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Abstract

The diagonal GARCH(1,1) model is shown to support identi�cation of the tri-
angular system and is argued as a second moment analog to traditional exclusion
restrictions. Estimators for this result include QML and GMM. The GMM estimator
contains many (potential weak) moment conditions that can be the source of bias. As a
result, a jackknife GMM estimator is proposed that remains consistent in the presence
of many such moments. A small Monte Carlo study of the GMM and jackknife GMM
estimators is also included.

JEL Codes: C3, C13, C32. Keywords: Triangular models, heteroskedasticity, iden-
ti�cation.

1. Introduction

Let Yt =
h
Y1;t Y2;t

i0
, a vector of endogenous variables. Let Xt be a vector of predeter-

mined variables that can include lags of Yt, and let �t =
h
�1;t; �2;t

i0
, a vector of unobserved

errors. In addition, let �0 =
�
�0; �0; !ij;0; aij;0; bij;0

	
8 i; j = 1; 2 be a set of true parameter

values. For the sequence fYt; Xtgt2Z with associated �-algebra zt, consider the triangular

system:

Y1;t = X
0

t�1;0 + Y2;t�2;0 + �1;t � Zt�0 + �1;t (1)

Y2;t = X
0

t�0 + �2;t (2)

1I owe gratitude to Robin Lumsdaine, Arthur Lewbel, David Rei¤en, two anonymous referees, and seminar
participants at the 2007 Summer Meeting of the Econometric Society for helpful comments and discussions.

2O¢ce of the Chief Economist, 1155 21st Street, N.W., Washington, DC 20581 USA. Tel: (202) 418-5460
email: tprono@cftc.gov

The views expressed herein are solely those of the author and do not re�ect o¢cial positions of the
Commodity Futures Trading Commission. In addition, the usual disclaimer applies.
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where the errors are correlated. I show that when there are no exclusionary restrictions

available for �1;0, it remains possible to identify �0 if

E
�
�t j zt�1

�
= 0; E

h
�t�

0

t j zt�1

i
= Ht =

�
hij;t

�
; (3)

where Ht is time varying, and

hij;t = hij;t (�0) = !ij;0 + aij;0�i;t�1�j;t�1 + bij;0hij;t�1 (�0) : (4)

(3) attributes conditional heteroskedasticity (CH) to �t. CH is necessary but not su¢cient

for identi�cation of �0. (4) assigns a particular GARCH functional form to the CH, the

diagonal GARCH(1,1) model. Identi�cation of �0 derives from this particular GARCH

functional form.

The univariate version of (4) was introduced by Bollerslev (1986) and extended into the

multivariate setting by Bollerslev, Engle, and Wooldridge (1988). By nature of (4) being a

diagonal model, exclusionary restrictions are imposed on all past o¤-diagonal squared errors

and cross products of errors. These second moment exclusionary restrictions identify �0.

2. Identi�cation Source

The identi�cation problem in (1) can be recast in terms of a control function as in Klein

and Vella (2010). Doing so provides a heuristic basis for understanding how (3) and (4) solve

this problem. Consider the conditional regression

A0
�
zt�1

�
� argmin

A

E
�
�1;t � A0�2;t j zt�1

�2
= Cov

�
�1;t; �2;t j zt�1

�
=V ar

�
�2;t j zt�1

�
:

In this case, Ut � �1;t�A0
�
zt�1

�
�2;t is uncorrelated with �2;t conditional on zt�1 and forms

the basis for the controlled regression

Y1;t = Zt�0 + A0
�
zt�1

�
�2;t + Ut: (5)

Let Vt =
�
Zt; �2;t

�
. Then, if �t is homoskedastic so that A0

�
zt�1

�
is constant, we have
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the usual identi�cation problem, since (absent exclusionary restrictions for �1;0) E [V
0

t Vt] is

singular.3 Now suppose, instead, that �t is CH, and let Wt =
�
Zt; A0

�
zt�1

�
�2;t
�
. Then,

E
�
W

0

tWt

�
is nonsingular, and the identi�cation problem is solved, provided that A0

�
zt�1

�

can be consistently estimated. This latter requirement necessitates (4) and illustrates why

CH alone is not su¢cient for identifying �0.

