Simple GMM Estimation of the Semi-Strong GARCH(1,1) Model

Prono Todd

Commodity Futures Trading Commission

11. November 2010

Online at https://mpra.ub.uni-muenchen.de/27532/
MPRA Paper No. 27532, posted 20. December 2010 03:47 UTC
Simple GMM Estimation of the Semi-Strong GARCH(1,1) Model

Todd Prono
Commodity Futures Trading Commission

First Version: November 2009
This Version: November 2010

Abstract

IV estimators for the semi-strong ARCH(1) model that rely on past squared residuals alone as instruments do not extend to the GARCH case. Efficient IV estimators of the semi-strong GARCH(1,1) model require the derivative of the conditional variance as well as both the third and fourth conditional moments to be included within the instrument vector. This paper proposes IV estimators for the semi-strong GARCH(1,1) model that only rely on past residuals and past squared residuals as instruments. These estimators are based on the autocovariances of squared residuals, as in the ARCH(1) case described above, as well as on the covariances between squared residuals and past residuals. These latter covariances are nonzero if the residuals are skewed. Jackknife GMM estimators and jackknife continuous updating estimators (CUE) eliminate the bias caused by many (weak) instruments. The jackknife CUE is new and applies to cases where the optimal weighting matrix is unavailable out of a concern over the existence of higher moments. In these cases, a robust analog to the variance-covariance matrix determines the weighting matrix. A Monte Carlo study shows that a CUE based on the optimal weighting matrix as well as the jackknife CUE outperforms QMLE in finite samples. An empirical application involving Australian Dollar and Japanese Yen spot returns is also included.

Keywords: GARCH, GMM, instrumental variables, continuous updating, many moments, robust estimation. JEL codes: C13, C22, C53.

1 Helpful comments were provided by Celso Brunetti, Pat Fishe, and seminar participants at both the 2010 International Symposium on Forecasting and the 2010 Society for Computational Economics Conference on Computing in Economics and Finance. The views expressed herein are solely those of the author and do not reflect official positions of the Commodity Futures Trading Commission. In addition, the usual disclaimer applies.

2 Corresponding Author: Todd Prono, Commodity Futures Trading Commission, Office of the Chief Economist, 1155 21st, N.W., Washington, DC 20581. (202) 418-5460, tprono@cftc.gov.
1. Introduction

Despite a plethora of alternative volatility models intended to capture certain "stylized facts" of financial time series, the standard GARCH(1,1) model of Bollerslev (1986) remains the workhorse of conditional heteroskedasticity (CH) modeling in financial economics. By far, the most common estimator for this model is the quasi maximum likelihood estimator (QMLE). Properties of this estimator are well-studied. Weiss (1986) and Lumsdaine (1996) demonstrate that when applied to the strong GARCH(1,1) model, the QMLE is consistent and asymptotically normal (CAN). Bollerslev and Wooldridge (1992), Lee and Hansen (1994), and Escanciano (2009) generalize this result to the semi-strong GARCH(1,1) model. This paper also considers estimation of the semi-strong GARCH(1,1) model, but through the lens of generalized method of moments (GMM) estimators. Simple GMM estimators are constructed from: (i) the covariances between squared residuals and past residuals, (ii) the autocovariances between squared residuals. These estimators are shown to be instrumental variables (IV) estimators, where the instrument vector is completely contained within the time $t - 1$ information set.

Weiss (1986), Rich, Raymond and Butler (1991), and Guo and Phillips (2001) discuss IV estimators based on the autocovariances between squared residuals for the ARCH(1) model. These estimators, however, do not extend to the GARCH(1,1) case because the autocovariances of squared residuals alone are insufficient for identifying the model. Bollerslev and Wooldridge (1992) recognize that the "results of Chamberlain (1982), Hansen (1982), White (1982), and Cragg (1983) can be extended to produce an instrumental variables estimator asymptotically more efficient than QMLE under nonnormality" (p. 5-6) for the GARCH(1,1) model. Skoglund (2001) studies this result in detail for the strong GARCH(1,1) model. When applied to the semi-strong GARCH(1,1) model, however, this result requires the conditional variance function as well as the third and fourth conditional moments to be included within the instrument vector. The simple GMM estimators studied in this paper require none of these features. In particular, the conditional variance function enters neither the instrument vector nor the moment conditions defined in terms of this vector, and the third and fourth moments matter only unconditionally.
Covariances between squared residuals and past residuals identify the GARCH(1,1) model when residuals are skewed. The simple GMM estimators proposed in this paper, therefore, rely on unconditional skewness for identification. Such a feature is common for many high frequency financial return series to which the GARCH(1,1) model is applied.

These simple GMM estimators are variance targeting estimators (VTE) in that the unconditional variance is estimated in a preliminary first step and then plugged into the sample covariances and autocovariances used to estimate the ARCH and GARCH terms. The estimators are shown to be CAN under less restrictive moment existence criteria than in Weiss (1986) and Rich, Raymond, and Butler (1991). In addition, consistent robust estimators are proposed that require stationary moment criteria up only to the third moment. Applications in empirical asset pricing involve GARCH assumptions within the GMM paradigm (see, for instance, Mark 1988 as well as Bodurtha and Mark 1991). The simple GMM estimators proposed in this paper can be appended to these types of models without the need for specifying the entire conditional distribution of asset returns.

The proposed GMM estimators are IV estimators, where the instrument vector is composed of past residuals and past squared residuals. As a consequence, there are many potential instruments. Following Newey and Windmeijer (2009), the continuous updating estimator (CUE) of Hansen, Heaton, and Yaron (1996) using the optimal weighting matrix is shown to be robust to many (potentially weak) instruments. In addition, a jackknife CUE (JCUE) and a two step jackknife GMM estimator (JGMM) both using a robust weighting matrix are proposed that also eliminate the bias caused by many (weak) moments. These jackknife estimators delete the contemporaneous along with some of the lagged observation terms from the double sum that forms the CUE (GMM) objective function. The robust weighting matrix is analogous to the usual optimal weighting matrix (i.e., the inverse of the variance-covariance matrix of the functions comprising the moment conditions) but is free of the latter’s rather restrictive moment existence criteria. Both the optimal CUE and the JCUE are shown to be more efficient than QMLE in finite samples.

The remainder of this paper is organized as follows. Section 2 outlines the model’s assumptions and states two lemmas that define a set of moment conditions for identifying the GARCH(1,1) model. From these moment conditions, section 3 establishes IV estimators,
develops their properties, and proposes a data dependent weighting matrix for the moment conditions that does not require higher moment existence criteria for consistency. Section 4 discusses bias-free estimation given many (potentially weak) instruments. Section 5 discusses Monte Carlo results for the proposed estimators. Section 6 details an empirical application involving Australian Dollar and Japanese Yen spot returns, and section 7 concludes.

2. The Model and Implications

For the sequence \(\{Y_t\}_{t \in \mathbb{Z}} \), let \(F_t \) be the associated \(\sigma \)-algebra where \(F_{t-1} \subseteq F_t \subseteq \cdots \subseteq F \). Consider the first two conditional moments of \(Y_t \) as

\[
E \left[Y_t \mid F_{t-1} \right] = 0, \quad E \left[Y_t^2 \mid F_{t-1} \right] = h_t
\]

where

\[
h_t = \omega_0 + \alpha_0 Y_{t-1}^2 + \beta_0 h_{t-1}.
\]

In what follows, \(\omega_0 \) denotes the true value, \(\omega \) any one of a set of possible values, and \(\hat{\omega} \) an estimate. Parallel definitions hold for all other parameter values. The model of (1) and (2) defines the semi-strong GARCH process of Drost and Nijman (1993). The more common strong-GARCH characterization where \(Y_t \) is iid and drawn from a known distribution nests as a special case. Consider the following additional assumptions for the model of (1) and (2).

ASSUMPTION A1: Let \(\sigma_0^2 = \frac{\omega_0}{1-(\alpha_0+\beta_0)} > 0 \), and define \(\theta_0 = (\sigma_0^2, \alpha_0, \beta_0)' \). \(\theta_0 \in \Theta \subseteq \mathbb{R}^3 \) is in the interior of \(\Theta \), a compact parameter space. For any \(\theta \in \Theta \), \(\partial \leq \omega \leq W \), \(\partial \leq \alpha \leq 1 - \partial \), and \(0 \leq \beta \leq 1 - \partial \) for some constant \(\partial > 0 \), where \(\partial \) and \(W \) are given a priori.

The restrictions on \(\theta \) ensure that \(h_t \) is everywhere strictly positive. From Lumsdaine (1996), \(\alpha \) is strictly positive because if \(\alpha = 0 \), then \(h_t \) is completely deterministic, in which case \(\omega_0 \) and \(\beta_0 \) are not separately identified. Since \(\beta \geq 0 \), A1 nests the ARCH(1) model.
Implicit in A1 is the condition that $\alpha_0 + \beta_0 < 1$, in which case Y_t is covariance stationary with $E[Y_t^2] = \sigma_0^2$ following from Theorem 1 of Bollerslev (1986).\footnote{Covariance stationarity implies additional restrictions on θ, namely that $\{(\alpha, \beta) : \alpha + \beta < 1\}$.}

The mean-adjusted form of (2) is

$$\tilde{h}_t = \alpha_0 \tilde{Y}_{t-1}^2 + \beta_0 \tilde{h}_{t-1},$$

(3)

where $\tilde{h}_t = h_t - \sigma_0^2$ and $\tilde{Y}_t^2 = Y_t^2 - \sigma_0^2$. An implication of (2) is that

$$\tilde{Y}_t^2 = \tilde{h}_t + W_t,$$

(4)

where W_t is a martingale difference sequence (MDS) by construction, with $E[W_t \mid F_{t-1}] = 0$ and $E[W_t W_{t-k}] = 0 \forall k \neq 0$. Recursively substituting $\tilde{h}_{t-\tau}$ into (3) for $\tau \geq 1$ produces

$$\tilde{h}_t = \sum_{i=0}^{t-1} \alpha_0 \beta_0^i \tilde{Y}_{t-1-i} + \beta_0^t \tilde{h}_0,$$

(5)

for some arbitrary constant \tilde{h}_0. Using (5) to solve (4) forward from $t = 1$ setting $\tilde{Y}_0^2 = 0$ produces

$$\tilde{Y}_t^2 = W_t + \alpha_0 \sum_{i=1}^{t-1} (\alpha_0 + \beta_0)^{i-1} W_{t-i} + \beta_0 (\alpha_0 + \beta_0)^{t-1} \tilde{h}_0,$$

(6)

which shows that the GARCH(1,1) model relates \tilde{Y}_t^2 to a weighted sum of current and past innovations. A similar recursion is found for the ARCH(p) model in Guo and Phillips (2001). Moment properties for W_t are central to defining IV estimators for (3) and are the subject of the following two assumptions.

ASSUMPTION A2: (i) $E[W_t Y_t] = \gamma_0 \neq 0 \forall t$. (ii) The sequence $\{W_t Y_t - \gamma_0\}$ is an L^1 mixingale as defined in Andrews (1988) and is uniformly integrable. (iii) The sequences $\{W_{t-l} Y_{t-k}\}$ where $k, l = 1, \ldots, K$ and $k \neq l$ are uniformly integrable.
Since \(Y_t \) is a MDS, (4) and an application of the law of iterated expectations grants that

\[
E \left[Y_t^3 \right] = E \left[\tilde{Y}_t^2 Y_t \right] = E \left[(\tilde{h}_t + W_t) Y_t \right] = E [W_t Y_t]
\]

(7)

Given A2(i), \(Y_t \) is asymmetric with a stationary third moment. The process governing the conditional third moment of \(Y_t \) is restricted by A2(ii). \(L^1 \) mixingales exhibit weak temporal dependence that need not decay towards zero at any particular rate and that include certain autoregressive moving average (ARMA) and infinite order moving average processes. Given the functional form of (2), allowing the third moment to display similar dynamics seems natural. Moreover, Harvey and Siddique (1999) present empirical evidence from stock return data that the conditional third moment follows an ARMA-style process.

Uniform integrability allows a weak LLN to apply to \(W_t Y_t - \gamma_0 \) and \(W_{t-k} Y_{t-k} \) (See Lemma 3 in the Appendix). A sufficient condition for this result is that the given sequence be \(L^p \) bounded for some \(p > 1 \). According to Andrews (1988), however, "it is preferable to impose the uniform integrability assumption rather than an \(L^p \) bounded assumption because the former allows for more heterogeneity in the higher order moments of the rv’s" (p. 3). This statement guides the formulation of A2(ii) and A2(iii).

ASSUMPTION A3:

(i) \(E [W_t^2] = \lambda_0 \) \(\forall \ t \). (ii) The sequences \(\{W_t W_{t-k}\} \) are uniformly integrable. (iii) The sequence \(\{W_t^2 - \lambda_0\} \) is an \(L^1 \) mixingale and is uniformly integrable.

Suppose

\[
Y_t = h_t^{1/2} \epsilon_t,
\]

(8)

where \(\epsilon_t \) is iid with a mean of zero and a unit variance. Then A3(i) is equivalent to assuming that

\[
(\kappa + 1) \alpha_0^2 + 2\alpha_0\beta_0 + \beta_0^2 < 1; \quad \kappa = E \left[\epsilon_t^4 \right] - 1,
\]

(9)

which is the necessary and sufficient condition for establishing existence of the fourth mo-
ment of Y_t according to Theorem 1 of Zadrozny (2005). A3(i), of course, implies covariance stationarity for Y_t. Moreover, it imposes additional restrictions on the set (α, β), comparable to $\{ (\alpha, \beta) : (\kappa + 1) \alpha^2 + 2\alpha\beta + \beta^2 < 1 \}$ from above but of an unknown form owing to potential dependencies in $W_t^2 - \lambda_0$. A3(ii)-(iii) permit a weak LLN to apply to the sample autocovariances of Y_t^2. A3(iii) assumes that the same general type of process governing the third moment (see A2ii) also governs the fourth. This assumption is supported empirically by the results of Hansen (1994).

