Some new test functions for global optimization and performance of repulsive particle swarm method

Sudhanshu Mishra

North-Eastern Hill University, Shillong (India)

23. August 2006

Online at http://mpra.ub.uni-muenchen.de/2718/
Some New Test Functions for Global Optimization and Performance of Repulsive Particle Swarm Method

SK Mishra
Dept. of Economics
North-Eastern Hill University
Shillong (India)

I. Introduction: In this paper we introduce some new multi-modal test functions to assess the performance of global optimization methods. These functions have been selected partly because several of them are aesthetically appealing and partly because a few of them are really difficult to optimize. We also propose to optimize some important benchmark functions already in vogue. Each function has been graphically presented to appreciate its geometrical appearance. To optimize these functions we have used the Repulsive Particle Swarm (RPS) method, with wider local search abilities and randomized neighbourhood topology.

II. The Particle Swarm Method of Global Optimization: This method is an instance of successful application of the philosophy of Simon’s bounded rationality and decentralized decision-making to solve the global optimization problems (Simon, 1982; Bauer, 2002; Fleischer, 2005). As it is well known, the problems of the existence of global order, its integrity, stability, efficiency, etc. have been long standing. The laws of development of institutions have been sought in this order. Newton, Hobbes, Adam Smith and Locke visualized the global system arising out of individual actions. In particular, Adam smith (1759) postulated the role of invisible hand in establishing the harmony that led to the said global order. The neo-classical economists applied the tools of equilibrium analysis to show how this grand synthesis and order is established while each individual is selfish. The postulate of perfect competition was felt to be a necessary one in demonstrating that. Yet, Alfred Marshall limited himself to partial equilibrium analysis and, thus, indirectly allowed for the role of invisible hand (while general equilibrium economists hoped that the establishment of order can be explained by their approach). Thorstein Veblen (1899) never believed in the mechanistic view and pleaded for economics as an evolutionary science. F. A. Hayek (1944) believed in a similar philosophy and believed that locally optimal decisions give rise to the global order and efficiency. Later, Herbert Simon (1982) postulated the bounded rationality hypothesis and argued that the hypothesis of perfect competition is not necessary for explaining the emergent harmony and order at the global level. Elsewhere, I. Prigogine (1984) demonstrated how the global ‘order’ emerges from chaos at the local level.

It is observed that a swarm of birds or insects or a school of fish searches for food, protection, etc. in a very typical manner (Sump, 2006). If one of the members of the swarm sees a desirable path to go, the rest of the swarm will follow quickly. Every member of the swarm searches for the best in its locality - learns from its own experience. Additionally, each member learns from the others, typically from the best performer among them. The Particle Swarm method of optimization mimics this behaviour (see Wikipedia: http://en.wikipedia.org/wiki/Particle_swarm_optimization). Every individual of the swarm is considered as a particle in a multidimensional space that has a position and a velocity. These particles fly through hyperspace and remember the
best position that they have seen. Members of a swarm communicate good positions to each other and adjust their own position and velocity based on these good positions. There are two main ways this communication is done: (i) “swarm best” that is known to all (ii) “local bests” are known in neighborhoods of particles. Updating the position and velocity is done at each iteration as follows:

\[v_{i+1} = \omega v_i + c_1 r_1 (\hat{x}_i - x_i) + c_2 r_2 (\hat{g}_i - x_i) \]
\[x_{i+1} = x_i + v_{i+1} \]

where,

- \(x \) is the position and \(v \) is the velocity of the individual particle. The subscripts \(i \) and \(i+1 \) stand for the recent and the next (future) iterations, respectively.
- \(\omega \) is the inertial constant. Good values are usually slightly less than 1.
- \(c_1 \) and \(c_2 \) are constants that say how much the particle is directed towards good positions. Good values are usually right around 1.
- \(r_1 \) and \(r_2 \) are random values in the range \([0,1]\).
- \(\hat{x} \) is the best that the particle has seen.
- \(\hat{g} \) is the global best seen by the swarm. This can be replaced by \(\hat{L}_i \), the local best, if neighborhoods are being used.

The Particle Swarm method (Eberhart and Kennedy, 1995) has many variants. The Repulsive Particle Swarm (RPS) method of optimization (see Wikipedia, http://en.wikipedia.org/wiki/RPSO), one of such variants, is particularly effective in finding out the global optimum in very complex search spaces (although it may be slower on certain types of optimization problems). Other variants use a dynamic scheme (Liang and Suganthan, 2005; Huang et al., 2006).

In the traditional RPS the future velocity, \(v_{i+1} \) of a particle at position with a recent velocity, \(v_i \), and the position of the particle are calculated by:

\[v_{i+1} = \omega v_i + \alpha r_i (\hat{x} - x_i) + \omega \beta r_2 (\hat{g}_i - x_i) + \omega \gamma r_3 z \]
\[x_{i+1} = x_i + v_{i+1} \]

where,

- \(x \) is the position and \(v \) is the velocity of the individual particle. The subscripts \(i \) and \(i+1 \) stand for the recent and the next (future) iterations, respectively.
- \(r_1, r_2, r_3 \) are random numbers, \(\in [0,1] \)
- \(\omega \) is inertia weight, \(\in [0.01,0.7] \)
- \(\hat{x} \) is the best position of a particle
- \(x_h \) is best position of a randomly chosen other particle from within the swarm
- \(z \) is a random velocity vector
- \(\alpha, \beta, \gamma \) are constants

Occasionally, when the process is caught in a local optimum, some perturbation of \(v \) may be needed. We have modified the traditional RPS method by endowing stronger
(wider) local search ability to each particle and the neighbourhood topology to each particle is randomized.

