
Munich Personal RePEc Archive

Some solutions to the equity premium

and volatility puzzles

Li, Jinlu

Shawnee State University

6 January 2010

Online at https://mpra.ub.uni-muenchen.de/26833/

MPRA Paper No. 26833, posted 19 Nov 2010 20:40 UTC



 

 

Some Solutions to the Equity Premium  

and Volatility Puzzles 

JINLU LI
* 

 

 

 

Abstract.  In this paper, I adopt an economic equilibrium model utilizing the framework introduced by Mehra 

and Prescott (1985) when they presented the equity premium puzzle.  This model, in the long run and with respect 

to stationary probabilities, produces results that match the sample values derived from the U.S. economy between 

1889 and 1978 as illustrated by the studies performed by Grossman and Shiller (1981), which includes the expected 

average, standard deviation, and first-order serial correlation of the growth rate of per capita real consumption and 

the expected returns and standard deviation of equity, risk-free security, and risk premium for equity.  Therefore, 

this model solves the equity premium and volatility puzzles. I also explore the reasons why the equity premium 

puzzle was caused. 
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1. Introduction 

In the last 30 years, the study of financial economics models has rapidly developed, playing an 

increasingly important role in the fields of finance, micro-investment theory, economics of 

uncertainty, and others.  Before a financial economics model can be utilized to investigate, 

forecast, or predict future economics and finance trends, it must first be able to accurately 

describe the historical economics and finance behaviors.  Therefore, for a given economics 

sample, it is necessary to build a financial economics model that provides values that exactly 

match the values from the sample. 

In 1981, Grossman and Shiller studied the U.S. economy from the period 1889 through 1978, 

providing the average, standard deviation, and first-order serial correlation of growth rate of per 

capita in real consumption and the average returns and standard deviations of equity, risk-free 

securities, and risk premium in equity for this sample.  Mehra and Prescott (1985) published a 

paper entitled The Equity Premium, A Puzzle, in which they formulized a very efficient 

economics equilibrium model by employing a variation of Lucas‘ pure exchange model under an 
assumption that the growth rate of the endowment follows a Markov process.  In that paper, 

they selected a case using two states of growth rates with a special symmetrical transition matrix 

for the Markov process.  From this special model, after matching the average, standard 

deviation, and first-order serial correlation of the growth rate of per capita consumption from 

their model to the sample, they discovered that the average returns on equity, risk-free security, 

and risk premium from the model did not match the respective actual values from the sample.  

The differences, which were significantly large, formed the equity premium puzzle.  It is 

apparently impossible for their model to match the standard deviations of equity, risk-free 

security, and risk premium to the respective values from the sample; and therefore it is 

impossible to match the volatility, which is a financial instrument refers to the standard deviation 

of the returns of this financial instrument within a specific time horizon.  More precisely, Mehra 

and Prescott (1985) described the puzzle as follows: 

 

    ‗The average real return on relatively riskless, short- term securities over the 1889-1978  

    period was 0.80 percent.  The average real return on the Standard and Poor‘s 500  

    Composite Stock Index over the ninety years considered was 6.98 percent per annum.   

    This leads to an average equity premium of 6.18 percent. Given the estimated process on  

    consumption, fig. 4 depicts the set of values of the average risk-free rate and equity risk  

    premium which are both consistent with the model and result in average real risk-free rates  

    between zero and four percent.  These are values that can be obtained by varying  

    preference parameters  between zero and ten and  between zero and one. The observed  

    real return of 0.80 percent and equity premium of 6 percent is clearly inconsistent with the  

    predictions of the model.  The largest premium obtainable with the model is 0.35 percent,  

    which is not close to the observed value‘. 
 

Very recently, Guvenen (2009) studied this puzzle and summarized this problem in his paper as:   

 

    ‗Since the 1980s, a vast body of empirical research has documented some interesting and 

     puzzling features of asset prices. For example, Mehra and Prescott (1985) have shown 

     that the equity premium observed in the historical US data was hard to reconcile with a 
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     canonical consumption-based asset pricing model, and as it later turned out, with many 

     of its extensions‘.  

 

Then they concluded (See Rietz (1988): 

 

    ‗most likely, an equilibrium model which is not an Arrow-Debrea economy will be one that  

    simultaneously rationalizes both historically observed large average equity return and the  

    small average risk-free return‘. 
 

I believe that the general model with n states for growth rate introduced in Mehra and Prescott‘s 
paper is a very efficient model to fit the purpose to match the sample data from this model in an 

economy, which includes U.S. economy from the period 1889 through 1978, if the states and 

their Markov processes transition probabilities are appropriately chosen. The reason why this 

puzzle was formed is that they considered a special model that has two symmetric states to the 

average gross growth rate that follows a Markov processes with a symmetric transition matrix. In 

this paper, I will examine their model and the techniques in order to gain a deeper understanding 

of the causes that formed the puzzle and will build a modified model by employing more states 

and creating more efficient techniques. So that this modified model and these more efficient 

technique perfectly reconcile the theory and observation to provide solutions for resolving the 

equity premium and volatility puzzle. Of course, as a result, the equity premium is resolved.   

