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Abstract: In this paper we will generate queueing systems with c stations where the inter-arrival time
and the c service times depend through a c+1 copula C. We will consider two models: first when the
customer does not know the order of service times for the free service channels (he/she chooses the
service channel randomly), and the second when he/she knows this order (he/she chooses the fastest free
service channel).

The marginals can be exponential, Erlang or hyper-exponential.

AMS Subject Classification: 60K25, 90B22

Keywords: Queueing systems, copula, simulation.

1. Introduction

The queueing systems have been studied among others by Kleinrock (see [10]) and Asmussen (see
[2]). Some authors like Ciucu and Mihoc (see [2]) consider other queue discipline than FIFO, like
SIRO, LIFO and priorities. Others consider the possibility that the server stops for a time if there is
no customer on the queue (see [12,9]). But all of these models consider that the arrivals and the
services are independent.

Definition 1. A copula is a function C :[0,1]" = [O,]] so that
1) Ifthere isiso that X; =0 than C(Xl,---,Xn) =0.
2) If X; =1 forall j#1i than ClX;,... x,) = X;.

3) Cis increasing in each argument.
We have the following theorem (see [15,13,14]).

Theorem 1 (Sklar). Let X,, X,,.., X, be random variables with the cumulative distribution
functions F,, F,,..., F,, and the common cdf H(xl,...,xn) = P(X1 S X X, S Xn). In this case
there is a copula C(ul,...,un) so that H(Xl,...,xn) =C(F1(x1),...,Fn(Xn)). The copula C is well
defined on the chartesian product of the images of the marginals F,, F, ..., F,.

Definition 2 ([15,16,17]). If n =2 the copula C is Archimedean if C(u,u) <u for any u D(O,l)
and C(C(u,v),w) :C(u,C(v, W)) for any u,v,wD[O,l]. If n>2 the copula C is Archimedean if
there is an n—1 Archimedean copula C; and a 2 — Archimedean copula C, so that C(ul,...,un) =
CZ(Cl(ul""’un-l)’un) .

Consider a function ¢ :[0,1] — R decreasing and convex with ¢(1) =0 and its pseudo-inverse 9 (

g(y) has the value X if there is X so that ¢(x) =y and O in the contrary case). We know (see
[8,15]) that a copula C is Archimedean if and only if there is a function ¢ as above so that for any
x,y [0, 1] we have

Clx.y) = glg(x) +¢(y)). (1)
In [16,17] methods to simulate Archimedean copulas are presented, and in [4] some algorithms to
simulate queueing systems with one channel with arrivals and services depending through copulas.

For generating such queueing systems where the copula is Archimedean we use in [4] the following
theorem (see [8]).
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Theorem 2. If X and Y are uniform random variables connected by the Archimedean copula C

given by 9 like in (1) the random variables Z, _(7§+_¢)[7T and Z, =C(X,Y) are independent. Z,

is a uniform random variable on ’0,1] and Z, has the cdf K, where K(V) :v—/\(v) and

v) =g((% for any vD[O,l] .

For any 1 —copula C we have (see [1])
w xl,...,xn) < C(xl,...,xn) < rnin(xl,...,xn) , where (2)

n
W(Xq,e0Xp) = 3 x; —n+1 )

i=1
is the lower Fréchet bound, and min is the upper Fréchet bound.
In [4] we have used in order to generate the copulas W and min the fact that if X and Y are
connected by the copula min there is a function f :[0,1] - [O,]] increasing so that f (X ) =Y . If the
copula is W than [ is decreasing, and if the copula is Prod the variables are independent (see
[15,13]). The Fréchet copulas (see [1,15,13]) are generated by the mixture method (see [4]). If we
know a formula for the copula C we generate in [4] the uniform random variables X and Y
connected by the copula C using the following theorem.
Theorem 3 ([4,5]). If X and Y are uniform random variables with their common cdf given by the

copula C, the conditional random variable X|Y has the cdf % .

In [6] analytical formulae can be found for the copulas that connect the number of customers in a
Gordon and Newell queueing network, and their corresponding Spearman # and Kendall T .