Lemma 1. Let Assumptions A1 and A2(i) hold for the model of (1) and (2). Then

$$E \left[\tilde{Y}_t^2 Y_{t-1} \right] = \alpha_0 E \left[W_t Y_t \right], \quad (10)$$

and

$$E \left[\tilde{Y}_t^2 Y_{t-(k+1)} \right] = (\alpha_0 + \beta_0) E \left[\tilde{Y}_t^2 Y_{t-k} \right]. \quad (11)$$

Proof. All proofs are stated in the Appendix. ■

Lemma 1 relates the covariance between Y_t^2 and Y_{t-k} to the third moment of Y_t (see (24) in the Appendix). Lemma 1 of Guo and Phillips (2001) establishes an analogous result for the AR(p) model. In contrast to Guo and Phillips, however, the Lemma presented here is central to identification by providing the moment condition in (10) that is only a function of the data and of α_0. Separation of α_0 from β_0 is the direct consequence of a nonzero third moment. Skewness in the distribution of Y_t, therefore, is the key identifying assumption for a class of IV estimators for the semi-strong GARCH(1,1) model.

Newey and Steigerwald (1997) explore the effects of skewness on the identification of CH models using the QML estimator. This paper conducts a similar exploration for certain IV estimators. Newey and Steigerwald show that given skewness, there exist conditions under which the standard QML estimator for CH models is not identified. This paper, in contrast, develops simple IV estimators that are not identified without such skewness.

Lemma 2. Given the model of (1) and (2), Y_t^2 is covariance stationary if and only if A1

4If ϵ_t is normally distributed, then this inequality follows from Theorem 2 of Bollerslev (1986) with $\kappa = 2$. 7
and A3(i) hold. In this case,

\[E \left[Y_t^2 Y_{t-(k+1)}^2 \right] = (\alpha_0 + \beta_0) E \left[Y_t^2 Y_{t-(k)}^2 \right]. \] \hspace{1cm} (12)

Mark (1988), Bodurtha and Mark (1991), Rich, Raymond, and Butler (1991), as well as Guo and Phillips (2001) estimate ARCH models from the autocovariances of squared residuals. Such an approach requires these squared residuals to be covariance stationary. Lemma 2 provides necessary and sufficient conditions for this result and is closely related to Theorem 3 of Hafner (2003).

(12), like (11), provide moment conditions in terms of the parameters \(\alpha_0 \) and \(\beta_0 \). Lemma 2 shows that while sufficient for identifying the ARCH(1) model (and, in general, the ARCH(p) model), the autocovariances of squared residuals alone are not sufficient for identifying the GARCH(1,1) model, since these moment conditions only involve the parameters \(\alpha_0 \) and \(\beta_0 \) jointly, not separately. Neither are these autocovariances necessary for identification in the case of either the ARCH(1) or GARCH(1,1) model, given Lemma 1. (12) does, however, provide an expanded set of candidate instruments for an IV estimator that should improve efficiency in cases where the fourth moment is stationary.

3. Estimation

3.1. Notation

Partition the parameter vector \(\theta \) into \((\lambda, \sigma^2)' \), where \(\lambda = (\alpha, \beta)' \). For the sequence \(\{Y_t\}_{t=1}^T \) of observations from a data vector \(Y \), let \(X_{t-2} = [Y_{t-2}, \cdots, Y_{t-k}]' \) and \(Z_{t-2} = [Y_{t-2}^2 - \sigma^2, \cdots, Y_{t-k}^2 - \sigma^2]' \) for \(k \geq 2 \). Consider the following vector valued functions

\[g_{1,t}(Y; \lambda, \sigma^2) = (Y_t^2 - \sigma^2) Y_{t-1} - \alpha Y_t^3 \] \hspace{1cm} (13)

\[g_{2,t}(Y; \lambda, \sigma^2) = (Y_t^2 - \sigma^2) (X_{t-2} - (\alpha + \beta) X_{t-1}) \]

\[g_{3,t}(Y; \lambda, \sigma^2) = (Y_t^2 - \sigma^2) (Z_{t-2} - (\alpha + \beta) Z_{t-1}) \]
and the following definitions

\[
\begin{align*}
 g_{it}(Y; \lambda, \sigma^2) &= g_{it}(\lambda, \sigma^2), \quad i = 1, \ldots, 3 \\
 g_t(\lambda, \sigma^2) &= [g_{it}(\lambda, \sigma^2)], \quad i = 1, \ldots, \max(i), \quad 2 \leq \max(i) \leq 3 \\
 g_{m,t}(\lambda, \sigma^2) &= m \text{th element of } g_t(\lambda, \sigma^2), \quad m = 1, \ldots, 2k - 1 \\
 \hat{g}(\lambda, \sigma^2) &= T^{-1} \sum_t g_t(\lambda, \sigma^2); \quad \bar{g}(\lambda, \sigma^2) = E[g_t(\lambda, \sigma^2)] \\
 m_t(\sigma^2) &= Y_t^2 - \sigma^2; \quad \hat{m}(\sigma^2) = T^{-1} \sum_t Y_t^2 - \sigma^2 \\
 \tilde{g}_t(\lambda, \sigma^2) &= g_t(\lambda, \sigma^2) + S_{\sigma^2}(\lambda, \sigma^2) m_t(\sigma^2) \\
 \tilde{S}_\lambda(\lambda, \sigma^2) &= \frac{\partial \hat{g}(\lambda, \sigma^2)}{\partial \lambda} \quad \tilde{S}_\sigma(\lambda, \sigma^2) = E\left[\frac{\partial g_t(\lambda, \sigma^2)}{\partial \sigma^2}\right], \\
 \tilde{S}_{\sigma^2}(\lambda, \sigma^2) &= \frac{\partial \hat{g}(\lambda, \sigma^2)}{\partial \sigma^2} \quad S_{\sigma^2}(\lambda, \sigma^2) = E\left[\frac{\partial g_t(\lambda, \sigma^2)}{\partial \sigma^2}\right], \\
 \Omega(\lambda, \sigma^2) &= \sum_{s=-(L-1)}^{s=(L-1)} E\left[g_{t-s}(\lambda, \sigma^2) g_t(\lambda, \sigma^2)'\right], \quad L \geq 1, \\
 \hat{\Omega}(\lambda, \sigma^2) &= \sum_{s=-(L-1)}^{s=(L-1)} T^{-1} \sum_t g_{t-s}(\lambda, \sigma^2) g_t(\lambda, \sigma^2)', \\
 R[g_{m,t}(\lambda, \sigma^2)] &= \text{rank of } g_{m,t}(\lambda, \sigma^2) \text{ in } g_{m,1}(\lambda, \sigma^2), \ldots, g_{m,T}(\lambda, \sigma^2) \\
 \hat{\rho}_{t,s}^{(m,n)}(\lambda, \sigma^2) &= 1 - \frac{6}{T(T^2 - 1)} \sum_t \left(R[g_{m,t}(\lambda, \sigma^2)] - R[g_{n,t-s}(\lambda, \sigma^2)]\right)^2, \quad m, n = 1, \ldots, 2k - 1 \\
 \tilde{\Sigma}(\lambda, \sigma^2) &= \sum_{s=-(L-1)}^{s=(L-1)} \left[\hat{\rho}_{t,s}^{(m,n)}(\lambda, \sigma^2)\right] \\
\end{align*}
\]

3.2 CAN and Robust Estimators

Consider

\[
\hat{\lambda} = \arg \min_{\lambda \in \Lambda} \hat{g}(\lambda, \tilde{\sigma}^2)' \hat{W}_T \hat{g}(\lambda, \tilde{\sigma}^2), \quad (14)
\]

for some sequence of positive semi-definite \(W_T\), which is the familiar GMM estimator of Hansen (1982) with \(\tilde{\sigma}^2\) plugged-in from a preliminary first step. Given this plug-in feature, (14) is also a VTE similar to that studied in Engle and Mezrich (1996) as well as Francq, Horath, and Zakoian (2009). If \(W_T = W_T(\tilde{\lambda})\), where \(\tilde{\lambda}\) is a preliminary (and consistent) estimator of \(\lambda_0\), then (14) is a two step GMM estimator. If \(W_T = W_T(\lambda)\), then (14) is a CUE. If \(\max(i) = 2\), then sample covariances from Lemma 1 form the moment conditions
in (14). Supplementing these moment conditions are sample autocovariances from Lemma 2, if \(\max (i) = 3 \).

CLAIM: (14) is an IV estimator.

To see why this claim is so, begin by redefining (4) as

\[
\tilde{Y}^2_t = X'_{-1} \delta_0 + W_t, \tag{15}
\]

where \(X_{-1} = \left(\tilde{Y}^2_{t-1}, \tilde{h}_{t-1} \right)' \) and \(\delta_0 = \left(\alpha_0, \beta_0 \right)' \). Next, let \(Z_{-1} \in F_{t-1} \). Since \(W_t \) is a MDS,

\[
E \left[Z_{-1} (\tilde{Y}^2_t - X'_{-1} \delta_0) \right] = 0, \tag{16}
\]

which are the population moment conditions for an infeasible IV estimator of \(\tilde{h}_t \); where, in this case, and throughout the ensuing discussions of potential IV estimators, infeasible references the fact that \(\tilde{h}_{t-1} \notin F_{t-1} \).

PROPOSITION. Let \(Z_{-1} = \begin{bmatrix} Y_{t-1} \\ X_{t-2} \\ \tilde{Z}_{t-2} \end{bmatrix} \), where \(\tilde{Z}_{t-2} = [\tilde{Y}^2_{t-2}, \cdots, \tilde{Y}^2_{t-k}]' \) for \(k \geq 2 \). Then

\[
E \left[Z_{-1} (\tilde{Y}^2_t - X'_{-1} \delta_0) \right] = \mathcal{g} (\lambda_0, \sigma_0^2).
\]

Given the consistency result of Theorem 1 below, this proposition establishes (14) as a feasible IV estimator with instruments \(Z_{-1} \). Rendering this estimator feasible is the fact that the conditional variance does not explicitly enter into the moment functions since

\[
\text{Cov} \left[Y^2_t; Y_{t-k} \right] = \text{Cov} \left[h_t; Y_{t-k} \right]; \quad \text{Cov} \left[Y^2_t; Y^2_{t-k} \right] = \text{Cov} \left[h_t; Y^2_{t-k} \right]
\]

for \(k \geq 1 \), given that \(W_t \) is a MDS. Of course, (14) is not linear in \(\delta_0 \) because (16) is not linear in \(\delta_0 \), owing to the dependence of \(h_{t-1} \) on both \(\alpha_0 \) and \(\beta_0 \).

The vector \(Z_{-1} \) defined in the Proposition omits \(\tilde{Y}^2_{t-1} \) as an instrument for \(\tilde{h}_{t-1} \). If \(\tilde{Y}^2_{t-1} \) is included as an instrument, then the population moment conditions in (16) are no longer
feasible. To see this, let \(\hat{Z}_{-1} = \left(\begin{array}{c} \mathbf{Z} \\
 \mathbf{Y}^2 \\
 \end{array} \right) \), and substitute \(\hat{Z}_{-1} \) for \(Z_{-1} \) in (16). The final row of \(E \left[\hat{Z}_{-1} X'_{-1} \delta \right] \) is
\[
\alpha_0 E \left[\tilde{Y}^4_{t-1} \right] + \beta_0 E \left[\tilde{h}_{t-1} \tilde{Y}^2_{t-1} \right].
\]
(17)
Expanding the left term in (17) using (4) produces
\[
E \left[\tilde{Y}^4_{t-1} \right] = E \left[\left(\tilde{h}_{t-1} + W_{t-1} \right) \tilde{Y}^2_{t-1} \right],
\]
\[
= E \left[\tilde{h}_{t-1} \tilde{Y}^2_{t-1} \right] + E \left[W_{t-1} \tilde{Y}^2_{t-1} \right],
\]
\[
\neq E \left[\tilde{h}_{t-1} \tilde{Y}^2_{t-1} \right]
\]
in general, since \(E \left[W_{t-1} \tilde{Y}^2_{t-1} \right] \neq 0 \). As a consequence, (17) can only be simplified to
\[
(\alpha_0 + \beta_0) E \left[\tilde{Y}^4_{t} \right] - \beta_0 E \left[W_t \tilde{Y}^2_t \right],
\]
which preserves the explicit dependence of (16) on the conditional variance through the contemporaneous covariance between \(W_t \) and \(\tilde{Y}^2_t \).

The move from \(Z_{-1} \) to \(\hat{Z}_{-1} \) represents a progression towards a more efficient IV estimator. The limit to this progression is the Efficient IV estimator analyzed by Skoglund (2001) for the strong GARCH(1,1) model. Generalizing this estimator to the semi-strong case produces
\[
\hat{\vartheta} = \arg \min_{\vartheta \in \Theta} \left(\hat{f}(\vartheta)' \Lambda_t \hat{f}(\vartheta) \right),
\]
(18)
where \(\vartheta = (\omega, \alpha, \beta)' \),
\[
f_{it}(\vartheta) = \frac{1}{\Delta_t} \left(\frac{\partial h_t}{\partial \vartheta_i} \right) h^{1/2}_t \left[\left(\frac{Y_t}{h^{1/2}_t} \right) E \left[Y^3_t \mid F_{t-1} \right] - h^{3/2}_t \left(\frac{Y^2_t}{h_t} \right) - 1 \right],
\]
for \(i = 1, 2, 3 \),
\[
\Delta_t = h^{3}_t \left(\frac{E \left[Y^4_t \mid F_{t-1} \right]}{h^2_t} - 1 \right) - E \left[Y^3_t \mid F_{t-1} \right]^2.
\]
and $A_T = \left(T^{-1} \sum_{t} f_t(\theta) f_t(\theta)' \right)^{-1}$.

The estimator $\hat{\theta}$ depends explicitly on the conditional variance, its first derivative, and on both the third and fourth conditional moments of Y_t. These higher conditional moments either have to be dealt with nonparametrically or assigned parametric forms. The former treatment involves some misspecification bias, since $A2(ii)$ and $A3(iii)$ are non Markovian. The latter treatment, by involving a set of nuisance parameters, requires preliminary estimators and suffers the usual logical inconsistency of requiring additional information from the higher conditional moments but not estimating the associated nuisance parameters simultaneously with the parameters governing the conditional variance (see Meddahi and Renault 1997). $\hat{\lambda}$, in contrast, while clearly determined by the dynamics of the conditional variance, does not take h_t as an explicit input. Moreover, as seen through Lemmas 1 and 2, $\hat{\lambda}$ depends on the third and fourth moments of Y_t only unconditionally, meaning that $\hat{\lambda}$ only depends on the dynamics of the conditional variance and not also on the dynamics of higher moments. The lack of explicit dependence within the moment functions of (14) on (i) the conditional variance and (ii) time-variation in the third and fourth moments renders $\hat{\lambda}$ a simple estimator for the GARCH(1,1) model within the class of IV estimators discussed above.