III. The New Test Functions: We used RPS method for a fairly large number of established test problems (Mishra, 2006 (c) reports about 30 benchmark functions). Here we introduce the new functions and the results obtained by the RPS program (appended). These new functions are as follows.

1. Test tube holder function (a): This multi-modal function is defined as follows. We obtain $x^* = -10.8723$ in the domain $x_i \in [-10, 10], \ i = 1, 2$.

$$f(x) = -4\left| \sin(x_1) \cos(x_2) e^{\cos((x_1^2 + x_2^2)/200)} \right|.$$

2. Test tube holder function (b): This multi-modal function is defined as follows. We obtain $x^* = -10.8723$ in the domain $x_i \in [-9.5, 9.4], x_2 \in [-10.9, 10.9]$.

$$f(x) = -4\left| \sin(x_1) \cos(x_2) e^{\cos((x_1^2 + x_2^2)/200)} \right|.$$

3. Holder table function: This ‘tabular holder’ function has multiple local minima with four global minima at $f(x^*) = 26.92$. This function is given as:

$$f(x) = -\left[\cos(x_1) \cos(x_2) e^{4-(x_1^2 + x_2^2)/\pi} \right].$$

4. Carrom table function: This function has multiple local minima with four global minima at $f(x^*) = 24.1568155$ in the search domain $x_i \in [-10, 10], \ i = 1, 2$. This function is given as:

$$f(x) = -\left[\cos(x_1) \cos(x_2) e^{4-(x_1^2 + x_2^2)/\pi} \right]^2/30.$$

5. Cross in tray function: This function has multiple local minima with the global minima at $f(x^*) = -2.06261218$ in the search domain $x_i \in [-10, 10], \ i = 1, 2$. This function is given as:

$$f(x) = -0.0001\left[\sin(x_1) \sin(x_2) e^{100-(x_1^2 + x_2^2)/\pi} \right]^{0.1}.$$

6. Crowned cross function: This function is the negative form of the cross in tray function. It has $f(x^*) = 0$ in the search domain $x_i \in [-10, 10], \ i = 1, 2$. It is a difficult function to optimize. The minimal value obtained by us is approximately 0.1. This function is given as:

$$f(x) = 0.0001\left[\sin(x_1) \sin(x_2) e^{100-(x_1^2 + x_2^2)/\pi} \right]^{0.1}.$$

7. Cross function: This is a multi-modal function with $f(x^*) = 0$. It is given as
8. **Cross-peg table function:** This function is the negative form of the cross function and may also be called the ‘inverted cross’ function. It has \(f(x^*) = -1 \) in the search domain \(x_i \in [-10, 10], \ i = 1, 2 \). It is a difficult function to optimize. We have failed to optimize this function. This function is given as:

\[
f(x) = -\left[\sin(x_1) \sin(x_2) e^{\frac{1}{20-[(x_1^2+x_2^2)^{0.5}]/\pi}} \right]^{0.1}
\]

9. **Pen holder function:** This is a multi-modal function with \(f(x^*) = -0.96354 \) in the search domain \(x_i \in [-11, 11) \), given as

\[
f(x) = -\exp \left[-\cos(x_1) \cos(x_2) e^{\frac{1}{1-\sin(x_i)^{0.5}}} \right]
\]

10. **Bird function:** This is a bi-modal function with \(f(x^*) = -106.764537 \) in the search domain \(x_i \in [-2\pi, 2\pi]; \ i = 1, 2 \) given as

\[
f(x) = \sin(x_1) e^{[1-\cos(x_1)^{0.5}]} + \cos(x_2) e^{[1-\sin(x_2)^{0.5}]} + (x_1 - x_2)^2
\]

11. **Modified Schaffer function #1:** In the search domain \(x_1, x_2 \in [-100, 100] \) this function is defined as follows and has \(\min_{(0, 0)} f = 0 \).

\[
f(x) = 0.5 + \frac{\sin^2(x_1^2 + x_2^2) - 0.5}{[1 + 0.001(x_1^2 + x_2^2)]^2}.
\]

12. **Modified Schaffer function #2:** In the search domain \(x_1, x_2 \in [-100, 100] \) this function is defined as follows and has \(\min_{(0, 0)} f = 0 \).

\[
f(x) = 0.5 + \frac{\sin^2(x_1^2 - x_2^2) - 0.5}{[1 + 0.001(x_1^2 + x_2^2)]^2}.
\]

13. **Modified Schaffer function #3:** In the search domain \(x_1, x_2 \in [-100, 100] \) this function is defined as follows and has \(\min_{(0, 1.253115)} f = 0.00156685 \).

\[
f(x) = 0.5 + \frac{\sin^2 \left[\cos \left[x_1^2 - x_2^2 \right] \right] - 0.5}{[1 + 0.001(x_1^2 + x_2^2)]^2}.
\]

14. **Modified Schaffer function #4:** In the search domain \(x_1, x_2 \in [-100, 100] \) this function is defined as follows and has \(\min_{(0, 1.253132)} f = 0.292579 \).

\[
f(x) = 0.5 + \frac{\cos^2 \left[\sin \left[x_1^2 - x_2^2 \right] \right] - 0.5}{[1 + 0.001(x_1^2 + x_2^2)]^2}.
\]

IV. Some Well-Established Benchmark Functions: As mentioned earlier, we have also tested the RPS in searching the optimum points of some well-established functions. These functions are:
1. **Hougen function**: Hougen function is typical complex test for classical non-linear regression problems. The Hougen-Watson model for reaction kinetics is an example of such non-linear regression problem. The form of the model is

\[
\text{rate} = \frac{\beta_1 x_2 - x_3}{1 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3}
\]

where the betas are the unknown parameters, \(x = (x_1, x_2, x_3)\) are the explanatory variables and ‘rate’ is the dependent variable. The parameters are estimated via the least squares criterion. That is, the parameters are such that the sum of the squared differences between the observed responses and their fitted values of rate is minimized. The input data given alongside are used.

