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Abstract: In this paper we will generate queueing systems with c stations where the inter-arrival time 

and the c service times depend through a c+1 copula C. We will consider two models: first when the 

customer does not know the order of service times for the free service channels (he/she chooses the 

service channel randomly), and the second when he/she knows this order (he/she chooses the fastest free 

service channel).

The marginals can be exponential, Erlang or hyper-exponential.
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1. Introduction

The queueing systems have been studied among others by Kleinrock (see [10]) and Asmussen (see 

[2]). Some authors like Ciucu and Mihoc (see [2]) consider other queue discipline than FIFO, like 

SIRO, LIFO and priorities. Others consider the possibility that the server stops for a time if there is 

no customer on the queue (see [12,9]). But all of these models consider that the arrivals and the 

services are independent.

Definition 1.  A copula is a function [ ] [ ]1,01,0: →n
C  so that

1) If there is i so that 0=ix  than ( ) 0,...,1 =nxxC .

2) If 1=jx  for all ij ≠  than ( ) in xxxC =,...,1 .

3) C is increasing in each argument.

We have the following theorem (see [15,13,14]).

Theorem 1 (Sklar).  Let  1X ,  2X ,...,  nX  be random variables with the cumulative distribution 

functions  1F ,  2F ,...,  nF , and the common cdf  ( ) ( )nnn xXxXPxxH ≤≤= ,...,,..., 111 . In this case 

there is a copula  ( )nuuC ,...,1  so that  ( ) ( ) ( )( )nnn xFxFCxxH ,...,,..., 111 = .  The copula  C  is well  

defined on the chartesian product of the images of the marginals 1F , 2F ,..., nF .

Definition 2 ([15,16,17]). If  2=n  the copula C  is Archimedean if  ( ) uuuC <,  for any ( )1,0∈u  

and  ( )( ) ( )( )wvCuCwvuCC ,,,, =  for any  [ ]1,0,, ∈wvu . If  2>n  the copula  C  is Archimedean if  

there is an 1−n  Archimedean copula 1C  and a −2 Archimedean copula 2C  so that ( ) =nuuC ,...,1  

( )( )nn uuuCC ,,..., 1112 − .

Consider a function [ ] R→1,0:ϕ  decreasing and convex with ( ) 01 =ϕ  and its pseudo-inverse g  (

( )yg  has the value  x  if there is  x  so that  ( ) yx =ϕ  and 0  in the contrary case). We know (see 

[8,15]) that a copula C  is Archimedean if and only if there is a function ϕ  as above so that for any 

[ ]1,0, ∈yx  we have

                                                             ( ) ( ) ( )( )yxgyxC ϕϕ +=, .                                                      (1)

In [16,17] methods to simulate Archimedean copulas are presented, and in [4] some algorithms to 

simulate queueing systems with one channel with arrivals and services depending through copulas.

For generating such queueing systems where the copula is Archimedean we use in [4] the following 

theorem (see [8]).
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Theorem 2. If X  and Y  are uniform random variables connected by the Archimedean copula C  

given by ϕ  like in (1) the random variables 
( )

( ) ( )yX

X
Z ϕϕ

ϕ
+=1  and ( )YXCZ ,2 =  are independent. 1Z  

is  a  uniform  random  variable  on  [ ]1,0  and  2Z  has  the  cdf  K ,  where  ( ) ( )vvvK λ−=  and 

( ) ( )
( )v

v
v ϕ

ϕλ ′=  for any [ ]1,0∈v .

For any −n copula C  we have (see [1])

                                      ( ) ( ) ( )n1n1n1 x,...,xminx,...,xCx,...,xW ≤≤ , where                                 (2)

                                                          ( ) 1nxx,...,xW i

n

1i
n1 +−= ∑

=
                                                   (2’)

is the lower Fréchet bound, and min  is the upper Fréchet bound.

In [4] we have used in order to generate the copulas  W  and  min  the fact that if  X  and  Y  are 

connected by the copula min  there is a function [ ] [ ]1,01,0: →f  increasing so that ( ) YXf = . If the 

copula is  W  than  f  is decreasing, and if the copula is  odPr  the variables are independent (see 

[15,13]). The Fréchet copulas (see [1,15,13]) are generated by the mixture method (see [4]). If we 

know a formula for the copula  C  we generate in [4] the uniform random variables  X  and  Y  

connected by the copula C  using the following theorem.