 

This puzzle can be solved by employing a more realistic model that has a certain number of 

states and more powerful, comprehensive techniques from the general economic model used by 

Mehra and Prescott in their study.  In this paper, I choose a general three states model and a 

special four states model, which are different from the model used by Rietz (1988). Therefore, I 

will adopt all of the notation and terminology of Mehra and Prescott.  

 

This paper refers to this incompatibility of the standard deviations of equity, risk-free security, 

and risk premium of equity between the model and the sample the equity premium and volatility 

puzzle.  The volatility of a financial instrument refers to the standard deviation of the returns of 

this financial instrument within a specific time horizon.  This equity premium and volatility 

puzzle must be distinguished from the well-known volatility puzzle, which relates to the 

volatility and average returns for some financial instruments in a given period of time (see 

Chabi-Yo, Merton). A solution of the equity premium and volatility puzzle is described by an 

economics model from that the first moments and the second moments of the growth rate of per 

capita consumption and the returns on equity, risk-free security, and risk premium from the 

model match the respective actual values from the sample.             

 

Since the equity premium puzzle was presented in 1985, many papers have been published to 

explain or to resolve this puzzle (see references).  To my knowledge, there is no published 

literature that attempts to solve the equity premium and volatility puzzle.  In this paper, I apply 

the economics equilibrium model developed by Mehra and Prescott (1985) and the simulating 

techniques to construct two types of modified economics models: three state type and four state 
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type. In each type, we will claim that there may be infinitely many different models to matching 

the average, standard deviation, and first-order serial correlation growth rate of per capita 

consumption and the expected returns and standard deviations on equity, risk-free security, and 

risk premium to the respective values of the sample. These matches are exactly matches instead 

of estimation. In each type, I provide one solution with all details to show the perfect matches 

and to demonstrate the satisfaction of all conditions stated by Mehra and Prescott. I also provide 

more solutions for each type without details. These solutions are perfect mathematical solutions 

of the equity premium and volatility puzzle under the sense of date matching. In each solution, 

the parameters for states and their transition probabilities may not satisfy some economists for 

explaining their economies. But this paper provides the techniques to solve the puzzle. I believe 

that if one uses a super computer and chooses more states, then one can get solutions to satisfy 

some economists‘ various desires. 

 

To sum up, after we discover the reasons that caused this puzzle and after we get many models to 

match the sample data, we can say that the ―equity Premium Puzzle‖ is not a puzzle any more. It 
is also important to point out that as what I mention in the previous paragraphs, I strongly believe 

that the Mehra and Prescott‘s model is a very efficient model to match the sample data in an 

economy. On the other hand, I believe that this model, which is based on the Lucas‘ pure 
exchange model, can not reasonably describe an economy with a certain long periods. It is 

impossible to describe a very complicated economy by using such a simple mathematics model. 

More precisely (see Section 2), the growth rate of consumption in real capita will never follow 

any given ergodic Markov chain.  

  

This paper is organized in five sections: Section 2 summarizes the Mehra and Prescott model and 

is devoted to the exploration of Mehra and Prescott‘s model and the discovery of the causes that 

formed the puzzle; Section 3 presents the modified model with three states and the simulating 

techniques; Section 4 provides a solution with three states, in details, that solves the equity 

premium and volatility puzzle and a set of additional solutions to the model built in this paper 

without details; Section 5 presents the modified model with four states; Section 6, similarly to 

Section 4, provides a solution with four states, in details, that resolves the equity premium and 

volatility puzzle and a set of additional solutions to the model built in this paper without details; 

Section 7 concludes this paper.  The appendix provides complicated mathematical simulating 

calculations and programming, which will be available on the author‘s webpage and will not be 
published because it is extremely long.  

 

2. Reexamining the Case n = 2 and Finding the Causes that Formed the Equity 

Premium Puzzle. 

 

We outline some notation and techniques used by Mehra and Prescott, which will be frequently 

used in the content of this paper. For details, the reader is referred to Mehra and Prescott‘s paper 
(1985). In Mehra and Prescott‘s paper (1985), they employed a variation of Lucas‘ pure 
exchange model under an assumption that the growth rate of the endowment follows a Markov 

process with a utility function of the constant relative risk aversion class:  

                     U(ct,  ) = 







1

11

tc
,  > 0.  (1) 



4 

 

We want to optimize  

            



















0

0 ),(
i

it

i
cUE  ,  (2) 

where ct is the per capita consumption at time t and  is the subjective time discount factor.   

and  are parameters defining preferences. 

