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Abstract

We investigate the empirical support to the Purchasing Power Parity hypothesis by

using sixteen real exchange rates for the decade 1999-2009. The literature has recently

arrived to a solution to the two PPP puzzles if considering the post-Bretton Woods

period from 1975 to 1998. Time series-based studies consider few cases, while panel-

based studies have been recently criticized. Multivariate and panel cointegration, and

nonlinear models are here implemented. The theory is rejected and both the puzzles

remain unsolved if considering a linear structure, while a nonlinear scenario seems to

allow for a partial solution to the first puzzle.
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1 Introduction

Real exchange rates are source of one of the six main puzzles in macroeconomics: the

Purchasing Power Parity (PPP) puzzle, explicitly defined in Rogoff (1996)1. The main

∗This paper is based on my MSc Dissertation in Macroeconometrics at University of Rome "Tor Ver-
gata". I thank my supervisor Tommaso Proietti, Giovanni Trovato and Barbara Annichiarico for their
useful comments. A special thanks to Luigi Benfratello for his support.

†University of Rome II "Tor Vergata", Department of Economics and Institutions, Via Columbia 2,
00133, Rome, Italy - E-mail : Emilio.Zanetti.Chini@uniroma2.it - Phone: (+39) 06 72595715 - Mobile:
(+39) 340 9641055 - Fax: (+39) 06 2020500.

1[There is] a surprising degree of consensus on a couple of basic facts: first, [...] real exchange rates [...]
tend toward PPP in the very long run. Consensus suggests, however, the speed of convergence towards
PPP is extremely slow [...]. Second, short run deviation from PPP are large and volatile. [...] The question
is: how can one reconcile the enormous short-term volatility with the extremely slow rate at which shocks
appear to damp out ?"(Rogoff, 1996, pag. 647).
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purpose of this article is to investigate the empirical support to the PPP hypothesis for

the last 11 years. This implies, from an econometrical point of view, to search for two

main objects: mean reversion in real exchange rates and cointegrating relations in their

components (nominal exchange rates, domestic and foreign prices). In order to do this

we compare three main methodologies: linear cointegration analysis, panel unit root and

cointegration and univariate nonlinear autoregressive models.

Since PPP is assumed in many wildly used macroeconomic models, the literature is huge

and only recently some positive results have been achieved (Sarno and Taylor, 2001). A

whole research field in applied econometrics has grown in order to find persistencies in

this kind of data. The workhorses are: the family of smooth transition regression (STR)

models (Bacon and Watts, 1971), in which the more specific smooth transition autoregres-

sive (STAR) models (Chan and Tong, 1986) and (self-exciting) threshold autoregressive

((SE)TAR) models (Tong, 1983) (see Section 2) are nested; and panel cointegration tech-

niques Pedroni (2001, 2004). Taylor et al. (2001) (TPS) applies these nonlinear techniques

to four rates and solve the two PPP puzzles by analyzing the standard post-Bretton-Wood

sample. Panels was also successful since last ’90s literature, until Banerjee et al. (2005)

(BMO) notice that commonly used panel unit root test critical values, if not allowing for

cross-countries cointegrating relationships, are severely biased towards rejecting the null

hypothesis of a unit root; this implies a critique to the automatic use of panel data in

macro. Finally, Juselius (2006) shows an alternative, fully empirically-based approach to

cointegration analysis which offers a new perspective on these (and, at least potentially, on

many other) puzzles. Johansen et al. (2010) solves the PPP puzzles for the DKR/$ rate

using the standard sample by implementing a CVAR model under I(2) scenario.

This work originates from three findings: first, almost all the most influential studies -

and, in primis, the ones supporting the theory - are based on a very peculiar sample

(1975:04-1998:12 at the best) and on few currencies. Second and consequently, none of

such studies (also the most recent ones) mention the euro; this seemed to us a serious lack

in empirical literature. Third, the model specification in almost all the literature is highly

driven by theoretical reasons (in particular in nonlinear models, see Section 3). Moreover,

the recent financial crisis gives us an opportunity to catch an important shock to take in

account when holding with evaluation. In the next sections we will try to bridge this gap
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in empirical literature and to compare the "traditional" econometric models for last 11

years data and will check whether the conclusions of the previously mentioned studies are

still valid or not. Secondly, we will extensively discuss the issue of models’ specification

introducing modifications whether necessary that allow us to estimate a higher number

of models for real exchange rates than the ones we would estimate whether considering a

more theory-based specification.

The paper is organized as following: Section 2 states the relations of interest for testing

PPP hypothesis and briefly describes the statistical models; Section 3 points out the em-

pirical strategy; Section 4 describes the data set; Section 5 shows the empirical evidence of

both weak and strong PPP hypotheses for our dataset for each methodology used; Section

6 concludes.

2 The economic theory and the models

2.1 The economic theory of PPP

Following Juselius (2006) notation and working with aggregate terms in logarithmic trans-

formation, we define the PPP as:

pt = p∗t + st + vt (1)

where pt and p∗t are the domestic and foreign consumer price indexes, st are defined as

above and vt is the time t error term. Hence the model can be written in deviation from

PPP, which correspond to what literature calls "strong PPP hypothesis":

vt ≡ y = pt − p∗t − st, (2)

where y corresponds to the real exchange rate. The "weak PPP hypothesis", is a general-

ization of model (2) and is defined as:

v̂t ≡ ŷt = pt − αp∗t − βst (3)
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where α and β represent measurement errors as transaction and transport costs and the

hat is only for notation.

In term of cointegrating relations we can state two postulates:

Postulate 1. If strong PPP holds, the corresponding cointegrating relation is:

CI = (1 − 1 − 1) (4)

Postulate 2. If weak PPP holds, ∃ CI s.t. ŷt ∼ I(0)

where CI indicates the cointegrating relation and I(0) indicates integrated of order

zero process. Testing for strong PPP means testing for unit root of real exchange rates,

while testing for weak PPP means testing for cointegration.

We define the two PPP puzzles directly from Postulates 1 and 2:

Definition 1 (1st Puzzle). Neither Postulate 1 nor 2 holds. That is, the real exchange

rates deviate systematically from their theoretical (PPP) values.

Definition 2 (2nd Puzzle). These deviation are permanent in the long run, contrary to

what the economic theory suggests.

2.2 Statistical models: CVAR

For what concerns the cointegration analysis of PPP, we use a VAR(p) to model relations

(1) and (2):

yt = Π1yt−1 + Π2yt−2 + ... + Πpyt−p + ΦDt + ǫt (5)

where t = 1, ..., T and T = 132, yt =

[

pt p∗t st

]′

, ǫt ∼ INp (0, Ω) and IN means

identically and p-normally distributed. Rewriting model (5) in VECM form we get:

∆yt = Γ
(1)
1 ∆yt−1 +Γ

(1)
2 ∆yt−2 + ...+Γ

(1)
p−1∆yt−p−1 +αβ′xt−1 +µ0 +µ1t+ ǫt (6)

where: Γ
(1)
1 = −(Π2 +Π3 + ...+Πp), Γ

(1)
2 = −Π3 and Π = −(I −Π1 −Π2 − ...−Πp)

are the short run matrices and the long run matrix respectively and the integer (1) in-

dicates the lag pleacement of ECM, Π = αβ′ is the reduced rank long run matrix, α

and β are p × r matrices, r ≤ p, µ0 + µ1t = ΦDt are the unrestricted components (i.e.
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allowed to enter in cointegrating relation) of deterministic trend. The equation (6) is the

cointegrated VAR (CVAR) model under I(1) hypothesis (see Johansen (1991) for further

details and estimation).

2.3 Statistical models: panel methods

For what concerns panel data methods, the general model can be formulated as the fol-

lowing regression:

∆yit = ρiyi,t−1 +

pi
∑

L=1

θi,L∆yi,t−L + αmidmt + ǫit m = 1, 2, 3 (7)

where: yit = [pit, p
∗
it, sit]

′, ǫit ∼ IID(0, σ2), E(ǫitǫjt) = 0, i 6= j ∀ t, dmt indicates the

vector of deterministic terms and αmi the corresponding vector of coefficients for model

m = 1, 2, 3 and pi is unknown. In particular, d1,t = ∅, d2,t = {1} and d3t = {1, t}.

By starting from model (7) we can test for unit root (that is, for strong PPP) the panel of

exchange rates using a battery of tests allowing for slightly more general assumptions and

making the investigator able to answer to three different questions: (i) is panel supporting

strong PPP? (ii) Conversely, is panel rejecting strong PPP? (iii) Finally, are there cointe-

grating cross-sections (that is, is panel supporting weak PPP)? Levin et al. (2002) (LLC),

Im et al. (2003) (IPS), Pesaran (2007) (CADF), Maddala and Wu (1999) (MW) are used

to answer to question (i). Hadri (2000) and Nyblom and Harvey (2000) (NH) answer to

question (ii). Pedroni (2004) and Westerlund (2007) answer to question (iii).

We refer to the original papers for technicalities. We just underline that these different

tests are today used to analyze the nonstationary behavior of data from slightly different

perspectives; that is, since a test which is robust to all possible features in the panel does

not exist, a battery of partial tests can be build in order to cover particular lacks which

remain unsolved by other tests (see BMO as an example). In particular the LLC test has

the strongest hypothesis system: each series is unit root against each series is stationary.

For this reason the LLC test is one of the more frequently used and criticized. The IPS test

solves this problem but the cost is that it can be applied only to balanced panels; more-

over, both LLC and IPS are built under cross-sectional independence hypothesis. This
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last peculiarity is treated by CADF test while MW test is in turn the solution to IPS

lack of adequacy in unbalanced panels and by construction can be used for other unit root

test. Again, the problem is in that p-values needed to perform it have to be computed

by Monte Carlo simulation. Concerning the tests for the opposite null of stationarity, the

Hadri test is the the panel analogue of univariate Kwiatkowski et al. (1992) (KPSS) test.