One approach to make estimation ofA0
�
zt�1

�
feasible is to assume a constant conditional

covariance. Speci�cally, since A0
�
zt�1

�
= h12;t (�0) =h22;t (�0) given (4), if h12;t (�0) = !12;0,

then A0
�
zt�1

�
can be consistently estimated because h22;t (�0) is parameterized as a univari-

ate GARCH(1,1) model, and �2;t is identi�ed provided that E [XtX
0

t] is nonsingular. Sentana

and Fiorentini (2001) employ this precise covariance restriction to identify a latent factor

model, where univariate GARCH(1,1) processes characterize the conditional variances of the

factors. Lewbel (2010) also relies upon a constant conditional covariance restriction for iden-

tifying triangular and simultaneous models. In a similar vein, Vella and Verbeek (1997) and

Rummery et al. (1999), too, rely on a covariance restriction for identi�cation by proposing

rank order as an instrumental variable.

The contribution of this note is to allow h12;t (�0) to be time-varying, parameterizing it

as an ARMA(1,1) process, analogous to the speci�cation of each conditional variance. Doing

so complicates estimation of A0
�
zt�1

�
by requiring the control function to be treated simul-

taneously along with (5), since h12;t (�0) now depends on past values of �1;t. The functional

form in (4) allows for this simultaneous estimation by permitting �2;0 to be identi�ed from

the reduced form of h12;t (�0). As is the case with traditional exclusionary restrictions im-

posed on �1;0, identi�cation from the reduced form of h12;t (�0) results because of restrictions

imposed on the structural form; speci�cally, the exclusion of past values of �21;t and �
2
2;t from

the parameterization of h12;t (�0).

Klein and Vella (2010) is a work closely related to this one. They show identi�cation

of the triangular model given heteroskedastic errors of a semi-parametric functional form.

Their estimator is more complicated to implement than the ones I propose, owing to the

more general heteroskedastic speci�cation. In many applications of �nancial economics, the

more restrictive CH speci�cation of (3) and (4) proves warranted (see, for example, Hansen

3Singularity follows from �
2;t being a linear combination of Y2;t and Xt.
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and Lunde 2005). Moreover, the Klein and Vella approach links the conditional covariance

between errors directly to each conditional variance. In this note, by contrast, h12;t (�0) is

not a direct function of either h11;t (�0) or h22;t (�0).
4

Other papers that exploit heteroskedasticity for identi�cation include Rigobon (2003) and

Rigobon and Sack (2003), where multiple unconditional variance regimes act as probabilistic

instruments, and the correlation between structural errors is sourced to common, unobserved,

shocks.

The estimators I propose in the next two sections simultaneously estimate (1) and (2)

along with the speci�cation for Ht given in (4) (or select autocovariances from that speci-

�cation). They do not estimate (5). Estimators based on (1)�(4) versus ones based on (5)

are equivalent in terms of their requirements for identi�cation.

3. QML Estimation

For the model of (1)�(4), consider the following additional assumptions:

ASSUMPTION A1: E [XtX
0

t] andE [XtYt] are �nite and identi�ed from the data. E [XtX
0

t]

is nonsingular.

ASSUMPTION A2: Let Ht (�) =
�
hij;t (�)

�
. Ht (�) is positive de�nite almost surely.

ASSUMPTION A3(i):
��
aij; bij

�
: aij > 0; bij � 0; aij + bij < 1

	
.

ASSUMPTION A3(ii): f(a12; a22) : a12 6= a22g.

In practice, A2 can be satis�ed using the BEKK parameterization of (4) introduced by

Engle and Kroner (1995).5 A3(i) restricts �t to be covariance stationary. The condition

aij > 0 ensures that hij;t (�0) is identi�ed.
6 Allowing bij = 0 permits Ht (�0) to follow a

diagonal ARCH(1) process. A3(ii) is an inequality restriction imposed on Ht (�0) that is

necessary for the identi�cation of �2;0 (see the proof to Proposition 1 in the Appendix) and

4An example where h
12;t (�0) is a direct function of h11;t (�0) and h22;t (�0) is the CCC model of Bollerslev

(1990).
5See Proposition 2.6 of the aforementioned work.
6If aij;0 = 0, then hij;t (�0) is completely deterministic, and !ij;0 and bij;0 are not separately identi�ed.
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generally illustrative of how parameter restrictions on the heteroskedastic process of Ht (�0)

are necessary for identi�cation of the triangular model.