 

Suppose that the economy has one productive unit and one equity share.  A firm‘s output is the 
firm‘s dividend payment in each given time period, t, denoted by yt.  The growth rate, which is 

denoted by 1tx in ty , is subject to an ergodic Markov chain; that is 

                   1ty = tt yx 1 ,           (3) 

where }......,{ ,2,11 ntx  .  The transition matrix of the ergodic Markov chain is denoted by 

 =  
njiij  ,1

 satisfying                                       

                   ij = )( 1 itjt xxP   , for i, j = 1, 2, . . . , n.     (4)             

Grossman and Shiller (1981) studied the U.S. economy in the period 1889 through 1978 and 

provided sample data for the average, standard deviation, and first-order serial correlation of the 

growth rate per capita in real consumption, which are denoted and given by, respectively, as 

follows: 

                     = 1 + 0.0183,                (5)             

                     = 0.0357,                   (6) 

                     =  0.14;                   (7) 

the average returns on equity, on risk-free security, and on risk premium for equity, denoted as 

follows: 

                    e
R  = 0.0698,    (8)             

                    f
R  = 0.008,     (9) 

                     p
R

fe
RR   = 0.0618;   (10)  

and the standard deviations of equity, risk-free security, and risk premium for equity, denoted as 

follows:  

                    e  = 0.1654,     (11)             

                    f  = 0.0567,     (12)             

                    p  = 0.1667.     (13)  

Once the model is built, the values derived from the model corresponding to the actual values as 

defined in (5) – (13) will be conveniently denoted by the same notations without the top bar—
that is, µ , δ, ρ, R

e
, R

f
, R

p
, δe

, δf
, and δp

, respectively. 

 

The goal of this paper is to solve the equity premium and volatility puzzle by building a Mehra - 

Prescott economics equilibrium model that, with respect to the stationary probabilities, matches 
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the expected average, standard deviation, and first-order serial correlation of the growth rate of 

per capita consumption and the expected returns and standard deviations of equity, risk-free 

security, and risk premium for equity with the respective values from the sample.  

Symbolically, a model is built such that equations (5) – (13) hold for the same notations without 

the top bars. 

 
In rest of this section, we investigate the reasons that the equity premium puzzle was formed. In their 

paper, Mehra and Prescott used a case n = 2. They chose the states },{ 21  of the gross growth 

rate per capita consumption as follows  

                        1  =   , 2  =  + ,                                 

with a symmetric transition matrix of the ergodic Markov chain as  

                         = 













1

1
,                                          

for some 0 <  < 1. From the symmetric property of this transition matrix, the fixed probability 

vector of this Markov chain must be equally likely. That is 

                         ),( 21  = 







2

1
,

2

1
.                                 

Under conditions that all parameters determined by this model match the observed data given by 

(5) -- (10), with respect to the model‘s stationary probability distribution, Mehra and Prescott 

obtained 

                           1  = 0.982, 2  = 1.054,                                  

and 

                         = 







43.057.0

57.043.0
.                                          

All technology parameters introduced for the case n = 2 have been automatically determined. 

Consequently, the expected return on equity, the expected return on risk-free security and 

therefore, the risk premium for equity from this model turn out to be independent of the 

technology parameters and only depend on the preferences parameters. The expected return on 

equity is 

  

        
   

 

















 1111
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982.0054.1)14.0(1)054.1982.0(57.0

982.0)14.0(1)054.1(57.0054.1)14.0(1)982.0(43.0

2

1
 

        +
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054.1982.0)14.0(1)054.1982.0(57.0

982.0)14.0(1)054.1(43.0054.1)14.0(1)982.0(57.0
 1 . 

 

The expected return on risk-free security is  
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        1
)054.1(43.0)982.0(57.0)054.1(57.0)982.0(43.0

054.1982.0

2

1





















.         

 

In Graph 1 below, the surface is the graph of the expected return on equity from the model as a 

function of  and  and the plane is the graph of observed average return on equity 0.0698. The 

 and  coordinators of every point on the space curve -- the intersection of the surface and the 

plane -- are determined values for the two reference parameters  and , which satisfy that the 

expected return on equity from this model match the observed return on equity data 0.0698.  

 

  
   Graph 1: The expected return on equity from the model = 0.0698.      Graph 2: The expected return on risk-free security from the model = 0.008. 

 

Similarly to Graph 1, in Graph 2, the surface is the graph of the expected return on risk-free 

security from the model as a function of  and  and the plane is the graph of observed average 

return on risk-free security 0.008. The  and  coordinators of every point on the space curve -- 

the intersection of the surface and the plane -- are determined values for the two reference 

parameters  and , which satisfy that the expected return on risk-free security from this model, 

match the observed return on risk-free security data 0.008. One can see that if these two graphs 

are drawn in the same system, these two curves do not have any joint point. It implies that there 

does not exist risk aversion   (0, 10) (in fact, even though it is in (0, 30)) and a discount factor 

  (0, 1) at which the expected return on equity and the expected return on risk-free security 

from this model simultaneously match the observed parameters 0.0698 and 0.008, respectively. 

Consequently, the equity premium puzzle is formed. 

To summarize, if we select only two states with a symmetric transition matrix as in the Mehra 

and Prescott‘s paper, then all the technology parameters will be immediately and automatically 

determined. The states become symmetric from the sample gross grow rate and the fixed 

probability distribution of the Markov chain immediately becomes equally likely. As a result, all 

technology parameters introduced in the model will become constant and cannot be used as 

variables. This model will then become a simple model in which states are symmetric with 

equally likely stationary probability distribution. When we match the parameters from the model 

with the observed parameters, the model will lose its power to impact the estimated preferences 

parameters, which are the risk aversion and discount factor. To sum up, the puzzle is formed 
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because, in Mehra and Prescott‘s model, there is no parameter to be chosen to justify the model 

to closely fit the economy described by (5) -- (10). 