Differently, the NH test is its multivariate version which allows to test the presence of an

additive random walk in the data generating process. Concerning panel cointegration, the

first tests was build up by McCoskey and Kao (1998) and Kao (1999) who used LM and

ADF-based procedure in order to test two opposite null hypothesis systems (no cointegra-

tion and cointegration respectively). However we choose to implement two on the seven

tests by Pedroni (2004), differently to the other two, it allows for individual heterogeneity,

fixed effects and trends terms. Westerlund (2007) uses a different kind of test in order to

test the same null hypothesis of no cointegration, but its statistics are more powerful than

Pedroni’s ones.

2.4 Statistical models: univariate nonlinear models

Concerning univariate nonlinear models, we use the standard STAR/(SE)TAR models

in order to replicate the analysis by TPS. Granger and Teräsvirta (1993) recommends a

specific-to-general modelling procedure based on the following steps: (i) select an appro-

priate linear AR(p) model for the series under investigation; (ii) test the null hypothesis of

linearity against the alternative of STAR/SETAR-type nonlinearity and select the appro-

priate transition variable(s); (iii) estimate the parameters; (iv) evaluate the model using

diagnostic tests; (v) if necessary, modify the model; (vi) use the model for descriptive or

forecasting objectives. We now broadly describe the econometric methodology step by

step; for technicalitis, see Tsay (1989), Hansen (1996) ((SE)TAR models) and Teräsvirta

(1994) (STAR models).

Consider the general additive non-linear model:

yt = φ′zt + θ′ztG(γ, c, st) + ǫt (8)
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where yt ≡ vt in equation (2), zt = (1, y1, . . . , yt−p)
′, φ = (φ0, φ1, . . . , φp)

′, θ = (θ0, θ1, . . . , θp)
′

are parameter vectors, and ǫt ∼ i.i.d.(0, σ2), the transition function G(γ, c, st) is a contin-

uous function in the transition variable st
2 where γ is the slope parameter and controls the

velocity of the transition, c = (c1, . . . , cK) is a vector of (transition’) location parameters.

One of the main used functions for G(·) is the (first order) logistic function:

G(γ, c, st) =

(

1 + exp

{

−γ
K
∏

k=1

(st − ck)

})−1

, γ > 0, (9)

where γ > 0 is an identifying restriction. Equations (9) and (8) define the Logistic STR

(LSTR) model. The most common choices for K are K = 1, in which case the parameters

φ + θG(γ, c, st) change monotonically as a function of st from φ to φ + θ and K = 2,

in which case the parameters φ + θG(γ, c, st) change symmetrically around the mid-point

(c1 + c2)/2 where the logistic function attains its minimum, minGG(·) ∈ [0, 1/2], and it’s

such that:

minGG(·) =











0 if γ → ∞

1/2 if c1 = c2 and γ < ∞

For notational convenience, we will consider only the first case (K = 1). If γ = 0, the

transition function G(γ, c, st) ≡ 1/2 so that model (8) nests a linear model. When K = 2

and c1 = c2 the transition function (9) becames:

G(γ, c, st) = 1 − exp{−γ(st − c)2}, γ > 0 (10)

Equations (8) and (10) define the Exponential STR (ESTR) model.

When zt ≡ yt−d and st ≡ yt−d, d > 0 in (9) and (10), the model becomes an LSTAR and

an ESTAR respectively. Similarly, when γ → ∞ and zt ≡ yt and st ≡ yt−d the model (8)

nests a SETAR model:

yt =
r+1
∑

j=1

(

φ′

jyt

)

I
(

yt−d ≤ cj

)

+
r+1
∑

j=1

(

φ′

jyt

)

I
(

yt−d > cj

)

+ ǫjt (11)

2Notice that here st is a generic transition variable which can coincide (but not necessarily) with yt 6= st.
This change in notation is only for convenience when comparing the literature in STR models.
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where φ,yt are defined as before, st is a continuous switching r.v., c0, c1, . . . , cr+1 are

threshold parameters, c0 = −∞, cr+1 = +∞, ǫjt ∼ i.i.d.(0, σ2
j ), j = 1, . . . , r.

Concerning step (i) (specification), Tsay proposes a four-step specification procedure for

SETAR model: select the AR order p and the set of possible threshold lags S, fit arranged

autoregressions for a given p and every element d of S and perform threshold nonlinear-

ity test F̂ (p, d); if some nonlinearity is detected, select the delay parameter dp such that

F̂ (p, dp) = maxv∈S{F̂ (p, v)}; for given p, d, locate the threshold variables by using scat-

terplot of predictive residuals derived by the arranged autoregression against yt−d; finally,

refine the order and threshold values by linear techniques. Teräsvirta proposes a similar

procedure for STAR models: specify a linear AR(p) model; test linearity for different val-

ues of d and, if rejected, determine the d parameter following the same criterion above

mentioned.

Concerning step (iii), the estimation is done by OLS in (SE)TAR models while in STAR

models the NLLS algorithm is required.

The step (ii) (Linearity testing) for (SE)TAR models is discussed in Tsay. The idea is to

perform an arranged autoregression and the resulting parameter are estimated by recur-

sive least squares. The resulting predictive and standardized predictive residuals are used

to build the F-type test from a least square regression. Hansen discusses an alternative

likelihood-based test. Three statistics are used:

ST = sup
γ∈Γ

ST (γ),

aveST = aveST (γ) =

∫

Γ
ST (γ)dW (γ),

expST = ln

(

∫

Γ
exp

{

1

2
ST (γ)

}

dW (γ)

)

(12)

where Γ = {γ : γ ∈ Γ}, W (γ) is a weight function such that
∫

Γ W (γ)dγ = 1. Using the

likelihood function of the model (8), Hansen derives the the score function for Wald and

LM test; the empirical distribution of the last one is computed by bootstrap simulation

and can be used to show whether the null hypothesis has to be rejected or not. The

analogue test for STAR models is discussed in Luukkonen et al. (1988). It is based on

a Taylor expansion of the transition function (9) (or (10)), T3(z) = g1z + g3z
3 where
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g1 = ∂G/∂z|z=0 and g3 = (1/6)∂3G/∂z3
|z=0, so that the approximation:

yt = φ′zt + θ′ztT3(γ(yt−d − c)) + ǫt (13)

leads to the auxiliary regression:

ǫ̂t = ẑ′

1tβ̃1 +

p
∑

j=1

β2jyt−jyt−d +

p
∑

j=1

β3jyt−jy
2
t−d +

p
∑

j=1

β4jyt−jy
3
t−d + v′t (14)

The null hypothesis for linearity against LSTAR is H0 : β2j = β3j = β4j = 0, j = 1, · · · , p,

which, under the conditions that a linear autoregressive model holds and Eǫt < ∞, is

tested by statistic:

LM2 = (SSR0 − SSR)/σ̂2 ∼ χ2(3p) (15)

where SSR are the sum of squared residuals form equation (14) or, alternatively, by setting

the artificial model:

yt = g1γ0 + γ′
1zt + γ′

2(ztyt−d) + γ′
3(zty

2
t−d) + γ′

4(zty
3
t−d) + v′′t (16)

where: v′′ ∼ nid(0, σ2
v′′), γj = (γ1j , · · · , γjp)

′, and j = 1, · · · , 4, and H0 : γ2 = γ3 = γ4 = 0.

In terms of Taylor approximations we get:

γ2 = g1γθ̂ + 3g3γ
3c2θ̂ − 3g3γ

3cθ0ed

γ3 = −3g3γ
3cθ̂ + g3γ

3θ0ed

γ4 = g3γ
3θ̂

(17)

where θ̂ and c and d are previously defined. Similarly, if the model is an ESTAR(p) model,

ẑ1t = −zt and ẑ2t(π) = −(yt−d − c)2(θ̂′zt) = −( ¯θ′zty
2
t−d + θ0y

2
t−d − 2cθ̄′ztyt−d + c2θ̄′zt −

2cθ0yt−d + c2θ0). This yields to the following auxiliary regression:

v̂t = β̃′
1ẑ1t + β′

2ztyt−d + β′
3zy2

t−d + e′t (18)

where v̂t is the analogue of ǫ̂t, e′t is an error term and β̃1 = (β10,β
′

1)′ with β10 = φ0 − c2θ0

and β1 = φ̄ − c2θ̄ + 2cθ0ed, β2 = 2cθ̄ − θ0ed. The null of linearity is H ′
0 : β2 = β3 = 0
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which is tested by statistic

LM3 = (SSR0 − SSR)/σ̂2 ∼ χ2(p) (19)

where SSR is the sum of squared residuals from (18). In order to choice the correct

transition function, Teräsvirta proposes the following nested hypotheses test (the so called

"Teräsvirta rule"):

H04 : γ4 = 0 against H14 : γ4 6= 0 in (17).

H03 : γ3 = 0 | γ4 = 0 against H13 : γ3 6= 0 | γ4 = 0 in (17).

H02 : γ2 = 0 | γ3 = γ4 = 0 against H12 : γ2 6= 0 | γ3 = γ4 = 0 in (17).

(20)

if the p-value of H03 is the smallest of the three, select an ESTAR model; otherwise, select

an LSTAR model.

Concerning the step (iv) (Dyagnostic tests), Eitrheim and Teräsvirta (1996) provides three

LM tests for serial auto-correlation, remaining nonlinearity and parameter constancy.