2. Generating Archimedean Copulas

First we will give a generalization of theorem 2.
Theorem 4. If X,, X,.., X, are uniform random variables connected by the Archimedean
— ¢(x)

copula C given by @ like in (1) , the random variables “1~ S g(x,) and Z, = qu(Xi) are
A i=1
independent. Z, has the cdf Ll—’n(v) :1—(1—\/)"_1 for VDIO,II, and Z, has the cdf

Folv)=1-5 EE rgli(x).
i=0 )

Proof: Firstly we will prove that ) ¢(X l.) < ¢(0) with the probability 1. Of course, if ¢(0) = the
i=0

above relation is obvious.

If ¢( )< o we consider X;, X,,..., X, such that Z ¢( ) ¢( ) Using (1) we obtain
i=0

C(Xl’ ’Xn) :0-
Therefore the pdf in this point is ax ax =0, and from here the above relation.

The common cdf of ¢(X,) ..., o(X,) is
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It results that the cdf of Z, = 3 @(X,) is
=

V=X, g v v=x, v—i:1 X;
V=1L e T S x B ddn = 11T (=1 0 V), +
00 0 0=1 [ 0 0

vV—X

Iy I (—1) "y (n-1 @;_lx fo g -dXx,dx; = (V)_(;l()%?}n__ Dﬂ(n_l)(v)-
00 0 S

The formula from enunciation for F, is proved by computations, and for F, we use the above
recurrence formula and the mathematical induction.
Using the formula for F, we obtain the formula for the pdf

f(x) =Bl (y).
From this relation if ¢(0) = respectively the fact that % ¢(X I-) < ¢(0) with the probability 1 if
i=0
$(0) <o it results that g!" (#(0)) =0 forany n>0.
In the same way we prove that the common cdf of ¢(X 1) and i ¢(X I-) is for n=2
n-2 imi . .
Hylxy) =1-glx)+ 3 92 g+ y) - 6.

Computing the second order derivative we obtain the common pdf
0°H, (1)

= = (”)
h,(x,y) sy - oo (x+y).
If ¢(0) =0 we obtain
©1- v@(_l)”‘z g/n—Z oo(_ )n—2 n-2
U Y ) _ O () Y
il =p 1 eledy = 1 @vay
oo(_l)n—z 2

(o g (y)dy.

0
In the last integral we notice that the function which we integrate with the sign "-" is the pdf of Z,.
Therefore, using the substitution y = (1—v) [Z we obtain in this case the formula for ¥, from
enunciation.
If ¢(O) <o we obtain
(i=v)glo) g0y s s (=vlglo) s s

W (v)=1- )l ) (x + y)dxdy =1- L2 gl (g 0))dy +

n() g 1{ —(ﬁ)'—g( Y) y g a2 9 (¢())y
(1-vjglo) o, o

(_1)71 Zyn 2 (n) L d

e [y
We take now into account that g(”) (¢(0)) =0 and the above form of f, . It results that the form of
Y is also that from enunciation in this case.
For proving the independence we notice first that if ¢(0) <o we have with the probability 1

(1-2,)4l0)< Z,.
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From this it results that we must prove the independence in the cases ¢(O) = o0, ¢(O) <o and
w<(1—v)¢(0).
The common cdf of Z; and Z, is

\4
wisY n-2 n-2 n-2 n-2

— - n _W R A _W(_) (”_)
() = 1 S gl s y)anay = [ g ey -1 ey

But the term from the second integral with the sign "-" is f,-;. Using the substitution y = (1 - v) Z as
above, we conclude that in this cases we have H ,,(V, W) = L|J,,(V) [Fn(w) )

In the case 0 < ¢(0) <w <o the above relation is obvious, and the theorem is proved.

Using theorem 4 we can build the following algorithm analogous to those for n =2 in [4] for the

simulation of the uniform variables X,;, X,,..., X, connected by the Archimedean copula C if we

know the functions @ and 9.
Algorithm coparh

Generate U uniform on [0,1] .

S <« F n_l(U)

for i =1 to n—1 do begin

Generate U uniform on [0,1] .