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>470</td>
<td>300</td>
<td>10</td>
<td>8.55</td>
</tr>
<tr>
<td>2</td>
<td>285</td>
<td>80</td>
<td>10</td>
<td>3.79</td>
</tr>
<tr>
<td>3</td>
<td>470</td>
<td>300</td>
<td>120</td>
<td>4.82</td>
</tr>
<tr>
<td>4</td>
<td>470</td>
<td>80</td>
<td>120</td>
<td>0.02</td>
</tr>
<tr>
<td>5</td>
<td>470</td>
<td>80</td>
<td>10</td>
<td>2.75</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>190</td>
<td>10</td>
<td>14.39</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>80</td>
<td>65</td>
<td>2.54</td>
</tr>
<tr>
<td>8</td>
<td>470</td>
<td>190</td>
<td>65</td>
<td>4.35</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>300</td>
<td>54</td>
<td>13.00</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>80</td>
<td>120</td>
<td>8.50</td>
</tr>
<tr>
<td>11</td>
<td>285</td>
<td>300</td>
<td>10</td>
<td>11.32</td>
</tr>
<tr>
<td>12</td>
<td>285</td>
<td>190</td>
<td>120</td>
<td>3.13</td>
</tr>
</tbody>
</table>

Best results are obtained by the Rosenbrock-Quasi-Newton method: \(\hat{\beta}_1 = 1.253031; \hat{\beta}_2 = 1.190943; \hat{\beta}_3 = 0.062798; \hat{\beta}_4 = 0.040063; \hat{\beta}_5 = 0.112453\). The sum of squares of deviations (\(S^2\)) is = 0.298900994 and the coefficient of correlation (R) between observed rate and expected rate is =0.99945. The second best results are obtained by Hooke-Jeeves-Quasi-Newton method with \(S^2 = 0.318593458\). Most of the other methods do not perform well.

The Particle Swarm method too does not ordinarily perform well in estimating the betas of the Hougen function. However, with \(\gamma (= a_3) = 0.0005\) and \(\omega = 0.05\), run for 50,000 iterations we obtain: \(\hat{\beta}_1 = 1.5575204; \hat{\beta}_2 = 0.0781010629; \hat{\beta}_3 = 0.050866667; \hat{\beta}_4 = 0.138796292; \hat{\beta}_5 = 0.955739322\). The sum of squares of deviations (\(S^2\)) is = 0.301933528. A comparison of Rosenbrock-Quasi-Newton results with these (RPS) results indicates that the betas exhibit very high degree of instability in the neighbourhood of the minimal \(S^2\).

2. **Egg holder function**: This function is in \(m (m \geq 2)\) variables and given as:

\[
f(x) = \sum_{i=1}^{m} \left(-(x_{i+1} + 47) \sin(\sqrt{x_{i+1} + x_i} / 2 + 47) + \sin(\sqrt{x_i - (x_{i+1} + 47)})(-x_i) \right); \quad -512 \leq x_i \leq 512; \quad i = 1, 2, ..., m
\]

We obtain \(f_{\text{min}}(512, 404.2319) = 959.64\). It is a difficult function to optimize.

3. **Sine envelope sine wave function**: The function, also referred as the Schaffer function (\(m=2\)), is given as:

\[
f(x) = \sum_{i=1}^{m} \left(\frac{\sin^2[\sqrt{x_{i+1}^2 + x_i^2}] - 0.5}{(0.001(x_{i+1}^2 + x_i^2) + 1)^2} + 0.5 \right); \quad -100 \leq x_i \leq 100; \quad i = 1, 2, ..., m
\]

It is a difficult problem to optimize. For higher dimensions it gives repeating couplets of optimal values of \(x^*\), except their sign.
4. Chichinadze function: In the search domain \(x_1, x_2 \in [-30, 30] \) this function is defined as follows and has \(f_{\text{min}}(5.90133, 0.5) = -43.3159 \).

\[
f(x) = x_1^2 - 12x_1 + 11 + 10\cos(\pi x_1 / 2) + 8\sin(5\pi x_1) - (1/5)^{0.5} e^{-0.5(x_2)^2}.
\]

5. McCormick function: In the search domain \(x_1 \in [-1.5, 4], x_2 \in [-3, 4] \) this function is defined as follows and has \(f_{\text{min}}(-0.54719, -1.54719) = -1.9133 \).

\[
f(x) = \sin(x_1 + x_2) + (x_1 - x_2)^2 - 1.5x_1 + 2.5x_2 + 1.
\]

6. Levy function (#13): In the search domain \(x_1, x_2 \in [-10, 10] \) this function is defined as follows and has \(f_{\text{min}}(1, 1) = 0 \).

\[
f(x) = \sin(3\pi x_1) + (x_1 - 1)^2[1 + \sin^2(3\pi x_2)] + (x_2 - 1)^2[1 + \sin^2(2\pi x_2)].
\]

7. Three-humps camel back function: In the search domain \(x_1, x_2 \in [-5, 5] \) this function is defined as follows and has \(f_{\text{min}}(0, 0) = 0 \).

\[
f(x) = 2x_1^2 - 1.05x_1^4 + x_1^6 / 6 + x_1x_2 + x_2^2.
\]

8. Zettle function: In the search domain \(x_1, x_2 \in [-5, 5] \) this function is defined as follows and has \(f_{\text{min}}(-0.0299, 0) = -0.003791 \).