Finally, the last step (Evaluation and/or forecasting) can be performed by using the impulse

response functions (IRF). Formally the "traditional" impulse response function (TIRF) is

defined as:

TIRF (h, δ, ωt−1) =E[yt+h|ǫt = δ, ǫt+1 = · · · = ǫt+h = 0, ωt−1]−

−E[yt+h|ǫt = 0, ǫt+1 = · · · = ǫt+h = 0, ωt−1],

(21)

for h = 0, 1, 2, . . . . The TIRF is commonly used in linear systems because of its three

properties: first, it’s symmetric, that is a a shock of size −δ has an effect exactly opposite

to that of shock of size δ; second, it’s proportional to the size of the size of the shock; third,

it’s history independent, that is its shape does not depend on the particular history ωt−1.

These properties does not hold in nonlinear models.

In order to solve this problem, Koop et al. (1996) proposes a generalization of (21), called

Generalized Impulse Response Function (GIRF). The GIRF for a shock ǫt = δ and history

ωt−1, for both δ and ωt−1 function of the random variable ǫt and Ωt−1 (the set of all possible
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histories {ωt−1}), is defined as:

GIRF (h, ǫt,Ωt−1) = E[yt+h|ǫt, Ωt−1] − E[yt+h|Ωt−1]. (22)

for h = 0, 1, 2, . . . . In linear models TIRF and GIRF coincide. The applied econometric

literature uses the IRF analysis in order to study the second PPP puzzle, namely to measure

the half-life of the deviation of real exchange rates from their theoretical PPP value.

3 Empirical strategy

We follow the Juselius’ "Marshallian" approach to cointegration analysis when testing weak

PPP hypothesis because of its completeness and its agnosticism. It can be summarized

in three main points: first, much more importance is put on the specification rather than

the prior role of a theoretical economic model. Second, and consequently, the theoretical

model is re-parametrized in such a way that all possible testable hypotheses can be ana-

lyzed. Third, the econometrician should minimize the restrictions that could be needed

during the specification in order to let the data speak freely.

The Marshallian strategy briefly described above is in contraposition to the theory-based

"Walrasian" approach, represented by DSGE family of models3. However, Juselius’ philos-

ophy clearly presents some problems, first of all the probability of rejection of investigator’

searched relation, relatively higher than in any other theory-based econometric model. A

second more important problem is the treatment of extraordinary events, modeled by us-

ing shift and blip dummies4; namely, the problem is in that such dummies derive from

the search of large errors in distribution of the series, for which not always an economic

explanation is available and in that parameters estimates are strongly sensitive to such

dummies and linear trends entering in cointegrating vectors. A third problem is that this

strategy is currently not available for other methodologies. In that case we’ re forced to

3"The VAR procedure is less pretentious about the prior role of a theoretical economic model, but it
avoids the lack of empirical relevance the theory-based approach has often been criticized for" (Juselius,
2006, Ch. 1, pag. 9)

4That is, a series could present several changes in terms of mean, trends or transitory shift in levels and
these can easily observed by fitting a (preliminary) model assuming gaussian errors and then the differences
between this and the original series: if such differences is grater than a pre-specified threshold, they can
be seen as extraordinary events to take in account in phase of specification.
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use a more traditional theory based approach5.

The Marshallian approach to cointegration analysis allows us to choose the appropriate

specification for model (3) for the j-th system of country, that is to check if (pj −p∗j −sj) ∼

I(0) for j = CAN , DN , JPN , NW , SD, SZ, UK, EU or US. It is implemented by the

following step procedure (see Juselius (2006) for details):

• Step 1: Select the lag p for the system (6) by using standard information criteria.

• Step 2: Once p is selected, check for normality and residuals first-order and second-

order autocorrelation; if autocorrelation and non-normality is found, augment p until

necessary.

• Step 3: Check for the presence of transitory or permanent shocks in the series.

This can be done by looking at residuals, imposing a threshold and checking for

the presence of errors exceeding it; if outliers exist, impose an appropriate dummy

variable in the month corresponding to the outlier and repeat the procedure from

Step 2.

• Step 4: Perform the Johansen’ Rank test in order to check for the presence of coin-

tegrating relations in the system. Since the test is not invariant to changes in deter-

ministic kernel, if outlier are found in Step 3, simulate the critical values.

• Step 5: If rank(Π) 6= 0, set the rank of Π matrix.

• Step 6: Set the identifying restriction corresponding to the searched relation (4);

the (possibly, more than one) resulting restricted (cointegrated) VECM model(s) are

selected if the p-value is sufficiently high.

• Step 7: The so found restricted VECM are analyzed in their cointegrating relations

by recursive tests.

• Step 8: Check for the presence of I(2)-ness. If found, the whole analysis should be

reconsidered in an I(2) scenario.

5However one should consider that the empirical problem in this article is relatively simple, and the
data set used relatively small so the two approaches, in principle, should coincide.
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In the nonlinear framework we follow TPS as benchmark and apply Teräsvirta’ analysis

on our dataset. TPS finds that the exchange rates under investigation are nonlinear mean

reverting. In particular, the delaly parameter is a priori considered as small (near 1)

although a grid search by NLLS is performed. Then the model (8) is restricted for φ = −θ,

because this ensure an economic interpretation similar to Coleman (1995)6. Using the

Monte Carlo method by Gallant et al. (1993) (GRT) for GIRFs, TPS finds that large

shocks are faster mean reverting than smaller ones. This means that also the second PPP

puzzle is solved. However, this result has strongly driven from the a priori choice for

exponential smooth transition for STAR models, which is justified it by its property of

symmetric adjustment of transition variable around an equilibrium level7.

Since the ESTAR model is a particular case of the more general family of LSTR, we

find such a priori unjustified, specially for a problematic dataset as our one. Moreover,

we found that the above mentioned restriction caused an artificial reduction of estimated

parameters’ p-values. For this reason, we follow a more agnostic policy in modelling our

series, allowing some parameters (the constant, in a lot of cases) for no restrictions. The

resulting Granger-Tersvirta modelling procedure has been consequently adapted as here

described in detail:

• Step 1: Selection of p-order. Use AIC, BIC, and HQ criteria, with particular attention

to the second one because is known to be the more conservative. Then, in order to

take in account the possibility of the presence of non gaussian residuals due to high

instability of the series, and secondly to explore its ability to testing for third-order

residual correlation, implement an Hinich (1996) test and corrected the choice of lag

order when necessary. In particular, this is the criterion in adjusting the AR order:

when the one of both Hinich’ statistics p-values are less the 0.10, add one or more lag

in function of its nearness to 0; when slightly higher than such threshold, the test is

able to reject the null of no third-order autocorrelation, so the order is not increased.

6"[This restriction] implies an equilibrium log-level of real exchange rates [called µ and found being
zero] in the neighborhood of which, real exchange is close to a random walk, beginning increasingly mean
reverting as going far away from it" (TPS, pag. 14).

7TPS consider the logistic smooth transition inappropriate because "[...] It’s hard to think economic
reasons why the speed of adjustment of the real exchange rate should vary according to whether the
dollar is over-valued or undervalued, specially if one is thinking of goods arbitrage as ultimately diving the
impetus towards the long run equilibrium and one is dealing with major dollar exchange rates against the
currencies of other developed countries" (TPS, pag. 7).
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However, this test remain as boldly indicative and does not constrain us to a limit

in adding lags; this postulate that a limit of three-four added lags is a reasonable

choice. Consider such "auxiliary" lags as potential: this means, start he specification

procedure by giving priority to orders selected by traditional criteria.

• Step 2: Specification of linear AR(p) part of the model (8). Allow for the possibility

for model (8) to have some zero-coefficient in both linear and nonlinear part, starting

with the hypothesis of no restrictions.

• Step 3: Linearity tests. Apply the Teräsvirta rule (20) for all possible candidates

transition variable st = z̃t ≡ (yt−1, ..., yt−p, t)
′; that is, consider as candidates all

lags of {yt} and a linear trend t. If the model is linear for all possible candidate,

return to Step 2 and start to restrict the model until some nonlinearity is detected.

In particular, use a progressive criterion in putting restriction: start with one zero

coefficient, then augment their number until having one constant and a non-zero

coefficient. If the model is linear again, return at Step 1, augment the order p until

the maximum p estimated by information criteria (possibly augmented by Hinich’

test) and restart the procedure.

• Step 4: Grid search for starting values of nonlinear parameters.

• Step 5: Estimation. Use the selected transition variables, transition function and

starting value in order to compute the parameter estimates by NLLS algorithm. Im-

pose the restriction φ = −θ only when the unrestricted model is not able to produce

reasonable estimates. In that case, perform a progressive criterion in imposing such

restriction: start with restricting the constant; if the restriction produce reasonable

estimates (γ and c are not high and p-values are lower than 0.05), continue with

next step; otherwise, restrict yt−i, i = 1, ..., p singularly and continue with next step;

otherwise, restrict al possible combinations of yt−i, until all lagged yt−i are restricted

and continue with next step; otherwise, add also the constant to the yt−i previously

restricted and continue with next step; otherwise, return at Step 2 and restart the

procedure. If also the new procedure defaults, return to Step 1, augment the or-

der p until the maximum p estimated by information criteria and restart the whole

14



procedure.

• Step 6: Diagnostic tests. Apply the three tests described in Section 2.4. If the re-

sulting p-value are high, accept the selected model. Otherwise, check for different

restrictions in Step 5 and accept estimates with slightly higher p-value; then, per-

form the diagnostic tests for the new (sub-optimal) model; if the resulting statistics

are highly significant, accept the model. Otherwise, return to Step 3, set different

transition variables and restart the procedure. If this is not an help, return to Step

2 and set new linear AR(p) specification and restart the procedure; if the estimates

are significant, accept the model. Otherwise, as last possibility, return to Step 1 and

augment the order p until the maximum in the information criteria (possibly aug-

mented by Hinich’ test) and restart the whole procedure. If the result is negative,

the series is not mean-reverting, hence the (first) PPP puzzle cannot be solved.