R . 1_(1_U)1/(n—i)

T —« RUOS

S -S-T

X[il  g(T)

end

Xinl — g(s)

output( X 1],..., X[n])
end.
The most difficult problem in the above algorithm is to compute Fn_l(U) because, using theorem 4
we have to use the derivative of the order n—1 of 9. When we run our C ++ program we can
have an overlay run error when we compute g(”) (x) for large n (30 for instance). The explanation

consists in the existence of some factors in the case of Clayton copula, or terms in the case of Frank,
Gumbel-Hougaard or log-copula cases that become large for large 1. But these factors or terms can

be compensated by XTH, in

) =SS . ®

Therefore we have to compute (if it is possible) f,, directly, or to obtain a recurrence formula for

fu.

The simplest case is the case of the Clayton family, where for an 8 >0

Clu,v) = (u‘g +v? —1)_5- 4)
For 8 =0 we obtain the copula Prod (independence case), and for 8 — o we obtain the upper

Fréchet bound min .
ac

From 4 = 47%% we obtain first ¢'(u) =-u %", and from here

av
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§lu) = =5— and 4)
g(w) = (6w +1)_%- (4”)
We obtain
g™ (w) = (-1 ow +1) 7477 (7 fi6+1)
i=1

for n =1, and from here
1

fn(X) = (GX +1)_%_1 EBLG_ DII|:|119_+1. 4)

Ox +10 i=1 1
Other family of Archimedean copulas presented in [8,11,13] and simulated in [4] is the Frank
family. In this case fory [JR" we have

—Q(u+v) _ ,—Bu _ ,—6v -6

C(u,v) =—1Ellnpf3 e_e ¢ ° E (5)
8 e ™01 :

We obtain also the copula Prod for 8=0 and the copula min for 8 — o . For 8 — —c we obtain

the lower Fréchet bound W .
% _ 0'(u)

ge %

From 3;; __(_I we obtain first ¢( ) T and from here
1-e7®
(I)(U) = lnj, and (5’)
-e
1 _
g(w) = —éln(ye W +1), where y= e—G -1. (5”)

In this case we have also ¢(0) = \}im (I)(V) = but the computation of g(n)(w) is difficult. We

consider fo(X) = 8(X) and fl(X) =—g'( ) %E’ye"‘—ﬂ

From e_e@ =y[@~* +1 we obtain

We compute the derivative of the order n —1 in both sides of the above relation, we use the Leibnitz
formula for n —th derivative of the product and the formula (3). Finally we obtain

X Ox
fuoals) =2 Do)+ 205 bl Tyl or n2. )
In the case of the Gumbel-Hougaard family (see [8,13,14,13]) we have for 6>1 and =%
B
Clu,v) = el (=) ©®)
For 6 =1 we obtain the copula Prod and for 8 — c we obtain the copula min .
ac ) o-
From 3—:; = (LE_)I we obtain first ¢’ ( ) Q(LILUL , and from here
o(u) =(~1nu)®, and (6)
—_ B »
glx)=e™ . (6”)
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Tacking into account that Ing = —xP we obtain first

&= pnf
g

We differentiate in both sides by X and we multiply next by x @2 , and finally we obtain

x[g'g =(B-1) &' (g +x g)°.
From here we obtain
,)2

g=(p-1) +!
X
If we differentiate in both members of (7) we obtain

x g " =(p-2) g +pg)? +x & &"

if we do this operation only once, and if we do it n—1 times we obtam first
x g i)"Y +(n - 1) Eﬂg Eg") ")
(B-1) g g “1+xtﬁg (n- ltf(g