Theorem 3 ([4,5]).  If X  and Y  are uniform random variables with their common cdf given by the  

copula C , the conditional random variable YX  has the cdf x
C

∂
∂ .

In [6] analytical formulae can be found for the copulas that connect the number of customers in a 

Gordon and Newell queueing network, and their corresponding Spearman ρ  and Kendall τ .

2. Generating Archimedean Copulas

First we will give a generalization of theorem 2.

 Theorem 4.  If  1X ,  2X ...,  nX  are uniform random variables connected by the Archimedean  

copula  C  given  by  ϕ  like  in  (1) ,  the  random variables  
( )

( )i

n

i
X

X
Z

ϕ

ϕ

1

1

1

=
∑

=
 and  ( )i

n

i
XZ ϕ

1
2

=
∑=  are 

independent.  1Z  has  the  cdf  ( ) ( ) 1
11

−−−=Ψ n
n vv  for  [ ]1,0∈v ,  and  2Z  has  the  cdf 

( ) ( ) ( ) ( )xgvF i

i

x
n

i
n

ii

⋅∑−= ⋅−
−

= !

1
1

0
1 .

Proof: Firstly we will prove that ( ) ( )0
0

ϕϕ ≤∑
=

i

n

i
X  with the probability 1. Of course, if ( ) ∞=0ϕ  the 

above relation is obvious.

If ( ) ∞<0ϕ  we consider 1x , 2x ,..., nx  such that ( ) ( )0
0

ϕϕ >∑
=

i

n

i
x . Using (1) we obtain

( ) 0,...,1 =nxxC .

Therefore the pdf in this point is 0
...1

=∂∂
∂

n

n

xx
C , and from here the above relation.

The common cdf of ( )1Xϕ ,..., ( )nXϕ  is

( )( ) ( )( ) ( )i

n

i
iiii xgxgXPxXP

1
1

=
∑−=≥=≤ϕ ( ) ( ) 





 ∑⋅−+++∑∑+

=≠==
i

n

i

n
ji

n

ijj

n

i
xgxxg

1,11
1...  

Therefore the common pdf is ( ) ( ) 




 ∑⋅−

=
i

n

i

nn
xg

1
1 .
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It results that the cdf of ( )i

n

i
XZ ϕ

1
2

=
∑=  is

( ) ( ) ( ) =




 ∑⋅−∫∫∫=

=

∑−−
−

=

12
1000

...1...

1

11

dxdxdxxgvF ni

n

i

nn

xv
xvv

n

i

n

i

( ) ( ) ( ) +⋅−∫∫∫ −
−

∑−−
−

=

121
1

000
...1...

2

11

dxdxdxvg n
nn

xv
xvv i

n

i  

( ) ( ) =




 ∑⋅−∫∫∫ −

−

=

−−
∑−−
−

=

121

1

1

11

000
...1...

2

11

dxdxdxxg ni

n

i

nn

xv
xvv i

n

i ( ) ( )
( )

( ) ( )vgvF n

n

v
n

nn
1

!1

1
1

11 −
−

⋅−
− ⋅−

−−
.

The formula from enunciation for  2F  is proved by computations, and for  nF  we use the above 

recurrence formula and the mathematical induction.

Using the formula for  nF   we obtain the formula for the pdf

( ) ( )
( )

( ) ( )xgxf n

n

x
n

nn

⋅= −
⋅− −

!1

1 1

.

From this relation if ( ) ∞=0ϕ , respectively the fact that  ( ) ( )0
0

ϕϕ ≤∑
=

i

n

i
X  with the probability 1 if 

( ) ∞<0ϕ  it results that ( ) ( )( ) 00 =ϕng  for any 0≥n .

In the same way we prove that the common cdf of ( )1Xϕ  and ( )i

n

i
Xϕ

2=
∑  is for 2≥n

( ) ( ) ( ) ( ) ( ) ( ) ( )( )ygyxgxgyxH ii

i

y
n

i
n

ii

−+⋅∑+−= ⋅−
−

= !

1
2

0
1, .

