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Abstract 

The paper investigates the relationships between technological regimes and firm-level 

productivity performance, and it explores how such a relationship differs in different 

Schumpeterian patterns of innovation. The analysis makes use of a rich dataset 

containing data on innovation and other economic characteristics of a large 

representative sample of Norwegian firms in manufacturing and service industries for 

the period 1998-2004. First, we decompose TFP growth into technical progress and 

efficiency changes by means of data envelopment analysis. We then estimate an 

empirical model that relates these two productivity components to the characteristics 

of technological regimes and a set of other firm-specific factors. The results indicate 

that: (1) TFP growth has mainly been achieved through technical progress, while 

technical efficiency has on average decreased; (2) the characteristics of technological 

regimes are important determinants of firm-level productivity growth, but their 

impacts on technical progress are different from the effects on efficiency change; (3) 

the estimated model works differently in the two Schumpeterian regimes. Technical 

progress has been more dynamic in Schumpeter Mark II industries, while efficiency 

change has been more important in Schumpeter Mark I markets.  
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1. Introduction 

The empirical literature studying the relationships between innovation and the 

productivity performance of firms represents by now a huge and important body of 

applied research. The field has recently experienced a surge of interest due to the 

increased availability of firm-level data for a large number of countries.  

Some of these firm-level datasets, such as those from the Community Innovation 

Survey (CIS) in Europe, contain a rich variety of information on the innovative 

activities and strategies of thousands of enterprises, making it possible to significantly 

refine the measurement of inputs and outputs of the innovative process, as well as to 

include a variety of other related factors.  

Recent microeconometric studies on the innovation-productivity link have 

increasingly made use of innovation survey data, and provided fresh empirical 

evidence on the relationships between innovation input and output, on the one hand, 

and between output and productivity, on the other (Crepon et al., 1998; Hall and 

Mairesse, 2006).  

In our view, a crucial proposition that may be useful to refine this type of empirical 

approach is that the relationship between innovation and productivity may have a well 

distinct nature in different types of markets and industrial sectors. In order to refine 

our understanding of the innovation-productivity link, we need a theoretical approach 

that takes into account the sector-specific nature of technological change (Dosi, 1988; 

Malerba, 2002; Laursen and Meliciani, 2002). 

The general idea we put forward is that, since firms in different industries of the 

economy face a distinct set of opportunities, constraints and conditions, these 

industry-specific characteristics play an important role to explain the enterprises’ 

technological and productivity performance. In particular, in line with the recent work 
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of Castellacci (2007), we argue that firm-level productivity growth is related to the 

characteristics that define the technological regime in which the enterprise operates 

(Malerba and Montobbio, 2003; Park and Lee, 2006). 

More specifically, we explore the idea that the sources and mechanisms of 

productivity growth may be distinct in different types of  sectoral market structure and 

industrial dynamics conditions (Foster et al., 1998; Santarelli and Vivarelli, 2007). In 

a Schumpeter Mark II regime, the oligopolistic and concentrated nature of the market 

may make large incumbent innovators the dominant carriers of productivity growth. 

In contrast, the dynamics of productivity in a Schumpeter Mark I pattern may be led 

by an intense and turbulent process of competition where new innovators are more 

productive than the exit firms they replace.   

In exploring this main idea, it is crucial to distinguish and measure different sources 

of productivity growth. We make use of frontier production function methods (data 

envelopment analysis) to decompose the growth of total factor productivity (TFP) into 

two distinct components: technical progress and technical efficiency (Färe et al. 1994; 

Perelman, 1995; Zheng et al., 2003). The former is associated with changes in the 

best-practice production frontier, whereas the latter with other productivity changes, 

such as learning by doing, improved managerial practices, and change in the 

efficiency with which an existing technology is applied. 

After having identified and measured these two distinct components of TFP growth, 

we will investigate (1) the role of technological regime-related factors to explain their 

dynamics, and (2) how the relationship between technological regimes, technical 

progress and efficiency change differs in the two Schumpeterian patterns of 

innovation. 
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The econometric study makes use of firm-level data for the Norwegian economy. The 

rich dataset we make use of combines together information from three different 

sources. Data for the estimation and decomposition of TFP are taken from a time 

series database that provides information on several thousands of Norwegian 

enterprises for the period 1998-2004. Data on innovative activities are from the Third 

and the Fourth Community Innovation Survey for Norway, referring to the 1998-2000 

(CIS3) and 2002-2004 (CIS4) periods respectively. These three data sources all 

provide information on a very large sample of Norwegian enterprises in all 

manufacturing and service industries.  

The paper follows this outline. Section 2 briefly reviews the empirical literature that 

provides the background and foundation for our study. Section 3 puts forward our 

theoretical model and main hypotheses. Section 4 presents the results of an 

econometric estimation of TFP growth, which identifies the separate contribution of 

technical progress and efficiency changes to the overall productivity dynamics of 

Norwegian firms. Section 5 shifts the focus to the determinants of these two 

components, and estimates an empirical model that tries to explain them by means of 

a set of variables measuring technological regimes and other firm-specific 

characteristics. Section 6 summarizes the results and concludes the paper. 

 

 

2. The literature on innovation and firm-level productivity growth 

In recent years, thanks to the increased availability and diffusion of large enterprise 

datasets, there has been a surge of interest in the measurement of productivity growth 

and the study of its determinants at the firm level (Caves, 1998; Foster et al., 1998; 

Bartelsman and Doms, 2000; Lotti, 2007; Santarelli and Vivarelli, 2007). 
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The measurement of firms’ productivity has for a long time been an engaging field of 

applied research within industrial economics, which has produced a variety of models 

and techniques to estimate TFP and its dynamics (Heshmati, 2003). One interesting 

approach, in particular, has made use of frontier production function methods (e.g. 

data envelopment analysis) to decompose the growth of TFP into two distinct 

components, namely technical progress and technical efficiency (Nishimizu and Page, 

1982; Färe et al. 1994).  

Technical progress is associated with changes in the best-practice production frontier 

of an industry, i.e. changes that are led by the introduction of a technology that is new 

to a sector. By contrast, the growth of technical efficiency is related to improvements 

in the ability with which firms are able to make an efficient use of already existing 

techniques (i.e. previously introduced by other enterprises in the same industry), and 

may be associated to diverse sources of productivity change such as, e.g., learning by 

doing and improved managerial practices. The rationale and intuition of this method 

are discussed in further details in section 4 below.  

Besides decomposing the dynamics of TFP, this empirical literature has investigated 

the determinants of these two distinct components, and tried to relate them to a variety 

of characteristics of the firms and of the institutional and market conditions in which 

they operate (e.g. Zheng et al., 1998; Zheng et al., 2003).  

To the best of our knowledge, though, this type of firm-level studies has not yet 

analysed the relationships between the innovative activities and strategies of 

enterprises, on the one hand, and their performance in terms of technical progress and 

technical efficiency. Does innovation increase productivity by pushing the 

technological frontier further (technical progress), or by improving the efficiency with 

which existing techniques are applied (efficiency change), or both? And what type of 
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innovative activities (strategies, expenditures) are more important to achieve increases 

in each of the two components?  These interesting questions, still unexplored in the 

firm-level literature, motivate our study.  

Perelman (1995) previously investigated these issues by focusing on the industry-

level of analysis. His empirical analysis estimates TFP components for eight sectors 

and 11 OECD countries, and then studies the link between the productivity dynamics 

and some key explanatory factors among which the R&D intensity of each industry.
1
 

An interesting finding of this paper is that the R&D variable is shown to be positively 

related to the technical progress component of TFP and negatively related to the 

efficiency component. In the cross-country setting investigated by Perelman (1995), 

the interpretation of this finding is that industries that invest more actively in R&D 

activities are those that are closer to the world technology frontier and that 

continuously push it further. Our research questions and empirical approach are quite 

similar to Perelman’s, but the important difference is that we shift the focus of the 

analysis to the firm-level and explicitly investigate – within each sector – the 

relationships between the innovative activities and strategies of enterprises, on the one 

hand, and the growth of their technical change and efficiency, on the other. 

In approaching this research issue, the large empirical literature studying the 

relationship between innovation and productivity growth provides us with a set of 

important insights and well-established results, which are useful to give a more solid 

foundation to our study. Applied studies on the impact of R&D activities on the 

dynamics of productivity represent by now a huge and important body of empirical 

research. The standard approach is to investigate the empirical relationship between 

the growth of total factor productivity, on the one hand, and R&D expenditures and 

                                                 
1 Besides R&D, the other explanatory factors included in Perelman (1995)’s regression model are the 

lagged efficiency level, the openness of the industry to international trade, the growth of investments in 

physical capital and the growth of GDP per capita. 
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R&D spillovers, on the other (Griliches, 1979; Los and Verspagen, 2004; Wieser, 

2005). 

Two recent developments in the innovation-productivity literature have particularly 

attracted the attention of scholars in the last few years. The first is the greater 

availability of innovation enterprise-level data for a large number of countries. Some 

of these firm-level datasets, such as those from the Community Innovation Survey 

(CIS) in Europe, contain a rich variety of information on the innovative activities and 

strategies of thousands of enterprises, making it possible to significantly refine the 

measurement of inputs and outputs of the innovative process and to include a variety 

of other related factors. 

A second interesting development has been the progressive refinement of the 

traditional R&D productivity model. The current mainstream approach analyses 

innovation survey data by making use of the so-called CDM model (named after the 

authors of the seminal paper in this tradition, Crepon, Duguet and Mairesse, 1998). 

The CDM empirical model emphasizes the distinction between inputs and outputs of 

the innovative process, and points out that it is the innovative output that affects the 

productivity performance of firms, rather than their R&D activities (inputs) as 

commonly assumed by previous works.  

This CDM type of studies typically estimates three equations: one for the 

determinants of innovation inputs (e.g. measured by total innovation intensity), one 

for the link between innovation input and output (measured by turnover from new 

products), and one for the impact of innovation output on productivity (labour 

productivity or TFP).  