 

3. Models with Three States and More Powerful Simulating Techniques  

As mentioned in the last section, if a model can provide a solution to the equity premium and 

volatility puzzle, then the parameters must be solutions of the system of eight equations given by 

(5) – (13).  A two-state model generally has a total of six parameters: four technology 

parameters and two reference parameters.  Normally, a system of eight equations with six 

variables has no solutions.  It implies that a two-state model cannot solve the equity premium 

and volatility puzzle.  As with my solution to the equity premium puzzle (2009), I use three 

states },,{ 321  of the growth rate per capita consumption:  

                1  =   + a  = 1.0183 + 0.0357 a,  

                2  =   + b  = 1.0183 + 0.0357 b,               

                3  =   + c  = 1.0183 + 0.0357 c,    (14)  

where a, b, and c are parameters defining technology.  The growth rates are assumed to follow 

an ergodic Markov chain with the following general non-symmetric transition matrix: 

 

                      =




















vuvu

tsts

qpqp

1

1

1

,      (15) 

where p, q, s, t, u, and v are also technology parameters satisfying 0 < p, q, s, t, u, v < 1. From the 

fundamental theorem of ergodic Markov chains,  has a unique fixed probability vector, which 

is the stationary probability distribution of the growth rate per capita in consumption. This fixed 

probability row vector is denoted by ),,( 321  and it is the solution of the following system of 

linear equations:   

                        ),,( 321  = ),,( 321  ,  

with 321   = 1. As a function of p, q, s, t, u and v, the solution is given by  

 

            1  =
svpvvtuquupttqsp

svtuu





1

, 

 

            2 =
svpvvtuquupttqsp

pvvqu




1
, 

 

            3 =
svpvvtuquupttqsp

pttqsp




1

1
.         (16)  
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All with respect to the model‘s stationary probability distribution as given in (16), the expected 

average, variance, and first-order serial correlation of the growth rate per capita consumption in 

this model are functions of the technology parameters a, b, c, p, q, s, t, u and v, which are defined 

below: 

      = (a, b, c, p, q, s, t, u, v) = 1 1 + 2 2 + 3 3 , 

      = (a, b, c, p, q, s, t, u, v) = 
2

1 )(   1 + 
2

2 )(   2 + 2

3 )(   3 , 

      = (a, b, c, p, q, s, t, u, v) 

       =   13121

2

1 )1)()(())(()(  qpqp    

           232

2

221 )1)()(()())((  tsts                                 

           /)1()())(())(( 3

2

33231  vuvu   

          2

1 )(   1 + 
2

2 )(   2 + 2

3 )(   3 . 

The expected returns on equity and on risk-free security, e
R , f

R (and therefore on risk premium 

for equity, p
R

fe
RR  ), from the model are calculated by using formulas (11), (13) and (14) 

in Mehra and Prescott‘s paper as functions of , , a, b, c, p, q, s, t, u, and v, as given below: 

    e
R = e

R (, , a, b, c, p, q, s, t, u, v) 

       = 1

1

33

1

22

1

11 )1(1
)1(

1
)1(

1
)1(
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11 )1(1
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)1(

1
)1(
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f

R = 
f

R (, , a, b, c, p, q, s, t, u, v)   

     = 1

321

1
))1((

1 
  










 
qpqp

+ 2

321

1
))1((
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tsts

   

      + 3

321

1
))1((
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vuvu

.                    

Where, by following equation (9) from Mehra and Prescott‘s paper, 1w , 2w and 3w can be solved from the 

following system of linear equations: 

        1w  = )1()1()1()1( 3

1

32

1

21

1

1  
wqpwqwp

  , 

        2w  = )1()1()1()1( 3

1

32

1

21

1

1  
wtswtws

  , 
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        3w  = )1()1()1()1( 3

1

32

1

21

1

1  
wvuwvwu

  . 

 

By applying the expressions for e
R and f

R above, the variances of the equity, the risk-free 

security and the risk premium for equity are calculated as follows: 

 
2)( e  = 

eV (, , a, b, c, p, q, s, t, u, v) 

      = 
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2

1
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1

22

1

11 )1(1
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The expressions of the above functions are extremely complicated.  The details are reduced and 

given in the appendix.  
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Building the mathematical simulating model to solve the equity premium and volatility puzzle is 

equivalent to solving for the parameters , , a, b, c, p, q, s, t, u, and v from the following system 

of eight equation (17) – (24) while satisfying the four constraints (25) – (28): 

   

 (a, b, c, p, q, s, t, u, v) = 1.0183,    (17)  

 (a, b, c, p, q, s, t, u, v) = 0.0357
2
,    (18) 

 (a, b, c, p, q, s, t, u, v) =  0.14,     (19) 

 
e

R (, , a, b, c, p, q, s, t, u, v) = 0.0698,   (20) 

 
f

R (, , a, b, c, p, q, s, t, u, v) = 0.008,    (21) 

 
eV (, , a, b, c, p, q, s, t, u, v) =

21654.0 ,    (22)    

 
f

V (, , a, b, c, p, q, s, t, u, v) =
20567.0 ,     (23) 

 
pV (, , a, b, c, p, q, s, t, u, v) =

21667.0 ,     (24) 

