gi(�i; a�i; �)]� v[gi(ai; a�i; �)]) > 0:

Observe that as a function of v and �i, (v[gi(�i; a�i; �)]� v[gi(ai; a�i; �)]) is linear in both

arguments, that the set of �i�s is convex compact, and that the set of IPCR conjectures is a

convex subset of a vector space, we can apply the minimax theorem and obtain

sup
�i

inf
v
(v[gi(�i; a�i; �)]� v[gi(ai; a�i; �)]) > 0:

That is, for all conjecture that satisfy the constraints, there exists �i that strictly domi-
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nates ai, ai =2 U
T
i;k+1(ti). Therefore, R

T
i;k+1(ti) � UTi;k+1(ti).

4.3.2 Insu¢ciency of �-hierarchies of beliefs for IIR

We show by example that �-hierarchies of beliefs are not su¢cient for IIR.

Example 4. Given the game form and type space T in Example 3, we construct another

type space T 0 as follows: T 01 = T 02 = f�1;+1g; T 03 = f�g, and there is a common prior

�(t01; t
0
2; �; �) 2 �(T

0
1 � T 02 � T 03 ��) such that

�(t01; t2; �; �) =

8

>

<

>

:

1
2
if t01 = t02;

0 otherwise.

The types of player 3 in T and T 0 have the same �-hierarchy of beliefs, which is common

knowledge on the point mass of �. However, the sets of IIR actions at them are di¤erent. To

see that, suppose player 3 believes that �i(+1) = ai; �i(�1) = bi for i = 1; 2, she thinks the

others play (a1; a2) and (b1; b2) each with probability
1
2
. Under this belief, c3 is an IIR action

for her. But in T it is not. This is because T 0 is redundant with respect to �-hierarchies of

beliefs, and the redundancy enlarges player 1 and 2�s action set and provides extra correlation.

The type space T 0 can be generated from T with a partially correlating device de�ned in

the next section.

5 The Bayesian solution

5.1 De�nition

The Bayesian solution is a notion of correlated equilibrium for games with incomplete infor-

mation proposed by Forges (1993). Its de�nition is inspired by Aumann�s Bayesian view and
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aims at capturing Bayesian rationality. In this section, we establish the equivalence between

the Bayesian solution and IPCR.

Following Forges (2006), the de�nition of the Bayesian solution involves the use of an

epistemic model Y = (Y; #; (Si; �i; �i; pi)i2N) into which the type space T = (Ti; �i)i2N can

be embedded10. In the epistemic model, Y is the set of states of the world which is large

enough to characterize uncertainties in states of nature, agents� types, and agents� actions;

Si denotes player i�s informational partition, and pi denotes player i�s subjective prior. The

mapping # : Y ! � indicates the state of nature, �i : Y ! Ti indicates player i�s type, and

�i : Y ! Ai indicates i�s action. Both �i and �i are assumed to be Si measurable; hence at

any state, player i knows both her type and action. The consistency in beliefs requires that

for any measurable subset S � T�i �� and S
0 � T�i;

pi[(��i; #)
�1(S)jSi] = �i[Sj�i]; (5.1)

pi[��i
�1(S 0)jSi] = pi[��i

�1(S 0)j�i];8i 2 N:

The �rst condition requires that the epistemic model does not give players extra infor-

mation on the joint distribution of the others� types and states of nature, and the second

condition further requires that it does not give extra information on the others� types. The

two conditions together, guarantees belief invariance (the invariance of conditional beliefs).

Given the epistemic model, we de�ne Bayesian rationality for player i: player i is Bayesian

rational if

E[gi(�i; ��i; #)jSi] � E[gi(ai; ��i; #)jSi];8ai 2 Ai;

where the expectation is taken over T�i and �.

De�nition 5. Given a game G and a type space T , a Bayesian solution for the game is an

10Forges�s de�nition of the Bayesian solution is restricted to two-player games with type spaces with a
common prior; what we present here is the n-player non-common prior analogue of her de�nition.
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epistemic model Y = (Y; #; (Si; �i; �i; pi)i2N) constructed as above that satis�es the Bayesian

rationality of every player.

