Gach, Florian and Pötscher, Benedikt M. (2010): Non-Parametric Maximum Likelihood Density Estimation and Simulation-Based Minimum Distance Estimators.
Preview |
PDF
MPRA_paper_27512.pdf Download (410kB) | Preview |
Abstract
Indirect inference estimators (i.e., simulation-based minimum distance estimators) in a parametric model that are based on auxiliary non-parametric maximum likelihood density estimators are shown to be asymptotically normal. If the parametric model is correctly specified, it is furthermore shown that the asymptotic variance-covariance matrix equals the Cramér-Rao bound. These results are based on uniform-in-parameters convergence rates and a uniform-in-parameters Donsker-type theorem for non-parametric maximum likelihood density estimators.
Item Type: | MPRA Paper |
---|---|
Original Title: | Non-Parametric Maximum Likelihood Density Estimation and Simulation-Based Minimum Distance Estimators |
Language: | English |
Keywords: | Indirect inference, simulation-based minimum distance estimation, non-parametric maximum likelihood, density estimation, efficiency |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General |
Item ID: | 27512 |
Depositing User: | Benedikt Poetscher |
Date Deposited: | 17 Dec 2010 22:59 |
Last Modified: | 29 Sep 2019 18:31 |
References: | Altissimo, F. and Mele, A. (2009). Simulated non-parametric estimation of dynamic models. Rev. Econom. Stud. 76 413--450. Beran, R. (1977). Minimum Hellinger distance estimates for parametric models. Ann. Statist. 5 445--463. Berge, C.(1963). Topological Spaces. Oliver and Boyd, Edinburgh. Birman, M. S. and Solomyak, M.Z. (1967). Piecewise-polynomial approximations of functions of the class W_{p}^{}. Math. USSR Sbornik 2, 295-317. Carrasco, M., Chernov, M., Florens, J.-P., and Ghysels, E. (2007). Efficient estimation of general dynamic models with a continuum of moment conditions. J. Econometrics 140 529--573. Dudley, R. M. (1999). Uniform Central Limit Theorems. Cambridge Studies in Advanced Mathematics 63. Cambridge University Press, Cambridge. Dunford, N. and Schwartz, J. T. (1966). Linear Operators. Part I: General Theory. Wiley, New York. Fermanian, J. D. and Salanié, B. (2004): A nonparametric simulated maximum likelihood estimation method. Econometric Theory 20, 701-734. Gach, F.(2010). Efficiency in Indirect Inference. Ph.D. Thesis, Department of Statistics, University of Vienna. Gallant, R. and Long, J. (1997). Estimating stochastic differential equations efficiently by minimum chi-squared. Biometrika 84 125--141. Gouriéroux, C. and Monfort, A. (1996). Simulation-Based Econometric Methods. Oxford University Press, New York. Gouriéroux, C., Monfort, A., and Renault, E. (1993). Indirect inference. J. Appl. Econom. 8 85--118. Jiang, W. and Turnbull, B. (2004). The indirect method: inference based on intermediate statistics -- a synthesis and examples. Statist. Sci. 19 239--263. Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces. Results in Mathematics and Related Areas (3) 23. Springer-Verlag, Berlin. Lions, J. L. and Magenes, E. (1972). Non-homogeneous Boundary Value Problems and Applications. Vol. I. Die Grundlehren der mathematischen Wissenschaften 181. Springer-Verlag, New York-Heidelberg. Lorentz, G. G., v.Golitschek, M., and Makovoz, Y. (1996). Constructive Approximation: Advanced Problems. Springer-Verlag. Nickl, R. (2007). Donsker-type theorems for nonparametric maximum likelihood estimators. Probab. Theory Related Fields 138 411--449. Nickl, R. and Pötscher, B. M. (2007). Bracketing metric entropy rates and empirical central limit theorems for function classes of Besov- and Sobolev-type, J. Theoret. Probab. 20 177--199. Nickl, R. and Pötscher, B. M. (2010). Efficient simulation-based minimum distance estimation and indirect inference, Math. Meth. Statist., forthcoming. Pötscher, B. M. and Prucha, I. R. (1997). Dynamic Nonlinear Econometric Models. Asymptotic Theory. Springer-Verlag, Berlin. Smith, A. (1993). Estimating nonlinear time-series models using simulated vector autoregressions, J. Appl. Econom. 8 63--84. Triebel, H. (1983). Theory of Function Spaces. Monographs in Mathematics 78. Birkhäuser Verlag, Basel. van de Geer, S. (1993). Hellinger-consistency of certain nonparametric maximum likelihood estimators. Ann. Statist. 21 14--44. van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer, New York. Ziemer, W. P. (1989). Weakly Differentiable Functions. Springer, New York. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/27512 |