Computing the second order derivative we obtain the common pdf

( ) ( )
( )

( ) ( )yxg
n

y

yx

H
yxh n

nn
n

n +⋅
−

⋅−=
∂∂

∂
=

−−

!2

1
,

222

.

If ( ) ∞=0ϕ  we obtain

( ) ( )
( )

( ) ( ) ( )
( )

( ) −






−
⋅

−
⋅−=+⋅

−
⋅−=Ψ ∫∫ ∫

∞
−

−−∞ ⋅
− −−

dy
v

y
g

n

y
dxdyyxg

n

y
v n

nny
v

v

n
nn

n
0

1
22

0

1

0

22

1!2

1

!2

1

( )
( )

( ) ( )∫
∞

−
−−

⋅
−

⋅−

0

1
22

!2

1
dyyg

n

y n
nn

.

In the last integral we notice that the function which we integrate with the sign ''-'' is the pdf of 2Z . 

Therefore,  using the substitution  ( ) zvy ⋅−= 1  we obtain in this  case the formula for  nΨ  from 

enunciation.

If  ( ) ∞<0ϕ   we obtain

( )
( ) ( ) ( )

( )
( )

( ) ( )
( ) ( )

( )
( )

( ) ( )( ) +∫−=+∫∫−=Ψ −
−

−

−
−

−−
−−−−

−

dygdxdyyxgv n

n

y
v

n

n

y
y

y

v

n

nnnn

v

v
011

!2

1
01

0
!2

1
001

0

2222

1

ϕ
ϕϕϕ

 

( ) ( )
( )

( )
( ) ( )dyg

v

yn

n

y
v

nn

−−
−

−
−−

∫
1!2

1
01

0

22
ϕ

.

We take now into account that ( ) ( )( ) 00 =ϕng  and the above form of nf . It results that the form of 

nΨ  is also that from enunciation in this case.

For  proving the  independence we notice first  that  if  ( ) ∞<0ϕ  we have  with the  probability  1 

( ) ( ) 21 01 ZZ ≤− ϕ .

74



From this it results that we must prove the independence in the cases  ( ) ∞=0ϕ ,  ( ) ∞<0ϕ  and 

( ) ( )01 ϕvw −< .

The common cdf of 1Z  and 2Z  is

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )dygdxdyyxgwvH
v

yn

n

y
w

n

n

y

yw

n

nnnnv
v

−
−

−
−

−
− −−−−−

∫=+∫∫=
1

1

!2

1

0
!2

1

00

22221

,  
( )

( )
( ) ( )dyyg n

n

y
w

nn
1

!2

1

0

22 −
−

− −−
∫− .

But the term from the second integral with the sign ''-'' is 1−nf . Using the substitution ( ) zvy −= 1  as 

above, we conclude that in this cases we have ( ) ( ) ( )wFvwvH nnn ⋅Ψ=, .

In the case ( ) ∞<<≤ w00 ϕ  the above relation is obvious, and the theorem is proved.

Using theorem 4 we can build the following algorithm analogous to those for 2=n  in [4] for the 

simulation of the uniform variables 1X , 2X ,..., nX  connected by the Archimedean copula C  if we 

know the functions ϕ  and g .

Algorithm coparh

 Generate U  uniform on [ ]1,0 .

 ( )UFS n
1−←  

 for 1=i  to 1−n  do begin

  Generate U  uniform on [ ]1,0 .

  ( ) )/(1
11

in
UR

−−−←  

  SRT ∗←  

  TSS −←  

  ( )TgiX ←][  

 end

 ( )SgnX ←][  

 ( )][],...,1[ nXXoutput  

end.

The most difficult problem in the above algorithm is to compute ( )UFn
1−

 because, using theorem 4 

we have to use the derivative of the order  1−n  of  g . When we run our  ++C  program we can 

have an overlay run error when we compute ( ) ( )xg n  for large n  (30  for instance). The explanation 

consists in the existence of some factors in the case of Clayton copula, or terms in the case of Frank, 

Gumbel-Hougaard or log-copula cases that become large for large n . But these factors or terms can 

be compensated by 
!n

xn

 in

                                                        ( ) ( )
( )

( ) ( )xg
n

x
xf n

nn

n ⋅
−
⋅−=

−

!1

1 1

.                                                      (3)

Therefore we have to compute (if it is possible) nf  directly, or to obtain a recurrence formula for 

nf .