For the sequence fYt; Xtg
T

t=1, let �1;t (�) = Y1;t � Zt�, and �2;t (�) = Y2;t � X
0

t�. For

lt (�) � l
�
Yt; zt�1; �

�
, where

l
�
Yt; zt�1; �

�
= �1=2 log jHt (�)j � 1=2�t (�)

0Ht (�)
�1 �t (�) ;

let LT (�) =
TP
t=1

lt (�). Consider the estimator

b� = argmax
�2�

LT (�) (6)

PROPOSITION 1. For the estimator in (6) of the model described by (1)�(4), let As-

sumptions A1�A3(ii) hold. Then �0 is identi�ed.

Proofs are in the Appendix. Let et � vech
�
�t�

0

t

�
=
�
�21;t; �1;t�2;t; �

2
2;t

�0
.7 Conditional on

past values of et, h11;t is parameterized only to depend on past values of �
2
1;t, h12;t only to

depend on past values of �1;t�2;t, and h22;t only to depend on past values of �22;t. It is from

these restrictions on the dynamics ofHt (�0) that identi�cation follows, much in the same way

that traditional identi�cation of (1) follows from at least one element of the parameter vector

�1;0 being zero. Suppose that instead of the parameterization in (4), hij;t were parameterized

to depend on past values of every element in et. In this case, the matrices C0 and D0 in (12)

would each relate nine reduced form parameters to ten structural unknowns (the nine ARCH

(GARCH) parameters plus �2;0), and (6) would not be identi�ed because a necessary order

condition would not be satis�ed. In the language of section 2, this example is a case where

identi�cation is not achieved because the control function cannot be consistently estimated.

Proposition 3.1 of Engle and Kroner (1995) states that if a model�s structural errors follow

a GARCH process then so, too, will its reduced form errors. While the lag order of these

two processes will coincide, their parametric forms, generally, will not (see Proposition 2.1 of

Iglesias and Phillips 2004). Proposition 1 leverages o¤ of this di¤erence between structural

7The vech (�) operator stacks the lower triangle, including the diagonal, of a symmetric matrix into a
column vector.
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and reduced forms. Speci�cally, while Ht (�0) in (4) is a diagonal model, its reduced form in

(12) contains nonzero o¤-diagonal terms. Identi�cation of �2;0 depends on these o¤-diagonal

reduced form parameters. In discussing how the relationship between structural and reduced

form GARCH models can identify simultaneous systems, Rigobon (2002) states that "the

model of heteroskedasticity of the structural residuals impose[s] important constraints on

how the reduced form heteroskedasticity can evolve" (p.433). In the context of Proposition

1, the "important constraints" are the exclusionary restrictions imposed on past values of et

by the diagonal model in (4).

Under Proposition 1, the key identifying assumption is that Ht (�0) follows a diagonal

GARCH process. The precise lag order of this diagonal process is unimportant. For instance,

Ht (�0) can be speci�ed as a diagonal GARCH(p, q) process with p; q � 1, and identi�cation

still follows. To aid in determining the lag order, the robust lagrange multiplier tests of

Bollerslev and Wooldridge (1992) are applicable.

Given Proposition 1, consistency and asymptotic normality of (6) is established by The-

orem 2.1 of Bollerslev and Wooldridge (1992). A standard regulatory condition for these

results is compactness of �. This condition needs to be reconciled with A3(ii). One such

reconciliation would be to rede�ne � so that a12=a22 is exclusive of an open neighborhood

of one.

4. GMM Estimation

Consider, again, the model of (1)�(4). For

ht (�0) � vech [Ht (�0)]

=
�
h11;t (�0) ; h12;t (�0) ; h22;t (�0)

�0

note that

et = ht (�0) + �t; (7)

where E
�
�t j zt�1

�
= 0 and E

�
�t�

0

s

�
= 0 8 t 6= s. Let et =

�
�1;t�2;t; �

2
2;t

�0
, and consider

analogous de�nitions for ht (�0) and �t, respectively. In addition, let Zt�2 =
�
e
0

t�2 � � � e
0

t�L

�0
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for a �nite L � 2, where Zt�2 can be thought of as a vector of instruments for ht (�0), and

de�ne Cov
�
et; Zt�i

�
� E

h
(et � E [et])

�
Zt�i � E [Zt]

�0i
for i � 1.