For any Bayesian solution Y , let �i(y) 2 �(� � A�i) be player i�s belief over states of

nature and the others� actions in the state of the world y, and �(y) � (�i(y))i2N be a pro�le

of players� beliefs. From a point of view analogous to the "revelation principle", the set of

pro�les of beliefs f�(y) : y 2 Y g can be implemented canonically from a partial correlating

device q = (qi)i2N ; such that qi : T ! �A satis�es:

1. player i believes that at any type pro�le t an action pro�le a 2 A is selected according

to qi(t) 2 �A; and then aj is recommended to player j;8j 2 N; by an omniscient

mediator who observes all players� types.

2. belief invariance is satis�ed, i.e., from the recommendations they receive, players cannot

infer any information on the others� types. Formally, at di¤erent types t�i; t
0
�i of the

others, type ti of player i receive recommendation ai with the same probability,

X

fa02A:a0i=aig

qi(ti; t�i)[a
0] =

X

fa02A:a0i=aig

qi(ti; t
0
�i)[a

0];8i; ti; ai;

and that each player does not have incentive to deviate from the mediator�s recommen-

dation at any of her types.

Remark 1. The de�nition of the Bayesian solution involves using epistemic models, this

indirectly provides us with conditions on the epistemic foundation of IPCR. DFM (2007,

section 3:4) show that ICR characterizes common certainty of rationality and of the correct-

ness of the standard type space; by correctness of the standard type space, they require only

that players have correct beliefs about T�i � �. To justify IPCR with epistemic models, we

also need the model to preserve conditional beliefs, which can be achieved by requiring belief
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invariance. Intuitively, IPCR characterizes common certainty of rationality, correct beliefs

and invariance of conditional beliefs.

5.2 Equivalence with IPCR

A Bayesian solution is equivalent to a partial correlating device q under which players are

incentive compatible. Recall that in the de�nition of IPCR (De�nition 1), a conjecture of

player i; v 2 �(T�i���A�i) needs to be justi�ed by a correlated strategy ��i : T�i ! �A�i

of the others�. This correlated strategy, however, is not natural since it assumes that the

strategy of each j 6= i is not measurable with respect to j�s own types, but with respect to the

type pro�le of �i. The following lemma states that all conjectures in IPCR can be justi�ed

by an incentive compatible partial correlating device, and hence by a Bayesian solution11.

Lemma 2. Any correlated strategy ��i : T�i ! �A�i can be induced from a pro�le of

strategies (~�j)j 6=i; ~�j : Tj �Aj ! Aj, in which each player�s action depends only on her own

type and the action recommended from an incentive compatible partially correlating device q.

Proof. Fix a correlated strategy ��i : T�i ! �A�i. Suppose that player i�s type is ti:

Construct the partial correlating device such that qi(ti; t�i)[a�i] = ��i(t�i)[a�i];8t�i 2 T�i;

and let qj be arbitrary, for all j 6= i. Given that player i believes at each t�i 2 T�i, the others

are recommended actions according to qi(ti; t�i), if player i conjectures that the others follow

11The agent-normal-form correlated equilibrium proposed by Samuelson and Zhang (1989) is of similar
form to the Bayesian solution. An agent-normal-form correlated equilibrium can be implemented by a
correlating device Q 2 �(�iA

Ti

i
) and a mediator. A pro�le of strategies � = (�i)i2N is chosen randomly

according to Q and the mediator who observes ti recommends the action �i(ti) to agent ti. If no type has
the incentive to deviate, Q implements equilibrium.
Such correlated equilibria also satisfy belief invariance and provide some correlations in the interim stage.

However, a close look at it would reveal that the correlations are not interim types dependent; it operates in
the ex ante stage, and the correlation happens only across ex ante strategies but not interim type dependent
actions of the others. Consequently, many type-correlated strategies of IPCR cannot be justi�ed by agent-
normal-form correlated equilibrium. (See Forges (2006) for more discussion.)
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independent strategies ~�j(tj; aj) = aj; i.e., they always follow the recommendations, then i

believes that the others� play at t�i is exactly qi(ti; t�i)[a�i], which equals to ��i(t�i)[a�i].

Lemma 2 is directly implied by the fact that both IPCR and the Bayesian solution follow

the same viewpoint, Harsanyi�s principle, in characterizing correlation. In both concepts,

the correlation can be achieved by sending to players type pro�le dependent signals (recom-

mendations) in a belief invariant way.