The simplest case is the case of the Clayton family, where for an 0>θ  

                                                         ( ) ( ) θθθ
1

1,
−−− −+= vuvuC .                                                        (4)

For  0=θ  we obtain the copula  odPr  (independence case), and for  ∞→θ  we obtain the upper 

Fréchet bound min .

From 
( )
( )v

u

v
C
u
C

ϕ
ϕ

′
′=

∂
∂
∂
∂

 we obtain first ( ) 1−−−=′ θϕ uu , and from here
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                                                                ( )
θ

−=ϕ
θ− 1u

u , and                                                          (4’)

                                                                 ( ) ( ) θ−+θ=
1

1wwg .                                                          (4”)

We obtain

( ) ( ) ( ) ( ) ( )1i1w1wg
1n

1i

nnn 1

+θ⋅+θ⋅−= ∏
−

=

−−θ

for 1n ≥ , and from here

                                            ( ) ( )
i

1i

1x

x
1xxf

1n

1i

1n
1

n

1 +θ⋅






+θ
⋅+θ= ∏

−

=

−
−− θ .                                  (4’’’)

Other family of Archimedean copulas presented in [8,11,13] and simulated in [4] is the  Frank 

family. In this case for ∗∈θ R  we have

                                        ( )
( )












−
+−−⋅

θ
−= θ−

θ−θ−θ−+θ−

1e

eeee
ln

1
v,uC

vuvu

.                                  (5)

We obtain also the copula odPr  for 0=θ  and the copula min  for ∞→θ . For −∞→θ  we obtain 

the lower Fréchet bound W .

From 
( )
( )v

u

v
C

u
C

ϕ′
ϕ′=

∂
∂
∂
∂

 we obtain first ( )
1e

e
u

u

u
−

θ
θ−

θ−
=ϕ′ , and from here

                                                              ( )
ue1

e1
lnu ⋅θ−

θ−

−
−=ϕ , and                                                     (5’)

                                             ( ) ( )1eln
1

wg w +γ
θ

−= −
, where 1e −=γ θ− .                                      (5”)

In this case we have also  ( ) ( ) ∞=ϕ=ϕ
→

vlim0
0v

, but the computation of  ( ) ( )wg n  is difficult. We 

consider ( ) ( )xgxf0 =  and ( ) ( )
1e

e
1 x

x

xgxf
+γθ

γ
−

−
⋅=′−= .

From 1ee xg +⋅γ= −⋅θ−  we obtain

( ) ggg 2 ′−′θ=′′ .

We compute the derivative of the order 1n −  in both sides of the above relation, we use the Leibnitz 

formula for thn −  derivative of the product and the formula (3). Finally we obtain

                                  ( ) ( ) ( ) ( )xfxf
n

x
xf

n

x
xf kn1k

1n

0k
n1n −+

−

=
+ ⋅∑⋅θ+⋅=  for 1n ≥ .                         (5’’’)

In the case of the Gumbel-Hougaard family (see [8,13,14,13]) we have for 1≥θ  and θ=β 1

                                                       ( ) ( ) ( )( )βθθ −+−−= vlnulnev,uC .                                                  (6)

For 1=θ  we obtain the copula odPr  and for ∞→θ  we obtain the copula min .

From 
( )
( )v

u

v
C

u
C

ϕ′
ϕ′=

∂
∂
∂
∂

 we obtain first ( ) ( )
u

uln
1

u
−θ−θ−=ϕ′ , and from here

                                                                ( ) ( ) θ−=ϕ ulnu , and                                                         (6’)

                                                                      ( ) β−= xexg .                                                              (6”)
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Tacking into account that β−= xgln  we obtain first

1x
g

g −β⋅β−=
′

.

We differentiate in both sides by x  and we multiply next by 2gx ⋅ , and finally we obtain

                                                       ( ) ( ) 2gxgg1g"gx ′⋅+⋅′⋅−β=⋅⋅ .

From here we obtain

( ) ( )
g

g

x

g
1"g

2′
+

′
−β= .