ASSUMPTION A3(iii): Let p11 = a12+b12, and p22 = a22+b22. f(p11; p22) : p11 6= p22g.

ASSUMPTION A4(i): E
�
�t�

0

t

�
= �� <1.

ASSUMPTION A4(ii) Cov
�
et; Zt�1

�
has full row rank.

LEMMA. De�ne A0 (B0) as a 2� 2 diagonal matrix with a12;0 and a22;0 ( b12;0 and b22;0)

as the diagonal entrees. For the model of (3) and (4), let Assumptions A3(i) and A4(i)

hold. Then et is covariance stationary and

Cov
�
et; et��

�
= (A0 +B0)Cov

�
et; et�(��1)

�
; (8)

where � � 1.

This lemma is closely related to Theorem 3 of Hafner (2003) and establishes a subset

of the autocovariances of squares and cross products of errors implied by (3) and (4). This

subset of autocovariances is shown to provide the additional moment conditions necessary

for identifying a GMM estimator of (1) and (2).

Let  = f�; �; !; Pg, where ! = [!12; !22]
0, and P = A + B. De�ne 	 as the set of

all possible values for  . In addition, � = [I � P ]�1 !, where I is the identity matrix, and

zt�2 ( ) =
h�
et�2 ( )� �

�0
; � � � ;

�
et�L ( )� �

�0i0
. Consider the following vector valued

functions

U1
�
Yt; zt�1;  

�
= Xt 
 �t ( )

U2
�
Yt; zt�1;  

�
= et ( )� �

U3
�
Yt; zt�1;  

�
= vec

�
(et ( )� �) z

0

t�2 ( )� P (et ( )� �) z
0

t�1 ( )
�
;

where 
 is the Kronecker product, and vec (�) stacks the columns of a matrix into a column

vector. Stack these functions into a single column vector U
�
Yt; zt�1;  

�
. With Ut ( ) �

7



U
�
Yt; zt�1;  

�
, one can construct Hansen�s (1982) GMM estimator

b = argmin
 2	

QT ( ) =

�
T�1

TP
t=1

Ut ( )

�0
WT

�
T�1

TP
t=1

Ut ( )

�
; (9)

for some sequence of positive de�nite WT , where T
�1

TP
t=1

U3;t ( ) is a column vector of the

sample autocovariances from (8).

The estimator in (6) estimates each element of the control function A0
�
zt�1

�
. By

contrast, the estimator in (9) estimates the autocovariances implied by each element in

A0
�
zt�1

�
. As seen in Proposition 2, however, identi�cation of the triangular system re-

mains the product of both the parameterizations of h12;t (�0) and h22;t (�0).

PROPOSITION 2. For the estimator in (9) of the model described by (1), (2), and (8),

let Assumptions A1�A3(i) and A3(iii)�A4(ii) hold. Then the only  2 	 that satis�es

E [Ut ( )] = 0 is  =  0.

If (a) Ut ( ) satis�es the UWLLN of Wooldridge (1990, De�nition A.1), (b) WT

p
�! W0,

and (c)  0 2 int 	, a compact parameter space, then (9) can be shown to be weakly

consistent given Proposition 2. Compactness under (c) needs to be reconciled with A3(iii).

One possibility is to rede�ne 	 so that p11=p22 is exclusive of an open neighborhood of one.

(9) can also be shown to be asymptotically normal; however, E
�
kUt ( 0)k

2� < 1 is

necessary. If such moment existence criteria prove overly restrictive, then bootstrap standard

errors for b are available through an application of the nonoverlapping block bootstrap

method of Carlstein (1986), making sure to recenter the bootstrap version of the moment

conditions relative to the population version as in Hall and Horowitz (1996).