THEOREM 1 (Consistency). Consider the estimator in (14) for the model of (1) and (2). Let $\hat{\sigma}^2 = T^{-1} \sum_{t} Y_t^2$, and assume that $W_T \overset{p}{\rightarrow} W_0$, a positive semi-definite matrix.

If $\max(i) = 2$, then $\hat{\lambda} \overset{p}{\rightarrow} \lambda_0$ given Assumptions A1–A2. If $\max(i) = 3$, then $\hat{\lambda} \overset{p}{\rightarrow} \lambda_0$ given Assumptions A1–A3.

Given A1, Theorem 1 establishes weak consistency of an IV estimator for semi-strong versions of the ARCH(1) and GARCH(1,1) models. When $\max(i) = 3$, third moment stationarity around a nonzero mean is necessary for this result. When $\max(i) = 4$, fourth moment stationarity also becomes necessary, owing to the consideration of autocovariances between squared residuals. Since estimators for the ARCH(1) model in Theorem 4.4 of Weiss (1986), in Rich et al. (1991), as well as in Theorems 2.1 and 3.1 of Guo and Phillips (2001) involve this same consideration, fourth moment stationarity is so, too, required. Through skewness, therefore, Theorem 1 shows that it is possible to extend feasible IV estimation
from the ARCH(1) to the GARCH(1,1) case and that milder moment existence criteria are available in either case.

When $\beta_0 = 0$, the solution to (14) is

$$
\hat{\alpha} = \left\{ \left(\sum_t \hat{U}_t \right)' W_T \left(\sum_t \hat{U}_t \right) \right\}^{-1} \left(\sum_t \hat{U}_t \right)' W_T \left(\sum_t \hat{V}_t \right),
$$

(19)

where $\hat{U}_t = \begin{pmatrix} Y_t^3 \\ (Y_t^2 - \hat{\sigma}^2) X_{t-1} \\ (Y_t^2 - \hat{\sigma}^2) \hat{Z}_{t-1} \end{pmatrix}$, and $\hat{V}_t = \begin{pmatrix} (Y_t^2 - \hat{\sigma}^2) Y_{t-1} \\ (Y_t^2 - \hat{\sigma}^2) X_{t-2} \\ (Y_t^2 - \hat{\sigma}^2) \hat{Z}_{t-2} \end{pmatrix}$, if either W_T does not depend on α or $W_T = W_T(\hat{\alpha})$. Given the Proposition, (19) is asymptotically equivalent to

$$
\dot{\alpha} = \left\{ \left(\sum_t \hat{Z}_{t-1} (Y_{t-1}^2 - \hat{\sigma}^2) \right)' \Omega_T \left(\sum_t \hat{Z}_{t-1} (Y_{t-1}^2 - \hat{\sigma}^2) \right) \right\}^{-1} \left(\sum_t \hat{Z}_{t-1} (Y_{t-1}^2 - \hat{\sigma}^2) \right)' \Omega_T \left(\sum_t \hat{Z}_{t-1} (Y_{t-1}^2 - \hat{\sigma}^2) \right)
$$

if $\Omega_T \overset{p}{\to} W_0$, where $\dot{\alpha}$ is a generalized IV estimator based on the population moment conditions $E \left[Z_{t-1} (\hat{Y}_{t-1}^2 - \alpha_0 \tilde{Y}_{t-1}^2) \right] = 0$. In the special case of an ARCH(1) process, \hat{Z}_{t-1} can be substituted for Z_{t-1} without affecting the feasibility of the IV estimator, given the result from (17). Such a substitution is asymptotically equivalent to appending the vector valued function

$$
g_{4,t}(\lambda, \hat{\sigma}^2) = (Y_t^2 - \hat{\sigma}^2) \left((Y_{t-1}^2 - \hat{\sigma}^2) - (\alpha + \beta) (Y_{t-1}^2 - \hat{\sigma}^2) \right)
$$

(20)
to $g_t(\lambda, \hat{\sigma}^2)$.

THEOREM 2 (Asymptotic Normality). Consider the estimator in (14) for the model of (1) and (2), letting $\hat{\sigma}^2 = T^{-1} \sum_t Y_t^2$. Assume (i) $W_T \overset{p}{\to} W_0$; (ii) either Assumptions A1–A2 hold if max(i) = 3, or Assumptions A1–A3 hold if max(i) = 4; (iii) $E \left[\| g_t(\lambda_0, \sigma_0^2) \|^2 \right] < \infty$; (iv) $S_\lambda(\lambda_0, \sigma_0^2)' W_0 S_\lambda(\lambda_0, \sigma_0^2)$ is nonsingular. Then

$$
\sqrt{T} \left(\hat{\lambda} - \lambda_0 \right) \overset{d}{\to} N \left(0, \ H(\lambda_0, \sigma_0^2)^{-1} S_\lambda(\lambda_0, \sigma_0^2)' W_0 \Omega(\lambda_0, \sigma_0^2) W_0 S_\lambda(\lambda_0, \sigma_0^2) H(\lambda_0, \sigma_0^2)^{-1} \right),
$$

where $H(\lambda_0, \sigma_0^2) = S_\lambda(\lambda_0, \sigma_0^2)' W_0 S_\lambda(\lambda_0, \sigma_0^2)$.

As a VTE, (14) is a two-step estimator, since the objective function is minimized con-
ditional on a preliminary, or first-step, estimator $\hat{\sigma}^2$. In general, the variance of a first-step estimator impacts the variance of the second-step (see Newey and McFadden 1994). Under Theorem 2, this impact is seen through

$$\tilde{\Omega} (\lambda_0, \sigma_0^2) = \sum_{s=-(L-1)}^{s=(L-1)} E \left[\tilde{g}_{t-s} (\lambda_0, \sigma_0^2) \tilde{g}_t (\lambda_0, \sigma_0^2)' \right],$$

which is the variance-covariance matrix of

$$\sqrt{T} \tilde{g} (\lambda_0, \sigma^2) = \sqrt{T} \left\{ \tilde{g} (\lambda_0, \sigma_0^2) + S_{\sigma^2} (\lambda_0, \sigma_0^2) \tilde{m} (\sigma_0^2) \right\},$$

(21)

the term to which a Central Limit Theorem (CLT) is applied in deriving asymptotic normality. The second quantity on the right-hand-side of the equality in (21) sources the effect of $\hat{\sigma}^2$ on the asymptotic variance of $\hat{\lambda}$. Given Lemma 4 stated in the Appendix, however, $S_{\sigma^2} (\lambda_0, \sigma_0^2) = 0$, which means that $\tilde{g} (\lambda_0, \sigma^2) = \tilde{g} (\lambda_0, \sigma_0^2)$, $\tilde{\Omega} (\lambda_0, \sigma_0^2) = \Omega (\lambda_0, \sigma_0^2)$, and, as a consequence, nothing is lost (asymptotically) by plugging $\hat{\sigma}^2$ into (14) as opposed to σ_0^2. This result stands in contrast to the VTE studied by Francq, Horath, and Zakoian (2009), where the variance of $\hat{\sigma}^2$ does impact the variance of $\hat{\lambda}$ asymptotically.

Theorem 4.4 of Weiss (1986) demonstrates the CAN property of an autocovariance-based estimator for the ARCH model under the condition of a finite eighth moment for the residuals. Theorem 2 requires this same condition if $\max (i) = 3$ (i.e., if autocovariances of squared residuals are considered). If, on the other hand, $\max (i) = 2$, this condition is replaced by the milder requirement of a finite sixth moment. When skewness is present, therefore, the CAN property for a simple GMM estimator of the semi-strong GARCH(1,1) model follows from a milder set of moment existence criteria than when it is not.

Of course, the rather complicated asymptotic variance formula in Theorem 2 simplifies to the more familiar $H (\lambda_0, \sigma_0^2)^{-1}$ if $W_0 = \Omega (\lambda_0, \sigma_0^2)^{-1}$. From Hansen (1982), this choice of weighting matrix is optimal since it minimizes the asymptotic variance of (14). Additionally, the proof to Theorem 2 is based on the two-step GMM estimator. For the CUE, although the first order condition analogous to (31) contains an additional term, this term does not distort the limiting distribution. Pakes and Pollard (1989) discuss this result in detail. Newey and
Smith (2004) derive the limiting distribution of the CUE in Theorem 3.2, which is the same as in Theorem 2 here for the optimal weighting matrix. Use of the optimal weighting matrix under Theorem 2 requires at least sixth moment stationarity. Such an assumption may prove overly restrictive, especially for certain financial data. A question, therefore, is what weighting matrix to choose in the context of Theorem 1, so that $\hat{\lambda}$ is consistent under, at most, fourth moment stationarity. One option, of course, is to use a non data dependent weighting matrix like the identity matrix. Skoglund (2001), however, reports that the identity matrix used in the efficient GMM estimator for the strong GARCH(1,1) model results in quite poor finite sample performance. This result is also found (though not reported here) in Monte Carlo studies of (14). Alternatively, one can consider using a robust analog to $\hat{\rho}$. One such alternative is $\hat{\Sigma}(\hat{\theta})$. The matrix $\hat{\Sigma}(\hat{\theta})$, therefore, reflects rank dependent measures of association. The following lemma is useful for establishing consistency of $\hat{\rho}$.

Lemma 5. Let $a_{t,s}(\theta) = \{R[g_{m,t}(\theta)] - R[g_{n,t-s}(\theta)]\}^2$. For a $\delta_t \to 0$, define $\Delta_{t,s}(\theta) = \sup_{\|\theta - \theta_0\| \leq \delta_t} \|a_{t,s}(\theta) - a_{t,s}(\theta_0)\|$. Assume that $E[\Delta_{t,s}(\theta)] < \infty$. Then for $\hat{\theta} \xrightarrow{p} \theta_0$, $\hat{\rho}_{t,s}(\theta) \xrightarrow{p} 0$.

Consistency of $\hat{\rho}_{m,n}(\hat{\theta}) \forall m, n$ follows from Lemma 5 and selected results (in particular, Theorem 5 and the fact that $\lim_{n \to \infty} \sqrt{n} \{\hat{\rho}_{1,n} - \hat{\rho}_{S,n}\} = 0$, where $\hat{\rho}_{S,n}$ relates to $\hat{\rho}_{m,n}(\theta_0)$) in Schmid and Schmidt (2007). Conditions for consistency involve the copula for $g_{m,t}(\theta_0)$ and $g_{n,t}(\theta_0)$ (specifically, existence and continuity of its partial derivatives), but do not explicitly impose higher moment existence criteria on either. It is in this sense, therefore, that $\hat{\Sigma}(\hat{\theta})$ can be thought of as robust.

For GMM estimators based only on Theorem 1, standard errors can be computed via the parametric bootstrap. Suppose that the data generating process for Y_t is characterized by (1), (2), and (8) where ϵ_t is an Lth order Markov process with finite $L << T$, $E[\epsilon_t | F_{t-1}] = 0$, and $E[\epsilon_t^2 | F_{t-1}] = 1$. Use (14) to obtain \hat{h}_t. Let $\hat{\epsilon}_t = Y_t / \sqrt{\hat{h}_t}$, and apply the nonoverlapping block bootstrap method of Carlstein (1986) to these standardized residuals to obtain the bootstrap sample $\hat{\epsilon}^*_t$. Use these bootstrap residuals to construct the series $\hat{Y}^*_t = \sqrt{\hat{h}_t^*} \hat{\epsilon}^*_t$,

15
where \(\hat{h}_t^* \) depends on the parameter estimates from the original data sample. Estimate the model of (1) and (2) on \(\hat{Y}_t^* \), making sure to center the bootstrap moment conditions with the original parameter estimates as suggested in Hall and Horowitz (1996). Repetition of this procedure permits the calculation of bootstrap standard errors for \(\hat{\theta} \) that are robust to higher moment dynamics in \(\epsilon_t \). This same procedure can also be used to bootstrap the GMM objective function as discussed in Brown and Newey (2002) for a non-parametric test of the overidentifying restrictions that speaks to the fit of the GARCH(1,1) model to the given data under study.

4. Many (Weak) Moments Bias Correction

For the estimator in (14), \(k \) (the number of instruments) needs to be specified. Standard GMM asymptotics point to efficiency gains from increasing \(k \). Work by Stock and Wright (2000), Newey and Smith (2004), Han and Phillips (2006), and Newey and Windmeijer (2009) discuss the biases of GMM estimators when the instrument vector is large, (possibly) inclusive of (many) weak instruments, and allowed to grow with the sample size. To see how these biases relate to \(k \), suppose that \(g_t(\theta_0) \) is a finite \(L^{th} \) order Markov process.\(^5\) Let \(s = \{S : s = 1, \ldots, T\} \), and \(s^* = \{S : s \geq t + L; s \leq t - L\} \). Then, for a nonrandom weighting matrix \(W_T \), the expectation of the objective function in (14) is

\[
E \left[\hat{g}(\lambda, \hat{\sigma}^2)^\prime W_T \hat{g}(\lambda, \hat{\sigma}^2) \right] = T^{-2} \mathbb{E} \left[\sum_{t \neq s} g_t(\lambda, \hat{\sigma}^2)^\prime W_T g_s(\lambda, \hat{\sigma}^2) + \sum_t g_t(\lambda, \hat{\sigma}^2)^\prime W_T g_t(\lambda, \hat{\sigma}^2) \right] \\
= T^{-2} \mathbb{E} \left[\sum_{t \neq s^*} g_t(\lambda, \hat{\sigma}^2)^\prime W_T g_{s^*}(\lambda, \hat{\sigma}^2) + \sum_{s = -(L-1)}^{s = (L-1)} g_t(\lambda, \hat{\sigma}^2)^\prime W_T g_{t+s}(\lambda, \hat{\sigma}^2) \right] \\
= \left(1 - \frac{L}{T}\right) \bar{g}(\lambda, \hat{\sigma}^2)^\prime W_T \bar{g}(\lambda, \hat{\sigma}^2) + T^{-1} \sum_{s = -(L-1)}^{s = (L-1)} \mathbb{E} \left[g_t(\lambda, \hat{\sigma}^2)^\prime W_T g_{t+s}(\lambda, \hat{\sigma}^2) \right] \\
= \left(1 - \frac{L}{T}\right) \bar{g}(\lambda, \hat{\sigma}^2)^\prime W_T \bar{g}(\lambda, \hat{\sigma}^2) + T^{-1} \text{tr} \left(W_T \sum_{s = -(L-1)}^{s = (L-1)} \mathbb{E} \left[g_{t-s}(\lambda, \hat{\sigma}^2) g_t(\lambda, \hat{\sigma}^2)^\prime \right] \right),
\]