4 The data

We consider 9 countries, namely: Denmark (DN), Canada (CAN), Japan (JPN), Norway

(NW), Sweden (SD), Switzerland (SZ), U.K., U.S., and E.U (euro area); the numeraires

are U.S. and E.U. Hence, we have 16 series for nominal exchange rates and 8 series for

seasonally adjusted consumer price indicators8. The series of real exchange rates has been

built by equation (2). In this article we label "DNUS", "CANUS", etc ( "DNEUR", "CA-

NEUR", etc.) the series of nominal exchange rates of various currencies vs. US dollar (vs.

euro) Similarly, "PPPDNUS", "PPPCANUS", etc. ("PPPDNEUR", "PPPCANEUR",

etc.) is the label of real exchange rates of national currencies vs. $ (vs. e).

The considered sample is 1999:01 - 2009:12, so we have to hold with the presence of a

structural break in 2008:04 due to the financial crisis and, in addiction for the euro, with

the "Greece Effect" in the last observations. The sources of these series are: FED of St.

Louis for spot rates with basis $, ECB for spot rates with basis e and OECD website for

CPIs (see Section A.1 for series details).

8The original CPI series was not adjusted for seasonality. We did it by using the X-12 ARIMA procedure
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5 Empirical evidence

Figures 1 and 2 plot the series of real exchange rates in the data set. It can be noticed

that almost all spot rate follows a positively shaped linear broken trend, where the break

corresponds to the beginning of the financial crisis (approximately in 2008:04). Moreover

the linear trend is weaker and negatively shaped when E.U. is numeraire; this is the effect

of the progressive appreciation of the e against the other currencies and the subsequent

depreciation due to the speculative attack during the financial crisis. All the series show

one or more breaks in the middle of the sample, corresponding to the selected dummy

variables in Table 1. Two of them (2003:01 and 2003:03) seem to be consistent with the

turbulence of oil market immediately before and after the Iraqi political crisis in that

months. Figures 3 and 4 plot the real exchange rates in first differences, which allows for

checking the presence of irregularities in mean reversion such as autocorrelation (clearly

observable in (∆PPPDNUS, ∆PPPEUUS, ∆PPPDNEU, ∆PPPSDUS, ∆PPPSZUS) and

ARCH-effects. We can see that all series show a break in mean reversion after 2008:05

approximately; moreover, in the first half of the sample the mean reversion seems to be

weaker than in the second half. These irregularities are the source of all difficulties in

finding good specification for linear and nonlinear models for all series.

5.1 CVAR

For what concerns the CVAR approach for weak PPP hypothesis, the procedure described

in Section 3 is performed in a semi-automatic way by CATS package (Dennis et al., 2006).

Concerning for Step 2, we use the Shenton-Bowman test for normality and the Ljung-Box

LM test for autocorrelation. For simulation of critical values of Johansen’ Trace test we

apply the Johansen (2002) bootstrap procedure with 2,500 draws for each possible rank.

For the choice of the rank, we consider both standard and Bartlett-corrected for small

samples p-values; in a standard scenario, they are really similar. The plausible restricted

models are selected by using the automatic procedure "CATS Mining", which show all po-

tential cointegrating relation between covariates and select them as option. Clearly, since

cointegrating relations are simply linear combinations, the number of candidates is often
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so high that we have selected them by using the following criteria: first, p-value of the

candidate should be at least 0.20 (this ensure some stability to the cointegrating relation

which is essential for being economically meaningful, see Juselius (2006)); second, the sign

of α and β in (3) should be at least similar to what theory suggests; finally, their absolute

values should not be extravagant. The presence of I(2)-ness is checked by looking at: (i)

the graphs of the cointegrating relations in their two specifications: if not strictly similar,

this is a sign of I(2) behavior; (ii) the characteristic roots of the model for a reasonable

choice of cointegration rank: if there’s no difference between couples corresponding the

candidate rank and ones immediately after (that is, they are all near to unit), there’s

I(2)-ness; (iii) rank test statistic p-values: considerable differences between Bartlett and

non-Bartlett corrected p-values. Since the statistical theory of cointegration analysis in

an I(2) scenario is not complete and does not necessarily add economically meaningful

results to the empirical analysis, we stopped when I(2)-ness was found. Tab.1 illustrates

our results for PPP when using $ or e as numeraire. In the majority of cases our optimal

lag choice is 2. However, since some outliers are present, we will specify the next test for

p = 3. Almost all systems do not reject the null of no cointegration, hence, in practice, we

stopped to Step 4. Two exceptions are constituted by Norway and U.K. However, since

also the other ranks hypotheses has a small p-values respect on the other systems, the

found relations for these countries are affected by I(2)-ness9. Moreover, it’s interesting to

note that the large number of shift dummies used corresponding to an equivalently large

number of outliers in residuals implies that gaussianity assumption of the statistical model

could be seriously suspect to not hold. This is not uncommon in financial variables.

The strong PPP hypothesis is tested by using three tests: the Augmented Dikey-Fuller

(ADF) test, the GLS-robust Dikey-Fuller (DF-GLS) (Elliott et al., 1996) for the null of

unit root in the real exchange rates and the KPSS test for the null of stationarity. The Mar-

shallian approach allows us to select a predetermined number of additional lags (namely,

p = 0, . . . , 3) in order to analyze the series. Clearly, a failure to reject the null hypothesis

of unit root (a rejection of the null of stationarity) implies an irregularity in the real ex-

change rate mean reversion and so a lack of empirical support for strong PPP hypothesis.

9We do not report all the data which confirm this finding for space motivation. They can be provided
under request
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The results for the ADF, KPSS and DF-GLS tests for lags the first three lags are shown

in Tables 2, 3 and 4. When $ is numeraire we cannot reject the null of unit root for any

country and any lag, while some exception is observable when e is numeraire but the result

is the same; the only relevant rejection is the case of Norway when testing for lag 1. The

hypothesis of stationarity is almost always rejected at 1%, regardless to the numeraire,

coherently with the above results. The results for null unit root under GLS estimation

confirm and, possibly, enforce the ADF ones.

5.2 Panel methods

Concerning panel methodology for strong PPP hypothesis, we have by 8 cross-sections.

Since the results country-by country shows that it’s reasonable to model until p = 3, we

test for the first three lags, so that the number of observations varies between 1,024 and

1,040. The strong PPP hypothesis is investigated by performing the six tests previously

described (see Section 2.3). For MW method we use both ADF and Phillips-Perron tests.

Concerning Hadri test, the statistic is robust to heteroskedasticity and serial dependance

across disturbances. Tables 5, 6 and 7 show that for both numeraires, panel unit root tests

are not able to reject the null hypotheses of unit root with few exceptions and, coherently

with this finding, reject the null of no unit root. Hence the data do not provide empirical

evidence for strong PPP hypothesis.

The weak PPP hypothesis is investigated by performing the Pedroni and Westerlund tests

on all possible triples of variables. Concerning Pedroni test, we show only the Z̃ρ and

Ztρ̂NT
statistics on the seven proposed by the author, since they are the most powerful.

For the same reason, concerning Westerlund tests, we show only the Pγ statistic. Both of

the tests are based on the null hypothesis of no cointegrating relation, hence a failure to

reject the null hypothesis implies the failure in finding empirical evidence for weak PPP

hypothesis. Notice that Westerlund test is based on an error correction model; this implies

that, similarly to the multivariate framework, when allowing for a deterministic kernel

to enter in cointegrating relations, the statistic critical values are biased. Again, robust

critical values can be computed by bootstrap methods. The whole analysis can be easily

performed using ad hoc STATA procedures. Tab. 8 shows results for each triple, for which
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has been provided the statistics, the corresponding z-value, standard p-value and, for the

Westerlund test, bootstrapped p-value and the automatic selection of lags and leads. The

two tests show that spot rates, domestic and foreign prices are strongly not cointegrated in

two cases on three, regardless to the numeraire, and in the one where cointegration cannot

be rejected the variables are positioned differently from what theory suggest. This finding

leads us to reject the weak PPP hypotheses, on the contrary of Pedroni (2001).

5.3 Nonlinear models

For what concerns the nonlinear framework, the procedure described in Section 3 is per-

formed by JMulTi free package and can be extended to SETAR models. However, for the

last ones we used the analogue RATS procedures, in which case we provide the result for

Tsay’ test for different transition variables (that is for different delay parameters).

Before to implement the Granger-Teräsvirta procedure, we checked for the presence of

ARCH-effects by performing the McLeod and Li (1983) test. The results are given in

Tab. 9. We can see that the test fails to reject the null of no ARCH-effect for almost all

the series, but if considering the lag corresponding to the p order of selected model, they

became less problematic. Tab. 10 shows the results of the STAR specification procedure

above explained for our dataset in levels. Data show some differences between numeraires:

the detected nonlinear series are five when U.S. is the numeraire, one when E.U. is the

numeraire, corresponding to the same national currency of one of the selected models in

US numeraire case. This is the effect of the financial crisis: a more (nonlinenarly) volatile

behavior of real exchange rates towards euro which contrasts a good specification. It’s

interesting to notice that the errors of the considered series are not third-order correlated,

as suggested by Hinich test: the only case of relevant correction is the series for real ex-

change rate between Canada and US (three lag added by procedure described in Sec. 3).