If we differentiate once each term in the above formula for which the derivative order is n—1 we
obtain

n 2

_ _ 2
e )" = xcfy ) +(p-n) g @) + (g2 )"
and, using the Leibnitz formula for n order derivative of the product, we obtain analogously to the
case of the Frank family for n=>3

b

x g g = Dii_jc‘;_z gl gl 1K +XD§(2)C15—2 gl rglo i 4
(p-n) ") +(p-n) Dkzick g ln )+
-8 e o
We obtain the recurrence formula
o(x) =glx)=e™
0y [x) =g ) =B o)
a(x) = x ) = (18 Tix) + 32
__x% () = (2B (x) _ BEEZ(x) | x0(x),(x)
%3(’()“7@ ) =" - 2Eﬂ0() 28, ] ")
— X N3 (n-k-1)(n-2k- k+1 nk(x) .
§n+1(x) -_;n(n_l) Dkéo( 11(+1 23 d et
L2 08 (I =Bl k) =0 =B+ 2) By x) By gy )+ PP
Dx[ﬂ2 X [ﬂnjl x| x[n+p-2)0,(x)H,,(x
) xS Al gy,
The Gumbel-Barnett copula is
Clu,v) =u e Bnu)nv)) with 0 <@ <1, @®)
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We notice that we have also the copula product (independence) for 6 — 0.

€y
From jjg = ﬁ%} we obtain first ¢'(u) = _m , and from here

ov

d)(ll) - 11’1(1 —eelnu) , and (8’)
l—eeX 99
)= @)
From 1-61ng = e* we obtain by derivation
g_’ = —e&
g
By derivation we obtain
gy=0y 0y +(g)’.
If we differentiate the above relation n—1 times we obtain first
n-1 n-1
g @("ﬂ) = _;Zlc’l:'l gg(k) [g("ﬂ—k) +00g Dg(“] +QD,<§1C::'1 Dg(k) Dg(”_k) +
5l g,
k=0
and finally the recurrence formula
O 1—e@‘
Efo(x) g\x ) -e
e L I
U x Of 7| x
=-0 % 1
Efz(x) (X) Df1(x) fo(x) ' 8
1 nln—k 6«
OF e+ =~ n+- T Hn -
)=y B ATl
Oooe&x 11 x 11
x) Uf i > fi+ x) forn=2
mﬂz o, (x) O, ()nk_lkl() Y
The Ali-Mikhail-Haq copula is
uly
C = 3 -
(u,V) 1—6(1—u)(1—v)’ with —1<6<1. 9)
We notice that we have the copula product (independence) for 8 =0.
From 3—2 = ﬁH we obtain first @' ( ) m and from here
=— D] E]Q +— H and 9)
g(x) SNET . ©)
e 1-0)x _ 0

1—9) X

From 6 + % = el we obtain first
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ﬂ = e(l—@)

X — 9 )
g
If we differentiate once the above relation we obtain
g_2 — _6(1—9) X ,
g

and by derivative of the above relation

gly"=(1-6)yy'+2dg')*.

Analogously to the Gumbel-Barnett case, we obtain the recurrence formula
Dm() ():Jﬁ%E
0h(x) ==g'(x) =" O (¥
Hn( x@"(x) =~{1-6) Gefy () + 200

n-1 —6)x N
|:|fn+1( ) - n[fx lek ka(x) |:Vﬂnﬂ—k(x) - (1 9) nqn( ) -
2 n-1

”Efo DZ ka( )w”‘k( ) nljo Dz fk+1( )Ebc ( ) forn22

@)

Of course, the above formulae are for 8 <1. The particular case 8 =1 (in this case we have )

must be treated separately. We have

C(u,v)ZL.
u+v-uv
ac

From % = *H we obtain first ¢’ ( ) = % , and from here

ov

It results that g(n) (X) = ((;ﬂ;”ﬁii and finally

il - Sl e
gf()-"uﬁlmrn>z

If we consider the log-copula family for a >0, y>0, g= (ary)"’+1 and =24

[8,15,13])

_g-mef” 1 [1-d™ 1 .
‘) %5675 ™ B B

g(x) = e A,
If we apply the formula (1) we obtain using the above notations

C(us V) =e @—((l—lnu)a+1+(1_lnv)a+1_l)r )

ou —

Remark 1. The copula C from (13°"*) does not depend on V. If we use 5
ov
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(13)

(13%)

(137)

©
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¢'\u (1 lnu

previous family cases we obtain 4, = (] . If we take ¢( ) —LH%K we obtain the above

copula with Y =Y, so that (a @/1)‘”1 =a +1. To obtain the log-copula for another ¥V we have to

a+l

multiply first the value of ¢'(u) by 7’/1

From Ing(x) =1-(Bx+1)" we obtain first
9= - B+
g

Analogously to the Gumbel-Hougaard case we obtain

(Bx+1) g " =(r-1) By g’ +(Bx +1) thg')*.