Besides the conceptual distinction between these different stages of the innovative 

process, another important contribution of this approach is the consideration of the 
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possible problems created by the existence of sample selection bias in the context of 

firm-level data from innovation surveys. This problem typically arises because many 

of the questions on innovation strategies and activities in the CIS survey are only 

answered by firms that are innovative, whereas non-innovative enterprises skip those 

parts of the questionnaire that are not relevant for them. CDM econometric models 

control for and correct this type of selection-bias (e.g. by means of a generalized Tobit 

model, or the Heckman two-step procedure) and estimate an additional equation for 

the firms’ propensity to innovate. 

The results of these econometric studies are largely consistent with each other and 

provide fresh empirical evidence on the existence of a positive link between 

innovation input and output, on the one hand, and innovation output and productivity, 

on the other. These relationships have been found to hold in large CIS-based samples 

of firms in various European countries (Cainelli et al., 2006; Crespi et al., 2006; 

Duguet, 2006; Hall and Mairesse, 2006; Lööf and Heshmati, 2006; Parisi et al., 2006; 

Van Leuwen and Klomp, 2006). A few studies with availability of CIS data for more 

than one country have also presented comparative exercises (e.g. pooled regressions 

with data for different economies) that seem to indicate that the estimated relationship 

between input, output and productivity is quite similar across different countries in 

Europe (Lööf et al., 2001; Janz et al., 2003; Griffith et al., 2006).   

Despite the merits of this recent approach, it is however also important to point out 

one possible limitation of it. From a theoretical point of view, this input-output-

performance approach is rooted in a linear understanding of the innovative process 

that, despite its appeal and analytical power, does not provide a realistic 

conceptualisation of the relationships and complex feedback mechanisms between the 

innovative strategies of firms, their economic performance, and the sector-specific 
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characteristics of the market in which they operate. Industry-specific factors, be they 

technological or economic, exert a considerable influence on the innovative strategies, 

opportunities and constrains faced by enterprises in different markets (Von 

Tunzelmann et al., 2008). The relationship between innovation and productivity, in 

our view, may have a well distinct nature in different types of markets and industrial 

sectors. In order to refine our understanding of the innovation-productivity link, we 

need a theoretical approach that takes into account the sector-specific nature of 

technological change.
2

 

 

3. Theoretical model and main hypotheses 

The model that we make use of is based on the notion of technological regime. A 

technological regime may be defined as the technological environment in which 

innovative activities take place in each sector of the economy (Nelson and Winter, 

1982; Winter, 1984 and 2006). A set of industry-specific characteristics defines such a 

technological environment, providing opportunities and constraints for firms that seek 

to undertake innovative activities. These industry-specific features refer in particular 

to the following main characteristics (Cohen and Levin, 1989; Malerba and Orsenigo, 

1995; Lee and Lim, 2001).
3

                                                 
2 Another possible drawback of the CDM model approach refers more specifically to the empirical 

strategy that is commonly adopted to investigate the link between innovation and productivity. Despite 

the conceptual relevance of the distinction between innovation input and output, it is admittedly 

difficult to empirically estimate the relationship between them in the context of cross-sectional data 

such as those based on the CIS surveys. The lack of a reasonable time lag between input, output and 

productivity performance challenges the validity of this type of measurement exercises, which would 

arguably require a longer time span or a panel comprising different waves of the CIS survey. This type 

of refinements, based on the analysis of CIS panel data, is now possible thanks to the increasing 

availability of data from different waves of the innovation surveys, and it currently represents an 

important new avenue of research in the CDM model tradition. 

 
3 For a more extensive discussion of this approach and a comparison with the mainstream view, see 

Castellacci (2008a). 
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Cumulativeness conditions. These define the extent to which technological activities 

and performance build upon the accumulated stock of knowledge and technical 

competencies of each firm (Cefis and Orsenigo, 2001).  

 

Level of technological opportunities. Technological opportunities are commonly 

defined as the likelihood that technological activities and expenditures lead to an 

innovative output, i.e. the pace and intensity of technological progress (Breschi et al., 

2000). Innovative intensity is achieved, in addition to the internal R&D investments 

of a firm, also by the acquisition of external knowledge from other actors, e.g. 

expenditures for the acquisition of machinery, software and R&D services from 

specialized consultants. 

 

External sources of opportunities. A complementary aspect is the ability of firms to 

recognize, imitate and exploit the pool of advanced knowledge that is available in the 

economic environment. External sources of opportunities may be used when firms are 

able to engage in interactions and cooperations with other agents in the innovation 

system, such as their suppliers, users, competitors, private R&D labs, Universities and 

other public research institutes (Laursen and Meliciani, 2002; Reichstein and Salter, 

2006).  

 

Appropriability conditions. Firms typically make use of a variety of instruments to 

protect the results of their innovative activities from imitation (Dosi et al., 2006). 

Appropriability means can roughly be distinguished into formal (e.g. patents and 

trademarks) and informal means (e.g. process secrecy and know-how, and the 

complexity of the product and related design).  
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In a nutshell, the main insight of this approach is that the innovative strategies and 

activities of enterprises greatly vary across sectors because industries differ 

fundamentally in terms of the properties of their technological regimes (Malerba and 

Montobbio, 2003; Park and Lee, 2006). Our theoretical approach is rooted in this 

recent line of research, and tries to bring it one step further.  

The general idea we put forward is that, since firms in different sectors of the 

economy face a distinct set of opportunities, constraints and conditions, these 

industry-specific characteristics play an important role to explain the enterprises’ 

technological and productivity performance.  

In particular, in line with the recent work of Castellacci (2007), we argue that the 

growth of productivity of a firm is related to the characteristics that define the 

technological regime in which the enterprise operates. More specifically, we may 

expect the productivity performance of an enterprise to be related to the 

cumulativeness of its innovative process, its level of technological opportunity, its 

ability to exploit external sources of opportunity, and the effectiveness of its 

appropriability strategy. 

 

Hypothesis 1. The characteristics of technological regimes are important 

determinants of the productivity growth of firms. 

 

This general hypothesis may be sharpened and refined by looking at two interrelated 

and more specific aspects. The first is the distinction between the two distinct sources 

of productivity growth pointed out in the previous section, i.e. technical progress and 

efficiency changes. It would be reasonable to think that the characteristics of 
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technological regimes may have different impacts on these two components of TFP 

growth.  

In particular, since the technical progress component measures upper shifts in the 

technological frontier due to the introduction of techniques that were not previously 

available in an industry, we may expect it to be related to the degree of 

cumulativeness of technological change and to the level of technological opportunities 

(both aspects reflecting firms’ commitment to, and intensity of, internal R&D 

activities; see also Perelman, 1995). By contrast, the efficiency change component, 

which accounts for improvements in the ability with which firms are able to make an 

efficient use of already existing technologies, may arguably be related to firms’ 

efforts to exploit external sources of knowledge (e.g. R&D purchase, consultancy 

services, etc.) rather than to their capability to internally create radically new 

technologies. In short, we put forward the following 

 

Hypothesis 2. The impacts of technological regime-related factors on technical 

progress are different from the effects on efficiency change. 

 

A second aspect that it is important to look at in order to sharpen our theory is the 

type of market structure and industrial dynamics that characterize each industry. The 

empirical literature on technological regimes has previously investigated the 

relationships between technological regimes and the characteristics of market 

structure and industrial dynamics in different sectors of the economy. Several recent 

works in this field have in particular focused on differences in terms of concentration 

of innovative activity, size of innovative firms, ease of entry in the market, turbulence 
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or stability in the population of innovative firms (Malerba and Orsenigo, 1995 and 

1996; Breschi et al., 2000; Van Dijk, 2000).  

These studies have shown that the properties of technological regimes may explain 

the existence of the innovation patterns originally pointed out by Schumpeter (1934 

and 1943). The first, the Schumpeter Mark I, is characterized by high ease of entry in 

the market, low concentration of innovative activity, and a turbulent population of 

new and old innovators with a significant role played by small firms. Creative 

destruction (Schumpeter, 1934) is the main feature of this regime (also defined 

‘entrepreneurial’ or ‘widening’). The second, the Schumpeter Mark II pattern, is 

characterized by high barriers to entry for new innovators, high concentration of 

innovative activity, and a stable population mainly formed by large and well-

established firms. Creative accumulation (Schumpeter, 1943) is the distinctive feature 

of such a regime, also defined ‘routinized’ or ‘deepening’. 

The stylised distinction between Schumpeter Mark I and II and its relationship to the 

properties of technological regimes suggest a further refinement of our framework. It 

is reasonable to conceive, we argue, that the relationship between technological 

regime-related factors and productivity growth that our model explores will be 

different in the two Schumpeterian patterns of innovation. The reason is that the 

mechanism that links innovative activities, technical progress and efficiency changes 

may indeed work differently in distinct types of market structures.  

In the Schumpeter Mark II regime, high cumulativeness and appropriability 

conditions create strong technological entry barriers for new innovators. Productivity 

growth in this type of market may be assumed to be, to a large extent, the result of a 

continuous process of knowledge accumulation by well-established oligopolistic 

innovators, where the key sources of growth are thus represented by dynamic 

 13



economies of scale and the persistence and cumulativeness of innovative activities. 

Incumbents continuously push the technological frontier further, so that, on average, it 

is technical progress that represents the dominant source of productivity dynamics for 

the industry. 

In a Schumpeter Mark I pattern, on the other hand, low cumulativeness and 

appropriability conditions tend to facilitate the continuous entry of new innovative 

firms. In this context, productivity growth is more likely to be related to the process of 

creative destruction that continuously characterizes a turbulent market, where new 

innovators are more productive than the exit firms they replace. In a highly 

competitive market, the ability of firms to make efficient use of rapidly changing 

production techniques becomes a crucial factor. For this type of industry, therefore, 

efficiency improvements may be expected to constitute a more relevant mechanism of 

productivity growth. 

 

Hypothesis 3. The relationship between technological regimes, technical progress and 

efficiency changes works differently in different Schumpeterian patterns of 

innovation. In particular: 

 

• Hypothesis 3a. Technical progress is greater in the Schumpeter Mark II than in 

the Schumpeter Mark I pattern. 