The estimates of selected STAR models are reported in Appendix A.2. Fig. 5 shows the

grid search for starting values used to arrive to the above estimates using negative SSR for

contour plot, while fig. 6 the transition function G(γ, c, st) as function of the transition

variable st. These graphs shows a peculiarity in our dataset: on six estimated nonlinear

models, four (PPPDNUS, PPPCANUS, PPPSDUS and PPPSZUS) are seen to be at the
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line with linear models, since their mean reversion is very smooth. The other two models

(PPPUKUS and PPPUKEUR) are more clearly nonlinear and, consequently, more inter-

esting from an economic point of view because they correspond to very different situations:

in the set of models under investigation, the model (27) is the more restricted one, since all

lags of y
£/e
t enter in the restriction φ = −θ, hence the interpretation is very similar to that

given in TPS, with the exception for the constant, which does not enter in the restriction.

On the contrary, model (28) has no restrictions, so there’s no equilibrium around which

the model is a random walk, but more meaningfully a simple (quasi-exponential) mean

reversion. Notice that this is the only non-LSTR1 model in the 6 estimates, namely a

second-order logistic STAR. The only model estimated with restriction for all parameters

is (25). These findings leads to several implications: first, the methodological choice to not

use the restriction for all parameters jointly and the exponential smooth transition func-

tion as a priori was really critical. Second, real exchange rates have really an asymmetric

behavior respect to their numeraires; this is an effect of financial instability in the last

observations in our sample. Third, the nonlinear asymmetric mean reversion of exchange

rates suggests a change in long run, if considering the TPS’ s implicit observation that

goods arbitrage are driving the market towards it. In this sense, the diagnostic tests in

Tables 13, 14 and 15 do not support the idea of a third regime for the estimated model

for any model; on the contrary, the rejected models are characterized by high parameter

variability and serial correlation.

Tab. 11 shows the results for SETAR(k; p, d) specification procedures above explained

for our dataset in levels. The Tsay ’s test allows five currency to be nonlinearly mean-

reverting. These results should not be taken as definitive, since a key role is put on the

Hansen’s test for threshold effect: if a series allows for a SETAR-type nonlinearity but the

threshold effect is weak, the nonlinearity should be interpreted as spurious. This is exactly

what happens to our data. We used all three statistics (12) for testing threshold effect in

both homoskedasticity and heteroskedasticity cases. The p-values are bootstrapped using

1,000 draws. On six plausible one threshold SETAR models, the threshold effect holds in

only one of them, namely in the real exchange rates between U.K. and E.U, as shown in

Tab. 12. Moreover, this is a limit-case, since only the supST -statistic is in rejection region,

when the test is robust to heteroskedasticity. These are the resulting estimates where the
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values in brackets are robust standard errors:



































y
£/e
t = −0.022 + 0.849 · y

UK/EUR
t−1 if y

£/e
t−1 ≤ 0.341, σ̂2 = 0.0007

(0.013) (0.055)

y
£/e
t = 0.006 + 0.984 · y

UK/EUR
t−1 if y

£/e
t−1 > 0.341, σ̂2 = 0.0002

(0.011) (0.026)

An interesting feature is that the estimated SETAR model (as all plausible threshold

models, too) are not so sensitive to heteroskedasticity, and the above model is the only

exception. That is, the relevant ARCH-effects showed in Tab. 9 does not involve any rel-

evant difference in (bootstrapped) p-values when performing an heteroskedasticity robust

test for threshold effect respect on the non-robust one.

The above empirical analysis suggests that only a restricted number of series in our dataset

are nonlinearly mean-reverting in a way that such mean reversion is sufficient in order to

specify reasonable models; moreover, the majority of them show a behavior really near to

the line with linear models. This suggests to us to not follow TSP pedantically in using the

GRT method for GIRF analysis in order to study the shocks persistence of real exchange

rates. On the contrary, by looking at the plots of transition functions we think that the

TIRF are still a correct methodology for all models, except for (27) and (28) which presents

the most nonlinear behavior. Nevertheless, neither in this case we agree in performing the

GRT method, since our modeling strategy and the resulting models was different from

TPS: their solution to PPP puzzle was based on ESTAR model, which has been shown in

Section 2.4 to be a very peculiar case of the more general family of LSTR. The only model

which does not follow an LSTR is an LSTR2, since c1 6= c2; this means that the transition

function is not perfectly symmetric (although it can be seen as an approximation), hence

the economic interpretation of the resulting GIRF could be misleading10.

Fig. 7 plots the TIRF of the real exchange rate series for shocks of magnitude {1, 2, 3}

and an horizon of 12 month. We can see the almost regular behavior in the majority of

cases, but also a couple of peculiarities: first, when the shock is larger (shock=3, green

10Moreover, the GRT method for GIRF is based on several strong assumption: parametric distribution;
the mean as statistic measure of baseline forecasts, "[. . . ] which under stationarity is the unconditional
mean" (Koop et al. (1996, pag.130)); the GIRF is zero if the initial shock is zero. We note that the second
assumption is the most problematic one because when shocks have asymmetric effect,"[. . . ] then averaging
across phases of the bussiness cycle will tend to weaken or hide the evidence of asymmetry"(Ibidem).
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line) the TIRF does converge faster to 0 but tends immediately to go below such threshold;

secondly, the series for £/$ rate, which we have seen to be very nonlinear, seems to be

the most "conventional" one for TIRF behavior in the long run; moreover its transition

function has been seen to be logistic, which implies that the speed of adjustment should

vary asymmetrically, and so a non regular behavior in TIRF. Instead, this happens in

the series for £/e rate, which was seen to have a quasi-symmetric transition function.

However, a common feature of all the TIRFs is that small shocks tend to disappear slower

than big shocks (6-8 months against 2-4) month. This confirms in some way the TPS

result, showing the nonlinearity of the real exchange rate adjustment toward theoretical

PPP equilibrium. It’s interesting to note that TPS concerns for a larger scaled dataset11

so that our result can be seen, nevertheless all the mentioned empirical problems, as a

reasonable approximation to it.

6 Conclusions

In this article we studied the empirical support for the PPP theory after 1998 using differ-

ent methodologies and two different scenarios, linear and nonlinear, in order to compare

and update the empirical literature.

The general result is ambivalent: the analysis of a dataset of 16 real exchange rates does

not support the PPP hypothesis for two of the three methodologies used. In particular,

the CVAR analysis show the data are found to be strongly I(2). Panel methods for unit

root and cointegration confirm the rejection of the theory, while the BMO’s critique sug-

gests to take such results very carefully. Things seem different in the nonlinear scenario:

6 rates on 16 are nonlinearly mean reverting, but the change in regime is located in cor-

respondence of the crisis. This implies that the financial crisis in 2008 has been a source

of nonlinear behavior which allowed to explain the movements for some rates better than

using a linear framework, although this is not the case of e/$, that it the most important

case. Hence, despite the number of estimated models is higher than using other approaches

(that is, weak PPP holds in more cases than TPS), we are careful to consider the PPP

11TPS used a sample of 288 observations, an horizon of 200 observation and a set of shock going from 5
to 50
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puzzles solved yet. In particular, two findings are critical: first, the qualitative analysis

of the nonlinear part of STAR models shows a quasi-linear transition function. Second,

data are not able to support the choice of an ESTAR-type of nonlinearity in favor of an

LSTAR-type. This implies that, contrarily to TPS, the speed of adjustment of exchange

rates varies according to the over(under)valuation of the numeraire. For these reasons, the

solution of the second puzzle needs a methodological approach slightly different form the

TPS one. However, TIRFs for estimated real exchange rates for an horizon of one year

confirm nonlinear adjustment of the real exchange rates towards their theoretical PPP

value and, in an approximate way, the TPS result. This is consistent with the economic

intuition underlying the use of LSTAR as transition function: shocks in real exchange rates

are not symmetric in period of crisis.

Finally, we suggest some lines for future research. Johansen et al.’s CVAR model under I(2)

scenario seems the more advanced strategy today available, although it’s not the most im-

mediate to understand for practicers. Other nonlinear cointegration techniques (nonlinear,

nonparametric and a combination of both) are currently at first stage of development. Mul-

tivariate nonlinear models seems to ensure the correct mid-point in the trade-off between

tractability and heaviness of structural assumptions (parametric framework). Camacho

(2004) and Gonzàlez et al. (2005) generalize STR model to VAR and panel respectively;

applying our dataset to such models could be interesting. A second strategy to adopt in

this kind of models could be relaxing the assumption of symmetry in transition functions.

We remind these extenctions to further works.
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A Appendix

A.1 Data

Our original dataset is constituted of monthly series of spot rates (currency basis United States Dollar and Euro)

and consumers’ price indices. The data sample goes from 1999:01 to 2009:12 (132 observation).

Spot rate series with basis USD has been downloaded largely from FED of St. Louis and these are the sources:

Canada: EXCAUS, Board of Governors of Federal Reserve System;

Denmark: EXDNUS, Board of Governors of Federal Reserve System;

Japan: EXJPUS, Board of Governors of Federal Reserve System;

Norway: EXNOUS, Board of Governors of Federal Reserve System;

Sweden: EXSDUS, Board of Governors of Federal Reserve System;

Switzerland: EXSZUS,Board of Governors of Federal Reserve System;

U.K.: United Kingdom, Exchange Rates, OECD;

EU: EU-12-Extra EU, Exchange Rates, OECD.

Spot rate time series with basis EUR are downloaded from European Central Bank.

Dataset description: Dataset name: Exchange Rates ; Frequency: Monthly ; Currency denominator: Euro ; Ex-

change rate type: Spot ; Series variation - EXR context: Average or standardized measure for given frequency.