\[
f(x) = (x_1^2 + x_2^2 - 2x_1)^2 + 0.25x_1.
\]

9. Styblinski-Tang function: In the search domain \(x_1, x_2 \in [-5, 5] \) this function is defined as follows and has \(f_{\text{min}}(-2.903534, -2.903534) = -78.332 \).

\[
f(x) = 2 \sum_{i=1}^{10} (x_i^4 - 16x_i^2 + 5x_i).
\]

10. Bukin functions: Bukin functions are almost fractal (with fine seesaw edges) in the surroundings of their minimal points. Due to this property, they are extremely difficult to optimize by any method of global (or local) optimization. In the search domain \(x_1 \in [-15, -5], x_2 \in [-3, 3] \) these functions are defined as follows.

\[
f_4(x) = 100x_2^2 + 0.01|x_1 + 10| \quad ; \quad f_{\text{min}}(-10, 0) = 0
\]

\[
f_6(x) = 100\sqrt{|x_2 - 0.01x_1^2|} + 0.01|x_1 + 10| \quad ; \quad f_{\text{min}}(-10, 1) = 0
\]

11. Leon function: In the search domain \(x_1, x_2 \in [-1.2, 1.2] \) this function is defined as follows and has \(f_{\text{min}}(1, 1) = 0 \).

\[
f(x) = 100(x_2 - x_1^2) + (1 - x_1)^2
\]

12. Giunta function: In the search domain \(x_1, x_2 \in [-1, 1] \) this function is defined as follows and has \(f_{\text{min}}(0.45834282, 0.45834282) = 0.0602472184 \).

\[
f(x) = 0.6 + \sum_{i=1}^{2} [\sin^{16}(16\pi x_i) - 1] + \sin^2(16\pi x_i - 1) + \frac{1}{30} \sin(4(16\pi x_i - 1)].
\]

We have obtained \(f_{\text{min}}(0.4673199, 0.4673183) = 0.06447 \).

13. Schaffer function: In the search domain \(x_1, x_2 \in [-100, 100] \) this function is defined as follows and has \(f_{\text{min}}(0, 0) = 0 \).
\[f(x) = 0.5 + \frac{\sin^2 \left(\sqrt{x_1^2 + x_2^2} \right) - 0.5}{\left[1 + 0.001(x_1^2 + x_2^2) \right]^2}. \]

V. FORTRAN Program of RPS: We append a program of the Repulsive Particle Swarm method. The program has run successfully and optimized most of the functions. However, the crowned cross function and the cross-legged table functions have failed the program.

VI. Conclusion: Our program of the RPS method has succeeded in optimizing most of the established functions and the newly introduced functions. The functions (namely - Giunta, Bukin, cross-legged table, crowned cross and Hougen functions in particular) that have failed the RPS program miserably may be attractive to other methods such as Simulated Annealing, Genetic algorithms and tunneling methods. Improved versions of Particle Swarm method also may be tested.
<table>
<thead>
<tr>
<th>Pen holder function</th>
<th>Bird function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crowned Cross function</th>
<th>Cross in Tray function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cross function</th>
<th>Inverted Cross function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Some Well-established Benchmark Functions

<table>
<thead>
<tr>
<th>Bukin function (#6)</th>
<th>Bukin function (#4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schaffer function</th>
<th>Levy function (#13)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leon function</th>
<th>3-hump camel back function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Zette function</td>
<td>Styblinski-Tang function</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Chichinadze function</td>
<td>McCormick function</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Giunta function</td>
<td>Egg holder function</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Schaffer function (Closer view)</td>
<td>Modified Schaffer function #1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bibliography

- Huang, V.L., Suganthan, P.N. and Liang, J.J. “Comprehensive Learning Particle Swarm Optimizer for Solving Multi-objective Optimization Problems”, International Journal of
Intelligent Systems, 21, pp.209–226 (Wiley Periodicals, Inc. Published online in Wiley InterScience www.interscience.wiley.com), 2006