 

• Hypothesis 3b. Efficiency change is greater in the Schumpeter Mark I than in the 

Schumpeter Mark II pattern.
4
 

                                                 
4 Hypothesis 3 may also be expressed with reference to the idea and terminology recently put forward 

by Aghion et al. (2005) in their study of the inverted U relationship between competition and 

innovation. This seminal paper points out that in competitive neck-and-neck markets (roughly 

corresponding to a Schumpeter Mark I regime) firms must continuously implement advanced 
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4. A decomposition of TFP growth  

The first part of our empirical investigation focuses on total factor productivity and 

decomposes its growth by means of data envelopment analysis. The results of this 

decomposition exercise will then be used in the next section as dependent variable in 

a regression analysis that studies the link between innovation and productivity 

performance. 

We make use of frontier production function methods to study the dynamics of 

productivity of Norwegian firms. This first part of the analysis is based on the 

Tidsseriebase dataset, containing information on value added, labour and capital 

investments (deflated by means of industry-level indexes) for a large sample of 

Norwegian enterprises in all manufacturing and service industries for the period 1998-

2004.  The number of observations in the dataset varies between around 4000 and 

6000 firms for each of the years in the time span. 

The Malmquist Index model is based on the non-parametric deterministic production 

frontiers estimated via data envelopment analysis (DEA; Färe et al. 1994). This 

approach allows decomposing the dynamics of TFP into technical progress and 

technical efficiency change. The former is associated with changes in the best-practice 

production frontier, and the latter with other productivity changes, such as learning by 

doing, improved managerial practices, and change in the efficiency with which an 

existing technology is applied.  

                                                                                                                                            
technologies in order to maintain their competitive position (the “escape competition effect”). By 

contrast, in less competitive industries (Schumpeter Mark II) incumbent firms dominate the technology 

market (the traditional “Schumpeter effect”). Our third hypothesis argues that these different types of 

market structure lead to well-distinct mechanisms of productivity growth, where efficiency change 

prevails in the former and technical progress in the latter case. 
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The main intuition of the method is the following.
5
 For each industry, the DEA 

methodology follows the following steps: (1) it identifies the best-practice firms, i.e. 

the enterprises that have the highest output (value added) for any given level of input 

(capital and labour); these best-practice firms define the empirical production frontier 

of the industry (in year t); (2) the DEA then calculates the level of technical efficiency 

for all firms in the industry, which is also a measure of how distant an enterprise is 

from the best-practice frontier of its sector (i.e. a measure of the technology-gap); (3) 

by comparing the production frontier and the technical efficiency levels of each firm 

between year t and t+1, it is then possible to calculate the growth rate of technical 

progress (i.e. shifts in the empirical production frontier) and the growth rate of 

technical efficiency (i.e. the extent to which a firm has got closer to the frontier over 

time). The overall growth rate of TFP (Malmquist index) is defined as the geometric 

average of these two components.  

The DEA represents a useful method to decompose the dynamics of total factor 

productivity. In the context of the analysis of innovation and technological change, 

this empirical methodology may be particularly interesting for the following reasons. 

First, at the firm-level, it provides a measure of the extent to which each enterprise 

has been able to introduce technologies that are new to its market (thus pushing the 

technological frontier further) and/or making a more efficient use of techniques 

already available in the industry (i.e. previously introduced by other firms). Secondly, 

at the industry-level, aggregating this type of firm dynamics gives an interesting 

indication of the overall productivity trajectory of each sector, i.e. whether it has been 

characterized, on average, by shifts in the technological frontier or rather by a process 

                                                 
5 A formal presentation of the method is reported in the Appendix. See also Färe et al. (1994) and Färe 

and Grosskopf (1996). 
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of catching up where many enterprises have improved their technical efficiency over 

time.  

Thirdly, from a theoretical point of view, the DEA method is rather eclectic and 

flexible, since it does not impose any strong a-priori assumptions on the data. In fact, 

DEA is a non-parametric method that does not assume any specific functional form 

for the production function. Quite on the contrary, by distinguishing the most 

productive from the less efficient firms, the technique lets the data speak, and it 

explicitly recognizes firm heterogeneity as a major characterizing feature of each 

industry. Thus, while the distinction between shifts in the production frontier 

(technical progress) versus movements towards the frontier (efficiency change) was 

originally rooted in a mainstream production function approach, its application within 

a non-parametric DEA context is actually quite consistent with an evolutionary 

economic environment where heterogeneous firms continuously compete by trying to 

imitate existing technologies and by introducing new ones.
6
 Besides these three 

advantages of the method, there are also some possible drawbacks. We discuss these 

econometric issues in the Appendix.   

We have applied this productivity decomposition method to our large sample of 

Norwegian enterprises in all manufacturing and service industries for the period 1998-

2004.  First we have run the DEA for each industry (defined at the 3-digit level) and 

                                                 
6 One important caveat has to be made regarding the heterogeneity issue pointed out here. The DEA 

methodology typically distinguishes the best-practice firms from the less efficient units based on the 

combination of input (e.g. capital and labour) and output that they use in any given period. In a second 

step, it is then possible to examine the factors that may explain the heterogeneity of firms’ 

productivities (this is what we do in the second part of our empirical analysis, see section 5). However, 

a different approach to the analysis of firms’ heterogeneity does instead argue that it is indeed 

conceptually difficult to define and identify best-practice firms within each industry, because 

enterprises belonging to each sector are characterized by a great variety of innovative strategies, 

patterns and performance. In other words, the factors explaining firm heterogeneity are not limited to 

industry-specific variables, since there could also be common patterns among enterprises that belong to 

different sectors (Srholec and Verspagen, 2008). In this alternative approach, the analysis and 

exploration of the heterogeneity of innovation across firms (and sectors) should be the natural first step 

of the analysis (e.g. by means of factor and cluster analysis), which could then be followed in a second 

stage by the analysis of the link between each pattern identified at the firm-level and the performance 

of enterprises.   
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each year; then, we have calculated the annual growth rates of TFP and of its two 

components. Table 1 reports the results of these estimations for the two sub-periods 

1998-2001 and 2002-2004, i.e. the dynamics of TFP, and its decomposition into the 

technical progress and the efficiency change components. The various rows of the 

table present averages by sector of firm-level productivity growth.
7
 For interpreting 

these results, it should be noticed that values greater (lower) than 1 indicate positive 

(negative) growth of TFP (and of its two components).  

 

< Table 1 here > 

 

Looking at the Malmquist TFP index, the table indicates that the growth of total factor 

productivity has been positive for most of the sectors. The country average is 

significantly higher in the second period (10.16%) than in the first one (around 

4.36%). The sectors that have experienced the most rapid pace of TFP growth are 

quite diverse, and belong to both manufacturing and services and to both high- and 

medium-low-tech branches of the economy: food and beverages, leather and 

footwear, basic metals, motor vehicles, other transport equipment, recycling, radio 

and TV, wholesale trade, air transport and telecommunication. This would suggest 

that the process of technological transformation has not only played a relevant role for 

the most technologically advanced branches of the economy, but also for some of the 

mature sectors that have traditionally constituted a stronghold of the Norwegian 

industrial system (Von Tunzelmann and Acha, 2005). 

                                                 
7 The table reports the average TFP growth for each industry at the 2-digit level in order to save some 

space, although, as specified above, our DEA estimations have been carried out for each 3-digit level 

sector. Our dataset does not enable to focus on a finer disaggregation level than the 3-digit, since for 

many of the industries in our sample the number of observations would be not sufficient to run the 

DEA if we defined the sector at, e.g. the 4- or 5-digit level.  
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Shifting the focus to the two components of TFP growth, the table suggests that the 

dynamic pattern of productivity has mostly been obtained, in both sub-periods, by 

means of technical progress rather than through improvements in technical efficiency. 

On average, the technical progress component has grown by nearly 18% in the first 

and 26% in the second period. The growth rate has been particularly high for 

industries such as electrical, radio and TV, furniture, recycling, sea transport, 

telecommunication, and computing and software. These are industries that have 

experienced a high pace of technical progress accompanied by a significant decrease 

(negative growth) of the efficiency change component.
8
  

Technical efficiency has on average decreased by nearly 8% in the first period and 7% 

in the second. Different sectors have however contributed quite differently to the 

negative average performance of the efficiency change component, and some 

industries have indeed experienced efficiency increases in at least one of the two sub-

periods (e.g. mining and quarrying, food and beverages, textiles, leather and footwear, 

basic metals, electrical, motor vehicles, other transport equipment, wholesale trade, 

air transport, telecommunication). 

Summing up, our decomposition exercise indicates that in the period 1998-2004: (1) 

TFP growth has mostly been obtained through technical progress, whereas technical 

efficiency has on average decreased; (2) behind this aggregate pattern, the 

performance of different sectors (and of firms in different industries) has been quite 

diverse. What are the factors that may explain the diverging dynamics followed by 

technical progress and efficiency, and to what extent can this be accounted for by the 

                                                 
8 This is not surprising in the context of our DEA estimations. In fact, if an industry experiences a rapid 

pace of technical progress, it is reasonable to think that many enterprises below the frontier will face an 

enlargement of the technology-gap vis-vis the frontier firms. In other words, the catching up process of 

follower firms will be more difficult if the technological frontier of the industry is shifting rapidly over 

time. 
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characteristics of technological regimes and the related patterns of market structure 

and industrial dynamics that characterize different sectors? 

 

 

5. The link between innovation, technical progress and efficiency  

In order to answer this question, the second part of our empirical analysis makes use 

of innovation data and merges them with the TFP data discussed in the previous 

section. Data on innovative activities are from the Third and the Fourth Community 

Innovation Survey for Norway, referring to the 1998-2000 (CIS3) and 2002-2004 

(CIS4) periods respectively. CIS data provide information on a large and 

representative sample of Norwegian enterprises in all manufacturing and service 

industries. By merging the CIS3, CIS4 and the TFP data previously estimated from 

the Tidsseriebase dataset, we are left with a two-period cross-sectional sample, 

containing around 1000 firms in the first (CIS3) and 1650 firms in the second period 

(CIS4).  

 

5.1 CIS data, indicators and descriptive analysis 

We make use of the following indicators, all of which are available in both periods 

and have identical definition in the two waves of the innovation survey. 

 

Firm-specific factors 

 

• Employment (log): Number of employees (log), a standard measure of firm size. 