These are the sources for Country:

Canadian dollar: EXR.M.CAD.EUR.SP00.A;

Danish krone: EXR.M.DKK.EUR.SP00.A;

Japanese yen: EXR.M.JPY.EUR.SP00.A;

Norwegian krone: EXR.M.NOK.EUR.SP00.A;

Swedish krona: EXR.M.SEK.EUR.SP00.A;

Swiss franc: EXR.M.CHF.EUR.SP00.A;

U.K. pound sterling: EXR.M.GBP.EUR.SP00.A;

U.S. dollar: EXR.M.USD.EUR.SP00.A.

CPI series has been downloaded from OECD. These are the name of the series for Country:

Canada: CAN CPI - All items - Index publication base - units: 2005=100;
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Denmark: DNK CPI - All items - Index publication base - units: 2005=100;

Japan: JPN CPI - All items Tokyo - Index publication base - units: 2005=100;

Norway: NOR CPI - All items - Index publication base - units: 2005=100;

Sweden: SWE CPI - All items net - Index publication base - units: 2005=100;

Switzerland: CHE CPI - All items - Index publication base - units: 2005=100;

U.K.: GBR CPI - All items - Index publication base - units: 2005=100;

U.S: USA CPI - All items SA - Index publication base - units: 2005=100;

E.U.: EMU CPI HICP - All items - Index publication base - units: 2005=100.

All CPI series (except USA CPI which is seasonally adjusted) has been de-seasonalised by X-12 ARIMA procedure.

Then, these preliminary data has been transformed in logarithms, from which PPP (or real exchange rates) series

has been built.

A.2 STAR model estimates

y
DN/US
t = −3.978 − 0.639 · y

DN/US
t−2

+ (2.679 + 0.639 · y
DN/US
t−2

) · {1 − exp[0.567 · (y
DN/US
t−1

− (−1.997))]}−1 (23)

(0.402) (0.187) (0.300) (0.187) (0.000) (0.026)

[0.000] [0.001] [0.000] [0.001] [0.000] [0.000]

AR − part : constant, yt−2 T = 130 Niter = 1 φ = −θ : y
DN/US
t−2

R2 = 0.9780 R̄2 = 0.9820

σ̂2
st

= 0.0235 SDst = 0.1533 σ̂2
ǫt

= 0.0005 SDǫt = 0.0233

Sk = 0.1918 Ek = 3.1518 JB = 0.9218(0.6307) ARCH − LM(p) = 5.7114(0.0042)

y
CAN/US
t = −1.158−0.436 ·y

CAN/US
t−2

+(1.442+0.436 ·y
CAN/US
t−2

) ·{1−exp[0.507 ·(y
CAN/US
t−1

−(−0.360))]}−1 (24)

(0.000) (0.174) (0.000) (0.174) (0.000) (0.030)

[0.000] [0.014] [0.000] [0.014] [0.000] [0.000]

AR − part : constant, yt−2 T = 128 Niter = 1 φ = −θ : y
CAN/US
t−2

R2 = 0.9797 R̄2 = 0.9799

σ̂2
st

= 0.0181 SDst = 0.1344 σ̂2
ǫt

= 0.0004 SDǫt = 0.0195

Sk = −1.1166 Ek = 11.0359 JB = 371.0014(0.0000) ARCH − LM(p) = 0.1947(0.9407)

y
SD/US
t = −11.794− 1.525 · y

SD/US
t−2

+ (11.794 + 1.525 · y
SD/US
t−2

) · {1− exp[0.105 · (y
SD/US
t−1

− (−3.435))]}−1 (25)

(3.195) (0.400) (3.195) (0.400) (0.020) (0.751)
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[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

AR − part : constant, yt−2 T = 128 Niter = 75 φ = −θ : constant, y
SD/US
t−2

R2 = 0.9568 R̄2 = 0.9572

σ̂2
st

= 0.0154 SDst = 0.1240 σ̂2
ǫt

= 0.0007 SDǫt = 0.0261

Sk = −0.0234 Ek = 2.8335 JB = 0.1596(0.9233) ARCH − LM(p) = 0.1671(0.9547)

y
SZ/US
t = −1.127 − 0.656 · y

SZ/US
t−2

+ (1.220 + 0.656 · y
SZ/US
t−2

) · {1 − exp[0.615 · (y
SZ/US
t−1

− (−0.388))]}−1 (26)

(0.272) (0.303) (0.330) (0.303) (0.162) (0.052)

[0.000] [0.032] [0.000] [0.032] [0.000] [0.000]

AR − part : constant, yt−2 T = 130 Niter = 5 φ = −θ : y
SZ/US
t−2

R2 = 0.9595 R̄2 = 0.9598

σ̂2
st

= 0.0129 SDst = 0.1134 σ̂2
ǫt

= 0.0005 SDǫt = 0.0234

Sk = 0.4484 Ek = 3.1078 JB = 4.4190(0.1098) ARCH − LM(p) = 1.0784(0.3433)

y
£/$

t = 0.011+1.327y
£/$

t−1
−0.350y

£/$

t−2
+(0.490−1.327y

£/$

t−1
+0.350y

£/$

t−2
) · {1− exp[53.692 · (t− (123.025))]}−1 (27)

(0.011) (0.085) (0.086) (0.013) (0.085) (0.086) (30.565) (0.565)

[0.308] [0.000] [0.000] [0.000] [0.000] [0.000] [0.081] [0.000]

AR − part : constant, yt−1, yt−2 T = 130 Niter = 12 φ = −θ : y
£/$

t−1
, y

UK/US
t−2

R2 = 0.9585 R̄2 = 0.9589

σ̂2
st

= 1, 419.1667 SDst = 37.6718 σ̂2
ǫt

= 0.0004 SDǫt = 0.0199

Sk = −0.3798 Ek = 3.858 JB = 7.1131(0.0285) ARCH − LM(p) = 3.2050(0.0439)

y
£/e
t = −0.019+1.287y

£/e
t−1

−0.245y
£/e
t−2

+(0.069−1.4242y
£/e
t−1

+1.299y
£/e
t−2

)·{1−exp[6.585(y
£/e
t−2

−0.141)(y
£/e
t−2

−0.541)]}−1

(28)

(0.007) (0.090) (0.095) (0.016) (0.395) (0.363) (4.357) (0.004) (0.006)

[0.011] [0.000] [0.011] [0.000] [0.000] [0.001] [0.133] [0.000] [0.000]
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AR − part : constant, yt−1, yt−2 T = 130 Niter = 13 φ = −θ : − R2 = 0.9830 R̄2 = 0.9831

σ̂2
st

= 0.0121 SDst = 0.1079 σ̂2
ǫt

= 0.0002 SDǫt = 0.0154

Sk = −0.9135 Ek = 5.3848 JB = 48.8857(0.0000) ARCH − LM(p) = 10.1769(0.0001)

where: yt ≡ vt ≡ pppt as in (2), the values in brackets in the estimated model are standard deviations and

the one in square brackets is the p-values, Niter the number of iterations needed for the NLLS algorithm, φ = −θ

is the restriction in the STAR model (specifying the particular restriction we opted for), R̄2 the adjusted R2,

σ̂st , σ̂2
ǫt

, SDst and SDǫt the estimated variance and standard deviation of transition variable and sample errors

respectively, Sk is the skewness, Ek the excess of kurtosis and JB the Jarque-Brera statistics (with p-value in

brackets), ARCH − LM(p) is the Engle test for the estimated model (in levels) for p lags.

A.3 Tables and Figures

30



Table 1: Cointegration Analysis for System of Country j

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
j SC HQ p Shift Dummies Normality Autocorr. Autocorr. Rank Test Rank Test Sim. Rank Test Sim. Rank Test

(p-value) (LM 1) (LM 2) (p-value) (Bartlett-corr.) (p-value) (Bartlett-corr.)

U.S. numeraire

CAN 2 2 3 2005:08 0.000 0.320 0.865 0.107 0.164 0.265 0.361
DN 2 2 3 2005:09, 2007:11 0.001 0.242 0.116 0.231 0.325 0.228 0.329
JPN 1 2 1 2005.09, 2008.11 0.128 0.102 0.174 0.369 0.451 0.079 0.121
NW 2 2 3 2003:01, 2005:09, 0.001 0.174 0.770 0.000 0.000 0.003 0.008

2008:10
SD 1 2 1 - 0.000 0.151 0.120 0.012 0.030
SZ 1 2 2 2003:03, 2005:09, 0.352 0.083 0.064 0.000 0.000 0.120 0.173

2008:10, 2008:11
UK 2 2 1 2005:09, 2008:11 0.171 0.535 0.216 0.076 0.117 0.004 0.009
EU 2 2 2 2008:11 0.003 0.056 0.152 0.142 0.197 0.080 0.119
US - - - - - - - - - - -

E.U. numeraire

CAN 1 1 3 - 0.036 0.109 0.556 0.019 0.022 0.095 0.104
DN 1 1 2 2007:11 0.006 0.977 0.617 0.247 0.301 0.315 0.377
JPN 1 1 1 2008.10 0.067 0.240 0.250 0.000 0.000 0.000 0.000
NW 2 1 3 2003:01, 2008:12 0.018 0.697 0.496 0.000 0.000 0.000 0.000
SD 1 1 1 2008:12, 2009:08 0.000 0.056 0.634 1.000 1.000 0.398 0.418
SZ 1 1 2 2008:10 0.002 0.476 0.188 0.024 0.037 0.013 0.020
UK 2 2 2 2008:12 0.008 0.451 0.836 0.000 0.000 0.000 0.000
EU - - - - - - - - - - -
US 1 2 2 2005:09, 2008:12 0.035 0.088 0.271 0.080 0.110 0.060 0.093