Author’s Contact: mishrasknehu@hotmail.com
C PROGRAM TO FIND GLOBAL MINIMUM BY REPULSIVE PARTICLE SWARM METHOD
C WRITTEN BY S K MISHRA, DEPT. OF ECONOMICS, NEDU, SHILLONG (INDIA)
C
PARAMETER (N=50 ,NN=25 , MX=100, NSTEP=21, ITRN=5000)
C N = POPULATION SIZE. IN MOST OF THE CASES N=30 IS OK. ITS VALUE
C MAY BE INCREASED TO 50 ALSO. THE PARAMETER NN IS THE SIZE OF
C RANDOMLY CHOSEN NEIGHBOURS. 15 TO 25 (BUT INSUFFICIENTLY LESS THAN
C N) IS A GOOD CHOICE. MX IS THE MAXIMAL SIZE OF DECISION VARIABLES.
C IN F(X1, X2, ..., XM) M SHOULD BE LESS THAN OR EQUAL TO MX. ITRN IS
C THE NO. OF ITERATIONS. IT MAY DEPEND ON THE PROBLEM. 200 TO 500
C ITERATIONS MAY BE GOOD ENOUGH. BUT FOR FUNCTIONS LIKE ROSENBROCK
C OR GRIEWANK OF LARGE SIZE (SAY M=20) IT IS NEEDED THAT ITRN IS
C LARGE, SAY 5000 OR 10000.
C THE SUBROUTINE FUNC() DEFINES THE FUNCTION TO BE OPTIMIZED.
C
C OCCASIONALLY, TINKERING WITH THESE VALUES, ESPECIALLY A3, MAY BE
C NEEDED.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /RNDM/IU,IV
COMMON /KFF/KF
INTEGER IU,IV
DIMENSION X(N,MX),V(N,MX),A(MX),VI(MX),TIT(50)
DIMENSION XX(N,MX),F(N),R(3),V1(MX),V2(MX),V3(MX),V4(MX),BST(MX)
CHARACTER *70 TIT
A1, A2, A3, W = .5D00 , .5D00, .0005D00, .5D00/
WRITE(*,*),--'
WRITE(*,*),--'
DATA TIT(1)/'KF=1 TEST TUBE HOLDER FUNCTION(A) 2-VARIABLES M=2'/
DATA TIT(2)/'KF=2 TEST TUBE HOLDER FUNCTION(B) 2-VARIABLES M=2'/
DATA TIT(3)/'KF=3 HOLDER TABLE FUNCTION 2-VARIABLES M=2'/
DATA TIT(4)/'KF=4 CARROM TABLE FUNCTION 2-VARIABLES M=2'/
DATA TIT(5)/'KF=5 CROSS IN TRAY FUNCTION 2-VARIABLES M=2'/
DATA TIT(6)/'KF=6 CROWNED CROSS FUNCTION 2-VARIABLES M=2'/
DATA TIT(7)/'KF=7 CROSS FUNCTION 2-VARIABLES M=2'/
DATA TIT(8)/'KF=8 CROSS-LEGGED TABLE FUNCTION 2-VARIABLES M=2'/
DATA TIT(9)/'KF=9 PEN HOLDER FUNCTION 2-VARIABLES M=2'/
DATA TIT(10)/'KF=10 BIRD FUNCTION 2-VARIABLES M=2'/
DATA TIT(11)/'KF=11 DE JONG SPHERE FUNCTION M-VARIABLE M=?'/
DATA TIT(12)/'KF=12 LEON FUNCTION 2-VARIABLE M=2'/
DATA TIT(13)/'KF=13 GIUNTA FUNCTION 2-VARIABLE M=2'/
DATA TIT(14)/'KF=14 SCHAFER FUNCTION 2-VARIABLE M=2'/
DATA TIT(15)/'KF=15 CHICHINADZE FUNCTION 2-VARIABLE M=2'/
DATA TIT(16)/'KF=16 MCCORMICK FUNCTION 2-VARIABLE M=2'/
DATA TIT(17)/'KF=17 LEVY # 13 FUNCTION 2-VARIABLE M=2'/
DATA TIT(18)/'KF=18 3-HUMP CAMEL BACK FUNCTION 2-VARIABLE M=2'/
DATA TIT(19)/'KF=19 ZETTLE FUNCTION 2-VARIABLE M=2'/
DATA TIT(20)/'KF=20 STYBLINSKI-TANG FUNCTION 2-VARIABLE M=2'/
DATA TIT(21)/'KF=21 BUKIN-4 FUNCTION 2-VARIABLE M=2'/
DATA TIT(22)/'KF=22 BUKIN-6 FUNCTION 2-VARIABLE M=2'/
DATA TIT(23)/'KF=23 NOUGEN REGRESSION FUNCTION 5-VARIABLE M=5'/
DATA TIT(24)/'KF=24 SINE ENVELOPE SINE WAVE FUNCTION M=? '/
DATA TIT(25)/'KF=25 EGG-HOLDER FUNCTION M=? '/
DATA TIT(26)/'KF=26 MODIFIED SCHAFER FUNCTION #1 2-VARIABLE M=2'/
DATA TIT(27)/'KF=27 MODIFIED SCHAFER FUNCTION #2 2-VARIABLE M=2'/
DATA TIT(28)/'KF=28 MODIFIED SCHAFER FUNCTION #3 2-VARIABLE M=2'/
DATA TIT(29)/'KF=29 MODIFIED SCHAFER FUNCTION #4 2-VARIABLE M=2'/
DATA TIT(30)/'KF=30 QUARTIC(+NOISE) FUNCTION M-VARIABLE M=? '/
DO I=1,30
WRITE(*,*),--'
WRITE(*,*),--'
WRITE(*,*),--'
READ(*,*), KF,M
DSIGN=1.000
LCOUNT=0
WRITE(*,*) '4-DIGITS SEED FOR RANDOM NUMBER GENERATION'
READ(*,*) IU
DATA ZERO,ONE,FMIN /0.0D00,1.0D00,1.0E30/
C GENERATE N-SIZE POPULATION OF M-TUPLE PARAMETERS X(I,J) RANDOMLY
DO I=1,N
 DO J=1,M
 CALL RANDOM(RAND)
 X(I,J)=(RAND-0.5D00)*10
 ENDDO
F(I)=1.0E30
ENDDO
C initialise velocities V(I) for each individual in the population
DO I=1,N
 DO J=1,M
 CALL RANDOM(RAND)
 V(I,J)=(RAND-.5D00)
 ENDDO
ENDDO
ZZZ=1.0E+30
ICOUNT=0
DO 100 ITER=1,ITRN
C let each individual search for the best in its neighbourhood
 DO I=1,N
 DO J=1,M
 A(J)=X(I,J)
 ENDDO
 VI(J)=V(I,J)
 ENDDO
 CALL LSRCH(A,M,VI,NSTEP,FI)
 IF(FI.LT.F(I)) THEN
 F(I)=FI
 DO IN=1,M
 BST(IN)=A(IN)
 ENDDO
 ENDFI
C F(I) contains the local best value of function for Ith individual
C and XX(I,J) is the M-tuple value of X associated with the local best F(I)
 DO J=1,M
 XX(I,J)=A(J)
 ENDDO
ENDDO
C now let every individual randomly consult NN(<N) colleagues and
C find the best among them
 DO I=1,N
 CALL RANDOM(RAND)
 NF=INT(RAND*N)+1
 IF(BEST.GT.F(NF)) THEN
 BEST=F(NF)
 NRFBEST=NF
 ENDIF
 ENDDO
C in the light of his own and his best colleagues experience, the
C individual I will modify his move as per the following criterion
 DO J=1,M
 CALL RANDOM(RAND)
 VI(J)=A1*RAND*(XX(I,J)-X(I,J))
FINALLY A SUM OF THEM

\[
V_3(J) = A_3 \times \text{RAND} \times W
\]