 

• Group: a dummy variable indicating whether a firm belongs to a group. 
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• Product life: a variable indicating the average length of the firm’s product cycle.  

 

• Export intensity: export divided by total turnover, in 2001 and 2004. 

 

• Market location: a categorical variable that indicates whether a firm sells its 

products and services in local, national, European or other international markets. 

 

• TFP level: level of total factor productivity, average of the period. 

 

Technological regimes factors 

 

• Cumulativeness: Continuous R&D: a dummy variable that indicates whether a 

firm is continuously engaged in R&D activities (rather than being an occasional 

innovator). 

 

• Level of technological opportunities: We make use of three indicators to 

measure the intensity of a firm internal R&D effort as well as its acquisition of 

external R&D and other types of specialized knowledge. (1) R&D intensity 

(internal R&D expenditures, share of total turnover); (2) Other external 

knowledge (acquisition of software and other external knowledge, share of total 

innovation costs); (3) R&D purchase (expenditures for the purchase of R&D, 

share of total innovation costs). 
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• External sources of opportunities: a set of dummy variables indicating whether 

a firm regards the following actors as important sources of information for their 

technological activities: other sources in the same firm (S-Internal); other firms in 

the same group (S-Group); suppliers; users; competitors; consultants; private 

R&D labs; Universities; public research institutes.  

 

• Appropriability conditions: Two dummy variables that indicate whether each 

firm has made use of the following (formal and informal) appropriability modes: 

trademark; patent; secrecy; complex design. 

 

Other innovation-related variables 

 

• Effects of innovation: Three dummy variables indicating whether each firm 

states that technological change has led to the following effects and results: 

increasing market shares or entering new markets (E-Market orientation); 

increasing the productive capacity (E-Productive capacity); decreasing the labour 

costs (E-Labour costs).   

 

• Hampering factors: A set of dummy variables indicating whether a firm 

considers the following factors as important obstacles to its innovative activities: 

high costs (H-Costs); lack of qualified personnel (H-Personnel); lack of 

information on technology (H-TechInfo); lack of other information (H-OtherInfo). 

 

Table 2 presents some descriptive evidence on the variables measuring firm-specific 

factors. The table reports the mean and standard deviation of these variables for both 
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the CIS3 and the CIS4 dataset. As customary in this type of analysis based on CIS 

data, the table reports these descriptive statistics separately for the innovative and 

non-innovative sample (the distinction is applied by means of an “innovator dummy” 

variable that takes value 0 if a firm has had no innovation costs at all, and 1 

otherwise). 

The differences between the innovative and non-innovative samples are evident in 

both periods, and their statistical significance is shown through the results of a non-

parametric Mann-Whitney U test. In particular, firms in the innovative sample are 

characterized by higher TFP levels, greater firm size and group structure, shorter 

product life cycle, higher export intensity and greater relevance of international 

commercialisation markets. 

This descriptive evidence, which is consistent with what previous studies based on 

CIS firm-level data have found for other countries, provides one first relevant 

indication for the econometric study that we intend to undertake. Given the significant 

differences between innovative and non-innovative firms in our sample, selection-bias 

may occur in our econometric estimations. This is due to the fact that in the CIS 

questionnaire non-innovative enterprises do not answer the questions on innovative 

activities, strategies and performance, and are therefore excluded from the regressions 

studying the links between innovation and productivity growth. For this reason, in 

order to take into account this type of sample selection problem, the estimations that 

we will present make use of a Heckman two-step procedure, as standard in the CDM 

econometric approach (see section 2). 

 

< Table 2 here > 
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Next, we present some descriptive evidence on the differences between the 

characteristics of firms in distinct Schumpeterian regimes. Table 3 reports the mean 

and the coefficient of variation (CV) of firms in the two distinct types of market 

structure and industrial dynamics that are typically labelled Schumpeter Mark I and 

Schumpeter Mark II.   

The distinction between Schumpeter Mark I and II regimes, while clear from a 

conceptual point of view, is not easy to apply in empirical analyses, since there exist 

no well-established criteria to decide whether each sector of the standard industrial 

classification belongs to one or the other regime. Previous empirical studies in the 

field, however, have carefully analysed this aspect and provided a list of industries 

belonging to each Schumpeterian regime (Malerba and Orsenigo, 1995, p. 58; Breschi 

et al., 2000, p. 400; Van Dijk, 2000, pp. 192-194; Marsili and Verspagen, 2002, pp. 

814-815; Castellacci, 2008b). In addition, the recent paper by Castellacci et al. (2009) 

has investigated this issue by means of a factor and cluster analysis exercise applied to 

a large number of indicators on market structure and industrial dynamics of 

Norwegian firms in all manufacturing and service industries. Our division of sectors 

into Schumpeter Mark I and II regimes follows therefore these previous empirical 

works.
9
  

For both periods, table 3 reports the results of a non-parametric Mann-Whitney U test 

that investigates the differences between firms in the two Schumpeterian regimes. The 

test confirms that enterprises differ significantly when they operate in distinct market 

and industrial dynamics conditions. Firms in the Schumpeter Mark II pattern have on 

                                                 
9 The list of sectors in the two Schumpeterian regimes is the following. Schumpeter Mark I sectors: 

mining; textiles; wearing; leather and footwear; wood and related products; printing and publishing; 

non-metallic mineral products; fabricated metals; machinery and equipment; electrical; radio and TV; 

medical and optical; other transport equipment; furniture; recycling; construction; wholesale trade; land 

transport; auxiliary transport services; research and development. Schumpeter Mark II industries: 

motor vehicles; food and beverages; pulp and paper; basic metals; sea transport; air transport; 

telecommunication; computing and software; other business services. 
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average higher R&D intensity and greater cumulativeness of technological change, 

and they also tend to be larger and more oriented to international markets.  

While this confirms the basic characteristics of the Schumpeter Mark I and II 

distinction, a more novel indication is provided by the analysis of their differences 

with respect to the variables measuring productivity dynamics. The technical progress 

component of TFP growth proves to be significantly more dynamic for firms in the 

Schumpeter Mark II regime, whereas the efficiency change component is higher for 

enterprises in the Schumpeter Mark I type of markets. Considering the joint effects of 

these two components of productivity, the growth of TFP has been slightly larger for 

firms in the Schumpeter Mark I than in the Schumpeter Mark II pattern (3.5% against 

0.7%, and 6.4% versus 3.9%). 

This finding is, in our view, quite interesting, and it provides empirical support for the 

third hypothesis that we have previously put forward (see section 3, hypotheses 3a 

and 3b). Our interpretation of this result is that the mechanism of productivity growth 

differs in the two Schumpeterian regimes. While Schumpeter Mark II markets are 

characterized by an oligopolistic structure where large incumbent innovators 

continuously and cumulatively push the technological frontier further (technical 

progress), firms in Schumpeter Mark I industries must devote a significant effort to 

make an efficient use of already available techniques (efficiency change), which is a 

crucial requirement to survive in competitive and turbulent markets.  

 

< Table 3 here > 
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5.2 Model specification and estimation results 

In the analysis of the links between innovation and productivity growth, we employ a 

model specification and estimation strategy able to take into account the two issues 

highlighted by the descriptive evidence presented in section 5.1. The first, the possible 

problem of selection-bias, is tackled by making use of the Heckman two-step 

methodology. The second, the differences between firms in the Schumpeter Mark I 

and Mark II patterns, is taken into account by estimating a piecewise linear regression 

version of the model (i.e. by including constant and slope dummies to control for 

differences among the two regimes). 

The Heckman two-step estimation method corrects for the possible presence of 

selection-bias that is caused by the exclusion of non-innovative firms (which, as 

previously shown, are significantly different from enterprises in the innovative 

sample). In line with the CDM model approach (see section 2), the first step of the 

procedure estimates a selection equation, which investigates the factors explaining the 

probability that a firm is an innovator. The second step studies the links between 

innovation and productivity growth, including, among the other regressors, also the 

inverse Mills ratio that corrects for the sample selection bias.  

The dependent variable in the selection equation is an “innovator dummy” variable 

(taking value 0 if a firm has had no innovation costs at all, and 1 otherwise). The 

explanatory factors are firm-specific indicators that are typically used in recent CDM 

applied works (Hall and Mairesse, 2006). Nearly all of these factors turn out to be 

significant in the first-step regression presented in the tables. The probability of being 

an innovator increases with firm size, its group structure, its international market 

orientation, and it decreases with the length of the product life (suggesting that the 

shorter the life cycle the greater the need to invest in innovative activities). Besides, 
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the probability of being an innovator is positively related to the four dummy variables 

measuring different types of hampering factors in the innovative process, i.e. high 

costs, lack of qualified personnel, lack of technical information or other types of 

information. The positive sign of this estimated relationship is not surprising and it is 

consistent with previous works, suggesting that innovative firms have a greater 

awareness of the main factors that hamper their innovative activities.   

The second-step equation studies the relationships between innovation and the two 

distinct components of TFP growth. We therefore estimate two distinct (second-step) 

equations. The first relates the growth of technical progress to the set of explanatory 

variables that have been presented in section 5.1, namely the characteristics of 

technological regimes and a set of other firm-specific factors. The second equation 

makes use of the same set of explanatory variables to explore their impact on the 

growth of efficiency.  

Our choice of including the same set of explanatory variables in the two (second-step) 

equations may be justified on the following grounds. In principle, there is no reason to 

assume that the same factors will explain equally well both technical progress and 

efficiency change, and our hypothesis 2 does in fact argue that we should expect the 

technological regimes variables to have distinct effects on the two components of 

productivity growth. However, there exists no clear prior knowledge, i.e. previous 

analytical models or empirical results, indicating what type of innovative activities 

(strategies, expenditures) may be more important to explain one productivity 

component or the other. Therefore, in an exploratory fashion, we include the same set 

of explanatory variables in the two equations in order to see whether there is any 

important difference in the working of the technological regime model for the two 

distinct types of productivity changes. 
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For each of these two equations, we estimate three different specifications: the first 

includes dummies for all manufacturing and service industries; the second includes, 

instead of the whole set of industry dummies, a constant dummy for firms in 

Schumpeter Mark II sectors; the third specification includes, in addition, a set of slope 

dummies for enterprises in Schumpeter Mark II sectors.
10

 All the regressions also 

include a time dummy that controls for differences between the two sub-periods. 