Legend : Column (1): Countries for which the PPP is tested; columns (2)-(3): results of Shwartz and Hannan and Quinn Information criteria for lag selection; column (4): selected
lag; column (5) shift dummies introduced in order to take in account of shocks in the sample; column (6): Shenton-Bowman test for normality in p-values; columns (7)-(8): Ljung-Box
tests for first-order and second-order residual autocorrelation; column (9) Johansen’ Trace test statistic in p-value; column (10): Bartlett nonparametric corrected Trace test; column
(11): simulated Johansen’ Trace test; column (12): Bartlett–corrected simulated Trace test.
Simulation technique: Bootstrap;
no. of draws: 2500
Software used: CATS
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Table 2: Univariate ADF Test on Real Exchange Rates

US numeraire EU numeraire

Lag 0 1 2 3 0 1 2 3

CAN -1.776 -2.320 -2.300 -2.411 −3.283• -2.990 -3.037 -2.743
DN -2.900 -2.940 -2.687 -2.579 -2.174 -1.468 -1.412 -1.858
JPN -1.314 -1.873 -2.085 -1.731 -1.620 -2.265 -2.302 -2.318
NW -2.358 -2.911 -2.742 -2.828 -2.825 −3.480∗ -2.951 -2.951
SD -2.058 -2.531 -2.189 2.420 -2.323 -2.455 -2.455 −3.269•

SZ -3.067 -3.106 -2.887 -2.650 -1.635 -1.656 -1.601 1.798
UK -1.433 -1.982 -2.039 -2.091 -2.458 -2.580 -2.235 -2.239
EU -3.001 -2.919 -2.701 -2.613 - - - -
US - - - - -2.990 -2.958 -2.709 -2.679

• Rejection at 10% of the null hypothesis; •• rejection at 5% of the null hypothesis; • • • rejection at 1% of the null
hypothesis.

Table 3: Univariate KPSS Test on Real Exchange Rates

US numeraire EU numeraire

Lag 0 1 2 3 0 1 2 3

CAN 1.060∗∗ 0.541∗∗ 0.369∗∗ 0.284∗∗ 0.591∗∗ 0.311∗∗ 0.216∗∗ 0.168∗

DN 0.799∗∗ 0.414∗∗ 0.285∗∗ 0.221∗∗ 1.310∗∗ 0.675∗∗ 0.460∗∗ 0.352∗∗

JPN 1.190∗∗ 0.612∗∗ 0.421∗∗ 0.326∗∗ 1.080∗∗ 0.559∗∗ 0.384∗∗ 0.297∗∗

NW 0.694∗∗ 0.359∗∗ 0.248∗∗ 0.192∗ 0.885∗∗ 0.463∗∗ 0.324∗∗ 0.254∗∗

SD 0.837∗∗ 0.430∗∗ 0.294∗∗ 0.226∗∗ 0.755∗∗ 0.394∗∗ 0.273∗∗ 0.212∗

SZ 0.686∗∗ 0.359∗∗ 0.349∗∗ 0.194∗ 1.200∗∗ 0.620∗∗ 0.423∗∗ 0.324∗∗

UK 1.150∗∗ 0.586∗∗ 0.399∗∗ 0.306∗∗ 1.110∗∗ 0.581∗∗ 0.402∗∗ 0.312∗∗

EU 0.843∗∗ 0.437∗∗ 0.301∗∗ 0.233∗∗ - - - -
US - - - - 0.860∗∗ 0.446∗∗ 0.307∗∗ 0.238∗∗

• Rejection at 10% of the null hypothesis; •• rejection at 5% of the null hypothesis; • • • rejection at 1% of the null
hypothesis

Table 4: Univariate DF-GLS Test on Real Exchange Rates (ERS critical values)

US numeraire EU numeraire

Lag 0 1 2 3 0 1 2 3

CAN -2.108 -2.143 -2.143 -1.485 -1.514 -1.504
DN -1.495 -1.296 -1.308 -0.844 -0.959 -1.232
JPN -1.792 -2.047 -1.732 -1.770 -1.779 -1.837
NW -2.248 -2.019 -2.067 -2.134 -1.819 -1.950
SD -1.831 -1.617 1.898 -1.925 -1.842 -2.560
SZ -1.495 -1.381 -1.291 -1.418 -1.377 1.481
UK -1.807 -1.828 -1.922 -1.299 -1.156 -1.178
EU -1.412 -1.243 -1.272 - - - -
US - - - - -1.475 -1.293 -1.330

• Rejection at 10% of the null hypothesis; •• rejection at 5% of the null hypothesis; • • • rejection at 1% of the null
hypothesis.
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Table 5: Panel unit root test for Real Echange Rates (lag=1)

US numeraire EU numeraire

Method Statistics p-value Statistics p-value Obs

Null: unit root (common unit root is assumed)
LLC t∗ -1.697 0.045 -1.540 0.062 1040

Null: unit root (individual unit root is assumed)
IPS w-statistic -1.683 0.046 -1.290 0.099 1040
CADF Z(t-bar) -0.818 0.207 0.472 0.682 1040
ADF Fisher χ2 21.543 0.159 21.272 0.168 1040
PP FIsher χ2 18.615 0.289 20.993 0.179 1040

Null: no unit root (common unit root is assumed)
Hadri Z-statistic

(assuming heterosk. across disturbances) 55.907 0.000 60.480 0.000
Hadri Z-statistic

(assuming serial dependance across disturbances) 5.956 0.000 6.653 0.000
NH∗ (i.i.d. RW errors) 5.210••• - 5.192•••

NH∗∗ (nonparametric adjustment of LRV, lag=1) 2.760••• - 2.730•••

• Rejection at 10% of the null hypothesis; •• rejection at 5% of the null hypothesis; • • • rejection at 1% of the null
hypothesis; ∗ No lag specified for LRV; ∗∗ With lag 1, 2 or 3 for LRV; Software used: STATA 10.

Table 6: Panel unit root test for Real Echange Rates (lag=2)

US numeraire EU numeraire

Method Statistics p-value Statistics p-value Obs

Null: unit root (common unit root is assumed)
LLC t∗ -1.519 0.064 -1.233 0.109 1032

Null: unit root (individual unit root is assumed)
IPS w-statistic -1.761 0.039 -1.247 0.106 1032
CADF Z(t-bar) -1.132 0.129 0.347 0.636 1032
ADF Fisher χ2 17.691 0.342 17.026 0.394 1032
PP FIsher χ2 19.825 0.228 21.870 0.147 1032

Null: no unit root (common unit root is assumed)
Hadri Z-statistic

(assuming heterosk. across disturbances) 55.907 0.000 60.480 0.000
Hadri Z-statistic

(assuming serial dependance across disturbances) 5.956 0.000 6.653 0.000
NH∗ (i.i.d. RW errors) 5.208••• - 5.192•••

NH∗∗ (nonparametric adjustment of LRV, lag=2) 1.924••• - 1.898•••

• Rejection at 10% of the null hypothesis; •• rejection at 5% of the null hypothesis; • • • rejection at 1% of the null
hypothesis; ∗ No lag specified for LRV; ∗∗ With lag 1, 2 or 3 for LRV; Software used: STATA 10.
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Table 7: Panel unit root test for Real Echange Rates (lag=3)

US numeraire EU numeraire

Method Statistics p-value Statistics p-value Obs

Null: unit root (common unit root is assumed)
LLC t∗ -1.005 0.157 -0.826 0.2043 1024

Null: unit root (individual unit root is assumed)
IPS w-statistic -1.538 0.062 -1.074 0.141 1024
CADF Z(t-bar) -1.308 0.096 0.319 0.375 1024
ADF Fisher χ2 16.899 0.392 19.690 0.235 1024
PP FIsher χ2 20.446 0.201 22.824 0.112 1024

Null: no unit root (common unit root is assumed)
Hadri Z-statistic

(assuming heterosk. across disturbances) 55.907 0.000 60.480 0.000
Hadri Z-statistic

(assuming serial dependance across disturbances) 5.956 0.000 6.653 0.000
NH∗ (i.i.d. RW errors) 5.210••• - 5.192•••

NH∗∗ (nonparametric adjustment of LRV, lag=3) 1.499••• 1.477•••

• Rejection at 10% of the null hypothesis; •• rejection at 5% of the null hypothesis; • • • rejection at 1% of the null
hypothesis; ∗ No lag specified for LRV; ∗∗ With lag 1, 2 or 3 for LRV; Software used: STATA 10.

Table 8: Pedroni and Westerlund test on panel cointegration*

Pedroni tests Westerlund test

Case Z̃ρ p-value Ztρ̂NT
p-value Pγ Z-value p-value p-value Lag

(yt ∼ I(0)) (Robust) (AIC)

(p − αsUS − βpUS) 0.888 0.375 0.485 0.628 -5.383 2.136 0.984 0.952 1

(sUS − αp − βpUS) -2.517 0.012 -2.977 0.003 -11.012 -0.219 0.413 0.379 1

(pUS − αsUS − βp) 0.598 0.550 0.190 0.849 -9.920 -0.237 0.594 0.542 1

(p − αsEU − βpEU ) 0.942 0.346 0.540 0.589 - - - - -

(sEU − αp − βpEU ) -11.355 0.000 -11.963 0.000 -11.736 -0.522 0.301 0.268 1

(pEU − αsEU − βp) -0.190 0.849 0.437 0.662 - - - - -

∗ Common Features: H0: no cointegration; deterministic term: constant + linear trend. Westerlund test features:
lag range: (0 - 3); lead range: (0 - 1); width of Bartlett’ s Kernel window: 3; bootstrap n. of replications: 1000;
Software used: RATS (Pedroni test), STATA 10 (Westerlund).