THEN SOME RANDOMNESS AND A CONSTANT \(A_3 \) CLOSE TO BUT LESS THAN UNITY

\[
A_2 \text{ IS THE CONSTANT NEAR BUT LESS THAN UNITY}
\]

\[
W \text{ IS CALLED AN INERTIA WEIGHT } 0.01 < W < 0.7
\]

A \text{ is the constant near but less than unity}

\[
V(J) = V_1(J) + V_2(J) + V_3(J) + V_4(J)
\]

ENDDO

CHANGE X

DO I=1,N
DO J=1,M
X(I,J) = X(I,J) + V(I,J)
ENDDO
ENDDO

IF(F(I) LT FMIN) THEN
FMN = F(I)
ELSE
DO J=1,M
BST(J) = XX(JJ,J)
ENDDO
ENDIF
ENDDO

999 FORMAT(5F15.6)
LCOUNT = LCOUNT + 1
CONTINUE
WRITE(*,*) 'OVER:', Tit(KF)
END

SUBROUTINE LRCH(A,M,VI,NSTEP,FI)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /KFF/KF
COMMON /RNDM/II,IV
INTEGER IU,IV
DIMENSION A(*), B(100), VI(*)
AMN = 1.0E30
DO J=1,NSTEP
DO JJ=1,M
B(JJ) = A(JJ) + (J-NSTEP/2-1) \times VI(JJ)
ENDDO
CALL FUNC(B,M,FI)
IF(FI LT AMN) THEN
AMN = FI
ENDIF
DO JJ=1,M
A(JJ) = B(JJ)
ENDDO
ENDIF
ENDDO
RETURN
END

SUBROUTINE RANDOM(RAND1)
DOUBLE PRECISION RAND1
COMMON /RNDM/IU,IV
INTEGER IU,IV
RANDOM=REAL(RAND1)
IV=IU*65539
IF(IV.LT.0) THEN
IV=IV+2147483647+1
ENDIF
RAND=IV
IU=IV
RAND=RAND*0.4656613E-09
RAND1=DBLE(RAND)
RETURN
END

SUBROUTINE FUNC(X,M,F)
New Test Functions
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /RNDM/IU,IV
COMMON /KFF/KF
INTEGER IU,IV
DIMENSION X(*)
PI=4.D+00*DATAN(1.D+00)
IF(KF.EQ.1) THEN
Test-tube holder function (A)
FP=0.D00
-10 TO 10 M=2
F=0.D00
IF(x(1).lt.-10.d00 .or. x(1).gt. 10.d00) fp=fp+x(1)**2
IF(x(2).lt.-10.d00 .or. x(2).gt. 10.d00) fp=fp+x(1)**2
IF(FP.GT.0.000) THEN
f=FP
ENDIF
RETURN
ENDIF

IF(KF.EQ.2) THEN
Test-tube holder function (B)
FP=0.D00
F=0.D00
IF(x(1).lt.-9.5d00 .or. x(1).gt. 9.4d00) fp=fp+x(1)**2
IF(x(2).lt.-10.9d00 .or. x(2).gt. 10.9d00) fp=fp+x(1)**2
IF(FP.GT.0.000) THEN
F=FP
ELSE
f=-4*dabs(dsint(X(1))*dcos(X(2)))*dexp(dabs(dcos((X(1)**2+x(2)**2))/200)))
ENDIF
RETURN
ENDIF