Results for the determinants of technical progress are presented in table 4, whereas 

those for efficiency change are reported in table 5. 

Table 4 provides basic support for our technological regime model, and indicates that 

the statistical precision of many of the estimated coefficients is higher in the versions 

of the model that control for differences between the two Schumpeterian patterns of 

innovation (reported in the last two columns). Among the firm-specific factors, 

technical progress is positively related to firm size, the ‘part of a group’ dummy 

variable (in the Schumpeter Mark II), and the international location of markets (only 

in the Schumpeter Mark I). It is instead negatively related to the length of the product 

life, which has a much stronger effect in the Schumpeter Mark II than in the Mark I 

pattern.  

Besides, the level of TFP turns out to have a high negative estimated coefficient, and 

this inverse relationship between TFP level and technical progress appears to be even 

more pronounced in the Schumpeter Mark II regime. A possible interpretation of this 

finding may point to the existence of a (short-run) trade-off between the efforts and 

                                                 
10 In the piecewise linear regression version of the model, slope dummies have initially been included 

for all of the explanatory variables. However, in the final specification presented here the slope 

dummies have been retained only if their inclusion contributes to improve the explanatory power of the 

model. When a slope dummy is included in the regression, the estimated coefficient for the Schumpeter 

Mark II regime is the algebraic sum of the overall estimated coefficient of the regressor and the one of 

the corresponding slope dummy. On the other hand, if the slope dummy is not included, the estimated 

coefficient is the same for the two regimes. 
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investments that are necessary for searching for radically new technologies, on the 

one hand, and the achievement of technical efficiency, on the other. Enterprises that 

devote substantial efforts to the introduction of technical progress may find it harder 

to achieve a full exploitation of other advanced techniques already available in the 

market (e.g. because they focus on internal rather than external opportunity sources). 

Relatedly, the negative estimated relationship between TFP level and technical 

progress does also indicate that it is not always the same best-practice firms that 

introduce new technologies; enterprises below the frontier do also manage to catch up 

and shift the industry frontier over time (Aghion et al., 2005). This is more clearly the 

case in the Schumpeter Mark II regime, our results indicate, since this is a type of 

markets where oligopolistic innovators (be they best-practice or below the frontier) 

compete with each other by continuously introducing new technologies.   

Shifting the focus to the technological regime explanatory variables, we observe that 

the coefficient of the cumulativeness dummy variable is positive, as expected, but 

when we control for differences between the Schumpeter Mark I and II, it turns out to 

be negative for the latter. Regarding the variables measuring the levels of 

technological opportunity, the R&D intensity turns out to be positive, and the variable 

measuring the acquisition of software and other external knowledge has a quite strong 

positive effect on technical progress.
11

 Among the external sources of opportunity 

dummy variables, only internal sources and competitors on the same market have a 

significant estimated coefficient (in at least some of the regressions). The dummies 

measuring formal and informal appropriability means are instead not significant at 

conventional levels. 

                                                 
11 The finding of a positive relationship between R&D intensity and technical progress is in line with 

the industry-level study carried out by Perelman (1995). 
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The last group of regressors measure other aspects of the innovative process, such as 

hampering factors and effects of innovation. These variables provide some additional 

interesting indications on the nature and performance of innovative activities of 

Norwegian firms. The lack of qualified personnel is negatively related to productivity 

growth, while the lack of technical information is negatively (positively) related to it 

in the Schumpeter Mark II (Mark I) regime. On the other hand, the variables 

measuring the firm ability to increase market shares and entering new markets and the 

expansion of its productive capacity have both a positive effect on technical progress.     

Last, the time dummy confirms that technical progress has been stronger in the second 

than in the first period (see section 4, table 1), while the Schumpeter Mark II constant 

dummy indicates that technical progress has been significantly more rapid for firms in 

the Schumpeter Mark II than in the Schumpeter Mark I. This provides further 

empirical support for the third hypothesis put forward in section 3 (see hypothesis 3a). 

 

< Table 4 here > 

 

Table 5 presents the results of the estimations exploring the determinants of the 

efficiency change component of TFP growth. First, looking at the set of firm-specific 

indicators, efficiency improvements are positively related to firm size, the ‘part of a 

group’ dummy variable, and the international market orientation of the enterprise. 

These results are in line with previous studies exploring the determinants of efficiency 

change at the enterprise level (Zheng et al., 2003). 

The main difference as compared to the results in table 4 refers to the TFP level 

variable. This turns out to be positively related to the dynamics of technical 

efficiency. One possible interpretation of this finding is that the dynamics of technical 
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efficiency, representing mechanisms such as learning by doing, improvements in 

managerial practices and the acquisition of external knowledge, grows in a cumulative 

way because it builds upon existing levels of knowledge stocks, human capital and the 

absorptive capacity of a firm. In other words, this result indicates that firms that are 

characterized by higher efficiency levels are also better able, over time, to implement 

advanced techniques that are available in the industry (i.e. previously introduced by 

other innovating firms), whereas enterprises that are too distant from the frontier are 

less successful in this respect. Table 5 also suggests that this type of cumulative 

catching up mechanism within each industry is stronger in the Schumpeter Mark II 

regime, because this type of market is characterized by a greater polarization between 

best-practice versus distant-from-frontier firms: the former (oligopolistic producers 

that dominate the market) continuously improve their technical efficiency, while the 

latter are not able to keep up with the rapidly moving technological frontier.   

Secondly, some of the effects of the technological regime related variables do also 

differ. The purchase of R&D from external specialized providers seems to be an 

important channel to improve technical efficiency, whereas the internal R&D and 

cumulativeness variables are not significant in the two model specifications that 

control for differences between the Schumpeterian regimes. Among the external 

sources of opportunities, internal sources and consultants turn out to be relevant 

channels to achieve efficiency improvements.    

Thirdly, the group of variables measuring other aspects of the innovative process also 

shows some interesting differences vis-à-vis the determinants of technical progress. 

The hampering factors indicators are in fact both positively related to efficiency 

change, a possible interpretation being that when there exist significant obstacles to 

undertake innovative activities, a more convenient strategy for the firm is instead to 
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devote resources to the improvements of its technical efficiency. As for the variables 

measuring the effects of innovation, efficiency growth is positively related to the 

market orientation of the firm and to its ability to save on labour costs. It is also 

negatively linked to increases in the firm’s production capacity, since a higher 

productive capacity makes it more difficult for an enterprise to achieve a full 

utilization of it in the short run, thus lowering technical efficiency. 

Finally, looking at the Schumpeter Mark II constant dummy, this indicates that 

efficiency change has been significantly more rapid for firms in the Schumpeter Mark 

I than in the Schumpeter Mark II. This provides further support for the third 

hypothesis put forward in section 3 (see hypothesis 3b). 

 

< Table 5 here > 

 

 

6. Conclusions 

The paper has analysed the dynamics of productivity of Norwegian firms in the period 

1998-2004, and it has investigated the relationships between TFP growth and 

technological regimes. The empirical analysis has proceeded in two steps. First, we 

have employed data envelopment analysis in order to decompose the growth of TFP 

into two distinct components, technical progress and efficiency change. Then, we 

have explored the determinants of these two components by estimating a model that 

links technological regime-related factors and a set of other firm-specific 

characteristics to the productivity performance of Norwegian enterprises. 
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Our main results can be summarized as follows. First, the productivity decomposition 

exercise indicates that in the period 1998-2004 TFP growth has mostly been obtained 

through technical progress, whereas technical efficiency has on average decreased. 

The technological regime type of model that we have put forward to investigate the 

determinants of these two distinct components appears to perform reasonably well in 

the econometric estimations, and provides basic support for the first of our theoretical 

hypotheses (see section 3, hypothesis 1).  

Specifically, both components of productivity growth are significantly related to the 

level of technological opportunities (as measured by the acquisition of external 

knowledge), other sources of opportunities within the same firm, the ability of the 

enterprise to increase market shares and entering new markets, as well as a set of 

other firm-specific characteristics such as size, export orientation and the average 

length of the product cycle. 

Secondly, the econometric results also indicate that some of the explanatory variables 

in the model have different effects on the two distinct components of productivity 

growth. This provides support for the second hypothesis put forward by our 

theoretical framework (see section 3, hypothesis 2).  

In particular, internal R&D efforts and the cumulativeness of R&D activities are 

important factors for the dynamics of technical progress but not for efficiency change. 

Among the external sources of opportunity, competitors on the same market are 

important for technical progress, whereas interacting with the consultants seems to 

constitute a more relevant factor to achieve efficiency improvements. Increases in the 

productive capacity of the firm are, quite obviously, positively related to technical 

progress but negatively linked to the efficiency component. Last, the level of TFP 

shows a strong negative (positive) relationship with technical progress (efficiency 
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change), thus possibly suggesting a possible trade-off in the short-run between the 

efforts devoted to the introduction of new technologies and the achievement of high 

efficiency in the utilization of existing techniques.  

Thirdly, the empirical results also provide support for the idea that the relationships 

between technological regimes, technical progress and efficiency changes work 

differently in different Schumpeterian patterns of innovation (see section 3, 

hypothesis 3). In the piecewise linear regression version of our econometric model, 

many of the explanatory variables turn out to have different estimated coefficients in 

the Schumpeter Mark I and in the Schumpeter Mark II regimes. This is particularly 

the case in the technical progress equation, where several regressors significantly 

differ among the regimes (e.g. cumulativeness, group structure, length of the product 

life, market location, lack of technological information as a main hampering factor). 

These results also indicate that the technical progress component of TFP growth has 

proved to be significantly more dynamic for firms in the Schumpeter Mark II regime 

(hypothesis 3a), whereas the efficiency change component has been higher for 

enterprises in the Schumpeter Mark I type of markets (hypothesis 3b).  