If we differentiate in both members of  (7) we obtain

( ) ( ) "ggxg"gg2ggx 2 ⋅′⋅+′⋅β+⋅⋅−β=′′′⋅⋅
if we do this operation only once, and if we do it 1n −  times we obtain first

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )( ) ( ) ( )( )( )
.g1ngxgg1

"gg1n"ggx
2n21n21n

2n1n

−−−

−−

′⋅−+′⋅+′⋅⋅−β

=⋅⋅−+⋅⋅

If we differentiate once each term in the above formula for which the derivative order is 1n −  we 

obtain

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )2n22n2n2n g2n"ggn"ggxggx
−−−− ′⋅−+β+⋅⋅−β+⋅′⋅=′′′⋅⋅ ,

and, using the Leibnitz formula for  n   order derivative of the product, we obtain analogously to the 

case of the Frank family for  3n ≥  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) .ggC2n

ggCnggn

ggCxggCxggx

1kn1kk
2n

2n

0k

knkk
2n

2n

1k

n

kn1kk
2n

2n

0k

k1nkk
2n

2n

1k

1n

−−+
−

−

=

−
−

−

=

−+
−

−

=

−+
−

−

=

+

⋅⋅∑⋅−+β

+⋅⋅∑⋅−β+⋅⋅−β

+⋅⋅∑⋅+⋅⋅∑⋅−=⋅⋅

We obtain the recurrence formula

                

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )
( )






















≥−

++⋅⋅+β−−−β−∑⋅

+⋅∑⋅−=

+−=′′′⋅−=

+⋅β−=⋅=

⋅⋅β=′−=
==

−⋅
⋅⋅−β+⋅

−⋅
⋅⋅

⋅⋅β−
−−+

−

=−

⋅
+

−−−−−

=−+

⋅
⋅⋅

⋅
⋅⋅β⋅β−

⋅

−β

−

−−

−+

β

3nfor

xfxf2nknn

xf

xgxf

xf1x"gxxf

xfxxgxf

exgxf

1nn

xfxf2nx

1nn

xfxfx

n

xfxfn
1kn1k

3n

0k
1nn

x

xf

xfxf

1k

3k2n1kn3n

0k
1nn

x
1n

xf2

xfxfx

xf2

xfx

2

xf2

2
x

3

xf

xfx
12

0
1

1

x
0

1n11n2

n0

0

kn1k

0

21

0

2
12

2

0

2
1

.      (6’’’)

The Gumbel-Barnett copula is

                                            ( ) ( ) ( )( )vlnulnevuv,uC θ−⋅⋅= , with 10 ≤θ< .                                      (8)
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We notice that we have also the copula product (independence) for 0→θ .

From 
( )
( )v

u

v
C

u
C

ϕ′
ϕ′=

∂
∂
∂
∂

 we obtain first ( ) ( )uln1u
1u θ−−=ϕ′ , and from here

                                                            ( ) ( )
θ
θ−=ϕ uln1ln

u , and                                                      (8’)

                                                                     ( ) θ
θ−

=
xe1

exg .                                                               (8”)

From xeg θθ =− ln1  we obtain by derivation

xe
g

g θ−=
′

.

By derivation we obtain

( ) 2
" ggggg ′+′⋅⋅=⋅ θ .

If we differentiate the above relation 1−n  times we obtain first

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ,1
1

1

0

1

1

1

1
1

1

1

1

knkk
n

n

k

knkk
n

n

k

nknkk
n

n

k

n

ggC

ggCggggCgg

−+
−

−

=

−
−

−

=

−+
−

−

=

+

⋅⋅∑

+⋅⋅∑⋅+⋅⋅+⋅⋅∑−=⋅ θθ

and finally the recurrence formula

                           

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

















≥⋅⋅+⋅⋅⋅
⋅

⋅

−⋅−⋅⋅−⋅
⋅

−=

⋅
+⋅⋅−=⋅=

⋅=−=
==

∑∑

∑
−

=
−+

−

=
−

−

=
−++

−

2
1

1

"

'

1

1
1

1

10

1

1
1

0

1

0

2
1

12

01

1

0

nforxfxf
n

x
xfxf

kxfn

x

xf
n

x
xfxf

k

kn

xfn
xf

xf

xfx
xfxxgxxf

xfexgxf

exgxf

n

k
knk

n

k
knk

n

n

k
knkn

x

e x

θ

θ

θ

θ

θ

θ

.                   (8’’’)