IF(KF.EQ.3) THEN
Holder table function
FP=0.D00
-10 TO 10 M=2
F=0.D00
DO I=1,M

\begin{verbatim}
269: IF(DABS(X(I)) .GT. 10.D00) FP=FP+X(I)**2
270: ENDDO
271: IF(FP.GT.0.D00) THEN
272: F=FP
273: ELSE
274: f=-dabs(dcos(x(1))*(cos(x(2)))*dexp(dabs(1.d00-(dsqrt(x(1)**2+
275: x(2)**2))/pi)))
276: ENDIF
277: RETURN
278: ENDIF
279: C \text{Crowned Cross function}
280: C \text{Cross in tray function}
281: C \text{Carrom table function}
282: C \text{-10 TO 10 M=2}
283: C \text{IF (KF.EQ.4) THEN}
284: C \text{ENDIF}
285: C \text{IF (KF.EQ.5) THEN}
286: C \text{ENDIF}
287: C \text{IF (KF.EQ.6) THEN}
288: C \text{ENDIF}
289: C \text{IF (KF.EQ.7) THEN}
290: C
\end{verbatim}
DO I=1,M
IF(DABS(X(I))GT.10.d00) FP=FP+X(I)**2
ENDDO
IF(FP.GT.0.d00) THEN
F=FP
ELSE
F=(dabs(dsln(X(1))*dsin(x(2))*dexp(dabs(100.d00-DSQRT
& (X(1)*X+X(2)**2)/PI))))+1.d00)**(-1)
ENDIF
RETURN
ENDIF
C
IF(KF.EQ.8) THEN
FP=0.d00
C Cross-legged table function
-10 TO 10 M=2
F=0.d00
DO I=1,M
IF(DABS(X(I))GT.10.d00) FP=FP+X(I)**2
ENDDO
IF(FP.GT.0.d00) THEN
F=FP
ELSE
F=-(dabs(dsln(X(1))*dsin(x(2))*dexp(dabs(100.d00-DSQRT
& (X(1)*X+X(2)**2)/PI))))+1.d00)**(-1)
ENDIF
RETURN
ENDIF
C
IF(KF.EQ.9) THEN
C Pen holder function
-11 TO 11 M=2
FP=0.d00
DO I=1,M
IF(DABS(X(I))GT.11.d00) FP=FP+X(I)**2
ENDDO
IF(FP.GT.0.d00) THEN
F=FP
ELSE
F=-DEXP(-DABS(DCOS(X(1))*DCOS(X(2)))*Dexp(DABS(1.d00-(DSQRT
& (X(1)*X+X(2)**2)/PI))))**(-1)
ENDIF
RETURN
ENDIF
C
IF(KF.EQ.10) THEN
C Bird function
FP=0.d00
-2PI TO 2PI M=2
DO I=1,M
IF(DABS(X(I))GT.2*PI) FP=FP+X(I)**2
ENDDO
IF(FP.GT.0.d00) THEN
F=FP
ELSE
F=(dsin(x(1))*dexp((1.d00-dcos(x(2))**2)+
& dcos(x(2))*dexp((1.d00-dsin(x(1))**2))+x(1)-x(2))**2
ENDIF
RETURN
ENDIF
C
IF(KF.EQ.11) THEN
C DE JONG SPHERE function
FP=0.d00
DO I=1,M
403: F=F+X(I)**2
404: ENDDO
405: RETURN
406: ENDF
407: C
408: IF(KF.EQ.12) THEN
409: C Leon function
410: FP=0.D00
411: C -1.2 TO 1.2 M=2
412: DO I=1,M
413: IF(DABS(X(I)).GT.1.2d00) FP=FP+X(I)**2
414: ENDDO
415: IF(FP.GT.0.D00) THEN
416: F=FP
417: ELSE
418: f=100*(x(2)-x(1)**2)**2+(1.d00-x(1))**2
419: ENDIF
420: RETURN
421: ENDIF
422: C
423: IF(KF.EQ.13) THEN
424: C Giunta function
425: FP=0.D00
426: C -1 TO 1 M=2
427: DO I=1,M
428: IF(DABS(X(I)).GT.1.d00) FP=FP+X(I)**2
429: ENDDO
430: IF(FP.GT.0.D00) THEN
431: F=FP
432: ELSE
433: c=-16.d00/15.d00
434: f=dsin(c*x(1)-1.d00)+dsin(c*x(1)-1.d00)**2+dsin(4*(c*x(1)-1.d00))/50+
435: dsin(c*x(2)-1.d00)+dsin(c*x(2)-1.d00)**2+dsin(4*(c*x(2)-1.d00))/50+.6
436: ENDIF
437: RETURN
438: ENDIF
439: C
440: IF(KF.EQ.14) THEN
441: C Schaffer function
442: FP=0.D00
443: C -100 TO 100 M=2
444: DO I=1,M
445: IF(DABS(X(I)).GT.100.d00) FP=FP+X(I)**2
446: ENDDO
447: IF(FP.GT.0.D00) THEN
448: F=FP
449: ELSE
450: f1=dsin(dsqrt(x(1)**2+x(2)**2))**2-0.5d00
451: f2=(1.d00+ 0.001*(x(1)**2 + x(2)**2))**2
452: f=f1/f2 +0.5d00
453: ENDIF
454: RETURN
455: ENDIF
456: C
457: IF(KF.EQ.15) THEN
458: C Chichinadze function
459: FP=0.D00
460: C -30 <=X(I)<= 30 M=2
461: DO I=1,M
462: IF(DABS(X(I)).GT.30.d00) FP=FP+X(I)**2
463: ENDDO
464: IF(FP.GT.0.D00) THEN
465: F=FP
466: ELSE
467: f=x(1)**2-12*x(1)+11.d00+10*DCOS(PI*X(1)/2)+8*DSIN(5*PI*X(1))-
468: & (1/DSQRT(5.d00))*DEXP(-(X(2)-0.5d00)**2/2)
ENDIF
RETURN
ENDIF

C SINE ENVELOPE SINE WAVE FUNCTION (Generalized Schaffer)

C NO. OF PARAMETERS TO ESTIMATE = 5 = M

C -15. LE. X(I) .LE. -5 AND -3 .LE. X(2) .LE. 3

C---

C -5 <=X(I) <=5 M=2

RPSWARM-NTEST.f 9/12

if do enddo

f f1 f2

CALL IF FP ELSE IF FP = FP

ENDIF RETURN

ENDIF

C---

C IF(KF.EQ.21) THEN

C BUKIN-4 function

C---

C IF(KF.EQ.22) THEN

C BUKIN-6 function

C---

C IF(KF.EQ.23) THEN

C HOUGEN FUNCTION (HOUGEN-WATSON MODEL FOR REACTION KINATICS)

C NO. OF PARAMETERS TO ESTIMATE = 5 = M

C CALL HOUGEN(M,X,F)

C RETURN

C ENDIF

C---

C IF(KF.EQ.24) THEN

C SINE ENVELOPE SINE WAVE FUNCTION (Generalized Schaffer)