Our interpretation of this result is that the mechanism of productivity growth differs in 

the two Schumpeterian regimes. While Schumpeter Mark II markets are characterized 

by an oligopolistic structure where large incumbent innovators continuously and 

cumulatively push the technological frontier further (technical progress), firms in 

Schumpeter Mark I industries must pay close attention to make an efficient use of 

already available techniques (efficiency change), which is a crucial requirement to 

survive in competitive and turbulent markets. 
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Appendix: Empirical model and econometric issues 

In order to analyse the relationship between TFP growth and innovation, we follow a 

two-step empirical strategy. The first step estimates TFP growth and decomposes it 

into two components: technical progress and efficiency change (see section 4). The 

second step uses these two components as dependent variables, and relates them to a 

set of innovation variables by means of a Heckman selection econometric model (see 

section 5).  

 

A1. Step 1: the DEA empirical model 

Data envelopment analysis (DEA) is a nonparametric method to estimate the 

production frontier and efficiency levels of a number of observed units (Farrell, 

1957). In our paper (see section 4), we estimate the production frontier and efficiency 

of n firms belonging to each sector j for each period t.  

In each industry, the production process may be described as follows. The n 

enterprises produce the output Yi
t
 (where Yi

t
 ≥ 0) by using m inputs Xi

t
 (in our 

empirical exercise m equals 2, capital and labour). The production set Ωt
 is defined as 

the set of physically attainable combinations (X
t
;Y

t
), i.e. such that X

t
 can produce Y

t
. 

For each firm i, the Farrell output measure of efficiency Εt
(Xi

t
;Yi

t
) indicates the 

distance between the enterprise and the production frontier in its industry. If 

Εt
(Xi

t
;Yi

t
) = 1 the firm is output-efficient (i.e. it is a best-practice unit), otherwise it 

lies below the production frontier. 

Given this efficiency measure, the Malmquist productivity index for firm i (Färe et al., 

1994; Färe and Grosskopf, 1996) can be defined as: 

 

Mi
t
 = [Εt

(Xi
t+1

;Yi
t+1

) / Εt
(Xi

t
;Yi

t
)]                                                                                 (1) 
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where the numerator measures the efficiency change that the firm would need in order 

to achieve the combination (Xi
t+1

;Yi
t+1

) in the next period (t+1) given the technology 

available in the current period (t). Given Mi
t 
and Mi

t+1
, the Malmquist productivity 

change index measures the growth of TFP between period t and t+1:  

 

ΔMi (t; t+1) = {[Εt
(Xi

t+1
;Yi

t+1
) / Εt

(Xi
t
;Yi

t
)] � [Εt+1

(Xi
t+1

;Yi
t+1

) / Εt+1
(Xi

t
;Yi

t
)]}

½ 
       (2) 

 

This growth index can be decomposed into two parts: 

 

ECi (t; t+1) = [Εt+1
(Xi

t+1
;Yi

t+1
) / Εt

(Xi
t
;Yi

t
)]                                                                (3) 

TPi (t; t+1) = {[Εt
(Xi

t+1
;Yi

t+1
) / Εt+1

(Xi
t+1

;Yi
t+1

)] � [Εt
(Xi

t
;Yi

t
) / Εt+1

(Xi
t
;Yi

t
)]}

½
         (4) 

 

The first component measures the change of efficiency of firm i whereas the second is 

the technical progress component. These two components represent the dependent 

variables of our empirical study. However, since the production set Ωt
 is unknown, we 

need an estimation of it before being able to calculate the efficiency measures and 

productivity components that have been defined here. 

Simar and Wilson (2000) point out three general assumptions that are sufficient to 

specify a data generating process (DGP) for estimating the production set Ωt
: (1) free 

disposability and convexity of the production set; (2) i.i.d. sampling: the n 

observations are generated by i.i.d. random variables with a given probability density 

function f(X
t
;Y

t
); (3) Εt

(Xi
t
;Yi

t
) is differentiable in both inputs and output for all 

observations. In short, given these assumptions, the DGP is defined as: Ρ = Ρ (Ωt
; 

f(X
t
;Y

t
)). 

 36



The DEA estimator of the production frontier, Ωt
DEA, is obtained as the solution of the 

following linear programming problem: 

 

Ωt
DEA = { (X

t
;Y

t
) | 

y ≤ ∑ (ηi � Yi) 

x ≥ ∑ (ηi � Xi) 

∑ ηi = 1 

ηi ≥ 0; i = 1, …, n }                                                                  (5) 

 

Plugging Ωt
DEA into E

t
(Xi

t
;Yi

t
), we obtain E

t
DEA(Xi

t
;Yi

t
), i.e. the DEA estimator of 

efficiency for a given firm i in period t. By using these estimated efficiency levels, we 

can then obtain estimates of the two productivity growth components defined above, 

efficiency change and technical progress: ECiDEA (t; t+1) and TPiDEA (t; t+1). 

 

A2. Econometric issues and possible limitations of the DEA approach 

 

Issue I: Sensitivity of efficiency estimates to the sampling variation of the frontier 

Simar and Wilson (1998; 2000) point out that the DEA estimates of efficiency levels 

may be sensitive to the sampling variation of the production frontier. They therefore 

propose a bootstrap procedure that can be used for the inference process in relation to 

DEA estimates.  

The general idea of this bootstrap procedure is to simulate the DGP and apply the 

DEA estimator to each simulated sample. The obtained estimates will tend to 

reproduce the sampling distribution of the DEA estimator, and can therefore be used 

to construct confidence intervals for E
t
DEA(Xi

t
;Yi

t
). The procedure consists of three 

 37



steps: (1) generate K samples Sk
*
 (k = 1, …, K); (2) for each k, calculate the pseudo 

estimates Ωk
t
DEA

*
 and Ek

t
DEA

*
(Xi

t
;Yi

t
); (3) use the empirical distribution of 

Ek
t
DEA

*
(Xi

t
;Yi

t
), for k = 1, …, K, for constructing confidence intervals for 

E
t
DEA(Xi

t
;Yi

t
). Notice, however, that this bootstrap procedure is effective if we make 

use of a good estimator of the data generating process Ρ = Ρ (Ωt
; f(X

t
;Y

t
)), which will 

not necessarily be the case in many empirical exercises.    

An important econometric result is provided by Banker (1993), who demonstrates 

that, under rather general conditions, the DEA estimator is consistent. In short, the 

intuition of Banker’s result can be summarized as follows. For each observation i, the 

estimated efficiency level is determined independently on the efficiency levels 

estimated for all other units. Hence, if the DEA is represented as a MLE model, the 

likelihood function is maximized in correspondence to the DEA estimator. In other 

words, the DEA estimator provides a MLE of the frontier and it is therefore a 

consistent estimator (for details and a proof of this result see Banker, 1993). For the 

specific exercise carried out in this paper, this result is important: since we are using a 

large and representative sample of Norwegian firms in each sector, the consistency 

property of the DEA estimator suggests that we can rely on the validity of our 

efficiency estimates.  

 

Issue II: Super-efficient outliers 

Cazals et al. (2002) and Simar (2003) observe that DEA estimates could be very 

sensitive to the presence of super-efficient outliers (i.e. observations that lie 

substantially above the other production units). It is therefore important to check for 

the presence of outliers and make sure that the DEA estimates are carried out without 

them. In our paper, we have taken care of this issue by carrying out a careful visual 
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inspection of outliers. Specifically, after obtaining a first set of DEA efficiency 

estimates for each industry, we have identified the units whose single-input 

productivities (i.e. the productivity with respect to either capital or labour) lie 

substantially above those for the other firms. We have then singled out and deleted 

these outliers and repeated the DEA estimations without them.  

Simar (2003) has recently proposed an alternative outliers detection procedure based 

on the concept of order-m frontier of Ω. Cazals et al. (2002) define the order-m 

frontier of Ω, Ωm, as the expected value of the maximum of m random variables 

generated by the DGP P. m is a trimming parameter, i.e. a fixed integer (1 ≤ m ≤ n) 

such that, as the parameter increases, Ωm tends to the true frontier Ω. If some observed 

point remains above Ωm even when m increases, then this observation is a possible 

outlier and needs to be inspected more carefully.  

Simar’s method of outliers detection consists of the following steps: (1) for each 

observation, compute the leave-one-out efficiency score of the order-m frontier (i.e. 

the efficiency score obtained by deleting that specific observation); (2) repeat step 1 

for several increasing values of m, and report all results (for each observation and 

different values of m) in a table; (3) focus on those observations for which the values 

of the order-m efficiency scores are substantially smaller than 1; (4) delete these 

super-efficient outliers and repeat the DEA estimations without these observations. 

 

A3. Step 2: the Heckman selection model 

The second step of our empirical analysis (see section 5) uses the two productivity 

growth components estimated through DEA as dependent variables, and relates them 

to a set of innovation variables by means of a Heckman selection econometric model. 

The Heckman estimation method corrects for the possible presence of selection-bias 
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that is caused by the exclusion of non-innovative firms from the sample. It is a two-

stage procedure: the first stage estimates a selection equation, which investigates the 

factors explaining the probability that a firm is an innovator, whereas the second stage 

studies the links between innovation and productivity growth. The selection equation 

(stage 1) is given by: 

 

Ii
*
 = Wi � λ + ζi                                                                                                             (6)                               

 

where Ii
*
 is an innovation (latent) variable and Wi is a set of regressors determining 

whether a firm innovates. Based on this, we then construct an innovator dummy 

variable Ii that is defined as follows: if Ii
*
 > 0 => Ii = 1; otherwise Ii = 0.  

In the second stage of the Heckman procedure, the two productivity equations refer to 

the technical progress (TPi) and efficiency change (ECi) components respectively:  

 

TPi = Zi � α + φi                                                                                                            (7)                               

ECi = Zi � β + ωi                                                                                                           (8)                               

 

These two productivity components are regressed on the set of explanatory variables 

Zi by using OLS, and are defined only for those observations for which Ii = 1. Among 

the other regressors, these equations also include the inverse Mills ratio calculated 

from the 1
st
 stage of the Heckman procedure that corrects for the sample selection 

bias. 