We can further show the payo¤ equivalence between IPCR and the Bayesian solution,

as an analogue of Brandenburger and Dekel (1993) which establishes the payo¤ equivalence

between correlated rationalizability and a posteriori equilibrium in complete information

games. For any game G and any type space T , an interim IPCR payo¤ of player i at type

ti is the maximal payo¤ i can possibly obtain given some IPCR conjecture v 2 (T�i � � �

RT�i(t�ijG)). Let Wi(ti) be the set of interim payo¤s of player i at type ti.

Proposition 5. Fix any game G and type space T . A vector u = (ui(ti))i2N;ti2Ti 2

�i2N;ti2TiWi(ti) is a pro�le of interim partially rationalizable payo¤s if and only if there

is a Bayesian solution in which it is a vector of interim payo¤s.

Proof. Necessity is straightforward due to Lemma 2. In any incentive compatible partial

correlating device q, if an action ai of player i is played in the Bayesian solution at type ti,

then ai is a best response to qi(ti; t�i)[a�i]. Let the support of q be supp q � A, then supp q

satis�es the best response property, i.e., any action pro�le a 2 supp q is IPCR. Thus any

vector of interim payo¤s is interim partially correlated rationalizable.

Su¢ciency. Suppose at type ti; ui(ti) is achieved by playing ai against a correlated strat-

egy ��i : T�i ! RT�i(t�ijG). Construct qi such that qi(ti; t�i)[ai; a�i] = ��i(t�i)[a�i];8t�i; a�i,

then when i is recommended to play ai; she believes that the others are playing the corre-

lated strategy ��i. The same construction of qi(ti; �) can be done for each i 2 N and ti 2 Ti.

We also restrict q to be incentive compatible on other action pro�les that do not support u.
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The partial correlating device thus de�ned implements a Bayesian solution, and when ai is

recommended to type ti, player i�s expected payo¤ is ui(ti).

6 Conclusion

For any �xed type space, we propose a notion of interim "correlated" rationalizability that

respects the structure of the type space in the least sense, by assuming that the actions

of the others� are dependent on their types. It then turns out that hierarchies of beliefs on

conditional beliefs play a key role in the characterization of the solution. The characterization

also implies that to construct type spaces that satisfy Harsanyi�s principle, we need more

information than just players� beliefs and higher-order beliefs about states of nature. This

paper belongs to the literature that characterize implications of type spaces with respect to

di¤erent solution concepts.

APPENDIX

In this appendix, we present the proof of necessity in the main theorem. We use an

approach di¤erent from that used in Ely and P¾eski�s proof of their main theorem, but that

uses their intermediate results. Our proof can be viewed as an adaptation and at the same

time a simpli�cation of Ely and P¾eski�s proof. The approach we use is very similar to that

used by Gossner and Mertens (2001) in constructing zero-sum betting games to separate the

behavior of types with di¤erent conventional hierarchies of beliefs.

Before moving on to the notationally involved proof, we summarize its key idea, which

is simple. We construct inductively games that separate the behaviors of types that di¤er

in each order of beliefs. More speci�cally, in the �rst step, for any pair of types that have

di¤erent �rst-order beliefs, we construct a game in which the two types have di¤erent sets
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of rationalizable actions. Then, for any two types with di¤erent second-order beliefs, we let

the player play against the other players who are playing games constructed in the �rst step.

Since the types have di¤erent beliefs about the others� �rst-order beliefs, which determines

the others� rationalizable actions, they will have di¤erent beliefs about the others� action

sets. The di¤erence in beliefs again allows us to construct a game in which the two types

have di¤erent set of rationalizable actions. This procedure can be replicated in a way that

for any two types that di¤er in the k-th order beliefs, we let the player play against the

others who are playing games constructed in the (k � 1)-th step. The separating games are

very much like betting games in which players are asked to bet on the others� actions. This

is because in each separating game a player�s payo¤ depends on the others� actions, but the

others are playing games constructed one step lower and their payo¤s are not a¤ected by

this player�s action in the current game. And we know that bets reveal beliefs.

Proof. Assume �(ti) 6= �(t0i): Due to the consistency of �-hierarchy of beliefs, we decompose

the proof by discussing cases of �k(ti) 6= �k(t0i); �
l(ti) = �l(t0i);81 � l � k; i.e., in the k-th

case, the�-hierarchies of beliefs at ti and t
0
i di¤er starting from the k-th level belief. For each

case, we construct a game that separates the types in their IPCR behavior. The construction

of games is inductive.

