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Abstract

This paper extends the current literature which questions the stability of the

monetary transmission mechanism, by proposing a factor-augmented vector au-

toregressive (VAR) model with time-varying coefficients and stochastic volatility.

The VAR coefficients and error covariances may change gradually in every period

or be subject to abrupt breaks. The model is applied to 143 post-World War II quar-

terly variables fully describing the US economy. I show that both endogenous and

exogenous shocks to the US economy resulted in the high inflation volatility dur-

ing the 1970s and early 1980s. The time-varying factor augmented VAR produces

impulse responses of inflation which significantly reduce the price puzzle. Impulse

responses of other indicators of the economy show that the most notable changes in

the transmission of unanticipated monetary policy shocks occurred for GDP, invest-

ment, exchange rates and money.
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I Introduction

A challenge of great importance in modern macroeconomics is to identify the contribu-
tion of monetary policy shocks in the economy over time. Over the course of the last 40
years the US economy has been characterized by transitory shocks like the great infla-
tion of the 1970s, and more pervasive events like the liberalization of financial markets,
and the decline in output volatility and inflation persistence since early 1980s (see e.g.
Kim and Nelson, 1999; McConnell and Perez-Quiros, 2000; Stock and Watson, 2002).
At the same time, the conduct of monetary policy has also changed, with maintaining
price and output stability being the dominant strategy for the Fed. Since both mone-
tary policy and the nature of exogenous shocks have evolved dramatically, there is an
obvious empirical issue of identifying the actual role of monetary policy actions on the
observed changes in the economy. It is not surprising that currently there is a vast em-
pirical literature measuring the monetary transmission mechanism with contradicting
results. For instance, Boivin and Giannoni (2006b), Cogley and Sargent, (2001, 2005)
and Clarida, Gali and Gertler (2000) argue in favor of a ‘good policy’ scenario, where
monetary policy since the early 1980s became more aggressive in stabilizing shocks
to prices and aggregate activity. Primiceri (2005), Sims and Zha (2006), Koop, Leon-
Gonzalez and Strachan (2009), and Canova and Gambetti (2009) follow the traditional
VAR approach, formulated econometrically to allow for the parameters to drift over
time, and end up with mixed results as to whether it is the shock or the propagation
mechanism which has changed over time; Giannone, Lenza and Reichlin (2008) offer a
detailed summary of this literature.

Common place of these studies is that they attempt to measure the effects of mon-
etary policy in the economy as a whole by using only a restricted set of variables, as
implied by New-Keynesian DSGE models with three endogenous variables describing
economic activity, aggregate prices and monetary policy (Woodford, 2003). Stock and
Watson (2005) and Bernanke, Boivin and Eliasz (2005) point out that when extracting
the structural shocks from the innovations of a VAR it is important to make sure that
there is no omitted variable bias. Since during the decision process there are hundreds
of variables available to economic agents and policy makers, especially Central Banks
(Bernanke and Boivin, 2003), it is expected that the innovations of a VAR with just three
variables will not span the space of structural disturbances. This lack of information has
also been identified as the source of the price puzzle - the fact that prices increase fol-
lowing a contractionary monetary policy. In light of this puzzle many authors, including
Boivin and Giannoni (2006b), reformulate their 3-variable VAR by introducing a price
index as an additional variable without success. In fact Castelnuovo and Surico (2010)
show that including a measure of inflation expectations in the VAR is the way to correct
the prize puzzle and they provide extensive simulations to support this finding. Nowa-
days it is recognized that adding more and more information to a VAR has the potential
to resolve many anomalies observed empirically.

Dynamic factor analysis in the form described, for instance, in Stock and Watson
(2005) can do exactly this without introducing a degrees of freedom problem. In
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essence, the Dynamic Factor Model is a means of summarizing information in a large
data-set - in the order of some hundreds of variables - using just a few (usually less
than 10) latent variables called factors. These factors can just be the first few principal
components of the large data-set, but also different methods for estimating latent fac-
tors have been proposed over the course of the last years. Among the vast literature,
notable recent studies include Boivin and Ng (2005), Giannone, Reichlin and Small
(2008) and Boivin and Giannoni (2006a). The recent implementations of Stock and
Watson (2005) and Bernanke, Boivin and Eliasz (2005) have the advantage of treating
the dynamic factor model as a direct generalization of structural VAR’s.

This paper adopts a structural VAR framework combined with factors as the starting
point. Then, for the purpose of modeling the evolution of monetary policy in the US,
the parameters of the VAR are allowed to evolve over time. This assumption implies
that the transmission of monetary and non-monetary shocks can be measured over dif-
ferent points in time. Subsequently, this paper goes one step further from the standard
dynamic factor literature and identifies the merits of using the currently popular time-
varying parameters VARs. That way, large datasets can be used in a model which allows
both frequent and infrequent breaks and adapts immediately to changes in regimes.
Specifically for the US this modeling flexibility is of great importance. Historically there
were many episodes with short-run (financial shocks like the Black Monday of 1987)
and long-run, structural (Great Inflation, Great Moderation) effects which imply smaller
or larger abrupt changes in VAR parameters. Time-varying parameters of the form de-
fined in this paper can capture all these changes efficiently.