 

 40



Issue III: Bias and consistency of the two-step procedure 

The two-step empirical strategy followed in this paper (DEA in the first and OLS in 

the second step) is well rooted in the productivity literature. However, Simar and 

Wilson (2007) have recently pointed out a possible econometric problem with this 

strategy. The DEA estimates of efficiency may be serially correlated, because all 

E
t
DEA(Xi

t
;Yi

t
), and hence all the error terms in the second step of the procedure, 

depend on all other observations (Xl
t
;Yl

t
) (for all l ≠ i). The second step of the 

procedure may therefore be biased. Simar and Wilson (2007) propose to correct for 

this by including a bootstrap-based estimate of the bias in the second step of the 

analysis.  

A different approach to this issue is provided by Banker and Natarajan (2008). The 

main idea of this recent work is to present DEA as a stochastic (rather than 

deterministic) framework, and show that the two-step procedure (DEA followed by 

OLS) is a valid (consistent) approach to estimate the effects of the contextual 

variables Z on firms’ productivity. Banker and Natarajan (2008) assume that the n 

observations are generated from the real production function τ plus an error term: 

 

Yi
t
 = τ (Xi

t
) � εi

t
                                                                                                            (9) 

 

The error term is specified as a random variable composed of three parts: 

 

εi
t
 = vi

t
 - ui

t
 - ∑ δs � Zis

t
                                                                                               (10) 

 

The first part is a two-sided random noise with a finite upper bound; the second is the 

technical efficiency term (that has a one-sided distribution); and the third represents 
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the set of s contextual variables Z. Banker and Natarajan (2008) show that, under very 

general conditions, the OLS in the second step is a consistent estimator of the impact 

of the contextual variables Z on productivity. This result is important for our paper. In 

fact, similarly to what pointed out above, our empirical exercise makes use of a large 

and representative sample of firms in each sector, so that the consistency of the two-

step procedure suggests the validity of our efficiency estimates.  
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Table 1: Decomposition of total factor productivity growth of Norwegian enterprises, 

average by 2-digit industries and for each period 

 

 1998-2001 2002-2004 

Industries 
Malmquist

TFP Index

Efficiency

change 

Technical

progress 

Malmquist 

TFP Index 

Efficiency

change 

Technical

progress 

Mining and quarrying 1.0402 0.9706 1.0850 1.1209 1.0528 1.0756 

Food and beverages 1.0808 0.9861 1.1197 1.4167 1.1677 1.2137 

Textiles 1.0544 1.0108 1.0542 1.0829 0.9056 1.3152 

Wearing 1.0451 0.9272 1.1464 1.0102 0.9506 1.0740 

Leather and footwear 1.1029 0.9694 1.1551 1.2436 1.1141 1.1031 

Wood and related 1.0502 0.9488 1.2139 1.1179 0.9119 1.3130 

Pulp and paper 1.0648 0.8965 1.2589 1.0269 0.9312 1.1006 

Printing and publishing 1.0388 0.9477 1.2569 1.0998 0.9886 1.1272 

Other non-metallic mineral products 1.0694 0.9323 1.1825 1.0416 0.8077 1.3836 

Basic metals 1.0965 1.0111 1.1027 1.0290 0.7896 1.4136 

Fabricated metal products 1.0360 0.9407 1.1288 1.1427 0.9094 1.3796 

Machinery and equipment 1.0625 0.9190 1.2129 1.0726 0.8521 1.3848 

Electrical 1.0765 0.9700 1.1158 1.1552 1.0266 1.4619 

Radio and television 1.0797 0.8319 1.5832 1.0345 0.9677 1.1141 

Medical and optical 1.0703 0.9649 1.1574 1.0978 0.9429 1.2283 

Motor vehicles 1.0743 1.0277 1.0536 1.1802 0.9352 1.2910 

Other transport equipment 1.1147 1.0143 1.1069 1.0934 0.9452 1.2264 

Furniture 1.0377 0.8612 1.2980 1.0824 0.8285 1.4526 

Recycling 1.1025 0.8621 1.3769 1.2474 0.8674 1.5475 

Construction 1.0406 0.9429 1.1224 1.0531 0.9702 1.0942 

Wholesale trade 1.1174 0.9713 1.1535 1.0927 1.0189 1.0934 

Retail trade 1.0286 0.9256 1.1195 1.0875 0.8904 1.2316 

Land transport 1.0088 0.9314 1.0897 1.0699 0.9873 1.0900 

Sea transport 0.9232 0.6663 1.4390 1.0260 0.7836 1.3699 

Air transport 1.2222 1.1336 1.0928 0.9239 0.8793 1.0641 

Other transport services 0.9628 0.8697 1.1208 1.1218 0.9369 1.2132 

Telecommunication 0.8953 0.6626 1.3590 1.3818 1.0378 2.0334 

Real estate activities 0.9997 0.8775 1.1792 1.0123 0.9534 1.0630 

Renting of machinery and equipment 0.9955 0.9209 1.0978 0.9550 0.7816 1.2706 

Computing and software 1.0333 0.7846 1.3729 1.0410 0.7824 1.4509 

Research and development 0.9686 0.9302 1.0439 1.0011 0.8580 1.2188 

Other business services 1.0614 0.9762 1.1021 1.0364 0.9568 1.1001 

Average 1.0436 0.9242 1.1772 1.1016 0.9319 1.2632 

 

 



Table 2: Descriptive statistics: Characteristics of innovative and non-innovative samples, 1998-2000 (CIS3) and 2002-2004 (CIS4) 

 

   
 

1998-2000 (CIS3) 

 

    2002-2004 (CIS4)   

 

 

Innovative 

sample  

(N=417) 

 

 

Non-innovative 

sample  

(N=596) 

 

Mann-

Whitney 

U test a

Innovative 

sample  

(N=754) 

 

Non-innovative 

sample  

(N=899) 

 

Mann-

Whitney   

U test a

 
 

Mean 

 

Std. Dev. Mean Std. Dev. z Mean Std. Dev. Mean Std. Dev. z 

 

TFP level 

 

0.53 0.28 0.48 0.25   -2.51** 0.38 0.22 0.38 0.22    -0.09 

 

Employment 

 

223 413 116 243 -7.62*** 153 345 92 206 -7.48*** 

 

Group 

 

0.77 0.42 0.66 0.47 -3.97*** 0.62 0.49 0.55 0.50 -2.59*** 

 

Product life 

 

4.76 1.25 5.24 1.20 +7.55*** 4.59 1.34 5.06 1.41 +10.1*** 

 

Market location 

 

2.96 1.03 2.35 1.14 -8.55*** 2.09 0.91 1.63 0.77 -10.6*** 

 

Export intensity 

 

0.35 0.51 0.16 0.32 -9.29*** 0.24 0.35 0.11 0.35 -11.8*** 

 
a Mann-Whitney U test for the difference between the two samples. The values reported in the column are the z scores from the test. Positive (negative) z 

scores indicate that the variable is smaller (greater) for innovators than for non-innovators. Significance levels: *** 1%; ** 5%; * 10%. 
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1998-2000 (CIS3) 
    

 

2002-2004 (CIS4) 
  

 

 

Schumpeter 

Mark II  

(N=276) 

 

 

Schumpeter  

Mark I  

(N=737) 

 

Mann-

Whitney 

U test a

Schumpeter 

Mark II 

(N=472) 

 

Schumpeter  

Mark I 

(N=1181) 

 

Mann-

Whitney U 

test a

 Mean CV Mean CV U test b Mean CV Mean CV U test b

 

TFP growth 

 

1.007 

 

0.77 

 

1.035 

 

0.35 

 

  +2.51** 

 

1.039 

 

0.39 

 

1.064 

 

0.33 

 

+3.63*** 

 

Efficiency change 

 

0.924 

 

0.84 

 

0.962 

 

0.36 

 

+2.88*** 

 

0.721 

 

0.44 

 

0.858 

 

0.37 

 

+9.43*** 

 

Technical progress 

 

1.124 

 

0.20 

 

1.095 

 

0.17 

 

-4.02*** 

 

1.553 

 

0.34 

 

1.339 

 

0.38 

 

-12.68*** 

 

TFP level 

 

0.50 

 

0.61 

 

0.50 

 

0.49 

 

  +1.26 

 

0.35 

 

0.66 

 

0.40 

 

0.55 

 

+5.18*** 

 

Employment 

 

228 

 

1.98 

 

134 

 

1.96 

 

-4.33*** 

 

170 

 

2.01 

 

100 

 

2.48 

 

-7.29*** 

 

Group 

 

0.74 

 

0.59 

 

0.69 

 

0.67 

 

  -1.58 

 

0.64 

 

0.75 

 

0.56 

 

0.88 

 

-2.93*** 

 

Product life 

 

5.06 

 

0.24 

 

5.02 

 

0.25 

 

  -0.33 

 

4.82 

 

0.30 

 

4.80 

 

0.29 

 

   -0.96 

 

Market location 

 

2.76 

 

0.43 

 

2.55 

 

0.44 

 

-3.42*** 

 

2.07 

 

0.45 

 

1.74 

 

0.47 

 

-6.33*** 

 

Export intensity 

 

0.35 

 

1.57 

 

0.20 

 

1.78 

 

-4.62*** 

 

0.22 

 

1.73 

 

0.15 

 

2.32 

 

   -1.99** 

 

Cumulativeness 

 

0.55 

 

1.39 

 

0.43 

 

1.64 

 

   -2.42** 

 

0.61 

 

1.23 

 

0.55 

 

1.41 

 

   -2.08** 

 

R&D intensity 

 

0.37 2.55 0.46 2.51    -1.76* 0.52 2.16 0.65 2.29    -1.70* 

a Mann-Whitney U test for the difference between the two industry groups. The values reported in the column are the z scores from the test. Positive (negative) 

z scores indicate that the variable is smaller (greater) for Schumpeter Mark II than for Schumpeter Mark I sectors. Significance levels: *** 1%; ** 5%; * 10%. 