Step 1 (k = 1). In the �rst step we consider the case of �1(ti) 6= �1(t0i); i.e., when

two types have di¤erent beliefs over conditional beliefs. We �rst present an adapted version

of lemma 50 in Ely and P¾eski (2006). Let F = ff : �� ! [0;1) such that f(�) =

maxk2f1;:::;mgN�1 �[ (k; �)] for some natural number m and continuous bounded function

 : f1; :::;mgN�1 ��! [0;1)g:

Lemma 3. The collection of sets f� : �[f ] < 0g � �(��) for f 2 F generate the weak�-

topology on �(��): This topology is normal, and therefore any pair of disjoint closed subsets

S; S 0 2 �(��) can be separated by open sets, and there is a function f 2 F such that 8� 2 S
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and �0 2 S 0;

�[f ] 6= �0[f ]:

Since the proof to Lemma 3 is a special case of lemma 50 in Ely and P¾eski (2006), we

only sketch the idea here. Let H denote the Hilbert cube [0; 1]N; since �� is a second

countable Hausdor¤ space, there is a mapping H : �� ! H that embeds �� into H

(Urysohn metrization theorem, cf. Aliprantis and Border (2006), theorem 3.40). Since H

is an embedding, the problem of showing f� : �[f ] < 0g � �(��) for f 2 F generates

the weak�-topology on �(��) transforms into showing that there is a family of continuous

functions f : H! R such that the collection of sets f� : �[f(h)] < 0g generates the weak�-

topology on �(H): Let F 0n = ff : [0; 1]
n!R such that f(h1; :::; hn) = max�2f�1;:::;�mg � � hg

for some natural number m and a pro�le of vectors �1; :::; �m 2 [0; 1]
n:We can prove that the

set L0n = ff � g : f; g 2 F 0ng is uniformly dense in the set C([0; 1]
n), and hence the family

of functions [nL
0
n generates the topology on �(H): Now de�ne F = ff : f(�) = f 0(H(�))

for some f 0 2 [nL
0
ng; we see that [nL

0
n corresponds to the image of F from the embedding

H. Since the topology is Hausdor¤ on a compact space, it is normal, therefore any pair of

disjoint closed subsets can be separated by two open sets.

In order to construct a game in which ti and t
0
i have distinct sets of rationalizable actions,

we need the following corollary which is immediate from Lemma 3.

Corollary 2. If �1(ti); �
1(t0i) 2 �(��) and �

1(ti) 6= �1(t0i); then there exists a natural number

m and a continuous bounded function  : f1; :::;mgN�1��! [0;1) such that for f : ��!

R de�ned by f(�) = maxk2f1;:::;mgN�1 �[ (k; �)]; we have

�1(ti)[f ] 6= �1(t0i)[f ]:

Without loss of generality, suppose �1(t0i)[f ] < �1(ti)[f ]: By linearity of expectation, there
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is a � > 0 such that �1(t0i)[�f � 1] < 0 < �1(ti)[�f � 1]:

With Corollary 2 we construct a �nite game Gi(�
1(ti); �

1(t0i)) = (ui; Ai)i2N for player

i to separate the behavior at types with �rst-order belief �1(ti) and types with �rst-order

belief �1(t0i). Let Ai = f0; 1g; and Aj = f1; :::;mg;8j 6= i. Let the payo¤s to the others be

constant, e.g., for all aj; a�j; �; uj(aj; a�j; �) = 0; and let the payo¤ to player i be

ui(ai; a�i; �) = ai[� (a�i; �)� 1]:

With these payo¤s, for any other player, all actions in f1; :::mg are rationalizable. For

player i, playing ai = 0 gives her 0, while the payo¤ from playing ai = 1 depends on the

actions of the others and states of nature. Player i�s payo¤ from playing ai = 1 is maximized

if the others play the following type-correlated strategy:

��i(t�i) = argmax
k

�[ (k; �)];8ti such that �i(ti; t�i) = �; 8� 2 ��:

The maximal payo¤ is �1(ti)[�maxk �[ (k; �)] � 1] = �1(ti)[�f � 1]: Since player i�s playo¤

from playing 1; �1(ti)[�f � 1]; is greater than the payo¤ from playing ai = 0; which is 0,

ai = 1 is rationalizable at ti. However, at type t
0
i; the maximal payo¤ from playing ai = 1 is

�1(t0i)[�f � 1] < 0: Therefore playing ai = 1 is strictly dominated by playing ai = 0; ai = 1

is not rationalizable at t0i.