\(^5\)\(g_t(\theta_0) \) can be thought of as a vector of residuals.
which is an adaptation of (2) in Newey and Windmeijer (2009) to dependent time series data.\(^6\)

In the language of Newey and Windmeijer (2009), \((1 - \frac{k}{T}) \bar{g}(\lambda, \sigma^2)' W_T \bar{g}(\lambda, \sigma^2)\) is a "signal" term minimized at \(\lambda_0\). The second term is a "noise" term that is, generally, not minimized at \(\lambda_0\) if \(\frac{\partial g_t(\lambda, \sigma^2)}{\partial \lambda}\) is correlated with \(g_t(\lambda, \sigma^2)\) and is increasing in \(k.\)\(^7\) If \(k\) is increasing with \(T\), this bias term need not even vanish asymptotically (see Han and Phillips 2006).\(^8\)

If \(W_T = \Omega(\lambda, \sigma^2)^{-1}\), then \(T^{-1} tr \left(\sum_{s=(L-1)}^{t} E \left[g_{t-s}(\lambda, \sigma^2) g_t(\lambda, \sigma^2)' \right] \right) = \frac{k}{T}\). A feasible version of this bias correction is to set \(W_T = \hat{\Omega}(\lambda, \sigma^2)^{-1}\), in which case

\[
\hat{g}(\lambda, \sigma^2)' \hat{\Omega}(\lambda, \sigma^2)^{-1} \hat{g}(\lambda, \sigma^2) = T^{-2} \{ \sum_{t \neq s} g_t(\lambda, \sigma^2)' \hat{\Omega}(\lambda, \sigma^2)^{-1} g_s(\lambda, \sigma^2) + \}
\]

\[
= T^{-2} \sum_{t \neq s^*} g_t(\lambda, \sigma^2)' \hat{\Omega}(\lambda, \sigma^2)^{-1} g_s^*(\lambda, \sigma^2) +
\]

\[
T^{-2} \sum_{s=(L-1)}^{t} g_t(\lambda, \sigma^2)' \hat{\Omega}(\lambda, \sigma^2)^{-1} g_{t-s}(\lambda, \sigma^2)
\]

\[
= T^{-2} \sum_{t \neq s^*} g_t(\lambda, \sigma^2)' \hat{\Omega}(\lambda, \sigma^2)^{-1} g_s^*(\lambda, \sigma^2) +
\]

\[
T^{-1} tr \left(\hat{\Omega}(\lambda, \sigma^2)^{-1} \left\{ T^{-1} \sum_{s=(L-1)}^{t} g_{t-s}(\lambda, \sigma^2) g_t(\lambda, \sigma^2)' \right\} \right)
\]

\[
= T^{-2} \sum_{t \neq s^*} g_t(\lambda, \sigma^2)' \hat{\Omega}(\lambda, \sigma^2)^{-1} g_s^*(\lambda, \sigma^2) + \frac{k}{T}
\]

As a consequence, (14) is robust to many (potentially weak) instruments if \(W_T = \hat{\Omega}(\lambda, \sigma^2)^{-1}\), in which case \(\hat{\lambda}\) is the optimal CUE. If, on the other hand, either (i) \(W_T = \hat{\Sigma}(\lambda, \sigma^2)^{-1}\), in which case \(\hat{\lambda}\) is a robust CUE, (ii) \(W_T = \hat{\Sigma}(\tilde{\lambda}, \sigma^2)^{-1}\), in which case \(\tilde{\lambda}\) is the optimal two-step GMM estimator, or (iii) \(W_T = \hat{\Sigma}(\bar{\lambda}, \sigma^2)^{-1}\), in which case \(\bar{\lambda}\) is a robust two step GMM estimator.

\(^6\)This expansion is also valid under a random \(W_T\) because estimation of \(W_T\) does not affect the limiting distribution.

\(^7\)This "noise" or bias term is analogous to the higher order bias term \(B_G\) in Newey and Smith (2004).

\(^8\)In this paper, however, \(k\) is treated as fixed so that the GMM estimator is consistent (see Theorem 1).
estimator, (14) will be biased. In these cases, the alternative estimator
\[
\tilde{\lambda} = \arg \min_{\lambda \in \Lambda} \hat{g} (\lambda, \hat{\sigma}^2)' W_T \hat{g} (\lambda, \hat{\sigma}^2) - T^{-1} \text{tr} \left(W_T \left\{ \sum_{s=-\infty}^{\infty} \sum_{t} g_{t-s} (\lambda, \hat{\sigma}^2) g_{t} (\lambda, \hat{\sigma}^2)' \right\} \right) \tag{22}
\]
may be preferable. Depending on the choice of \(W_T \), (22) is either a jackknife CUE (JCUE) or jackknife GMM estimator (JGMM). If either \(W_T = \hat{\Sigma} (\lambda, \hat{\sigma}^2)^{-1} \) or \(W_T = \tilde{\Sigma} (\tilde{\lambda}, \tilde{\sigma}^2)^{-1} \), then \(\tilde{\lambda} \) is robust in the dual sense that it requires the same moment existence criteria as Theorem 1 and is free of many (weak) moment bias. If \(W_T = \tilde{\Omega} (\tilde{\lambda}, \tilde{\sigma}^2)^{-1} \), then consistency of (22) follows from Theorem 1 and asymptotic normality follows from Newey and Windmeijer (2009) p. 702.

If \(\beta_0 = 0 \) and either \(W_T \) is nonrandom or \(W_T = W_T (\tilde{\alpha}) \), then the solution to (22) is
\[
\tilde{\alpha} = \left\{ \sum_{t \neq s} \tilde{U}_t' W_T \tilde{U}_s \right\}^{-1} \sum_{t \neq s} \tilde{U}_t' W_T \tilde{V}_s,
\]
which is analogous to the JIVE2 estimator of Angrist, Imbens, and Krueger (1999).

5. Monte Carlo

Consider the data generating process in (1), (2), and (8), where \(\epsilon_t \) is the negative of a standardized Gamma(2,1) random variable. The skewness and kurtosis of \(\epsilon_t \) is \(-2/\sqrt{2}\) and 6, respectively. Values for \(\theta_0 \) of \((1.0, 0.15, 0.75)', (1.0, 0.10, 0.85)', and \((1.0, 0.05, 0.94)' \) are considered. These values together with the distributional assumption for \(\epsilon_t \) support a finite fourth moment for \(Y_t \) according to (9). All simulations are conducted with 5,000 observations across 500 trials. In each simulation, the first 200 observations are dropped to avoid initialization effects. Starting values for \(\lambda \) in each simulation trial are the true parameter values. Summary statistics for the simulations include the median bias, decile range (defined as the difference between the 90th and the 10th percentiles), standard deviation, and median absolute error (measured with respect to the true parameter value) of the given parameter estimates. The median bias, decile range, and median absolute error are robust measures of central tendency, dispersion, and accuracy, respectively, reported out of a concern over the
existence of higher moments. The standard deviation, while not a robust measure, provides an indication of outliers.

Table 1 summarizes the results for (14) and (22), benchmarking them against the QMLE. The forms of (14) and (22) considered: (i) utilize the method of moments plug-in estimator $\hat{\sigma}^2 = T^{-1} \sum_i Y_i^2$, (ii) rely on moments either up to the third or up to the fourth (i.e., set $\max(i) = 2$ or 3), (iii) use the inverse of Spearman’s correlation matrix as the data dependent weighting matrix, (iv) set $K = 20$ and $L = 1$.\footnote{In some of the simulations, an alternative rank dependent correlation matrix based on Kendall’s (1938) tau was also tried. The results were very similar to those based on Spearman’s rho. Since Spearman’s rho requires much less computation time, it was favored.}

For estimating α_0 and β_0, GMM tends to be associated with the highest bias. JCUE3 has the lowest bias, most comparable to QMLE. CUE3, however, also tends to be associated with low bias. JGMM3 improves upon the bias relative to GMM3 for both $\hat{\alpha}$ and $\hat{\beta}$. The same can be said for JGMM2 relative to GMM2 for $\hat{\beta}$, with mixed results (in terms of bias reduction) evidenced for $\hat{\alpha}$. JCUE3 records less bias than CUE3 for both $\hat{\alpha}$ and $\hat{\beta}$. JCUE2 records less bias than CUE2 for $\hat{\beta}$ but mixed results (in terms of bias reduction) for $\hat{\alpha}$. In some cases, movements from $\max(i) = 2$ to $\max(i) = 3$ are associated with sizable reductions in bias. This result is particularly relevant for non jackknifed estimators, although it also holds for $\hat{\alpha}$ under the jackknifed CUE. Though not reported here, the bias of non jackknifed estimators for $\hat{\beta}$ tends to increase with k. The level of this bias is most noticeable for high values of β_0.

In terms of dispersion, GMM tends to record the highest values. However, in limited instances, the JGMM and CUE estimates can be even more dispersed (see, for instance, JGMM2 and CUE2 relative to GMM2 for the estimates of $\beta_0 = 0.94$). JCUE3 records the lowest parameter dispersion most comparable to QMLE in terms of magnitude. CUE3 also supports relatively low levels of parameter dispersion. JGMM3 is more efficient than GMM3 measured either in terms of decile range or median absolute error. The same is mostly true for both JCUE2 and JCUE3 relative to CUE2 and CUE3, with the differences being more noticeable for $\hat{\beta}$. JGMM2 is more efficient than GMM2 for $\hat{\alpha}$, with mixed results appearing for $\hat{\beta}$. In general, movements from $\max(i) = 2$ to $\max(i) = 3$ are associated with large drops in parameter dispersion (i.e., increases in efficiency).
The results from Table 1 show JCUE3 to be a more efficient estimator of α_0 but a less efficient estimator of β_0 when compared to QMLE. Figure 1 compares the efficiency of JCUE3 relative to QMLE (for both $\hat{\alpha}$ and $\hat{\beta}$) for various lag lengths out to $k = 40$. As is evidenced, $\hat{\alpha}$ remains more efficient under JCUE3 as opposed to QMLE for all lag lengths considered. Moreover, the efficiency of $\hat{\beta}$ under JCUE3 is seen to approach that of QMLE as $k \to 40$. These results show that JCUE3 can be more efficient than QMLE given a sufficient number of instruments (still small relative to the sample size).

Of the parameter values considered, $\theta_0 = (1.0, 0.05, 0.94)'$ is the most likely to support a finite eighth moment.\[^{10}\] Figure 2, therefore, compares the efficiency of JCUE3, the optimal CUE3 (OCUE3) where $W_T = \hat{\Omega} (\lambda, \hat{\sigma}^2)^{-1}$, and QMLE for lags lengths out to $k = 40$. Similar to Figure 1, $\hat{\alpha}$ remains more efficiently estimated under JCUE3 than under QMLE for all lag lengths considered. Interestingly, at low levels of k, $\hat{\alpha}$ is less efficiently estimated under OCUE3 than under either JCUE3 or QMLE. As k increases, however, the performance of $\hat{\alpha}$ under OCUE3 converges to that of JCUE3, therefore passing that of QMLE. In terms of $\hat{\beta}$, OCUE3 is more efficient than JCUE3 for all lag lengths considered. At low levels of k, QMLE is more efficient than both. However, as $k \to 40$, the performance of $\hat{\beta}$ under JCUE3 approaches that under QMLE, while the performance of $\hat{\beta}$ under OCUE3 betters that of QMLE. Therefore, both JCUE3 and OCUE3 can be more efficient than QMLE, again given a sufficient number of instruments.

Table 2 summarizes simulation results for the JCUE3, JGMM3, and CUE3 (again, benchmarked against the QMLE) in the case where ϵ_t is the negative of a standardized Gamma(1,1) random variable with skewness of -2 and kurtosis of 12. JCUE3 remains the most efficient moments estimator, more efficient than QMLE in estimating α_0 and closest to QMLE, in terms of both bias and efficiency, in estimating β_0. CUE3 no longer dominates JGMM3 in terms of dispersion as it does in Table 1. To the contrary, $\hat{\alpha}$ and $\hat{\beta}$ tend to be less dispersed under JGMM3 (very noticeably so for $\hat{\beta}$ when $\beta_0 = 0.85$ and $\beta_0 = 0.94$). JGMM3, however, displays significantly higher bias in $\hat{\alpha}$ under both $\alpha_0 = 0.15$ and $\alpha_0 = 0.10$ when ϵ_t

\[^{10}\]If $\epsilon_t \sim N(0, 1)$, then these values would support a finite eighth moment according to Figure 2 of Bollerslev (1986). In general, for covariance stationary GARCH(1,1) processes, the magnitude of α_0 is a principal constraint on the existence of higher moments.
is the negative of a standardized Gamma(1,1) as opposed to the negative of a standardized Gamma(2,1).

The Ratio statistics in Table 2 show that dispersion tends to increase when moving to an increasingly skewed, fatter-tailed distribution for the standardized residuals. Exceptions to this tendency occur only for the moments estimators, only for \(\hat{\alpha} \), and most consistently for JGMM3. Specifically for JGMM3, the Ratio statistic for both the Decile Range and SD of \(\hat{\alpha} \) is less than one for all the cases considered. This result, perhaps, is not so surprising given that skewness is what identifies \(\alpha_0 \).

Of all the proposed moments estimators, JCUE3 and OCUE3 have the smallest biases and are the most efficient. In general, the smallest biases are achieved using the class of estimators that are robust to many (potentially weak) instruments (i.e., JCUE, JGMM, and OCUE). The worst performing estimators both in terms of bias and in terms of efficiency are the two-step GMM estimators. Fourth moment based estimators (i.e., those with \(\max(i) = 3 \)) tend to outperform third moment based estimators (i.e., those with \(\max(i) = 2 \)) in terms of bias and efficiency by wide margins. For the subclass of estimators with \(\max(i) = 2 \), JCUE2 records the smallest bias and is the most efficient followed, for the most part, by JGMM2.