 0  p, q, s, t, u, v  1,                (25) 

 p + q  1, s + t  1, u + v  1,             (26) 

 0   10,                    (27) 

 0    1.                     (28) 

 

Normally, the system of equations (17) – (24) should have infinitely many solutions.  If there exists a 

solution satisfying the above constraints (25) – (28), by substituting the values of the technology 

parameters a, b, c, p, q, s, t, u and v into (14) and (15), taking the risk aversion  in (1) and discount factor 

 in (2), then a three-state model is obtained.  From this model, with respect to the stationary 

probabilities (16), the expected growth rate, standard deviation, and first-order serial correlation of the 

growth rate of per capita in consumption and the expected returns and standard deviations of equity, risk-

free security, and risk premium for equity exactly match the values from the sample listed in (5) – (13). 

Hence, such a model provides a solution to this puzzle.  

 

4. A Solution to the Equity Premium and Volatility Puzzles 

A solution to the system of equations (17) – (24) satisfying the constraints (25) – (28) is given below.  

It is obtained by using Mathematica.  The programming and the procedure to obtain the solution 

are available in the Appendix 1.  In this section, I describe the procedure with details to build a 

model to solve the Equity Premium and Volatility Puzzles.  Additional solutions are provided 

late without these details.  

        p = 0.00461561332332569,   q = 0.5347057009293275,  

        s = 0.07212269178915119,   t = 0.35828816104829075, 

        u = 0.00302051111953540,   v = 0.00064334232930200, 

        a = 16.406881670510224,   b = 5.551214709489761,   c = 0.03339328376013917, 
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         = 6.728012992773973,   = 0.5734537514033831.    

Then a model is built by substituting a, b, and c from the above solution into (14), which results 

in the three states },,{ 321  of the growth rate as follows:  

             1 =1.0183+ 0.0357(-16.4069) = 0.432574, 

             2 = 1.0183+ 0.0357(5.55121) = 1.21648, 

             3 = 1.0183+ 0.0357(0.0333933) = 1.01949;  (29) 

and simultaneously substituting the solutions of p, q, s, t, u and v into (15) gives the transition 

matrix of the ergodic Markov chain as follows: 

     =
















9963361466.02329302000.000643341119535400.00302051

5695891472.01048290750.358288161789151190.07212269

4606786658.0092932750.534705703323325690.00461561  

,  (30) 

 

with the following stationary probabilities:  

              ),,( 321  = (0.00328361, 0.00373157, 0.992985); 

substituting the risk aversion as  = 6.728012992773973 into (1) results in the following utility 

function: 

                  U(ct, 6.728012992773973) =
728012993.5

127739735.72801299 



tc

,    

and substituting the discount factor of  = 0.5734537514033831 in (2).  Since the set of the 

technology parameters and reference parameters in this model is a solution of the system of equations 

(17) – (24), for the model built by the solution given in this section, we have the following 

endogenous results below (see the attached Appendix 1 for the details):  

  

    = 1.0183,  

   

    = 0.0012744900000000005`= 0.00127449 = 20357.0 ,  

    = 0.14000000000000007 = 14.0 , 

   
e

R = 0.06979999999999953`= 0.0698, 

   
f

R = 0.00799999999999993`= 0.008, 

   
p

R = 0.06979999999999953`0.00799999999999993`= 0.0618, 

   
2)( e = 0.027357159999999995`= 0.02735716 =

21654.0 , 

   
2)( f = 0.0032148899999999993`= 0.00321489 =

20567.0 , 
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2)( p = 0.027788889999999997`= 0.02778889 =

21667.0 . 

These values from this model built in this example ―exactly‖ match the sample data for the U.S. 

economy from 1889 through 1978.  

 

Finally, I have to show the existence of the expected utility (2) in this model.  Mehra and 

Prescott (1984) proved that if the matrix A, defined by (31) below, is stable, then the expected 

utility (2) exists.  Where the matrix A of this model is given by 

                A =






























 - 1

3

 - 1

2

 - 1

1

 - 1

3

 - 1

2

 - 1

1

 - 1

3

 - 1

2

 - 1

1

v)1(vu

t)1(ts

q)1(qp

u

s

p

.  (31) 

Substituting the parameters by the values in this solution results in the following:  

                   A =
















0.51154270.000120070.210488

0.292440.06687325.02596

0.2365230.09980080.321645  

. 

                 

By using Mathematica, we get 

 

             


















120-121-120-

119-120-119-

-120-121-120

20000

10×2.148410×4.1300510×3.80276

10×2.7090710×5.2078710×4.79516

10×4.8314610×9.2879410×8.55189

A , 

which clearly shows that 

                             n

n
A


lim  = 0. 

This implies the stability of A.  Hence, the model defined by (29) and (30), with the risk aversion  

 = 6.728012992773973, and the discount factor  = 0.5734537514033831, provides a solution to the 

Equity Premium and Volatility Puzzles.  Incidentally, the equity premium puzzle is also resolved. 