C---

536: C -5 <=X(I) <=5 M=2
537: DO I=1,M
538: IF(DABS(X(I)) .GT. 5.d00) FP=FP+X(I)**2
539: ENDDO
540: IF(FP .GT. 0.d00) THEN
541: F=FP
542: ELSE
543: F=0.d00
544: ENDIF
545: ENDIF
546: RETURN
547: ENDIF
548: C---
549: C IF(KF.EQ.22) THEN
550: IF(KF.EQ.22) THEN
551: f=FP
552: ELSE
553: f=100*DSQRT(DABS(X(2)-0.01D00*X(1)**2)) + 0.01*DABS(X(1)+10.D0)
554: ENDIF
555: ENDIF
556: C---
557: C IF(KF.EQ.23) THEN
558: CALL HOUGEN(M,X,F)
559: RETURN
560: ENDIF
561: C---
562: C IF(KF.EQ.24) THEN
563: IF(KF.EQ.24) THEN
564: f=0.d00
565: fp=0.d00
566: f1=0.d00
567: f2=0.d00
568: do I=1,m-1
569: f1=din(dsqrt(x(i)**2+x(i)**2))**2-0.5d00
570: f2=(0.001d00*(x(i)**2+x(i)**2)+1.d00)**2
571: f=f+(f1/f2)+0.5d00
572: enddo
573: do I=1,m
574: fp=fp+x(i)**2
575: enddo
576: ENDIF
577: ENDIF
if(fp.gt.0.d00) f=fp
return
endif

IF(KF.EQ.25) THEN

EGG HOLDER FUNCTION
f=0.d00
fp=0.d00
do I=1,m-1
f1=-(x(I)+1)+47.d00)
f2=dabs(dabs(x(I)+x(i)/2+47.d00))
f3=dabs(dabs(x(i)-(x(I)+47.d00)))
f4=x(I)
f=f+f1+f2+f3+f4
enddo
do I=1,m
if(dabs(x(i)).gt.512.d00) fp=fp+x(i)**2
endif
return
endif

IF(KF.EQ.26) THEN
Modified Schaffer function #1
FP=0.d00
-100 TO 100 M=2
DO I=1,M
IF(DABS(X(I)).GT.100.d00) FP=FP+X(I)**2
ENDIF

ELSE
f1=dabs((1.d00+ 0.001*(x(I)**2 + x(2)**2))+0.5d00
f=f1/f2 +0.5d00
ENDIF
RETURN
endif

ENDIF

IF(KF.EQ.27) THEN
Modified (Hyperbolized) Schaffer function #2
FP=0.d00
-100 TO 100 M=2
DO I=1,M
IF(DABS(X(I)).GT.100.d00) FP=FP+X(I)**2
ENDIF

ELSE
f1=dabs((1.d00+ 0.001*(x(I)**2 + x(2)**2))+0.5d00
f=f1+f2 +0.5d00
ENDIF
RETURN
endif

ENDIF

IF(KF.EQ.28) THEN
Modified (crossed) Schaffer function #3
FP=0.d00
-100 TO 100 M=2
DO I=1,M
IF(DABS(X(I)).GT.100.d00) FP=FP+X(I)**2
ENDIF

ELSE
f1=dabs((dabs(x(I)**2 + x(2)**2))+0.5d00
f=f1+f2 +0.5d00
ENDIF
RETURN
endif

ENDIF
MOST OF THE OTHER METHODS DO NOT PERFORM WELL

R=0.99941
A(5)=0.217886; SUM OF SQUARES OF DEVIATION = 0.318593458
A(1)=2.475221; A(2)=0.599177; A(3)=0.124172; A(4)=0.083517

THE NEXT BEST RESULTS GIVEN BY Hooke-Jeeves & Quasi-Newton
AND R=0.99945.
Quasi-Newton METHOD WITH SUM OF SQUARES OF DEVIATION =0.298900994
A(5)=0.112453 ARE BEST ESTIMATES OBTAINED BY Rosenbrock &
A(1)=1.253031; A(2)=1.190943; A(3)=0.062798; A(4)=0.040063

BEST RESULTS ARE:
NO. OF PARAMETERS (A) TO ESTIMATE = 5 = M
HOUGEN FUNCTION (HOUGEN-WATSON MODEL FOR REACTION KINATICS)

Quartic function with noise

-100 TO 100 M=2
Modified (crossed) Schaffer function #4

data x(1,1),x(1,2),x(1,3),rate(1) /470,300,10,8.55/
data x(2,1),x(2,2),x(2,3),rate(2) /285,80,10,3.79/
data x(3,1),x(3,2),x(3,3),rate(3) /470,300,120,4.82/
data x(4,1),x(4,2),x(4,3),rate(4) /470,80,120,0.02/
data x(5,1),x(5,2),x(5,3),rate(5) /470,80,10,2.75/
data x(6,1),x(6,2),x(6,3),rate(6) /100,190,10,14.39/
data x(7,1),x(7,2),x(7,3),rate(7) /100,80,65,2.54/
data x(8,1),x(8,2),x(8,3),rate(8) /470,190,65,4.35/
data x(9,1),x(9,2),x(9,3),rate(9) /100,300,54,13/
data x(10,1),x(10,2),x(10,3),rate(10) /100,300,120,8.5/
data x(11,1),x(11,2),x(11,3),rate(11) /100,80,120,0.05/
data x(12,1),x(12,2),x(12,3),rate(12) /285,300,10,11.32/
data x(13,1),x(13,2),x(13,3),rate(13) /285,190,120,3.13/
DO I=1,N
 DO J=1,K
 D=D+A(J+1)*X(I,J)
 ENDDO
FX=(A(1)*X(I,2)-X(I,3)/A(5))/D
FX=(A(1)*X(I,2)-X(I,3)/A(5))/1.D00+A(2)*X(I,1)+A(3)*X(I,2)+A(4)*X(I,3)
F=F+(RATE(I)-FX)**2
ENDDO
if(dabs(a(j)).gt.5.d00) fp=fp+dexp(dabs(a(j)))
enddo
if(fp.gt.0.d00) f=fp
RETURN
END