6. FX Spot Returns

Let \(S_{i,t} \) be the spot rate of foreign currency \(i \) measured in US Dollars, where \(i = \) Australian Dollars (AUD) or Japanese Yen (JPY). Each spot series is measured daily from 1/1/90 - 12/31/09 and is obtained from Bloomberg. Consider the spot return defined as \(Y_{i,t} = \log \left(\frac{S_{i,t}}{S_{i,t-1}} \right) \). This section fits the GARCH(1,1) model of (1) and (2) to \(\{Y_{i,t}\}_{t=1}^{T} \). Engle and Gonzalez-Rivera (1999) as well as Hansen and Lunde (2005) employ similar specifications to British Pound and Deutsche Mark exchange rate series, respectively. Hansen and Lunde (2005) find no evidence that the simple GARCH(1,1) specification is outperformed by more complicated volatility models in their study of exchange rates. Their work guides the selection of financial data analyzed here.

\[\text{Preliminary investigations fit, among other specifications, ARMA}(1,1) \text{ filters to both series. For the JPY series, this filter was insignificant. For the AUD series, it proved significant; however, its removal had no meaningful impact on the GARCH estimates.} \]
For the AUD series, skewness is 0.33 and kurtosis is 15.05. For the JPY series, skewness is 0.43, and kurtosis is 8.34. Both series appear decidedly non-normal with the requisite distributional asymmetry required under A2. Table 3 reports the estimation results for JCUE3, OCUE3, and QMLE. Both JCUE3 and OCUE3 utilize an, admittedly, arbitrary lag length of 40 in the specification of their instrument vector. They, additionally, set $\max (i) = 3$ and $L = 1$. From the discussion in section 5, an application of OCUE3 is limited to high GARCH-, low ARCH-type processes. The QMLE estimates imply that such processes are appropriate characterizations of both spot return series. Starting values for JCUE3 and OCUE3 are the QMLE estimates.

From Table 3, the JCUE3 estimates are closer to the QMLE estimates than are the OCUE3 estimates. The JCUE3 estimates imply a less persistent volatility process than either the QMLE or OCUE3 estimates. The standard errors for the OCUE3 estimates are larger than their QMLE counterparts, particularly so for $\hat{\alpha}$. The $\hat{\beta}$ standard errors are more comparable. The higher standard errors under OCUE3 may relate to the fact that $\hat{\alpha} + \hat{\beta}$ is close to one.

To investigate the effects of lag length on JCUE3 and OCUE3, each were fit to the two spot return series for $k = 20, \ldots, 40$. For each k, $\|\hat{\lambda}_j - \hat{\lambda}_{QMLE}\|$, where $j = JCUE3$ or OCUE3, was calculated. Plots of these vector norms against k are shown in Figures 3 and 4, where the JCUE3 (OCUE3) estimates corresponding to the minimum value of the vector norms are reported. Apparent from Figure 3, $\|\hat{\lambda}_{JCUE3} - \hat{\lambda}_{QMLE}\|$ tends to vary less and be of a smaller magnitude than $\|\hat{\lambda}_{OCUE3} - \hat{\lambda}_{QMLE}\|$ with lag length, especially at low levels of k. The same observation seems generally true in Figure 4, with three notable exceptions for $\|\hat{\lambda}_{JCUE3} - \hat{\lambda}_{QMLE}\|$ occurring at $k = 25, 26, 34$. Apparent from both figures, $\hat{\lambda}_{JCUE3} \to \hat{\lambda}_{QMLE}$ and $\hat{\lambda}_{OCUE3} \to \hat{\lambda}_{QMLE}$ as k increases. However, in all cases considered, $\min_{k \in R} \|\hat{\lambda}_j - \hat{\lambda}_{QMLE}\|$ occurs in the interior of possible lag lengths considered, suggesting that there exists an "optimal" k for both JCUE3 and OCUE3.

7. Conclusion

The main contribution of this paper is to provide simple GMM estimators for the semi-strong GARCH(1,1) model with a straightforward IV interpretation. In this case, the in-
instrument vector is populated by past residuals and past squared residuals. The resulting moment conditions are stated entirely in terms of covariates contained within the time \(t - 1 \) information set. While these simple estimators rely on skewness for identification, they do not require treatment of the third and fourth conditional moments. These estimators (can) involve many (potentially weak) instruments, the bias from which can be eliminated by using either a CUE with the optimal weighting matrix (and all the accompanying moment existence criteria it requires) or a jackknifed CUE (GMM) with a robust weighting matrix based on, for example, the inverse of Spearman’s correlation matrix for the vector valued functions comprising the moment conditions of the given estimator. Versions of the optimal CUE and jackknife CUE are shown to outperform QMLE in finite samples.

The results of several Monte Carlo and theoretical studies are broadly consistent with the results presented here. Hansen, Heaton, and Yaron (1996) find, through simulation experiments, that the CUE has smaller bias than the GMM estimator. Newey and Smith (2004) show that the class of generalized empirical likelihood (GEL) estimators, of which the CUE is a member, has lower asymptotic bias than the GMM estimator when there are several instruments and zero third moments. Newey and Windmeijer (2009) show that the jackknife GMM estimator is less biased than the two-step GMM estimator but that the CUE is more efficient than the jackknife GMM estimator under many (weak) moments. For the semi-strong GARCH(1,1) model, the Monte Carlo results presented here show that the CUE has smaller bias than the GMM estimator and is more efficient in the presence of a nonzero third moment regardless of whether the weighting matrix is optimal, but for both the CUE and GMM estimators using a non-optimal weighting matrix, the associated biases grow with the size of the instrument vector. JCUE and JGMM estimators fix this problem, with JCUE proving more efficient than JGMM and both proving less efficient than the optimal CUE.

The estimators proposed in this paper are IV estimators with (potentially) many instruments. Methods for selecting the number of instruments for use in these estimators like those proposed by Donald, Imbens, and Newey (2008) are, therefore, of interest, especially given the results from section 6. Future research may look to relax the symmetry assumption in Donald, Imbens, and Newey (2008) and define criteria that are not (necessarily) dependent upon the variance-covariance matrix of the moment conditions.
Appendix

PROOF OF LEMMA 1: Recall that both Y_t and W_t are MDS. Then, applications of the law of iterated expectations, the result from (7), and A2(i) grant that

$$E[\hat{Y}_t^2Y_{t-1}] = E\left[\left(\hat{h}_t + W_t\right)Y_{t-1}\right]$$

$$= E\left[\left(\alpha_0\hat{Y}_{t-1}^2 + \beta_0\hat{h}_{t-1}\right)Y_{t-1}\right]$$

$$= \alpha_0 E[W_t Y_t]$$

and that

$$E[\hat{Y}_t^2Y_{t-2}] = E[\hat{h}_t Y_{t-2}]$$

$$= \alpha_0 E[\hat{Y}_{t-1}^2Y_{t-2}] + \beta_0 E[\hat{h}_{t-1}Y_{t-2}]$$

$$= (\alpha_0 + \beta_0) E[\hat{Y}_{t-1}^2Y_{t-2}] .$$

Since application of the same expansion in (23) to $E[\hat{Y}_{t-1}^2Y_{t-2}]$ reveals that

$$E[\hat{Y}_{t-1}^2Y_{t-2}] = \alpha_0 E[W_t Y_t] ,$$

it follows that

$$E[\hat{Y}_t^2Y_{t-2}] = \alpha_0 (\alpha_0 + \beta_0) E[W_t Y_t] .$$

Repeated applications of recursive substitution into $E[\hat{Y}_t^2Y_{t-k}]$ demonstrates, in general, that

$$E[\hat{Y}_t^2Y_{t-k}] = \alpha_0 (\alpha_0 + \beta_0)^{k-1} E[W_t Y_t] .$$

Solving (24) for $k = k + 1$ and comparing the result to $E[\hat{Y}_t^2Y_{t-k}]$ produces (11).

PROOF OF LEMMA 2: From (4) follows that

$$E[\hat{Y}_t^4] = E\left[\left(\hat{h}_t + W_t\right)^2\right] = E[\hat{h}_t^2] + E[W_t^2] .$$

Given (3),

$$E[\hat{h}_t^2] = (\alpha_0 + \beta_0)^2 E[\hat{h}_{t-1}^2] + \alpha_0^2 \lambda_0 .$$

(25)
Recursive substitution into (25) produces

$$E \left[\tilde{h}_t^2 \right] = (1 + (\alpha_0 + \beta_0)^2 + \cdots + (\alpha_0 + \beta_0)^{2(\tau-1)}) \alpha_0^2 \lambda_0 + (\alpha_0 + \beta_0)^{2\tau} E \left[\tilde{h}_{t-\tau}^2 \right]$$

for $\tau \geq 1$. It is well known that $(\alpha_0 + \beta_0)^{2\tau} \to 0$ as $\tau \to \infty$ if and only if $\alpha_0 + \beta_0 < 1$. Therefore, $E \left[\tilde{h}_t^2 \right] \to \left(\frac{\alpha_0^2}{1-(\alpha_0+\beta_0)^{2\tau}} \right) \lambda_0$ as $\tau \to \infty$ if and only if A1 holds. Let $E \left[\tilde{h}_t^2 \right] = \eta_0$. For $k = 1,$

$$E \left[\tilde{Y}_t^2 \tilde{Y}_{t-1}^2 \right] = E \left[E \left[\tilde{Y}_t^2 \tilde{Y}_{t-1}^2 \mid F_{t-1} \right] \right] = E \left[(\alpha_0 \tilde{Y}_{t-1}^2 + \beta_0 \tilde{h}_{t-1}) \tilde{Y}_{t-1}^2 \right] = \alpha_0 \lambda_0 + (\alpha_0 + \beta_0) \eta_0$$

For $k \geq 2,$

$$E \left[\tilde{h}_t \mid F_{t-k} \right] = \alpha_0 E \left[\tilde{Y}_{t-1}^2 \mid F_{t-k} \right] + \beta_0 E \left[\tilde{h}_{t-1} \mid F_{t-k} \right] = (\alpha_0 + \beta_0) E \left[\tilde{h}_{t-1} \mid F_{t-k} \right] = (\alpha_0 + \beta_0)^2 E \left[\tilde{h}_{t-2} \mid F_{t-k} \right] \quad \vdots$$

$$= (\alpha_0 + \beta_0)^{\tau-1} E \left[\tilde{h}_{t-(k-1)} \mid F_{t-k} \right] = (\alpha_0 + \beta_0)^{\tau-1} \left[\alpha_0 \tilde{Y}_{t-k}^2 + \beta_0 \tilde{h}_{t-k} \right]$$

and, therefore,

$$E \left[\tilde{Y}_t^2 \tilde{Y}_{t-k}^2 \right] = E \left[E \left[\tilde{Y}_t^2 \tilde{Y}_{t-k}^2 \mid F_{t-k} \right] \right] = E \left[E \left[\tilde{h}_t \mid F_{t-k} \right] \tilde{Y}_{t-k}^2 \right] = (\alpha_0 + \beta_0)^{k-1} \left[\alpha_0 \lambda_0 + (\alpha_0 + \beta_0) \eta_0 \right].$$

Given (26), $E \left[\tilde{Y}_t^2 \tilde{Y}_{t-k}^2 \right] \to 0$ as $k \to \infty$. Solving (26) for $k = k + 1$ and comparing the result to $E \left[\tilde{Y}_t^2 \tilde{Y}_{t-k}^2 \right]$ grants (12).
PROOF OF THE PROPOSITION: From (16),

\[E \left[\tilde{Y}_t^2 Z_{t-1} \right] = \begin{bmatrix} E \left[\tilde{Y}_t^2 Y_{t-1} \right] \\ E \left[\tilde{Y}_t^2 X_{t-2} \right] \\ E \left[\tilde{Y}_t^2 \tilde{Z}_{t-2} \right] \end{bmatrix}, \]

and

\[E \left[Z_{t-1} X'_{t-1} \delta_0 \right] = \begin{bmatrix} \alpha_0 E \left[\tilde{Y}_t^2 Y_{t-1} \right] + \beta_0 E \left[\tilde{h}_{t-1} Y_{t-1} \right] \\ \alpha_0 E \left[\tilde{Y}_t^2 X_{t-2} \right] + \beta_0 E \left[\tilde{h}_{t-1} X_{t-2} \right] \\ \alpha_0 E \left[\tilde{Y}_t^2 \tilde{Z}_{t-2} \right] + \beta_0 E \left[\tilde{h}_{t-1} \tilde{Z}_{t-2} \right] \end{bmatrix}. \]

\[E \left[\tilde{Y}_t^2 Y_{t-1} \right] = E [Y_t^3] \text{ by (7) and A2(i). Since } W_t \text{ is a MDS,} \]

\[E \left[\tilde{Y}_t^2 Y_{t-1} \right] = E \left[\tilde{Y}_t^2 X_{t-2} \right] = E \left[\tilde{Y}_t^2 X_{t-2} \right] \]

by the law of iterated expectations and by Lemma 1. Similarly,

\[E \left[\tilde{Y}_t^2 X_{t-2} \right] = E \left[\tilde{Y}_t^2 \tilde{Z}_{t-2} \right] = E \left[\tilde{Y}_t^2 \tilde{Z}_{t-2} \right] \]

by the law of iterated expectations and by Lemma 2. Therefore,

\[E \left[Z_{t-1} X'_{t-1} \delta_0 \right] = \begin{bmatrix} \alpha_0 E [Y_t^3] \\ (\alpha_0 + \beta_0) E \left[\tilde{Y}_t^2 X_{t-1} \right] \\ (\alpha_0 + \beta_0) E \left[\tilde{Y}_t^2 \tilde{Z}_{t-1} \right] \end{bmatrix}, \]

and \(E \left[Z_{t-1} \left(\tilde{Y}_t^2 - X'_{t-1} \delta_0 \right) \right] = \mathcal{O} (\lambda_0, \sigma_0^2). \]

Lemma 3. Given Assumptions A1–A3, the following conditions hold:

CONDITION C1: \(T^{-1} \sum_{t} Y_t \overset{p}{\rightarrow} 0 \)

CONDITION C2: \(T^{-1} \sum_{t} Y_t^2 \overset{p}{\rightarrow} \sigma_0^2 \)
CONDITION C3: \(T^{-1} \sum_t W_t \overset{p}{\to} 0 \)

CONDITION C4: \(T^{-1} \sum_t W_t Y_t \overset{p}{\to} \gamma_0 \)

CONDITION C5: \(T^{-1} \sum_t W_{t-k} Y_{t-k} \overset{p}{\to} 0 \quad \forall \ k \neq l \)

CONDITION C6: \(T^{-1} \sum_t W_t W_{t-k} \overset{p}{\to} 0 \quad \forall \ k \geq 1 \)

CONDITION C7: \(T^{-1} \sum_t W_t^2 \overset{p}{\to} \lambda_0 \)

CONDITION C8: For a constant \(C \) where \(0 < C < 1 \) and a MDS \(\{Z_t\} \) that is uniformly integrable, \(T^{-1} \sum_{t=1}^T C^t Z_t \overset{p}{\to} 0 \).