The Ali-Mikhail-Haq copula is

                                            ( ) ( ) ( ) ,
111

,
vu
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vuC

−−−
⋅=

θ  with 11 ≤≤− θ .                                        (9)

We notice that we have the copula product (independence) for 0=θ .
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u

v
C
u
C

ϕ
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′
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∂
∂
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∂

  we obtain first  ( ) ( )( )uu
u −−−=′
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θϕ  , and from here
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−
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                                                                 ( ) ( ) θ
θ

θ −
−= − xe

xg
1

1
.                                                          (9”)

From 
( ) x

g
e θθθ −− =+ 11

 we obtain first
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( ) θθ θ −=− − xe
g

11
.

If we differentiate once the above relation we obtain

( ) xe
g

g θ−−=
′ 1

2 ,

and by derivative of the above relation

( ) ( ) 2
21" ggggg ′⋅+′⋅⋅−=⋅ θ .

Analogously to the Gumbel-Barnett case, we obtain the recurrence formula
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Of course, the above formulae are for  1<θ . The particular case  1=θ  (in this case we have  0
0 ) 

must be treated separately. We have

                                                                ( )
uvvu

uv
vuC

−+
=, .                                                        (10)
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If  we consider the log-copula family for  0>α ,  0>γ ,  ( ) 1+= ααγβ  and  1
1
+= αr  we have (see 

[8,15,13])

                                   ( )
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                                                                  ( ) ( ) r
xeexg 1+−⋅= β .                                                         (13’)

If we apply the formula (1) we obtain using the above notations

                                                     ( ) ( ) ( )( )rvueevuC 1ln1ln1
11

, −−+−− ++
⋅=

αα
.                                             (13”)

Remark 1. The copula  C   from  (13’’’) does not depend on  γ .  If we use  
( )
( )v

u

v
C
u
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ϕ
ϕ

′
′=

∂
∂
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 as in the 
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previous family cases we obtain  
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1

1 +=⋅ + αγα α . To obtain the log-copula for another  γ  we have to  

multiply first the value of ( )uϕ ′  by ( ) 1
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+α
γ
γ

.
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Analogously to the Gumbel-Hougaard case we obtain
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The recurrence formula for ( )ng  obtained analogously to the Gumbel-Hougaard case is
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The Nelsen Ten copula is
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The inverse of the cdf nF  of 2Z  is computed in any point U  using the bisection method as in [4].

3. Other Families of Copulas and Their Simulation

In [1,15,8] it is presented the Fréchet family of −2 copulas

                                ( ) ( ) ( ) ( ) ( )yxWyxodyxyxC ,,Pr1,min, ⋅+⋅−−+⋅= ββαα ,                        (16)

where min and W  are the Fréchet bounds from (2) and odPr  is the product copula (characteristic 

for independent random variables). In the above formula we have 0, ≥βα  and 1≤+ βα . Because 

the lower Fréchet bound W  is a −2 copula, but it is not an −n copula, in the above formula we take 
0=β  for  3≥n .  Therefore  we  have  the  following algorithm to  generate  the  uniform random 

variables  1X ,  2X ,...,  nX  connected by a copula  C  from the Fréchet family with a given value 

[ ]1,0∈α .

Algorithm Fréchet

input ( )α,n  

 Generate ]1[X  uniform on [ ]1,0 .

  ]1[XC ←  

 for 2=i  to n  do begin

  Generate U  uniform on [ ]1,0 .

  if α≤U  then
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     CiX ←][  

   else

    Generate ][iX  uniform on [ ]1,0 .

  if CiX <][  then

    ( ) CiXiXC ∗∗−+∗= ][1][ αα  

  else

    ( ) CiXCC ∗∗−+∗= ][1 αα  

 end

output ( )][],...,1[ nXX  

end.

In the above algorithm we have taken into account that if  X   and  Y   are connected by the copula 

min   there is an increasing function between them. This function is the identity if the variables are 

uniform on  [ ]1,0   (see [4,5]).