If we differentiate the above relation once we obtain

(Be+1) oy =(r-2) By " +(Bx+1) ' " +(r -1) (Bg')*.
If we differentiate n—1 times we obtain
(Be+1) iy ™) =~ px +1) Dkzi el ) gyl
n=r) By + TS el
[r=1) B 5 iy ) g4+ 1) O, el gl )+
B Dkzz et () neke)
The recurrence formula for g!") obtained analogously to the Gumbel-Hougaard case is

f,(x) = glx) = et 6

) =g = r BB+ 1 oo

D " -r 11X X 12 X
sz(x):x@(x)_(l ),[?BE{%?()-F ?;P(‘)) 242
ngw -5 (") = LBl AR Do
n-1 -r %
Oral) =~y 5, 2 e )+ (14)
n-1
O A%

Dﬂ(]ﬁxﬂ)ﬂfo(x) =) n_li(_l Evck(x) Evcn-k(x) +$;:-)F%;T O

[h1 n-1

%Zj Efk(x) Ern—k(x) +ﬁ(§} Dlgo fk+1(x) Wn—k(x) B
5 n-2

%{ﬁﬁm Dk:o fk+1(x) Efn—k—l(x) fornz3

The Nelsen Ten copula is
uly
(1+(1—u9)(1—v9))é’wnh 0<@<1. (15)

C(u,v) =
©c
From % = ﬂ}ﬂ% we obtain first ¢'(“) _[1_) and from here
< o'\v ul2-u”| >

ou) = %5 D]n(zu'9 —1), and (15)
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1
2_H
-H 2 H. (15”)
2% +10
_ 2%
=e’™ +1 we obtain

9'(x) =-20y(x) + %" (x).
We differentiate the above relation and we take into account that g9+1( ) ( )+2 Dg( )
obtain

g'g=(6+1)g)* +20 Ly .

We differentiate the last formula n —1 times and we obtain

g @(nﬂ) :_:ilcg_l @(k) Dg(n—kﬂ) +(9+1) EZilC::_l @(kﬂ) @(n—k) +
=1 =0

2By +m:§c,s-l ylh cylo-t
=1

We obtain the recurrence formula

folx) = glx) =

i) =) =2 HAREE

sz(x) y"(x) = 12T o e )

Cfpal) =~ WDZ O (X D)+ (15")

DGH DZ fk+1( ) Eﬁ.—k(X) - zuza Dfo(x) WH(X) -

D
g%lmkzzlgmfk(x) Foeilx) forn=2

The inverse of the cdf F, of Z, is computed in any point U using the bisection method as in [4].

3. Other Families of Copulas and Their Simulation

In [1,15,8] it is presented the Fréchet family of 2 — copulas
C(x,y) =a Dfnin(x, y) + (l—a —,B) EProd(x,y) +[ DW(X,y) , (16)

where minand W are the Fréchet bounds from (2) and Prod is the product copula (characteristic
for independent random variables). In the above formula we have @,32=0 and a + B<1. Because
the lower Fréchet bound W is a 2 —copula, but it is not an " ~copula, in the above formula we take
B =0 for n>3. Therefore we have the following algorithm to generate the uniform random
variables X;, X,,.., X, connected by a copula C from the Fréchet family with a given value
a0[0,1].
Algorithm Fréchet
input (n,a)

Generate X[1] uniform on [0, 1] )

C « X[1]

for i =2 to N do begin

Generate U uniform on [0, 1] .

if U <a then

81



X[i] - C
else

Generate X[i] uniform on [0, 1] .
if X[i]<C then

C =a OX[i]+(1-a)OX[i]OC

else
C =aOC +(1-a)0X[i]OC
end
output (X[l],...,X[n])
end.

In the above algorithm we have taken into account that if X and Y are connected by the copula
min there is an increasing function between them. This function is the identity if the variables are
uniform on [0,1] (see [4,5]).