The autocovariance process in (8) is the key identifying assumption for (9). Since this

process applies across all lags of et, the vector of instruments Zt�2 used in de�ning the

moment conditions T�1
TP
t=1

U3;t ( ) can be quite large. As a consequence,  0 is overidenti�ed,

and the standard test of overidentifying restrictions based on the GMM objective function

is available. A non-parametric test of these overidentifying restrictions is also possible given

the bootstrap method in Brown and Newey (2002).
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The principal contribution of this section is the moment conditions in (8) used for identi-

fying the triangular model. An estimator based on these moment conditions is (9). For large

values of L, the resulting instrument vector Zt�2 produces many (potentially weak) moment

conditions. In the case of many (weak) moments, Newey and Smith (2004) show that (9)

can be biased. An alternative estimator,

^

 = argmin
 2	

QT ( )� T�1tr

�
WT

�
T�1

TP
t=1

Ut ( )Ut ( )
0

��
; (10)

which is the jackknife GMM (JGMM) estimator of Newey and Windmeijer (2009), remains

consistent under many (potentially weak) moments by deleting the term responsible for the

bias.8 This estimator is likely to be preferable to (9) in instances where high values of L lead

to large reductions in standard errors.

5. Monte Carlo

This section analyzes the �nite sample performance of (9) and (10) benchmarked against

the OLS estimator by considering the following simulation design:

Y1;t = X1;t + Y2;t + �1;t

Y2;t = X1;t + �2;t

Ht (�0)
�1 �t = �t � N (0; I) ;

where a11;0 = a12;0 = 0:05, a22;0 = 0:10, b11;0 = 0:93, b12;0 = 0:80, and b22;0 = 0:85. Condi-

tional on these aij;0 and bij;0, the constants !ij;0 are set so that V ar
�
�1;t
�
= V ar

�
�2;t
�
= 1,

and Cov
�
�1;t; �2;t

�
= 0:20. All simulations are conducted with 1,000 observations across

1,000 trials after dropping the �rst 200 observations to avoid initialization e¤ects. For each

trial using (9) and (10), the starting values are the true parameter values. Both (9) and (10)

set WT =

�
T�1

TP
t=1

Ut

�
�

 

�
Ut

�
�

 

�0��1
, where

�

 is a preliminary estimator, and L = 10.9

8This JGMM estimator assumes that Ut ( ) follows a 1
st order Markov process. A generalization of (10)

that allows Ut ( ) to follow higher order Markov processes is discussed in Prono (2010).
9Given the simulation design, �t is eighth moment stationary according to �gure 1 of Bollerslev (1986).
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Table 1 summarizes the results. The OLS estimator of the model for Y1;t is about 20%

biased. The bias drops to about 9% for the GMM estimator. The JGMM estimator is

unbiased. The GMM estimates are more dispersed than their OLS counterparts with smaller

median absolute errors. The JGMM estimates are less dispersed and have smaller median

absolute errors than OLS. In general, these simulation results provide evidence that (9) and

(10) remedy the endogeneity bias of the triangular model. In addition, the JGMM estimator

is shown to display less bias and higher e¢ciency than its GMM counterpart for a moderately

large set of moment conditions.10

10For L = 10, Ut ( ) is composed of 40 moment conditions.
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Appendix

PROOF OF PROPOSITION 1: Let �0 =
�
�1;0; �2;0; $0; C0; D0

	
, where �1;0 and �2;0

are the reduced form parameter vectors to (1) and (2), respectively. The reduced form
errors Ri;t (�0) are then

Ri;t (�0) = Yi;t �X 0

tE [XtX
0

t]
�1
E
�
XtYi;t

�
;

which are identi�ed given A1. Substitution of (1) and (2) for Y1;t and Y2;t into the
de�nitions for R1;t (�0) and R2;t (�0) shows that

R1;t (�0) = �1;t � �2;t�2;0; R2;t (�0) = �2;t: (11)

Substitution of (11) into Ht (�0) shows that for E
�
Rt (�0)Rt (�0)

0 j zt�1

�
= H

(r)
t (�0),

the reduced form conditional variance-covariance matrix,

h
(r)
t (�0) � vech

h
H
(r)
t (�0)

i
=
h
h
(r)
11;t (�0) ; h

(r)
12;t (�0) ; h

(r)
22;t (�0)

i0
(12)

= $0 + C0vech
�
Rt�1 (�0)Rt�1 (�0)

0
�
+D0h

(r)
t�1 (�0) ;

where C0 =
�
ckl;0

�
and D0 =

�
dkl;0

�
for k; l = 1; 2; 3. Consider

lt (�) = �1=2 log
���H(r)

t (�)
���� 1=2Rt (�)

0H
(r)
t (�)�1Rt (�) ;

and LT (�) =
TP
t=1

lt (�). Given A1, A2, and A3(i), �0 is a maximizer of E [LT (�)] that

is identi�ably unique according to Lemma A.2 and condition A.1(iii)(b) in Bollerslev
and Wooldridge (1992). From (12),

h
(r)
12;t (�0) = $21;0 + c22;0R1;t�1 (�0)R2;t�1 (�0) + c23;0R

2
2;t�1 (�0)

+d22;0 h
(r)
12;t�1 (�0) + d23;0h

(r)
22;t�1 (�0)

where c22;0 = a12;0, c23;0 =
�
a22;0 � a12;0

�
�2;0, d22;0 = b12;0, and d23;0 =

�
b22;0 � b12;0

�
�2;0.