By applying Lemma 3, for any pair of disjoint closed subsets of �rst-order beliefs, we

can construct a game that separates them in rationalizability. For any pair of disjoint closed

subsets S; S 0 2 �(��); there is a game G(S; S 0) such that for all �1 2 S; 1 2 Ri(�
1jG(S; S 0))

and for all ~�1 2 S 0; 1 =2 Ri(~�
1jG(S; S 0)).

Step 2 (Induction). To carry out induction, we �rst introduce an intermediate result

in Ely and P¾eski (2006). For any game G = (ui; Ai)i2N , the mapping t�i ! R�i(t�ijG)
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de�nes the set of rationalizable actions for any pro�le of the others� types. For any set A,

denote 2A the set of subsets of A. For any measurable subset S � ��� 2A�i, let

!(tijG)[S] = �i(ti)[ft�i : (�i(ti; t�i); R�i(t�ijG)) 2 Sg]:

We call !(tijG) 2 �(���2
A�i) player i�s rationalizable belief at ti. It is straightforward

to see that rationalizable beliefs at types determine the sets of rationalizable conjectures and

therefore the sets of best response actions.

If �2(ti) 6= �2(t0i); the two types must di¤er in their beliefs at some closed subset S �

�i6=j�(��), thus there must be some pair of disjoint closed subsets S; S
0 � �j 6=i�(��) and

a game G(S; S 0) that separates them such that !(tijG(S; S
0)) 6= !(t0ijG(S; S

0)). If player i

believes the other players are playing G(S; S 0); at ti; t
0
i she will have di¤erent sets of conjec-

tures about the others� actions and states of nature; this suggests that she will have di¤erent

sets of rationalizable actions at ti and t
0
i given that her payo¤ function is properly designed.

Theorem 2 (Ely and P¾eski, 2006, theorem 3). If two types ti and t
0
i di¤er in terms of their

rationalizable belief in game G, i.e., !(tijG) 6= !(t0ijG); then there is a �nite game G
0 in

which ti and t
0
i have distinct rationalizable sets, i.e., Ri(tijG

0) 6= Ri(t
0
ijG

0).

As an immediate result, if �2(ti) 6= �2(t0i); then there is a �nite game G
0 such that

Ri(tijG
0) = Ri(t

0
ijG

0). The construction ofG0 is very similar to the construction ofG(�1(ti); �
1(t0i))

in step 1; it uses a lemma more general than Lemma 3.

Let F be the set of f : ��� 2A�i ! [0;1) such that for any � 2 ��; Sj � Aj;8j 6= i;

f(�; S�i) = max
k2f1;:::;mgN�1

aj1;:::;ajm02Sj ;8j 6=i

�[ (k; (aj;1; :::; aj;m0)j 6=i; �)]

for some natural numbers m and m0, and continuous bounded function  : f1; :::;mgN�1 �

35



Am
0

�i ��! [0;1):

Lemma 4. The collection of sets f� : �[f ] < 0g � �(�� � 2A�i) for f 2 F generate the

weak�-topology on �(��� 2A�i): This topology is normal, and therefore any pair of disjoint

closed subsets S; S 0 2 �(�� � 2A�i) can be separated by open sets, and there is a function

f 2 F such that 8� 2 S and �0 2 S 0;

�[f ] 6= �0[f ]:

As a result of this lemma, there is a game G(S:S 0) that separates any pair of disjoint

closed subsets S; S 0 of second-order beliefs.

The induction works as follows. If �3(ti) 6= �3(t0i); the two types must di¤er in their

beliefs at some closed subset S 2 �j 6=i�(�(��)); hence there must be some pair of disjoint

closed subsets S; S 0 2 �j 6=i�(�(��)) and a game G(S; S
0) that separate them such that

!(tijG(S; S
0)) 6= !(t0ijG(S; S

0)): Applying Theorem 2 again, there must be a �nite game G0

such that Ri(tijG
0) = Ri(t

0
ijG

0).

For �k(ti) 6= �k(t0i); k � 3; respective separating games can be constructed inductively by

applying Lemma 4 and Theorem 2.
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