For a 2 —copula for which we know the analytical formula we have used theorem 3. For an N~
copula we can consider X,,..., X, connected by the same copula, but of the order n—1 and the
marginals of X ,-| X ;. By mathematical induction we obtain the following algorithm if we know the

cdf Fx(y) from theorem 3 and its inverse Fx_l(u).
Algorithm copulaf

X2" X

input (n,F F!
Generate X[1] uniform on [0, 1] )
for i =2 to  do begin
Generate X[i] uniform on [0, 1] .
for j =i—1 downto 1 do

X[i] « Fyiy(X1i)

end

output (X[l],...,X[n])

end.

We consider the cases of Farlie-Gumbel-Morgestern, Cuadras-Augé and of the Raftery families of
copula [13,15,4].

4. Simulation of the Service Systems and of the Queueing Networks

First of all we define a class "copula” that has "tipcop” type so that 0 means a Clayton copula, 1
means Frank copula, and the last value is 10 for Fréchet family. The attribute "nrmarg" is the
number of marginals (¢ +1 if we have a queueing system with ¢ channels, respectively 1 if we
have a queueing network with 1 nodes). "caz" is the case of the modeled copula: 0 means
queueing systems and 1 means queueing networks. The parameters of the copula (usualy one,
except the cases like log-copula, when the number of parameters is two) is given by the vector
"parcop". The marginals are given by the integer vector of types "tipmarg" (tipmarg[i]=0 means for
instance that the marginal i is exponential), and the matrix of parameters "parmarg". The vector
"timp" means the generated times. If we are in the case of service system, the first marginal
represents the inter-arrival time.

In the constructor the initialization is for a queueing system with one channel and exponential
marginals. In the method "citire" we read in the case of service system the number of channels, the
type and the parameters of the copula, and the types and the parameters of the marginals. Using the
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operator "+=(int ind)" we generate all the new values for generated marginal times if model=0,
respectively only the component ind in the contrary case. In fact "model" represents the model of
copula as in [4]: O for self-service model, 1 for feedback model, and 2 for random feedback
model.

The average number of customers in the system is computed using the formula (see [4,5])

Y N, [,
N - ]:1 ) ) ) (17)
ts

where ts is the total simulation time and the number of customers in the system is constant N j

m
during the period HZ ty=ts E In the same way we compute the average number of customers in
=1

the queue:

Nt (a7)
ts
The probabilities that there is no customer in the system, P, respectively that an arriving customer

has to wait, P, are estimated using the formulae

0. _T(N=0)
go s 18
_T(N=2()> (18)

%a ts

where T(N = 0) and T(N > c) are the periods during the whole simulation time ts when we have

no customers in the system, respectively when at least a customer waits.

We consider two possibilities for a customer whose service starts. First is the usual way to choose
randomly an existing free channel, and second is when the customer chooses the channel with the
minimum service time.

5. Applications

Example 1. Consider the queueing system with three channels, inter-arrival times exp(7) and the
service times for each channel exp(2.5) . The theoretical results in the classical case of the
independence are the following:

1) The probability of no units in the system: pg =0.01597 .

2) The probability that a customer that arrives has to wait: P, = 0.87667 ,
3) The average number of units in the system: M(N) =15.07348..

4) The average number of units in the queue: M(Nf ) =12.27348.

The results for the above marginals and different types of copula are in the following table, where
the condition to stop the program is that the simulation time tsim becomes at least the maximum
simulation time 100. If we consider that the customer does not know the order of service times for
free channels, hence the free channel is chosen randomly and we obtain the following results.