 

The following we provide a list of additional solutions without giving the details: 

 

1. p0.00505384, q0.399756, s0.091704, t0.0237336, u0.00295961, v0.00203708, 

      a16.5675, b5.4517, c0.0358042, 6.85414, 0.524433; 

 

2. p0.00339233, q0.0869019, s0.420592, t0.0148888, u0.00201901, v0.0027704, 

      a16.5295, b5.4787, c0.0381379, 6.80014, 0.651005; 

 

3. p0.0034313, q0.0729206, s0.529812, t0.150151, u0.00226601, v0.00240743, 
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      a15.2399, b5.18714, c0.0439007, 7.27847, 0.71614; 

 

4. p0.00544038, q0.463159, s0.0894655, t0.325345, u0.00333755, v0.000824639, 

      a15.3491, b6.01644, c0.0340865, 7.0215, 0.643564; 

 

5. p0.00388512, q0.0861559, s0.455512, t0.0419301, u0.00235272, v0.00267497, 

      a15.5144, b5.41257, c0.0419138, 7.14913, 0.690432; 

 

6. p0.00393438, q0.0783984, s0.497521, t0.0198361, u0.00239422, v0.00274313,  

      a15.2748, b5.10517, c0.0445802, 7.33628, 0.68479; 

 

7. p0.00382558, q0.0815112, s0.471688, t0.0149579, u0.0023056, v0.0027571,  

      a15.5847, b5.22547, c0.0427738, 7.19291, 0.676497; 

 

8. p0.00326907, q0.0737998, s0.515796, t0.162462, u0.00216859, v0.00237811,  

      a15.4908, b5.28546, c0.0423763, 7.15875, 0.714015; 

 

9. p0.00390263, q0.0837348, s0.470835, t0.0490654, u0.00238405, v0.00265768,  

      a15.3715, b5.33926, c0.0428318, 7.21717, 0.694766; 

 

10. p0.00528123, q0.42947, s0.0869867, t0.105418, u0.0032116, v0.00165855,  

      a15.9923, b5.31739, c0.037709, 7.08275, 0.541648; 

 

11. p0.00302414, q0.0711496, s0.528391, t0.218185, u0.00208709, v0.00222775,  

      a15.5383, b5.34048, c0.0417739, 7.1121, 0.726259; 

 

12. p0.00409136, q0.0903165, s0.436325, t0.00183161, u0.00241186, v0.00276837,  

      a15.5251, b5.44494, c0.0418263, 7.15381, 0.681104; 

 

13. p0.00522467, q0.473036, s0.0815291, t0.246173, u0.00330761, v0.00107173,  

      a15.7356, b5.39372, c0.0371423, 7.09014, 0.572447. 
 

5. Models with Four States 

In this section, we build a model with four states similarly to what we did in last two sections. I 

use four states },,,{ 4321  of the growth rate per capita consumption as below: 

  

                1  =   + a  = 1.0183 + 0.0357 a,  

                2  =   + b  = 1.0183 + 0.0357 b,               

                3  =   + c  = 1.0183 + 0.0357 c,     

                4  =   + d  = 1.0183 + 0.0357 d,    (32)  
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 where a, b, c, and d are parameters defining technology.  We suppose that the transitions from 

time to time only take place among 1 and 2 , and among 3 and 4 separately. Then the growth 

rates are assumed to follow a Markov chain that is not ergodic: 

 

                      =

























tt

ss

qq

pp

100

100

001

001

,      (33) 

where p, q, s, and t are also technology parameters satisfying 0 < p, q, s, t < 1. It is clear that the 

two 22 sub matrices on the main diagonal of  are matrices ergodic Markov chains. It implies 

that  has a unique stationary probability distribution of the growth rate per capita in 

consumption, which is denoted by ),,,( 4321  and it can be solved from 

                        ),,,( 4321  = ),,,( 4321  ,  

with   1, 4321 , for some   (0, 1), which is also a parameter needed to be 

determined in the late contents. As a function of p, q, s, and t, the solution is given by 

  

            1  =
qp

q




1


, 

 

            2 =
qp

p




1

)1( 
, 

 

            3 =
ts

t




1

)1( 
, 

 

             4 = 






ts

t

1

)1(
1  =

ts

s




1

)1)(1( 
.       (34) 

 

Similarly to the three states case, we can calculate the expected average, variance, and first-order 

serial correlation of the growth rate per capita consumption in this model are functions of the 

technology parameters a, b, c, d, p, q, s, t and , all with respect to the model‘s stationary 
probability distribution as given in (34). By using (32)—(34), the expected returns on equity and 

on risk-free security, e
R , f

R , and on risk premium for equity, p
R

fe
RR  , from the model 

are calculated as given below: 

    e
R = e

R (, , a, b, c, d, p, q, s, t, ) 

       = 1

1

22

1

11 )1(1
)1(

1
)1( 

































p

w

w
p

w

w
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w

w
;                                               

  
f

R = 
f

R (, , a, b, c, d, p, q, s, t, ) 

     = 1

21

1
)1((

1 
  










 
pp

+ 2

21

1
)1((

1 
  










 
qq

   

      + 3

43

1
)1((

1 
  










 
ss

+ 4

43

1
)1((
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tt

                   

 Where 1w , 2w , 3w , and 4w can be solved from the following system of linear equations: 

        1w  = )1()1()1( 2

1

21

1

1  
wpwp

  , 

        2w  = )1()1()1( 2

1

21

1

1  
wqwq

  , 

        3w  = )1()1()1( 4

1

43

1

3  
wsws

  , 

        4w  = )1()1()1( 4

1

43

1

3  
wtwt

  . 