PROOF OF LEMMA 3: Since \(Y_t \) is covariance stationary with a mean of zero, C1 follows by the LLN. Given Lemma 2, \(Y_t^2 \) is covariance stationary with \(E \left[\tilde{Y}_t^2 \tilde{Y}_{t-k}^2 \right] \to 0 \) as \(k \to \infty \) (see 26). C2 then also follows from the LLN, as does C3, given \(E \left[W_t^2 \mid F_{t-1} \right] = 0 \), \(E \left[W_t W_{t-k} \right] = 0 \), and A3(i). Given A2(i)-(ii), C4 follows from Theorem 1 of Andrews (1988). Since \(W_{t-l} Y_{t-k} \) and \(W_t W_{t-k} \) are both MDS, Theorem 1 of Andrews (1988) applies to each to establish C5 and C6, respectively, given A2(iii) and A3(ii). A3(i) and A3(iii) allow C7 to follow from Theorem 1 of Andrews (1988). Lastly, since \(\{Z_t\} \) is uniformly integrable, \(\exists \) a \(c > 0 \) for every \(\epsilon > 0 \) such that

\[
E \left[|Z_t| \times I \left(|Z_t| \geq c \right) \right] < \epsilon,
\]

where \(I \left(|Z_t| \geq c \right) = 1 \) if \(|Z_t| \geq c \) and 0 otherwise. Let \(X_t = C^t Z_t \). Then

\[
|X_t| = |C^t| |Z_t| < |Z_t|,
\]

and

\[
|X_t| \times I \left(|X_t| \geq c \right) \leq |Z_t| \times I \left(|Z_t| \geq c \right).
\]

As a consequence,

\[
E \left[|X_t| \times I \left(|X_t| \geq c \right) \right] < \epsilon,
\]

and \(\{X_t\} \) is uniformly integrable. Theorem 1 of Andrews (1988) then establishes C8.
PROOF OF THEOREM 1: By C1 and C2,

\[\text{p lim} \left(T^{-1} \sum_t g_{1,t} \left(\lambda, \tilde{\sigma}^2 \right) \right) = \text{p lim} \left(T^{-1} \sum_t Y_t^2 Y_{t-1} \right) - \alpha \text{p lim} \left(T^{-1} \sum_t Y_t^3 \right). \]

Given (6),

\[T^{-1} \sum_t Y_t^2 Y_{t-1} = T^{-1} \sum_t \left(W_t + \alpha_0 \sum_{i=1}^{t-1} (\alpha_0 + \beta_0)^{i-1} W_{t-i} + \beta_0 (\alpha_0 + \beta_0)^{t-1} \tilde{h}_0 + \sigma_0^2 \right) Y_{t-1} \]
\[= \alpha_0 T^{-1} \sum_t \sum_{i=1}^{t-1} (\alpha_0 + \beta_0)^{i-1} W_{t-i} Y_{t-1} + (3 \text{ additional terms}), \]

where the probability limit for each of these three additional terms is zero given C1, C5, and C8, respectively. Since the term \(T^{-1} \sum_t \sum_{i=1}^{t-1} (\alpha_0 + \beta_0)^{i-1} W_{t-i} Y_{t-1} = \)

\[T^{-1} \sum_t \left(W_{t-1} + (\alpha_0 + \beta_0) W_{t-2} + (\alpha_0 + \beta_0)^2 W_{t-3} + \cdots + (\alpha_0 + \beta_0)^{t-2} W_1 \right) Y_{t-1} \]
\[= T^{-1} \sum_t W_{t-1} Y_{t-1} + (\alpha_0 + \beta_0) T^{-1} \sum_t W_{t-2} Y_{t-1} + (\alpha_0 + \beta_0)^2 T^{-1} \sum_t W_{t-3} Y_{t-1} + \cdots + o \left(T^{-1} \right), \]

\(\text{p lim} \left(T^{-1} \sum_t \sum_{i=1}^{t-1} (\alpha_0 + \beta_0)^{i-1} W_{t-i} Y_{t-1} \right) = \gamma_0 \) by C4 and C5, and \(\text{p lim} \left(T^{-1} \sum_t Y_t^2 Y_{t-1} \right) = \alpha_0 \gamma_0. \) Moreover, since \(T^{-1} \sum_t Y_t^3 = T^{-1} \sum_t Y_t^2 Y_t, \) similar expansions to those given above reveal that \(\text{p lim} \left(T^{-1} \sum_t Y_t^3 \right) = \text{p lim} \left(T^{-1} \sum_t W_t Y_t \right) = \gamma_0 \) by C4, with the end result being that

\[\text{p lim} \left(T^{-1} \sum_t g_{1,t} \left(\lambda, \tilde{\sigma}^2 \right) \right) = (\alpha_0 - \alpha) \gamma_0 \]
\[= E \left[g_{1,t} \left(\lambda, \sigma_0^2 \right) \right]. \quad (27) \]

Next, define the \(k^{th} \) element of the vector \(g_{2,t} \left(\lambda, \tilde{\sigma}^2 \right) \) as

\[g_{2,t}^{(k)} \left(\lambda, \tilde{\sigma}^2 \right) = (Y_t^2 - \tilde{\sigma}^2) \left(Y_{t-(k+1)} - (\alpha + \beta) Y_{t-k} \right). \]

\[\text{p lim} \left(T^{-1} \sum_t g_{2,t}^{(k)} \left(\lambda, \tilde{\sigma}^2 \right) \right) = \text{p lim} \left(T^{-1} \sum_t Y_t^2 Y_{t-(k+1)} \right) - (\alpha + \beta) \text{p lim} \left(T^{-1} \sum_t Y_t^2 Y_{t-k} \right) \]
by C1 and C2. Given (6),

\[T^{-1} \sum_t Y_t^2 Y_{t-(k+1)} = \alpha_0 T^{-1} \sum_t \sum_{i=1}^{t-1} (\alpha_0 + \beta_0 i^{-1} W_{t-i} Y_{t-(k+1)} + (3 \text{ additional terms}) \]

\[= \alpha_0 (\alpha_0 + \beta_0) T^{-1} \sum_t W_{t-(k+1)} Y_{t-(k+1)} \]

\[+ \alpha_0 T^{-1} \sum_t \sum_{i \neq k+1} (\alpha_0 + \beta_0 i^{-1} W_{t-i} Y_{t-(k+1)} + (3 \text{ additional terms}) . \]

The three additional terms each have probability limits equal to zero given C1, C5, and C8. Therefore, \(\text{plim} \left(T^{-1} \sum_t Y_t^2 Y_{t-(k+1)} \right) = \alpha_0 (\alpha_0 + \beta_0)^\gamma_0 \), and

\[\text{plim} \left(T^{-1} \sum_t g_{2,t}^{(k)} (\lambda, \sigma^2) \right) = \alpha_0 [(\alpha_0 + \beta_0) - (\alpha + \beta)] (\alpha_0 + \beta_0)^{k-1} \gamma_0 \quad (28) \]

\[= E \left[g_{2,t}^{(k)} (\lambda, \sigma^2) \right] . \]

Defining the \(k^{th} \) element the vector \(g_{3,t}^{(k)} (\lambda, \sigma^2) \) as

\[g_{3,t}^{(k)} (\lambda, \sigma^2) = (Y_t^2 - \sigma^2) (Y_{t-(k+1)} - \sigma^2) - (\alpha + \beta) (Y_t^2 - \sigma^2) (Y_{t-k} - \sigma^2) , \]

consider the \(\text{plim} \left(T^{-1} \sum_t g_{3,t}^{(k)} (\lambda, \sigma^2) \right) . \) Again relying on the interpretation of \(Y_t^2 \) as a weighted sum of current and past innovations in (6),

\[T^{-1} \sum_t Y_t^2 Y_{t-k} = (\sigma_0^2)^2 + \alpha_0 T^{-1} \sum_t \sum_{i=1}^{t-1} (\alpha_0 + \beta_0)^{i-1} W_{t-i} W_{t-k} \]

\[+ \alpha_0^2 T^{-1} \sum_t \sum_{i=1}^{t-1} (\alpha_0 + \beta_0)^{i-1} W_{t-i} \left(\sum_{j=1}^{t-(k+1)} (\alpha_0 + \beta_0)^{j-1} W_{t-k-j} \right) \]

\[+ (6 \text{ additional terms}) \]

\[= (\sigma_0^2)^2 + \alpha_0 T^{-1} \left[(\alpha_0 + \beta_0)^{k-1} \sum_t W_{t-k}^2 + \sum_t \sum_{i \neq k} (\alpha_0 + \beta_0)^{i-1} W_{t-i} W_{t-k} \right] \]

\[+ \alpha_0^2 T^{-1} \left[\sum_t \sum_{i \neq j} (\alpha_0 + \beta_0)^{(i+j)-2} W_{t-i} W_{t-k-j} + \sum_{j=k}^{t-1} (\alpha_0 + \beta_0)^{2j-k} W_{t-j-1}^2 \right] \]

\[+ (6 \text{ additional terms}) . \]

C3, C6, and C8 are used to show that the probability limits of the 6 additional terms are
each zero. \(\lim p\left(T^{-1} \sum_{t} W_{t-k}^2\right) = \lambda_0\), given C7. From C6, it follows that

\[
\lim p\left(T^{-1} \sum_{t} \sum_{i \neq k} (\alpha_0 + \beta_0)^{i-1} W_{t-i} W_{t-k}\right) = 0
\]

\[
\lim p\left(T^{-1} \sum_{t} \sum_{i \neq j} (\alpha_0 + \beta_0)^{(i+j)-2} W_{t-i} W_{t-k-j}\right) = 0.
\]

The term \(T^{-1} \sum_{t} \sum_{j=k}^{t-1} (\alpha_0 + \beta_0)^{2j-k} W_{t-j-1}^2 =\)

\[
T^{-1} \sum_{t} \left((\alpha_0 + \beta_0)^k W_{t-k-1}^2 + (\alpha_0 + \beta_0)^{k+2} W_{t-k-2}^2 + \cdots + (\alpha_0 + \beta_0)^{2t-(k+2)} W_1^2\right)
\]

\[
= (\alpha_0 + \beta_0)^k T^{-1} \sum_{t} W_{t-k-1}^2 + (\alpha_0 + \beta_0)^{k+2} T^{-1} \sum_{t} W_{t-k-2}^2 + \cdots + o(T^{-1})
\]

By C7, \(\lim p\left(T^{-1} \sum_{t} \sum_{j=k}^{t-1} (\alpha_0 + \beta_0)^{2j-k} W_{t-j-1}^2\right) =\)

\[
(\alpha_0 + \beta_0)^k \lambda_0 \left(1 + (\alpha_0 + \beta_0)^2 + (\alpha_0 + \beta_0)^4 + \cdots\right)
\]

\[
= (\alpha_0 + \beta_0)^k \frac{\lambda_0}{1 - (\alpha_0 + \beta_0)^2},
\]

and

\[
\lim p\left(T^{-1} \sum_{t} Y_{t}^2 Y_{t-k}^2\right) = (\sigma_0^2)^2 + (\alpha_0 + \beta_0)^{k-1} (\alpha_0 \lambda_0 + (\alpha_0 + \beta_0) \eta_0),
\]

where \(\eta_0 = E\left[h_t^2\right]\) from Lemma 2. Therefore,

\[
\lim p\left(T^{-1} \sum_{t} g_{3,t} (\lambda, \sigma^2)\right) = ((\alpha_0 + \beta_0) - (\alpha + \beta)) \times (\alpha_0 + \beta_0)^{k-1} (\alpha_0 \lambda_0 + (\alpha_0 + \beta_0) \eta_0) \quad (29)
\]

\[
= E\left[g_{3,t} (\lambda, \sigma_0^2)\right].
\]

For \(max (i) = 3\), (27) and (28) establish \(\tilde{g}(\lambda, \sigma^2) \overset{p}{\rightarrow} \tilde{g}(\lambda, \sigma_0^2)\). For \(max (i) = 4\), (27)–(29) establish the same result. Under either specification, let \(Q(\lambda, \sigma_0^2) = \tilde{g}(\lambda, \sigma_0^2) W_t \tilde{g}(\lambda, \sigma_0^2)\), and \(\tilde{Q}(\lambda, \sigma^2) = \tilde{g}(\lambda, \sigma^2) W_t \tilde{g}(\lambda, \sigma^2)\). Then \(\tilde{Q}(\lambda, \sigma^2) \overset{p}{\rightarrow} Q(\lambda, \sigma_0^2)\) by continuity of
multiplication. For \(\max(i) = 3 \), (27) and (28) establish that the only \(\lambda \in \Lambda \) satisfying
\[
g(\lambda; \sigma_0^2) = 0 \quad \text{is} \quad \lambda = \lambda_0,
\]
since \(\gamma_0 \neq 0 \) and \(\alpha_0 + \beta_0 \) is strictly positive. As a consequence,
\(Q(\lambda, \sigma_0^2) \) is uniquely minimized at \(\lambda = \lambda_0 \). A parallel result holds for \(\max(i) = 4 \),
given the aforementioned conditions plus (29) and the fact that \(\alpha_0 \lambda_0 + (\alpha_0 + \beta_0) \eta_0 \) is
strictly positive.

Lemma 4: \(\tilde{S}_\lambda(\hat{\lambda}, \tilde{\sigma}^2) \xrightarrow{p} S_\lambda(\lambda_0, \sigma_0^2) \), and \(\tilde{S}_{\sigma_0^2}(\lambda_0, \tilde{\sigma}^2) \xrightarrow{p} S_{\sigma_0^2}(\lambda_0, \sigma_0^2) = 0 \) given (i) Assumptions A1 and A2, if \(\max(i) = 2 \) or (ii) Assumptions A1–A3, if \(\max(i) = 3 \).