Copula type Po Pa N N_f tsim
Fréchet: 6=0 0.0264 0.7434 12.03687 | 9.35435 | 100.13159

83



Fréchet: 6=0.5 0.09411 | 0.71928 8.48935 6.54966 100.01805
Fréchet: 6=1 0.01304 0.71174 7.13639 4.37438 | 100.00166
Clayton: 6=0.2 0.03161 | 0.75541 13.42655 | 10.75626 | 100.04908
Clayton: 6=1.67 0.01752 0.69136 11.47095 | 8.79975 100.03114
Frank: 6=0.05 0.01225 0.77924 9.72765 7.89722 100.02877
Frank: 6=-0.05 0.01228 0.54759 9.17179 7.49877 100.18701
Frank: =5 0.00522 0.81282 8.34361 5.55577 100.10293
Frank: 6=-5 0.00483 0.5445 5.05532 3.29293 | 100.03008
Gumbel-Barnett: 6=0.05 0.03376 | 0.63966 | 12.88822 | 10.26863 | 100.08793
Gumbel-Barnett: 6 =1 0.01783 0.7183 6.30056 3.56906 100.2205
Ali-Mikhail-Haq: 6=-1 0.04206 | 0.75285 7.49417 4.84923 | 100.26359
Ali-Mikhail-Haq: 6 =0 0.01127 0.8705 15.76395 | 13.89076 | 100.06537
Ali-Mikhail-Haq: 6=1 0.01918 | 0.75856 9.32661 6.58906 100.06032

If we consider that the customer for which the service starts knows at least the order of the service
times of free channels, hence he/she chooses the channel with the minimum service time we obtain
the following results.

Copula type Po Da N N¢ tsim
Fréchet: =0 0.07139 | 0.65454 | 11.62451 | 9.15974 | 100.09229
Fréchet: 6=0.5 0.11038 | 0.69031 7.52908 5.74493 | 100.02578
Fréchet: 6=1 0.01193 | 0.62173 6.1211 3.4599 100.00276
Clayton: 6=0.2 0.02213 | 0.69357 8.92108 6.21623 | 100.03023
Clayton: 6=1.67 0.01339 | 0.68199 6.68807 4.02216 | 100.10459
Frank: 6=0.05 0.01142 0.6084 4.08631 1.36552 100.07043
Frank: 6=-0.05 0.00916 | 0.53599 4.11366 1.43095 100.04171
Frank: 6=5 0.00569 | 0.54827 4.05264 1.34468 | 100.27253
Frank: 6=-5 0.00483 0.5445 4.05532 1.29293 | 100.03008
Gumbel-Barnett: 8=0.05 0.01225 | 0.77924 9.23038 6.42876 | 100.03353
Gumbel-Barnett: 6=1 0.01223 | 0.53065 3.96116 1.3486 100.02269
Ali-Mikhail-Haq: 6=-1 0.05204 | 0.49112 5.1455 5.1455 100.10366
Ali-Mikhail-Haq: 6=0 0.10958 | 0.54469 5.6125 3.34918 | 100.02569
Ali-Mikhail-Haq: 6=1 0.03873 | 0.67888 8.32877 5.75197 | 100.19296

We notice that in the second case the customers optimize their services: the probability to wait, the
average number of customers in the system and the average number of customers in the queue are
small if they know the order of services for free channels.

6. Conclusions

For all the Archimedean copulas presented in [1,8,14] and [15], and simulated in [4] we have

¢(0) = thocl)(v) =% The computation of g(“) (w) by analytical formula is possible only in the

case of the Clayton family. But in the other cases we have obtained recurrence formulae that are
useful in our C ++ program. Due to the big numbers obtained if we use the recurrence formulae for

g(“) we use instead the recurrence formulae for £, : the high terms for g(“) are compensated by the
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n-1
factor h, which tends to O for n —

In the case of Fréchet family we have considered B=0 (hence a mixture between the copula Prod
and the copula min ). It is an open problem if we can consider also 0 <B <1 (we know only that we
can not take B=1).

We notice also the good approximations expressed by our C ++ program. We know for instance
that the limit case for Clayton family is the product copula (independence) for 8 — 0, respectively
the upper Fréchet bound (copula min ) for 6 — o : see the estimated values for 8=0.2 and
0=1.67.

As models for queueing systems we have consider two models for the way the customer for which
the service starts chooses the free channel: first when he/she does not know which is the free
channel with the fastest service, hence he/she chooses one randomly, and the second when he/she
knows, and chooses the fastest one. An open problem is to consider the models of self-service, the
model of feedback and the model of random feedback as for only one station (see [4,5]).
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