Since h
(r)
22;t (�0) = h22;t (�0) given (11), c33;0 = a22;0 and d33;0 = b22;0. As a result, �2;0 is

identi�ed as

�2;0 =
c23;0

�
c33;0 � c22;0

�
+ d23;0

�
d33;0 � d22;0

�
�
c33;0 � c22;0

�2
+
�
d33;0 � d22;0

�2

given A3(ii). Since �2;0 = �0, �1;0 is identi�ed conditional on �2;0. Since $31;0 = !22;0,
!12;0 is also identi�ed conditional on �2;0. The structural parameters to h11;t (�0) are
then identi�ed conditional on �2;0, !12;0, !22;0, a12;0, a22;0, b12;0, and b22;0.�

11



PROOF OF THE LEMMA: Let ht = ht (�0). Given (4) and the de�nitions of et and ht,

it follows that

ht = !0 + A0et�1 +B0ht�1: (13)

Recursive substitution into (13) produces

ht =
1P
i=1

Bi�1
0

�
!0 + A0et�i

�
: (14)

Following the steps outlined in the proof to Proposition 2.7 of Engle and Kroner (1995),

(14) can be used to show that

E
�
et j zt��

�
=
�
I + (A0 +B0) + � � �+ (A0 +B0)

��2�!0+(A0 +B0)
��1

1P
i=1

Bi�1
0

�
!0 + A0et�i��+1

�
:

For a square matrix Z, it is well known that (I + Z + � � �+ Z��1) ! (I � Z)�1 as

� ! 1 if and only if the eigenvalues of Z are less than one in modulus. Therefore,

E
�
et j zt��

� p
! [I � (A0 +B0)]

�1 !0 (as � !1) given A3(i).

From (7),

E
h
ete

0

t

i
= E

h
hth

0

t

i
+ ��

given A4(i). Let �0 = [I � (A0 +B0)]
�1 !0.

E
h
hth

0

t

i
= �0 + A0E

h
ht�1h

0

t�1

i
A0 + A0��A0 + A0E

h
ht�1h

0

t�1

i
B0 (15)

+B0E
h
ht�1h

0

t�1

i
B0 +B0E

h
ht�1h

0

t�1

i
B0

where �0 = !0!
0

0 + (A0 +B0) �0!
0

0 + !0�
0

0 (A0 +B0). Applying the vec (�) operator,

which stacks the columns of a matrix into a column vector, to (15) and simplifying

12



yields

vec
�
E
h
hth

0

t

i�
= �0 +G0vec

�
E
h
ht�1h

0

t�1

i�
+ (A0 
 A0) vec

�
��
�

= [I +G0]
�
�0 + (A0 
 A0) vec

�
��
��
+
�
G20
�
vec

�
E
h
ht�2h

0

t�2

i�

=
�
I +G0 +G20

� �
�0 + (A0 
 A0) vec

�
��
��
+
�
G30
�
vec

�
E
h
ht�3h

0

t�3

i�

= : : :

=
�
I +G0 + � � �+G��1

0

� �
�0 + (A0 
 A0) vec

�
��
��
+ (G�

0) vec
�
E
h
ht��h

0

t��

i�

where G0 = (A0 +B0) 
 (A0 +B0), and 
 is the Kronecker product. Therefore,

vec
�
E
h
hth

0

t

i�
converges to [I �G0]

�1 ��0 + (A0 
 A0) vec
�
��
��
as � ! 1 given

A3(i).

Note that

Cov
�
et; et��

�
= E

h
ete

0

t��

i
� �0�

0

0:

Consider the case where � = 1.