Proof of Lemma 4: Define \(\hat{s}_{\lambda,ij}(\hat{\lambda}, \tilde{\sigma}^2) \) as the element in the \(i \)th row and \(j \)th column
of \(\tilde{S}_\lambda(\hat{\lambda}, \tilde{\sigma}^2) \). Let \(\hat{Z}_{t-2} = [Y_{t-2}^2 \cdots Y_{t-k}^2]' \) for \(k \geq 2 \), and \(\iota \) be a \((k-1) \)-vector of ones.

For \(\max(i) = 3 \),
\[
\tilde{S}_\lambda(\hat{\lambda}, \tilde{\sigma}^2) = -T^{-1} \begin{bmatrix}
\sum_t Y_t^3 & 0 \\
\sum_t (Y_t^2 - \tilde{\sigma}^2) X_{t-1} & \sum_t (Y_t^2 - \tilde{\sigma}^2) X_{t-1} \\
\sum_t (Y_t^2 - \tilde{\sigma}^2) Z_{t-1} & \sum_t (Y_t^2 - \tilde{\sigma}^2) Z_{t-1}
\end{bmatrix},
\]
and
\[
\tilde{S}_{\sigma_0^2}(\lambda_0, \tilde{\sigma}^2) = -T^{-1} \begin{bmatrix}
\sum_t Y_{t-1} \\
\sum_t (X_{t-2} - (\alpha_0 + \beta_0) X_{t-1}) \\
\left(2\tilde{\sigma}^2 - T^{-1} \sum_t Y_t^2\right) \iota (1 - (\alpha_0 + \beta_0)) - \left(\hat{Z}_{t-2} - (\alpha_0 + \beta_0) \hat{Z}_{t-1}\right)
\end{bmatrix}.
\]

The following results follow from the proof to Theorem 1.

Result R1:
\[
p\lim \left(\hat{s}_{\lambda,11}(\hat{\lambda}, \tilde{\sigma}^2)\right) = -p\lim \left(T^{-1} \sum_t Y_t^2 Y_t\right) \\
= -p\lim \left(T^{-1} \sum_t W_t Y_t\right) \\
= -\gamma_0
\]
RESULT R2:

\[\lim_{p} \left(\hat{s}_{\lambda,21}^{(k)} \left(\hat{\lambda}, \hat{\sigma}^2 \right) \right) = -\lim_{p} \left(T^{-1} \sum_{t} Y_t^2 Y_{t-k} \right) \]

\[= -\alpha_0 \left(\alpha_0 + \beta_0 \right)^k \gamma_0, \]

where \(\hat{s}_{\lambda,21}^{(k)} \left(\hat{\lambda}, \hat{\sigma}^2 \right) \) is the kth element of \(\hat{s}_{\lambda,21} \left(\hat{\lambda}, \hat{\sigma}^2 \right) \).

RESULT R3:

\[\lim_{p} \left(\hat{s}_{\lambda,31}^{(k)} \left(\hat{\lambda}, \hat{\sigma}^2 \right) \right) = -\lim_{p} \left(T^{-1} \sum_{t} Y_t^2 Y_{t-k} \right) + (\sigma_0^2)^2 \]

\[= \left(\alpha_0 + \beta_0 \right)^{k-1} \left(\alpha_0 \lambda_0 + (\alpha_0 + \beta_0) \eta_0 \right), \]

where \(\hat{s}_{\lambda,31}^{(k)} \left(\hat{\lambda}, \hat{\sigma}^2 \right) \) is the kth element of \(\hat{s}_{\lambda,31} \left(\hat{\lambda}, \hat{\sigma}^2 \right) \).

Given R1–R3, \(\hat{s}_{\lambda,ij} \left(\hat{\lambda}, \hat{\sigma}^2 \right) \xrightarrow{p} s_{\lambda,ij} \left(\lambda_0, \sigma_0^2 \right) \forall i, j \). Next, \(\lim_{p} \left(\hat{s}_{\sigma^2,11} \left(\lambda_0, \hat{\sigma}^2 \right) \right) = 0 \), and \(\lim_{p} \left(\hat{s}_{\sigma^2,21} \left(\lambda_0, \hat{\sigma}^2 \right) \right) = 0 \) both by C1. Finally, \(\lim_{p} \left(\hat{s}_{\sigma^2,31} \left(\lambda_0, \hat{\sigma}^2 \right) \right) = 0 \) by C2. ■

PROOF OF THEOREM 2: Let \(W_T = W_T \left(\hat{\lambda} \right) \). Then the first order condition from (14) is

\[\hat{S}_{\lambda} \left(\hat{\lambda}, \hat{\sigma}^2 \right)' W_T \hat{g} \left(\hat{\lambda}, \hat{\sigma}^2 \right) = 0. \] \hspace{1cm} (31)

Let \(H \left(\hat{\lambda}, \lambda_0, \sigma_0^2 \right) = \hat{S}_{\lambda} \left(\hat{\lambda}, \hat{\sigma}^2 \right)' W_T \hat{S}_{\lambda} \left(\lambda, \sigma^2 \right) \), where \(\lambda \) is between \(\hat{\lambda} \) and \(\lambda_0 \). Expanding \(\hat{g} \left(\hat{\lambda}, \hat{\sigma}^2 \right) \) first around \(\lambda_0 \), then around \(\sigma_0^2 \), and then solving for \(\left(\hat{\lambda} - \lambda_0 \right) \) produces

\[\sqrt{T} \left(\hat{\lambda} - \lambda_0 \right) = -H \left(\hat{\lambda}, \lambda_0, \sigma_0^2 \right)^{-1} \hat{S}_{\lambda} \left(\hat{\lambda}, \hat{\sigma}^2 \right)' W_T \sqrt{T} \left(\hat{g} \left(\lambda_0, \sigma_0^2 \right) + \hat{S}_{\sigma^2} \left(\lambda_0, \sigma^2 \right) \hat{m} \left(\sigma_0^2 \right) \right) \]

\[= -H \left(\lambda_0, \sigma_0^2 \right)^{-1} \hat{S}_{\lambda} \left(\lambda_0, \sigma_0^2 \right)' W_0 \sqrt{T} \hat{g} \left(\lambda_0, \sigma_0^2 \right), \]

where the second equality follows from Lemma 4. Then

\[E \left[\hat{g} \left(\lambda_0, \sigma_0^2 \right) \right] = T^{-1} \sum_{t} E \left[g_t \left(\lambda_0, \sigma_0^2 \right) \right] = 0 \]
by Theorem 1, and

\[
\text{Var} \left[\hat{g} \left(\lambda_0, \sigma_0^2 \right) \right] = T^{-2} \left(\sum_t \text{Var} \left[g_t \left(\lambda_0, \sigma_0^2 \right) \right] + \sum_{t \neq s} \text{Cov} \left[g_s \left(\lambda_0, \sigma_0^2 \right); g_t \left(\lambda_0, \sigma_0^2 \right) \right] \right)
\]

\[
= T^{-1} E \left[g_t \left(\lambda_0, \sigma_0^2 \right) g_t \left(\lambda_0, \sigma_0^2 \right) \right] + T^{-2} \sum_{t \neq s} E \left[g_s \left(\lambda_0, \sigma_0^2 \right) g_t \left(\lambda_0, \sigma_0^2 \right) \right]
\]

\[
= T^{-1} \left(\sum_{s=-(L-1)}^{s=(L-1)} E \left[\tilde{g}_{t-s} \left(\lambda_0, \sigma_0^2 \right) \tilde{g}_t \left(\lambda_0, \sigma_0^2 \right) \right] \right)
\]

Applying a CLT to \(\hat{g} \left(\lambda_0, \sigma_0^2 \right) \) results in \(\sqrt{T} \hat{g} \left(\lambda_0, \sigma_0^2 \right) \overset{d}{\rightarrow} N \left(0, \Omega \left(\lambda_0, \sigma_0^2 \right) \right) \). The conclusion follows from the Slutzky Theorem.

PROOF OF LEMMA 5: From the definition of \(\hat{\rho}_{t,s}^{(m,n)} (\theta) \),

\[
\hat{\rho}_{t,s}^{(m,n)} (\theta) - \hat{\rho}_{t,s}^{(m,n)} (\theta_0) = \frac{-6}{T^2 - 1} \left\{ T^{-1} \sum_t a_{t,s} \left(\theta \right) - a_{t,s} (\theta_0) \right\}.
\]

By the consistency of \(\hat{\theta} \) established under Theorem 1, \(\exists \delta_t \to 0 \) such that \(\left\| \hat{\theta} - \theta_0 \right\| \leq \delta_t \). By the triangle inequality,

\[
\left\| T^{-1} \sum_t a_{t,s} \left(\theta \right) - a_{t,s} (\theta_0) \right\| \leq T^{-1} \sum_t \left\| a_{t,s} \left(\theta \right) - a_{t,s} (\theta_0) \right\| \leq T^{-1} \sum_t \Delta_{t,s} (\theta).
\]

Finally, by a WLLN, \(T^{-1} \sum_t \Delta_{t,s} (\theta) \overset{P}{\rightarrow} E \left[\Delta_{t,s} (\theta) \right] \), which establishes the result.
References

[25] Lumsdaine, R.L., 1996, Consistency and asymptotic normality of the quasi-maximum likelihood estimator in IGARCH(1,1) and covariance stationary GARCH(1,1) models, Econometrica, 64, 575-596.

[34] Skoglund, J., 2001, A simple efficient GMM estimator of GARCH models, unpublished manuscript.