For a  −2 copula for which we know the analytical formula we have used theorem 3. For an  −n

copula we can consider 2X ,...,  nX  connected by the same copula, but of the order  1−n  and the 

marginals of 1XX i . By mathematical induction we obtain the following algorithm if we know the 

cdf ( )yFx  from theorem 3 and its inverse ( )uFx
1−

.

Algorithm copulaf

input ( )1,, −
xx FFn  

 Generate ]1[X  uniform on [ ]1,0 .

 for 2=i  to n  do begin

  Generate ][iX  uniform on [ ]1,0 .

  for 1−= ij  downto 1 do

    ( )][][ 1
][ iXFiX jX

−←  

 end

output ( )][],...,1[ nXX  

end.

We consider the cases of Farlie-Gumbel-Morgestern, Cuadras-Augé and of the Raftery families of 

copula [13,15,4].

4. Simulation of the Service Systems and of the Queueing Networks

First of all we define a class ''copula'' that has ''tipcop'' type so that 0  means a Clayton copula, 1 

means Frank copula, and the last value is 10  for Fréchet family. The attribute ''nrmarg'' is the 

number of marginals ( 1+c  if we have a queueing system with c  channels, respectively n  if we 

have a queueing network with n  nodes). ''caz'' is the case of the modeled copula: 0  means 

queueing systems and 1 means queueing networks. The parameters of the copula (usualy one, 

except the cases like log-copula, when the number of parameters is two) is given by the vector 

''parcop''. The marginals are given by the integer vector of types ''tipmarg'' (tipmarg[i]=0 means for 

instance that the marginal i  is exponential), and the matrix of parameters ''parmarg''. The vector 

''timp'' means the generated times. If we are in the case of service system, the first marginal 

represents the inter-arrival time.

In the constructor the initialization is for a queueing system with one channel and exponential 

marginals. In the method ''citire'' we read in the case of service system the number of channels, the 

type and the parameters of the copula, and the types and the parameters of the marginals. Using the 
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operator ''+=(int ind)'' we generate all the new values for generated marginal times if model=0, 

respectively only the component ind  in the contrary case. In fact ''model'' represents the model of 

copula as in [4]: 0  for self-service model, 1 for feedback model, and 2  for random feedback 

model.

The average number of customers in the system is computed using the formula (see [4,5])

                                                                   

ts
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1j
⋅∑

= = ,                                                            (17)

where ts  is the total simulation time and the number of customers in the system is constant jN  

during the period jt  





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=
tst j

m

1j
. In the same way we compute the average number of customers in 

the queue:
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⋅∑
= = .                                                         (17’)

The probabilities that there is no customer in the system, 0p , respectively that an arriving customer 

has to wait, ap , are estimated using the formulae
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
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
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≥=

==

ts

cNT
p̂

ts

0NT
p̂

a

0

,                                                           (18)

where ( )0NT =  and ( )cNT ≥  are the periods during the whole simulation time  ts   when we have 

no customers in the system, respectively when at least a customer waits.

We consider two possibilities for a customer whose service starts. First is the usual way to choose 

randomly an existing free channel, and second is when the customer chooses the channel with the 

minimum service time.

5. Applications

Example 1. Consider the queueing system with three channels, inter-arrival times ( )7exp  and the 

service times for each channel ( )5.2exp . The theoretical results in the classical case of the 

independence are the following:

1) The probability of no units in the system: 01597.0p0 = .

2) The probability that a customer that arrives has to wait: 87667.0pa = .

3) The average number of units in the system: ( ) 07348.15NM = .

4) The average number of units in the queue: ( ) 27348.12NM f = .

The results for the above marginals and different types of copula are in the following table, where 

the condition to stop the program is that the simulation time tsim  becomes at least the maximum 

simulation time 100 . If we consider that the customer does not know the order of service times for 

free channels, hence the free channel is chosen randomly and we obtain the following results.