E
h
ete

0

t�1 j zt�1

i
= !0e

0

t�1 + A0et�1e
0

t�1 +B0ht�1e
0

t�1:

By iterated expectations,

E
h
ete

0

t�1

i
= !0�

0

0 + (A0 +B0) �h + A0��

and, as a result,

Cov
�
et; et�1

�
= (!0 � �0) �

0

0 + (A0 +B0) �h + A0��

13



where �
h
= E

h
hth

0

t

i
. Next, consider the case where � � 2.

E
�
ht j St��

�
= E

�
!0 + A0et�1 +B0ht�1 j zt��

�

= !0 + (A0 +B0)E
�
ht�1 j zt��

�

= [I + (A0 +B0)]!0 + (A0 +B0)
2E

�
ht�2 j zt��

�

= : : :

=
�
I + (A0 +B0) + : : :+ (A0 +B0)

��1�!0 + (A0 +B0)
��1 �A0et�� +B0ht��

�

= [I � (A0 +B0)
� ]�0 + (A0 +B0)

��1 �A0et�� +B0ht��
�
:

By iterated expectations,

E
h
ete

0

t��

i
= E

h
E
h
ete

0

t�� j zt��

ii

= E
h
E
�
ht j zt��

�
e
0

t��

i

= [I � (A0 +B0)
� ]�0�

0

0 + (A0 +B0)
��1

h
(A0 +B0)E

h
ht��h

0

t��

i
+ A0E

h
�t���

0

t��

ii
:

As a result,

Cov
�
et; et��

�
= (A0 +B0)

��1 �(A0 +B0)
�
�
h
� �0�

0

0

�
+ A0��

�
; (16)

from which (8) follows.�

PROOF OF PROPOSITION 2: Given (8),

Cov
�
et; Zt�2

�
= (A0 +B0)Cov

�
et; Zt�1

�
: (17)

Substitution of (11) into (17) produces the reduced form autocovariance relation

Cov
h
rt; Z

(r)
t�2

i
=
�
C0 +D0

�
Cov

h
rt; Z

(r)
t�1

i
;

where rt =
�
R1;tR2;t; R

2
2;t

�0
, Z

(r)
t�2 =

�
r
0

t�2; : : : ; r
0

t�L

�0
, C0 =

�
ckl;0

�
and D0 =

�
dkl;0

�

14



for k; l = 2; 3. De�ne �(r) (�) � Cov
h
rt; Z

(r)
t��

i
. Then

�
C0 +D0

�
= �(r) (2) �(r) (1)0

�
�(r) (1) �(r) (1)0

��1
(18)

given A4(ii). From (18), c22;0 + d22;0 = a12;0 + b12;0, c33;0 + d33;0 = a22;0 + b22;0, and

�2;0 =
c23;0 + d23;0�

c33;0 + d33;0
�
�
�
c22;0 + d22;0

�

given A3(iii). Conditional on �2;0,

�1;0 = E [XtX
0

t]
�1
E
�
Xt

�
Y1;t � Y2;t�2;0

��
(19)

given A1. Conditional on a12;0 + b12;0 and �2;0, !12;0 =
�
a12;0 + b12;0

��1
E
�
�1;t�2;t

�
.

Conditional on a22;0 + b22;0 and �2;0, !22;0 =
�
a22;0 + b22;0

��1
E
�
�22;t
�
.�

15
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TABLE 1

SIMULATION RESULTS

Estimator

Para. Stat. OLS GMM JGMM

�1 Med. Bias -0.208 -0.090 -0.002

MDAE 0.208 0.145 0.007

Dec. Rge. 0.145 0.527 0.033

SD 0.058 0.219 0.026

�2 Med. Bias 0.206 0.082 0.011

MDAE 0.206 0.135 0.015

Dec. Rge. 0.122 0.517 0.055

SD 0.048 0.216 0.207

� Med. bias 0.002 -0.001 0.001

MDAE 0.020 0.024 0.012

Dec. Rge. 0.075 0.092 0.074

SD 0.030 0.046 0.091

Notes: The true parameter vector is �10 = �20 = �0 = 1. (J)GMM is the (jack-
knife) two-step generalized method of moments estimator with L = 10 and the optimal
weighting matrix. Med. Bias is the median bias, MDAE the median absolute error, and
SD the standard deviation of the estimates. DR is the decile range of the estimates,
measured as the di¤erence between the 90th and 10th percentiles.
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