<table>
<thead>
<tr>
<th>Para.</th>
<th>Est.</th>
<th>Bias</th>
<th>Rge</th>
<th>SD</th>
<th>MDAE</th>
<th>Bias</th>
<th>Rge</th>
<th>SD</th>
<th>MDAE</th>
<th>Bias</th>
<th>Rge</th>
<th>SD</th>
<th>MDAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var</td>
<td>QMLE</td>
<td>-0.005</td>
<td>0.242</td>
<td>0.094</td>
<td>0.063</td>
<td>-0.008</td>
<td>0.283</td>
<td>0.111</td>
<td>0.074</td>
<td>-0.022</td>
<td>0.581</td>
<td>0.309</td>
<td>0.156</td>
</tr>
<tr>
<td>MM</td>
<td></td>
<td>-0.018</td>
<td>0.235</td>
<td>0.100</td>
<td>0.060</td>
<td>-0.022</td>
<td>0.289</td>
<td>0.129</td>
<td>0.076</td>
<td>-0.066</td>
<td>0.501</td>
<td>0.272</td>
<td>0.148</td>
</tr>
<tr>
<td></td>
<td>Alpha</td>
<td>QMLE</td>
<td>-0.001</td>
<td>0.054</td>
<td>0.021</td>
<td>0.013</td>
<td>0.000</td>
<td>0.039</td>
<td>0.015</td>
<td>0.010</td>
<td>0.000</td>
<td>0.022</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>JCUE2</td>
<td>-0.016</td>
<td>0.091</td>
<td>0.042</td>
<td>0.028</td>
<td>-0.009</td>
<td>0.067</td>
<td>0.031</td>
<td>0.020</td>
<td>0.000</td>
<td>0.048</td>
<td>0.022</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>JCUE3</td>
<td>-0.001</td>
<td>0.029</td>
<td>0.027</td>
<td>0.006</td>
<td>0.000</td>
<td>0.014</td>
<td>0.011</td>
<td>0.002</td>
<td>0.000</td>
<td>0.004</td>
<td>0.005</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>JGMM2</td>
<td>-0.017</td>
<td>0.109</td>
<td>0.046</td>
<td>0.032</td>
<td>-0.011</td>
<td>0.082</td>
<td>0.035</td>
<td>0.025</td>
<td>0.001</td>
<td>0.067</td>
<td>0.029</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>JGMM3</td>
<td>-0.015</td>
<td>0.090</td>
<td>0.043</td>
<td>0.027</td>
<td>-0.006</td>
<td>0.070</td>
<td>0.034</td>
<td>0.016</td>
<td>-0.001</td>
<td>0.039</td>
<td>0.019</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>CUE2</td>
<td>-0.011</td>
<td>0.109</td>
<td>0.050</td>
<td>0.027</td>
<td>-0.005</td>
<td>0.084</td>
<td>0.043</td>
<td>0.019</td>
<td>-0.004</td>
<td>0.081</td>
<td>0.033</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>CUE3</td>
<td>-0.006</td>
<td>0.040</td>
<td>0.036</td>
<td>0.009</td>
<td>-0.002</td>
<td>0.024</td>
<td>0.026</td>
<td>0.003</td>
<td>-0.001</td>
<td>0.005</td>
<td>0.007</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>GMM2</td>
<td>-0.013</td>
<td>0.112</td>
<td>0.051</td>
<td>0.031</td>
<td>-0.009</td>
<td>0.094</td>
<td>0.041</td>
<td>0.025</td>
<td>-0.007</td>
<td>0.083</td>
<td>0.032</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>GMM3</td>
<td>-0.016</td>
<td>0.113</td>
<td>0.053</td>
<td>0.031</td>
<td>-0.012</td>
<td>0.093</td>
<td>0.042</td>
<td>0.026</td>
<td>-0.010</td>
<td>0.071</td>
<td>0.027</td>
<td>0.019</td>
</tr>
<tr>
<td>Beta</td>
<td>QMLE</td>
<td>0.000</td>
<td>0.081</td>
<td>0.033</td>
<td>0.020</td>
<td>0.000</td>
<td>0.056</td>
<td>0.022</td>
<td>0.013</td>
<td>-0.001</td>
<td>0.023</td>
<td>0.009</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>JCUE2</td>
<td>0.010</td>
<td>0.173</td>
<td>0.076</td>
<td>0.043</td>
<td>0.009</td>
<td>0.137</td>
<td>0.061</td>
<td>0.036</td>
<td>-0.008</td>
<td>0.144</td>
<td>0.154</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>JCUE3</td>
<td>0.000</td>
<td>0.104</td>
<td>0.058</td>
<td>0.022</td>
<td>0.000</td>
<td>0.063</td>
<td>0.036</td>
<td>0.015</td>
<td>0.000</td>
<td>0.035</td>
<td>0.022</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>JGMM2</td>
<td>0.011</td>
<td>0.198</td>
<td>0.093</td>
<td>0.053</td>
<td>0.010</td>
<td>0.167</td>
<td>0.077</td>
<td>0.047</td>
<td>-0.030</td>
<td>0.386</td>
<td>0.235</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>JGMM3</td>
<td>0.011</td>
<td>0.158</td>
<td>0.077</td>
<td>0.040</td>
<td>0.006</td>
<td>0.114</td>
<td>0.059</td>
<td>0.029</td>
<td>0.002</td>
<td>0.068</td>
<td>0.035</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>CUE2</td>
<td>-0.040</td>
<td>0.227</td>
<td>0.110</td>
<td>0.051</td>
<td>-0.051</td>
<td>0.211</td>
<td>0.147</td>
<td>0.053</td>
<td>-0.115</td>
<td>0.833</td>
<td>0.325</td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td>CUE3</td>
<td>-0.024</td>
<td>0.152</td>
<td>0.095</td>
<td>0.031</td>
<td>-0.020</td>
<td>0.130</td>
<td>0.090</td>
<td>0.022</td>
<td>-0.014</td>
<td>0.054</td>
<td>0.086</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>GMM2</td>
<td>-0.053</td>
<td>0.242</td>
<td>0.106</td>
<td>0.061</td>
<td>-0.075</td>
<td>0.272</td>
<td>0.120</td>
<td>0.075</td>
<td>-0.214</td>
<td>0.618</td>
<td>0.247</td>
<td>0.214</td>
</tr>
<tr>
<td></td>
<td>GMM3</td>
<td>-0.031</td>
<td>0.217</td>
<td>0.099</td>
<td>0.044</td>
<td>-0.026</td>
<td>0.144</td>
<td>0.081</td>
<td>0.035</td>
<td>-0.025</td>
<td>0.108</td>
<td>0.059</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Notes: Simulations are conducted using 5,000 observations across 1,000 trials. The true parameter vector \(\theta = (\text{Var, Alpha, Beta}) \), where \(\text{Var} \) is the unconditional variance. QMLE is the quasi-maximum likelihood estimator. MM is the method of moments estimator. (J)CUE2(3) is the (jackknife) continuous updating estimator with \(\max(i) = 2(3) \). (J)GMM2(3) is the (jackknife) two step generalized method of moments estimator with \(\max(i) = 2(3) \). For all (J)CUE and (J)GMM estimators: (a) the weighting matrix is the inverse of Spearman’s correlation matrix; (b) \(K = 20 \); (c) \(L = 1 \). Med. Bias is the median bias, SD the standard deviation, and MDAE the median absolute error of the estimates. Dec Rge is the decile range of the estimates, measured as the difference between the 90th and the 10th percentiles.
Notes: Simulations are conducted using 5,000 observations across 1,000 trials. The true parameter vector is \((1, 0.10, 0.85)\), where \(\alpha = 0.10\) and \(\beta = 0.85\). QMLE is the quasi-maximum likelihood estimator. JCUE is the jackknife continuous updating estimator with: (a) \(\max(i) = 3\); (b) the weighting matrix as the inverse of Spearman’s correlation matrix; (c) \(K\) = the number of lags; (d) \(L = 1\). Dec Rge is the decile range of the estimates, measured as the difference between the 90th and the 10th percentiles. MDAE is the median absolute error of the estimates.
Notes: Simulations are conducted using 5,000 observations across 1,000 trials. The true parameter vector is $(1, 0.05, 0.94)$, where $\alpha = 0.05$ and $\beta = 0.94$. QMLE is the quasi-maximum likelihood estimator. JCUE is the jackknife continuous updating estimator. OCUE is the optimal continuous updating estimator. For both the JCUE and OCUE: (a) $\max(i) = 3$; (b) K = the number of lags; (d) $L = 1$. For the JCUE, the weighting matrix is the inverse of Spearman’s correlation matrix. For the OCUE, the weighting matrix is the inverse of the variance-covariance matrix. Dec Rge is the decile range of the estimates, measured as the difference between the 90th and the 10th percentiles. MDAE is the median absolute error of the estimates.
<table>
<thead>
<tr>
<th>Para. Est.</th>
<th>Var QMLE</th>
<th>-Ratio</th>
<th>MM</th>
<th>-Ratio</th>
<th>-Ratio</th>
<th>JCUE3</th>
<th>-Ratio</th>
<th>JGMM3</th>
<th>-Ratio</th>
<th>CUE3</th>
<th>-Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias</td>
<td>-0.006</td>
<td>0.326</td>
<td>0.130</td>
<td>0.088</td>
<td>-0.005</td>
<td>0.388</td>
<td>0.158</td>
<td>0.103</td>
<td>-0.036</td>
<td>0.844</td>
<td>1.155</td>
</tr>
<tr>
<td>Med Dec</td>
<td>1.338</td>
<td>1.375</td>
<td>1.348</td>
<td>1.333</td>
<td>1.396</td>
<td>1.284</td>
<td>1.404</td>
<td>3.278</td>
<td>1.281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bias Rge SD MDAE</td>
<td>-0.032</td>
<td>0.314</td>
<td>0.132</td>
<td>0.084</td>
<td>-0.043</td>
<td>0.358</td>
<td>0.150</td>
<td>0.093</td>
<td>-0.090</td>
<td>0.619</td>
<td>0.332</td>
</tr>
<tr>
<td>Med Dec</td>
<td>1.338</td>
<td>1.329</td>
<td>1.413</td>
<td>1.238</td>
<td>1.163</td>
<td>1.229</td>
<td>1.236</td>
<td>1.223</td>
<td>1.178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha QMLE</td>
<td>-0.002</td>
<td>0.066</td>
<td>0.026</td>
<td>0.017</td>
<td>-0.001</td>
<td>0.047</td>
<td>0.019</td>
<td>0.012</td>
<td>0.000</td>
<td>0.024</td>
<td>0.009</td>
</tr>
<tr>
<td>-Ratio</td>
<td>1.225</td>
<td>1.242</td>
<td>1.316</td>
<td>1.218</td>
<td>1.200</td>
<td>1.275</td>
<td>1.109</td>
<td>1.153</td>
<td>1.191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JCUE3</td>
<td>-0.003</td>
<td>0.040</td>
<td>0.022</td>
<td>0.007</td>
<td>0.000</td>
<td>0.019</td>
<td>0.012</td>
<td>0.003</td>
<td>0.000</td>
<td>0.006</td>
<td>0.009</td>
</tr>
<tr>
<td>JGMM3</td>
<td>-0.026</td>
<td>0.089</td>
<td>0.041</td>
<td>0.033</td>
<td>-0.017</td>
<td>0.068</td>
<td>0.033</td>
<td>0.022</td>
<td>-0.004</td>
<td>0.038</td>
<td>0.016</td>
</tr>
<tr>
<td>-Ratio</td>
<td>0.987</td>
<td>0.950</td>
<td>1.220</td>
<td>0.975</td>
<td>0.953</td>
<td>1.391</td>
<td>0.979</td>
<td>0.821</td>
<td>1.770</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUE3</td>
<td>-0.011</td>
<td>0.052</td>
<td>0.030</td>
<td>0.013</td>
<td>-0.005</td>
<td>0.042</td>
<td>0.041</td>
<td>0.008</td>
<td>-0.002</td>
<td>0.028</td>
<td>0.033</td>
</tr>
<tr>
<td>-Ratio</td>
<td>1.288</td>
<td>0.847</td>
<td>1.560</td>
<td>1.795</td>
<td>1.545</td>
<td>2.278</td>
<td>5.172</td>
<td>4.828</td>
<td>2.689</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta QMLE</td>
<td>-0.001</td>
<td>0.096</td>
<td>0.039</td>
<td>0.023</td>
<td>0.000</td>
<td>0.064</td>
<td>0.025</td>
<td>0.014</td>
<td>-0.002</td>
<td>0.027</td>
<td>0.011</td>
</tr>
<tr>
<td>-Ratio</td>
<td>1.183</td>
<td>1.182</td>
<td>1.134</td>
<td>1.138</td>
<td>1.168</td>
<td>1.102</td>
<td>1.158</td>
<td>1.129</td>
<td>1.056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JCUE3</td>
<td>0.001</td>
<td>0.121</td>
<td>0.061</td>
<td>0.025</td>
<td>0.000</td>
<td>0.074</td>
<td>0.056</td>
<td>0.016</td>
<td>0.000</td>
<td>0.046</td>
<td>0.074</td>
</tr>
<tr>
<td>JGMM3</td>
<td>0.018</td>
<td>0.195</td>
<td>0.089</td>
<td>0.047</td>
<td>0.012</td>
<td>0.123</td>
<td>0.074</td>
<td>0.031</td>
<td>0.003</td>
<td>0.080</td>
<td>0.042</td>
</tr>
<tr>
<td>-Ratio</td>
<td>1.231</td>
<td>1.161</td>
<td>1.181</td>
<td>1.077</td>
<td>1.248</td>
<td>1.089</td>
<td>1.181</td>
<td>1.221</td>
<td>1.263</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUE3</td>
<td>-0.037</td>
<td>0.187</td>
<td>0.104</td>
<td>0.041</td>
<td>-0.043</td>
<td>0.220</td>
<td>0.120</td>
<td>0.043</td>
<td>-0.030</td>
<td>0.320</td>
<td>0.147</td>
</tr>
<tr>
<td>-Ratio</td>
<td>1.231</td>
<td>1.101</td>
<td>1.325</td>
<td>1.688</td>
<td>1.325</td>
<td>1.996</td>
<td>5.956</td>
<td>1.721</td>
<td>2.035</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Simulations are conducted using 5,000 observations across 1,000 trials. The true parameter vector \(\theta = (\text{Var}, \alpha, \beta) \), where Var is the unconditional variance. QMLE is the quasi-maximum likelihood estimator. MM is the method of moments estimator. (J)CUE3 is the (jackknife) continuous updating estimator with max(i) = 3. JGMM3 is the jackknife two step generalized method of moments estimator, also with max(i) = 3. For the (J)CUE and JGMM estimators: (a) the weighting matrix is the inverse of Spearman’s correlation matrix; (b) K = 20; (c) L = 1. Ratio is the given measure of dispersion (error) for the given estimator immediately above it from this table divided by the corresponding measure of dispersion (error) from Table 1. Med. Bias is the median bias, SD the standard deviation, and MDAE the median absolute error of the estimates. Dec Rge is the decile range of the estimates, measured as the difference between the 90th and the 10th percentiles.
<table>
<thead>
<tr>
<th>Currency</th>
<th>Para.</th>
<th>JCUE3</th>
<th>OCUE3</th>
<th>QMLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Var</td>
<td>0.5579</td>
<td>0.5579</td>
<td>0.4957</td>
<td></td>
</tr>
<tr>
<td>Alpha</td>
<td>0.050</td>
<td>0.0890</td>
<td>0.0532</td>
<td></td>
</tr>
<tr>
<td>AUD</td>
<td></td>
<td></td>
<td>(0.0648)</td>
<td>(0.0088)</td>
</tr>
<tr>
<td>Beta</td>
<td>0.922</td>
<td>0.9081</td>
<td>0.9382</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0211)</td>
<td>(0.0101)</td>
</tr>
<tr>
<td>Sum</td>
<td>0.9726</td>
<td>0.9971</td>
<td>0.9914</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Var</td>
<td>0.4963</td>
<td>0.4963</td>
<td>0.5057</td>
<td></td>
</tr>
<tr>
<td>Alpha</td>
<td>0.049</td>
<td>0.0901</td>
<td>0.0486</td>
<td></td>
</tr>
<tr>
<td>JPY</td>
<td></td>
<td></td>
<td>(0.0448)</td>
<td>(0.0095)</td>
</tr>
<tr>
<td>Beta</td>
<td>0.916</td>
<td>0.8864</td>
<td>0.9361</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0147)</td>
<td>(0.0123)</td>
</tr>
<tr>
<td>Sum</td>
<td>0.9650</td>
<td>0.9764</td>
<td>0.9848</td>
<td></td>
</tr>
</tbody>
</table>

Notes: GARCH(1,1) models are fit to Australian Dollar (AUD) and Japanese Yen (JPY) spot returns, where the spot rates are measured in terms of US Dollars. The time period for each series is daily from 1/1/90 - 12/31/09. JCUE3 and OCUE3 are the jackknife CUE and optimal CUE, where the former uses the inverse of Spearman’s correlation matrix as it’s weighting matrix, while the latter uses the inverse of the variance-covariance matrix. Both JCUE3 and OCUE3 set \(\max(i) = 3 \) and \(L = 1 \). K is the number of lags used in the given estimator (if applicable). Var is the unconditional variance estimate for the given spot return. Alpha is the ARCH estimate, while Beta is the GARCH estimate. Sum is the sum of the Alpha and Beta estimates.
FIGURE 3

Notes: GARCH(1,1) models are fit to the Australian Dollar (AUD) spot return series using the jackknife CUE (JCUE) and optimal CUE (OCUE) with lag lengths from \(K = 20, \ldots, 40 \). The AUD spot return series is measured daily from 1/1/90 - 12/31/09. The vector norm of the difference between the JCUE (OCUE) and QMLE estimates for Alpha and Beta are plotted against the lag lengths. The JCUE (OCUE) estimates closest to the QMLE estimates are shown. The weighting matrix for the JCUE is the inverse of Spearman’s correlation matrix, while the weighting matrix for OCUE is the variance-covariance matrix. For both the JCUE and OCUE, \(\max(i) = 3 \) and \(L = 1 \). For OCUE3, \(k = 20, 38, \text{and } 39 \) are excluded because they produce point estimates that violate covariance stationarity.

\(\alpha = 0.0537 \)
\((0.0864) \)
\(\beta = 0.9438 \)
\((0.0216) \)
FIGURE 4

Notes: GARCH(1,1) models are fit to the Japanese Yen (JPY) spot return series using the jackknife CUE (JCUE) and optimal CUE (OCUE) with lag lengths from K = 20, . . . , 40. The JPY spot return series is measured daily from 1/1/90 - 12/31/09. The vector norm of the difference between the JCUE (OCUE) and QMLE estimates for Alpha and Beta are plotted against the lag lengths. The JCUE (OCUE) estimates closest to the QMLE estimates are shown. The weighting matrix for the JCUE is the inverse of Spearman’s correlation matrix, while the weighting matrix for OCUE is the variance-covariance matrix. For both the JCUE and OCUE, max(i) = 3 and L = 1. For JCUE3, k = 23 is excluded because it produces point estimates that very likely violate fourth moment stationarity.