         

 

By applying the expressions for e
R and f

R above, the variances of the equity, the risk-free 

security and the risk premium for equity are calculated as follows: 

 
2)( e  = 

eV (, , a, b, c, d, p, q, s, t, ) 

       = 
1

2

1
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1

11 )1(1
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f
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The details are reduced and given in the appendix; it is because that is extremely complicated.  

As in the three states case, we solve for the parameters , , a, b, c, d, p, q, s, t, and  from the 

system of eight equation (17) – (24) while satisfying the four constraints (25) – (28).  

 

6. A Solution to the Equity Premium and Volatility Puzzles with Four States 

By using Mathematica, similarly to the three states case, we can get many solutions of the system 

of equations (17) – (24) satisfying the constraints (25) – (28). Following every one solution, we can 

build a model to solve the Equity Premium and Volatility Puzzles.  We provide the following 

solution with the details how to build a model. Additional solutions are provided without these 

details.  

        p = 0.0029197806886129313`, q = 0.0004777799300437738`, 
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        s = 0.1437706005043603`, t = 0.5464432221143865` 

        a = 16.007044654730475`, b = 0.03089344194734167`, c = 6.905222865935489`, 

       d = 10.880469586812413`, 0.9903400088952371` 

        7.478241969826183`, 0.916814051785879`.                      (36)            

Then a model is built by substituting a, b, and c from the above solution into (32), which results 

in the three states },,,{ 4321  of the growth rate as follows:  

             1 =1.0183+0.0357(-16.007044654730475`) = 0.446848505826122`, 

             2 = 1.0183+0.0357(-0.03089344194734167`) =1.0171971041224799`, 

             3 = 1.0183+0.0357(-6.905222865935489`) = 0.771783543686103`, 

             4 = 1.0183+0.0357(10.880469586812413`) =1.4067327642492031`;     (37) 

 

and simultaneously substituting the solutions of p, q, s, t, and  into (33) gives the transition 

matrix of the Markov chain as follows: 

 

               =



















45355678.00.5464432200

85622940.00.1437706000

0099952222.00.00047778

0099708022.00.00291978

,         (38) 

 

which has the following stationary probabilities:  

 

              ),,,( 4321  = (0.0004743228769949451`, 0.9898656860182421`, 

                          0.003763270618930301`, 0.005896720485832563`).      (39) 

 

Substituting the risk aversion as  = 7.478241969826183` into (1) results in the following utility 

function: 

            U(ct, 7.478241969826183`) =
98261836.47824196

19826183`6.47824196 



tc

,                       (40)  

and by taking the discount factor of  = 0.916814051785879`, similarly to (31), the matrix A in 

this solution is given by 
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               A = 



















0.04557872.6832300

0.0860440.70596400

000.820543 0.0808826

000.8185390.494285

. 

 

By using Mathematica, we get 200000
A  is almost 0, which clearly shows that 

                             n

n
A


lim  = 0. 

This implies the stability of A.  If we take the solution given in (36) and build the model by (37)—(40), 

then we have the following endogenous results (see the attached Appendix 2 for the details):  

 

   = 1.0183,  

 

   = 0.0012744899999999942`= 0.00127449 = 20357.0 ,  

 

   = 0.14000000000000093`= 14.0 , 

 

  
e

R = 0.06980000000000058`= 0.0698, 

 

  
f

R = 0.008000000000000227`= 0.008, 

 

  
p

R = 0.06980000000000058`0.008000000000000227`= 0.0618, 

 

  
2)( e = 0.02735715999999999`= 0.02735716 =

21654.0 , 

 

  
2)( f = 0.0032148899999999833`= 0.00321489 =

20567.0 , 

 

  
2)( p = 0.02778888999999998`= 0.02778889 =

21667.0 . 

 

These values from this model built in this example also ―exactly‖ match the sample data for the U.S. 

economy from 1889 through 1978. As the case of three states, we list more solutions below without 

providing the details for building the corresponding models of four states.  

 

1. 6.667493474976215`,0.9564540374558674`, 

p0.009922870704505744`,q0.0032091019,s0.013444047076287892`,t0.38980897944264, 

a12.886746228938259`, b0.03156243645785`,c13.5018226196575`, d8.46517042362, 

0.99548614039545 

 

2. 6.698100388429119`,0.9856810780865292`, 

P0.0049553471390962`,q0.003503071970451`,s0.0124466960040615`,t0.378826894004,a

12.13606388612816`,b0.03136209183887`,c13.509854662`,d8.48298801728326`, 

0.99527572797257`. 
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3. 8.176146356980405`,0.6742125190613665`, 

p0.0108068647137`,q0.0038723563469389`,s0.01380785199012`,t0.573215805932275`, 

a13.469710035113`, b0.05962495594224`, c12.7022962122497`,d 4.672627797503`, 

0.9960089107228071`. 