Table 3: A comparison of Schumpeter Mark I and Schumpeter Mark II sectors, 1998-2000 (CIS3) and 2002-2004 (CIS4) 
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Table 4: The determinants of technical progress
a
 – Results of Heckman two-step 

estimations 

 

   

 

Selection 

equation 

  

Step 2 

equation 

 

 

 

 
Dependent variable 

 

Innovator 

dummy 

 

Technical 

progress 

 

Technical 

progress 

 

Technical 

progress 

 

      

 TFP level  -0.475 -0.552 -0.426 

         (7.12)***       (6.78)***       (4.32)*** 

 Employment (log) 0.363 0.011 0.118 0.082 

        (9.64)*** (0.49)      (6.38)***      (4.51)*** 

 Group 0.279 -0.036 0.040 -0.091 

       (3.25)*** (0.80) (0.69) (1.46) 

Firm-specific factors Product life -0.160 -0.020 0.016 -0.066 

         (5.96)*** (1.38) (0.92)       (3.38)*** 

 Export intensity 0.100 0.014 -0.050 -0.007 

   (0.88) (0.28) (0.71) (0.10) 

 Market location 0.129 0.014 0.119 0.157 

         (2.87)*** (0.65)      (4.49)***      (5.61)*** 

 H-Costs 0.198    

       (4.85)***    

 H-Personnel 0.109 -0.061 -0.068 -0.067 

Hampering factors (H)   (1.82)*       (2.61)***     (2.26)**    (2.38)** 

 H-TechInfo 0.121 0.045 0.104 0.122 

   (1.67)* (1.70)*      (3.16)***     (3.51)*** 

 H-OtherInfo 0.151    

     (2.24)**    

Cumulativeness Continuous R&D  -0.010 0.066 0.107 

    (0.48)    (2.38)**      (3.37)*** 

Technological R&D intensity  0.007 0.023 0.017 

opportunity    (0.76)  (1.89)* (1.45) 

levels Other external knowledge  0.109 0.304 0.293 

    (1.22)    (2.54)**    (2.55)** 

 S-Internal  0.022 0.095 0.082 

   (1.22)      (3.92)***      (3.55)*** 

 S-Group  0.006 -0.022 -0.014 

   (0.40) (1.08) (0.71) 

 S-Suppliers  0.000 0.017 0.009 

   (0.02) (0.78) (0.44) 

 S-Users  -0.022 0.022 0.007 

External sources     (1.16) (0.90) (0.31) 

of opportunities (S) S-Competitors  0.032 0.039 0.029 

     (1.74)* (1.58) (1.21) 

 S-Consultants  -0.001 0.015 -0.007 

   (0.07) (0.57) (0.24) 

 S-Private R&D labs  -0.007 -0.020 -0.013 

    (0.31) (0.62) (0.43) 

 S-Universities  -0.021 -0.044 -0.048 

    (0.81) (1.27) (1.46) 

 S-Public research institutes  0.011 0.004 0.033 

    (0.48) (0.12) (1.07) 

 A-Trademark  0.053 0.071 0.070 

    (1.49) (1.45) (1.52) 

 A-Patent  -0.007 -0.035 -0.052 

Appropriability (A)   (0.20) (0.68) (1.05) 

 A-Secrecy  -0.024 -0.049 -0.045 
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   (0.73) (1.06) (1.02) 

 A-Complex design  -0.032 -0.028 -0.033 

   (0.84) (0.55) (0.67) 

 E-Market orientation  0.020 0.049 0.036 

   (1.20)    (2.13)**  (1.65)* 

Effects of innovation (E) E-Productive capacity  0.027 0.041 0.052 

   (1.45) (1.59)    (2.12)** 

 E-Labour costs  -0.029 0.003 -0.015 

   (1.52) (0.10) (0.58) 

 SMII-Constant dummy   0.137 1.427 

         (3.06)***      (6.86)*** 

 SD- TFP level    -0.225 

     (1.51) 

 SD-Group    0.295 

          (2.78)*** 

 SD-Product life    -0.146 

          (5.01)*** 

Schumpeter Mark II  SD-Market location    -0.174 

slope dummies (SD)          (4.24)*** 

 SD-Cumulativeness    -0.200 

          (3.51)*** 

 SD-S-Consultants    0.058 

     (1.15) 

 SD-H-TechInfo    -0.171 

          (3.22)*** 

 Mills ratio  0.025 0.226 0.132 

   (0.28)     (4.12)***    (2.41)** 

 Rho  0.074 0.449 0.286 

      

 Sigma  0.338 0.505 0.460 

      

 Time dummy -0.436 -0.291 -0.435 -0.398 

        (5.14)***       (6.54)***       (8.29)***      (8.07)*** 

 Industry dummies Yes Yes No No 

 

 

Wald χ2

 

 

    

 

  4236.01***   

 

   1776.36*** 

 

      

2103.58*** 

 

 Number of observations 1840 1840 1840 1840 

 Censored  1202 1202 1202 1202 

 Uncensored  638 638 638 638 

      
 

a T-statistics between brackets. Significance levels: *** 1%; ** 5%; * 10%. 
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Table 5: The determinants of efficiency change
a
 – Results of Heckman two-step 

estimations 

 

   

 

Selection 

equation 

  

Step 2 

equation 

 

 

 

 
Dependent variable 

 

Innovator 

dummy 

 

Efficiency 

change 

 

Efficiency 

change 

 

Efficiency 

change 

 

      

 TFP level  0.574 0.542 0.448 

       (11.4)***     (10.6)***      (6.96)*** 

 Employment (log) 0.363 -0.040 0.043 0.045 

        (9.64)***     (2.20)**      (3.63)***      (3.76)*** 

 Group 0.279 0.017 0.094 0.100 

Firm-specific factors       (3.25)*** (0.49)    (2.56)**      (2.72)*** 

 Product life -0.160 0.000 -0.014 -0.017 

         (5.96)*** (0.02) (1.28) (1.54) 

 Export intensity 0.100 -0.088 -0.030 -0.033 

   (0.88)     (2.16)** (0.66) (0.72) 

 Market location 0.129 -0.022 0.024 0.029 

         (2.87)*** (1.40) (1.41)  (1.69)* 

 H-Costs 0.198    

       (4.85)***    

 H-Personnel 0.109 -0.008 0.044 0.043 

Hampering factors (H)   (1.82)* (0.47)    (2.26)**   (2.20)** 

 H-TechInfo 0.121 -0.025 0.039 0.042 

   (1.67)* (1.21)  (1.84)*   (1.98)** 

 H-OtherInfo 0.151    

     (2.24)**    

Cumulativeness Continuous R&D  -0.043 -0.016 -0.014 

         (2.80)*** (0.99) (0.87) 

Technological R&D intensity  -0.003 0.001 0.000 

opportunity    (0.40) (0.10) (0.02) 

levels R&D purchase  0.102 0.114 0.120 

    (1.74)*  (1.80)*  (1.91)* 

 S-Internal  0.018 0.027 0.028 

   (1.35)  (1.84)*  (1.89)* 

 S-Group  -0.008 -0.010 -0.011 

   (0.75) (0.83) (0.93) 

 S-Suppliers  0.001 0.000 0.018 

   (0.05) (0.02) (1.16) 

 S-Users  -0.015 0.004 -0.001 

External sources     (1.03) (0.29) (0.05) 

of opportunities (S) S-Competitors  -0.007 -0.009 -0.002 

    (0.55) (0.62) (0.16) 

 S-Consultants  0.040 0.026 0.026 

        (2.77)*** (1.63)  (1.66)* 

 S-Private R&D labs  0.001 -0.002 -0.002 

    (0.09) (0.11) (0.09) 

 S-Universities  -0.020 -0.014 -0.013 

    (1.03) (0.64) (0.59) 

 S-Public research institutes  0.000 -0.001 -0.001 

    (0.03) (0.07) (0.07) 

 A-Trademark  0.018 -0.003 -0.005 

    (0.68) (0.11) (0.18) 

 A-Patent  -0.003 -0.016 -0.158 

Appropriability (A)   (0.11) (0.51) (0.49) 

 A-Secrecy  0.025 0.035 0.033 
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   (1.00) (1.24) (1.15) 

 A-Complex design  -0.016 -0.038 -0.039 

   (0.58) (1.19) (1.22) 

 E-Market orientation  0.008 0.028 0.020 

   (0.61)     (1.99)** (1.23) 

Effects of innovation (E) E-Productive capacity  -0.025 -0.030 -0.032 

     (1.74)*   (1.88)*     (2.02)** 

 E-Labour costs  0.018 0.032 0.033 

   (1.25)    (1.98)**    (2.07)** 

 SMII-Constant dummy   -0.074 -0.128 

         (2.57)*** (1.63) 

 SD- TFP level    0.221 

        (2.33)** 

Schumpeter Mark II  SD-S-Suppliers    -0.056 

slope dummies (SD)        (2.10)** 

 SD-E-Market orientation    0.035 

     (1.29) 

 Mills ratio  -0.099 0.237 0.251 

   (1.47)      (6.89)***      (7.09)*** 

 Rho  -0.374 0.691 0.725 

      

 Sigma  0.266 0.342 0.346 

      

 Time dummy -0.436 0.094 0.000 -0.003 

        (5.14)***      (2.78)*** (0.01) (0.10) 

 Industry dummies Yes Yes No No 

 

 

Wald χ2

 

 

    

 

            

2379.55*** 

 

   

1465.17*** 

 

  

1465.48*** 

 

 Number of observations 1840 1840 1840 1840 

 Censored  1202 1202 1202 1202 

 Uncensored  638 638 638 638 

      
 

a T-statistics between brackets. Significance levels: *** 1%; ** 5%; * 10%. 

 

 

 

 

 

 

 

 

 

 54


	Fulvio Castellacci and Jinghai Zheng 
	Abstract 
	Hypothesis 1. The characteristics of technological regimes are important determinants of the productivity growth of firms. 
	Firm-specific factors 
	Technological regimes factors 
	Other innovation-related variables 
	 Effects of innovation: Three dummy variables indicating whether each firm states that technological change has led to the following effects and results: increasing market shares or entering new markets (E-Market orientation); increasing the productive capacity (E-Productive capacity); decreasing the labour costs (E-Labour costs).   



	Appendix: Empirical model and econometric issues 
	A1. Step 1: the DEA empirical model 
	 
	Issue I: Sensitivity of efficiency estimates to the sampling variation of the frontier 
	Issue II: Super-efficient outliers 
	A3. Step 2: the Heckman selection model 
	Issue III: Bias and consistency of the two-step procedure 

	Acknowledgments 

	References  