Table 9: McLeod-Li test for no ARCH-effects in ∆PPP (p-value)

US numeraire EU numeraire

Lag 1 2 3 4 1 2 3 4

DN 0.442 0.013 0.034 0.049 0.753 0.839 0.894 0.502
CAN 0.867 0.732 0.847 0.937 0.807 0.969 0.592 0.489
JPN 0.152 0.082 0.171 0.285 0.000 0.000 0.000 0.000
NW 0.000 0.000 0.001 0.002 0.017 0.000 0.000 0.000
SD 0.009 0.032 0.048 0.092 0.097 0.016 0.013 0.014
SZ 0.115 0.247 0.320 0.471 0.380 0.427 0.023 0.047
UK 0.000 0.000 0.000 0.000 0.011 0.015 0.022 0.039
US - - - - 0.048 0.012 0.031 0.056
EU 0.175 0.004 0.010 0.012 - - - -
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Table 10: Linearity testing and model selection: STAR (levels)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Series BIC AIC HQ Hinich test p st FL F4 F3 F2 Model

H-statistic* C-statistic* selected F-value F-value F-value F-value

US numeraire
DN 2 2 2 0.000 0.000 2 yt−1 4.6170 exp−27 7.1771 exp−1 9.1470 exp−2 9.1223 exp−30 LSTR1

CAN 1 1 1 0.999 0.000 4 yt−1 1.8133 exp−24 9.1771 exp−1 6.8183 exp−1 4.7939 exp−28 LSTR1
JPN 1 2 2 0.000 0.000 1 - - - - - Linear
NW 2 2 2 0.000 0.000 2 - - - - - Linear
SD 2 4 2 0.050 0.000 4 yt−1 1.4752 exp−28 1.6756 exp−1 5.6180 exp−1 1.7128 exp−31 LSTR1
SZ 1 2 2 0.000 0.000 2 yt−1 2.0722 exp−23 3.7734 exp−1 6.0788 exp−2 1.8551 exp−25 LSTR1
UK 2 2 2 0.000 0.000 2 t 1.0997 exp−2 5.8995 exp−2 6.9881 exp−2 7.5855 exp−2 LSTR1
EU 2 2 2 0.000 0.000 2 - - - - - Linear

EU numeraire
DN 2 5 4 0.085 0.000 3 - - - - - Linear

CAN 1 1 1 0.000 0.000 1 - - - - - Linear
JPN 2 2 2 0.000 0.000 2 - - - - - Linear
NW 2 3 2 0.000 0.000 2 - - - - - Linear
SD 1 1 1 0.000 0.000 1 - - - - - Linear
SZ 1 1 1 0.000 0.000 1 - - - - - Linear
UK 1 1 1 0.000 0.000 1 yt−2 2.5356 exp−4 1.4176 exp−1 3.1568 exp−5 5.9932 exp−1 LSTR2
US 1 1 2 0.000 0.000 1 - - - - - Linear

Legend. (1): Countries; (2): Swartz-Bayesian information criterion; (3): Aikake information criterion; (4): Hannan-Quinn information criterion; (5)-(6) Hinich test statistics (p-values)
for third order autocorrelation and serial dependence from non gaussian errors; (7): selected order p using the following rule: p = k + n, k = max{AIC, BIC, HQ} is the maximum
number selected by standard information criteria, n = {1, 2, 3}) are the eventually additional order suggested by Hinich test; (8): transition variable; (8): Saikkonen-Lukkonen-
Teräsvirta linearity test by statistics LM2 (equation 15 on page 9) or LM3 (equation 19 on page 10); (9)-(11): results for Teräsvirta rule for the choice of the from of transition
variable (see sequence of nested hyphotheses 20 on page 10); (12) Selected model for transition function.
Software used: JMulTi 4
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Table 11: Linearity testing and model selection: SETAR (levels)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Series BIC AIC HQ Hinich test Selected p Tsay test Tsay test Tsay test d Model

H-statistic C-statistic d=1 d=2 d=3

US numeraire
DN 2 2 2 0.000 0.000 2 0.129 0.098 0.732

CAN 1 1 1 0.999 0.000 4 0.612 0.703 0.347
JPN 1 2 2 0.000 0.000 1 0.964 0.456 0.028 3 SETAR(1; 1, 3)
NW 2 2 2 0.000 0.000 2 0.475 0.097 0.406
SD 2 4 2 0.050 0.000 2 0.388 0.227 0.119
SZ 1 2 2 0.000 0.000 3 0.281 0.359 0.568
UK 2 2 2 0.000 0.000 2 0.204 0.273 0.731
EU 2 2 2 0.000 0.000 2 0.059 0.073 0.0564

EU numeraire
DN 2 5 4 0.085 0.000 3 0.034 0.238 0.376 1 SETAR(1; 3, 1)

CAN 1 1 1 0.000 0.000 1 0.095 0.846 0.920
JPN 2 2 2 0.000 0.000 2 0.143 0.110 0.008 3 SETAR(1; 2, 3)
NW 2 3 2 0.000 0.000 2 0.023 0.024 0.036 1 SETAR(1; 2, 1)
SD 1 1 1 0.000 0.000 1 0.003 0.311 0.194 1 SETAR(1; 1, 1)
SZ 1 1 1 0.000 0.000 1 0.425 0.337 0.407
UK 1 1 1 0.000 0.000 1 0.005 0.768 0.759 1 SETAR(1; 1, 1)
US 1 1 2 0.000 0.000 1 0.489 0.386 0.664

Legend. (1): Countries; (2): Swartz-Bayesian information criterion; (3): Aikake information criterion; (4): Hannan-Quinn information criterion; (5)-(6) Hinich test statistics in p-values
for third order autocorrelation and serial dependence from non gaussian errors; (7): selected order p using the following rule: p = k + n, k = max{AIC, BIC, HQ} is the maximum
number selected by standard information criteria, n = {1, 2, 3}) are the eventually additional order suggested by Hinich test; (8)-(10): Tsay test for threshold linearity in p-values
using d={1, 2, 3} delay parameters; (11): chosen delay parameter d; (12) selected SETAR(k;p,d), k = {1, . . . , N} regimes.
Software used: RATS
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Table 12: Hansen’ threshold effect test (bootstrapped p-values)

Rate supLM expLM aveLM supLMh expLMh aveLMh

y
£/e
t 0.050 0.088 0.391 0.040 0.083 0.407

Software used: RATS

Table 13: Test for serial correlation in STAR models

F -values

Lag 1 2 3 4 5 6 7 8

U.S. numeraire
DN 0.6577 0.8706 0.5816 0.5104 0.7466 0.6872 0.7210 0.7619

CAN 0.3120 0.2931 0.2291 1.6609 1.2908 1.2815 1.3886 1.3085
SD 1.6392 2.3734 1.7753 1.7076 2.4365 2.0747 1.8644 1.6499
SZ 0.1740 0.3187 0.4115 0.3997 0.3395 0.3610 0.6045 0.5696
UK 0.2756 1.1349 1.1029 1.4913 1.3671 1.3136 1.2506 1.1720

E.U. numeraire
EU 0.3441 0.1742 0.1418 0.0964 0.1177 0.3255 0.5751 0.5365

P -values

Lag 1 2 3 4 5 6 7 8

U.S. numeraire
DN 0.4190 0.4213 0.6282 0.7282 0.5902 0.6604 0.6544 0.6369

CAN 0.5775 0.7465 0.8760 0.1639 2729 0.2716 0.2173 0.2470
SD 0.2029 0.0975 0.1556 0.1530 0.0338 0.0617 0.0822 0.1192
SZ 0.6773 0.7277 0.7450 0.8085 0.8880 0.9021 0.7511 0.1192
UK 0.6005 0.3249 0.3509 0.2093 0.2419 0.2569 0.2817 0.3227

E.U. numeraire
UK 0.5586 0.8403 0.9347 0.9834 0.9882 0.9223 0.7748 0.8266

Software used: JMulTi 4

Table 14: Test for no remaining nonlinearity

F-value DF1 DF2 P-value

U.S. numeraire
DN 0.32178 6 118 0.924

CAN 0.80135 12 110 0.648
SD 0.78239 12 110 0.667
SZ 0.40780 6 118 0.873

UK∗ 0.69841 6 116 0.651

E.U. numeraire
UK 0.96193 3 118 0.413

∗ Statistic refers to the case st = yt−1

Software used: JMulTi 4
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Table 15: Test for parameter constancy

F-value P-value

H1 H2 H3 H1 H2 H3

U.S. numeraire
DN 2.6360 1.5448 1.8829 0.0374 0.1495 0.0440

CAN 1.7044 1.1861 1.4203 0.1537 0.3137 0.1677
SD 2.3735 1.6442 1.7166 0.0562 0.1202 0.0729
SZ 2.4180 1.3907 1.7106 0.0524 0.2080 0.0739
UK 1.8348 1.8005 NaN 0.0984 0.0568 NaN

E.U. numeraire
UK 1.2717 1.3326 1.7530 0.2759 0.2108 0.0419

Software used: JMulTi 4
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Figure 1: PPP, US numeraire (in logs)
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Figure 2: PPP, EU numeraire (in logs)
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Figure 3: PPP, US numeraire (in logs), first differences
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Figure 4: PPP, EU numeraire (in logs), first differences
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Figure 5: Grid search for starting values of γ and c
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Figure 6: Transition function G for estimated STAR models
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Figure 7: Traditional Impulse Response Functions
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