 

4. 6.80062893110629`,0.9833866566962598`, 

p0.005803560260318`,q0.0033338783275248`,s0.03327596381298`,t0.42703794110669`, 

a12.16819908674`,b0.02554168242832`,c11.1097392830174`, d8.892136647487748`, 

0.9945261564968048`. 

 

 6.667493474976215`,0.9564540374558674`,
p0.0099228707045`,q0.0032091019422424`,s0.013444047076287892`,t0.38980897944`, 

a12.886746228938259`,b0.03156243645785`,c13.5018226196575`,d8.465170423623`, 

0.9954861403954505`. 

 

 7.66769421010036`,0.8842873057891891`,
p0.01344470575132`,q0.004580440678444535`,s0.024095293346705`,t0.476405757525`,

a12.00469618499`,b0.051633318276993`,c11.350285564265`,d6.881265923336441`, 

0.9954864290121973`.
 

7. 7.098936113731737`,0.9980507961729107`, 

p0.0009121989147902`,q0.004807470092594`,s0.007837113341223676`,t0.372554694`, 

a10.839563453517`, b0.04360381959615`,c13.937882068982436`,d7.832416892625`, 

0.995514043984058`. 

 

8. 7.084988027176065`,0.9989797998334727`, 

p0.0003871167987021`,q0.0048256882805975`,s0.007991483180187`,t0.373362505223`,

a10.825336191089`,b0.0436360193002`,c13.916910574585136`,d7.87061214603984`, 

0.9955331421285455`. 

 

9. 7.164206507376002`,0.9974388915561673`, 

p0.00139001029786944`,q0.004950692184326`,s0.007765397708428`,t0.373884421091`,

a10.7332335223545`,b0.04497247919`,c13.8740018623675`, d7.723518541515675`, 

0.9954977753073198`. 

 

10. 6.667493474976215`,0.9564540374558674`, 

p0.0099228707045057`,q0.0032091019422424`,s0.0134440470762879`,t0.38980897944`,

a12.886746228938`,b0.03156243645785`,c13.501822619657538`,d8.4651704236234`, 

0.9954861403954505`. 

 

7. Conclusion 

In this paper, I applied the Mehra and Prescott‘s economic model to solve the Equity Premium 

and Volatility Puzzles, which incidentally solves the equity premium puzzle that was highlighted 

by Mehra and Prescott‘s model.  I find that, in general, the framework of the economic model 

formulated by Mehra and Prescott, as a variation of Lucas‘ pure exchange model, can accurately 

describe a historical economic period.  The procedures and techniques of numerical simulation 

adopted in this paper provide a useful methodology to design a model that describes complex 
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behaviors of an economy under the utility function given by (1), if three or more states of the 

growth rates of the endowment are chosen. 

 

As mentioned in Section 3, the system of equations (17) – (24) may have infinitely many 

solutions satisfying the constraints (25) – (28). It implies that the Equity Premium and Volatility 

Puzzles have multiple, maybe infinitely many, solutions.  Of course, this is similarly true for the 

equity premium puzzle.  All the solutions listed in the appendix have some common properties: 

 

1. In the long run, there exists a state of growth rate very close to the sample average rate 

1.0183 with a high stationary probability.  

  

2. There are some states that are very low. For example, in the example in Section 6, the 

first state 1 = 0.446848505826122`. It implies that there existed some factors with 

average drop rate almost 0.57% (=1.0183 0.446848505826122) with a very small 

probability. It seems to be a disaster. It is because that the worst case in USA is that the 

real per capita in GDP falls 31% during 1929 to 1933 (over all sectors) (See Barro).   

  

3. The risk aversions in all solutions listed in this paper are higher than 6. It may be 

considered too high for some economists‘ estimations. 
 

I believe that if we use a supper computer and choose more states, then we can get some more 

desirable solutions. For example, if we take the following solution in the four state case: 

 

7.43867332402421`, 0.986020527346233`, 

p0.0058589365545052155`,q0.0034641791865`,s0.076456743729752`,t0.495567839088 

a11.41263879877478`,b0.018551952092873`, c8.39103608667`,d9.10405453304085`, 

0.9929891742075543` 

 

We can get the four states below 

 

                 1 = 0.610869, 2 = 1.01896, 3 = 0.71874, 4 = 1.34331, 

 

with the following stationary distribution: 

  

        ),,,( 4321  = (0.00344815, 0.989541, 0.00244825, 0.00456258). 

 

In this solution, the disaster is also the state 1 (= 0.610869), which indicates that some sectors 

had decreasing rate 0.4074 (=1.0183 0.610869) with a very small probability 0.00344815, in 

the long run. It is very close to the lowest falling rate (over all sectors) 0.31.   

 

The results obtained in this paper seem to be ―mechanically‖ developed by following Mehra and 

Prescott‘s economic model. Meanwhile, I believe that this is also the strong point of the results. 

It is because that the puzzle was solved by using the exactly same model which the puzzle was 

raised. 
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