Copula type 0p̂ ap̂ N fN tsim

Fréchet: 0=θ 0264.0 7434.0 03687.12 35435.9 13159.100
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Fréchet: 5.0=θ 09411.0 71928.0 48935.8 54966.6 01805.100

Fréchet: 1=θ 01304.0 71174.0 13639.7 37438.4 00166.100

Clayton: 2.0=θ 03161.0 75541.0 42655.13 75626.10 04908.100

Clayton: 67.1=θ 01752.0 69136.0 47095.11 79975.8 03114.100

Frank: 05.0=θ 01225.0 77924.0 72765.9 89722.7 02877.100

Frank: 05.0−=θ 01228.0 54759.0 17179.9 49877.7 18701.100

Frank: 5=θ 00522.0 81282.0 34361.8 55577.5 10293.100

Frank: 5−=θ 00483.0 5445.0 05532.5 29293.3 03008.100

Gumbel-Barnett: 05.0=θ 03376.0 63966.0 88822.12 26863.10 08793.100

Gumbel-Barnett: 1=θ 01783.0 7183.0 30056.6 56906.3 2205.100

Ali-Mikhail-Haq: 1−=θ 04206.0 75285.0 49417.7 84923.4 26359.100

Ali-Mikhail-Haq: 0=θ 01127.0 8705.0 76395.15 89076.13 06537.100

Ali-Mikhail-Haq: 1=θ 01918.0 75856.0 32661.9 58906.6 06032.100

If we consider that the customer for which the service starts knows at least the order of the service 

times of free channels, hence he/she chooses the channel with the minimum service time we obtain 

the following results.

Copula type 0p̂ ap̂ N fN tsim

Fréchet: 0=θ 07139.0 65454.0 62451.11 15974.9 09229.100

Fréchet: 5.0=θ 11038.0 69031.0 52908.7 74493.5 02578.100

Fréchet: 1=θ 01193.0 62173.0 1211.6 4599.3 00276.100

Clayton: 2.0=θ 02213.0 69357.0 92108.8 21623.6 03023.100

Clayton: 67.1=θ 01339.0 68199.0 68807.6 02216.4 10459.100

Frank: 05.0=θ 01142.0 6084.0 08631.4 36552.1 07043.100

Frank: 05.0−=θ 00916.0 53599.0 11366.4 43095.1 04171.100

Frank: 5=θ 00569.0 54827.0 05264.4 34468.1 27253.100

Frank: 5−=θ 00483.0 5445.0 05532.4 29293.1 03008.100

Gumbel-Barnett: 05.0=θ 01225.0 77924.0 23038.9 42876.6 03353.100

Gumbel-Barnett: 1=θ 01223.0 53065.0 96116.3 3486.1 02269.100

Ali-Mikhail-Haq: 1−=θ 05204.0 49112.0 1455.5 1455.5 10366.100

Ali-Mikhail-Haq: 0=θ 10958.0 54469.0 6125.5 34918.3 02569.100

Ali-Mikhail-Haq: 1=θ 03873.0 67888.0 32877.8 75197.5 19296.100

We notice that in the second case the customers optimize their services: the probability to wait, the 

average number of customers in the system and the average number of customers in the queue are 

small if they know the order of services for free channels.

6. Conclusions

For all the Archimedean copulas presented in [1,8,14] and [15], and simulated in [4] we have 

( ) ( ) ∞=ϕ=ϕ
→

vlim0
0v

. The computation of ( ) ( )wg n  by analytical formula is possible only in the 

case of the Clayton family. But in the other cases we have obtained recurrence formulae that are 

useful in our ++C  program. Due to the big numbers obtained if we use the recurrence formulae for 
( )ng  we use instead the recurrence formulae for nf : the high terms for ( )ng  are compensated by the 
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factor ( )!1n
x 1n

−
−

, which tends to 0  for ∞→n .

In the case of Fréchet family we have considered 0=β  (hence a mixture between the copula odPr  

and the copula min ). It is an open problem if we can consider also 10 <β<  (we know only that we 

can not take 1=β ).

We notice also the good approximations expressed by our ++C  program. We know for instance 

that the limit case for Clayton family is the product copula (independence) for 0→θ , respectively 

the upper Fréchet bound (copula min ) for ∞→θ : see the estimated values for 2.0=θ  and 
67.1=θ .

As models for queueing systems we have consider two models for the way the customer for which 

the service starts  chooses the  free channel:  first  when he/she does not know which is the  free 

channel with the fastest service, hence he/she chooses one randomly, and the second when he/she 

knows, and chooses the fastest one. An open problem is to consider the models of self-service, the 

model of feedback and the model of random feedback as for only one station (see [4,5]).
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