The main purpose in this paper is to develop the econometric background for the
proposed modeling strategy, and to tackle the complications which arise in practice
when using this model for measuring monetary policy. For instance, Del Negro and
Otrok (2008) is an ambitious study which uses a one-step estimator in a time-varying
parameters dynamic factor model. Their approach has many advantages, including
full treatment of uncertainty surrounding latent factors and model parameters. Nev-
ertheless, their exact model can be computationally hard to estimate and lots of art
is required from the researcher in order to apply normalization and identification re-
strictions1. Additionally, latent factors estimated in one-step lead to flat (unidentified)
impulse responses; see for example Figure V of Bernanke, Boivin and Eliasz (2005) and
the discussion therein.

In this paper I examine the performance of a simpler two-step estimator: the factors
are replaced by the first principal components (PC) obtained from the singular value de-
composition of the data matrix, and consequently are treated as observed. That way the
time-varying parameters can be updated at a second step conditional on these observed
factors. The principal components estimates have economic meaning and approximate
asymptotically the true factors in the case of constant loadings. These factors are used

1Most importantly, their exact setting which was used to measure the syncronization of international
business cycles is not attractive for measuring monetary policy shocks since - for identification issues - it
assumes a diagonal covariance matrix of the shocks; see Del Negro and Otrock (2008).
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in a time-varying VAR model (i.e. a factor-augmented VAR), where the drifting mean
and variance parameters follow a random walk (Primiceri, 2005), an assumption which
simplifies computations by using standard state-space methods. However, in this paper
this random walk evolution of the VAR parameters is augmented using the flexible mix-
ture innovation specification of Giordani and Kohn (2008). By specifying time-varying
parameters with stochastic innovations that are mixtures of normals, it is possible to
define endogenously whether these parameters vary in every time period or if they are
constant in every period, plus all the possible combinations between those two (i.e.
parameters which vary only in some periods).

Having established the advantage of accounting for omitted variable bias, this study
adds to an expanding recent literature (Cogley and Sargent, 2005; Stock and Watson,
2002; Primiceri, 2005; Giannone, Lenza and Reichlin, 2008 to name but a few) which
tries to explain whether the Great Moderation in the U.S. has occurred due to a change
in the Feds’ reaction function (‘good policy’) or due to a decline in the volatility of ex-
ogenous shocks (‘good luck’)2. I provide time-varying decompositions of the variance
of inflation (as implied by the factor model) into the proportion explained by: i) all
143 observed series; ii) monetary policy (interest rate) and economic activity (gdp-
unemployment); and iii) exogenous shocks. I show that both endogenous and exoge-
nous shocks to the US economy played an important role in inflation volatility during
the 1970s and early 1980s. I also examine the movements in non-systematic monetary
policy as implied by the evolution of the factors and their time-varying covariances.
This paper concludes with measuring monetary policy in three representative periods
by means of impulse responses. I make comparisons of the impulse responses of infla-
tion, unemployment and interest rate as estimated from the TVP-FAVAR and VARs with
constant and time-varying parameters. The results show that the TVP-FAVAR signifi-
cantly corrects the price puzzle in the 1970s. Finally, time-varying impulse responses
of other indicators of the economy show that the most notable changes in the effects of
monetary policy where for GDP, investment and exchange rate, while for money there
was a different response only during the monetarist experiment of 1980-1984.

The remainder of the paper is as follows. In Section 2 I specify the dynamic factor
model as a time-varying parameters VAR model on latent factors and the monetary
policy variable. In Section 3 I describes the data and factors, the model fit and model
selection issues. In Section 4 I provide the empirical results from this new model, and
in Section 5 I conclude.

2‘Good policy’ or ‘good luck’ are not the only explanations of the Great Moderation. McConnell and
Perez-Quiros (2000) identify a change in the behavior of inventories which might be attributed in ad-
vances in information technology (Kahn, McConnell, and Perez-Quiros, 2002). Similarly Dynan, Elmen-
dorf, and Sichel (2006) and Campbell and Hercowitz (2006) document an easier access to external
financing by households since the beginning of the 1980s. These are two alternative interpretations,
however in this paper I will focus only on the role of monetary policy.
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II Methodology

The model

The standard approach to examine the effects of monetary policy on the economy is to
estimate a structural VAR on some key variables. Models of this form have the following
reduced-form representation

yt = b1yt�1 + : : :+ bpyt�p + vt (1)

where y0t = [z0t; rt], zt is a (l � 1) vector of variables provide a representation of the
economy (like output, prices, interest rates, monetary aggregates and so on), and rt
is a single series proxing the monetary policy instrument, i.e. the control variable of
the Central Bank. The coefficients bi, i = 1; : : : ; p on each lagged value of yt are of
dimensions (l + 1) � (l + 1), and vt � N(0;
) with 
 a (l + 1) � (l + 1) covariance
matrix. The number (l + 1) of variables in y0t in a typical VAR usually does not exceed
20. In many cases, as mentioned in the introduction, it is as low as three variables. If
one has hundreds of observations in a n � 1 vector xt that would like to incorporate in
the VAR, as is the case with Central Banks, it is obvious that a curse of dimensionality
problem occurs immediately. A popular solution to this problem is to decompose the
n-dimensional vector of observables xt into a lower dimensional vector of k (which is
much smaller than n, i.e. k � n) factors, ft. Additionally, by allowing the parameters
of the VAR augmented with factors to vary over time, more complex dynamics can be
modelled and the effects of monetary policy actions can also be assessed over time. The
time-varying parameters factor-augmented VAR (TVP-FAVAR) takes the form

yt = b1tyt�1 + : : :+ bptyt�p + vt (2)

where now y0t = [f 0t ; z
0

t; rt], with ft a (k � 1) vector of latent factors, [z0t; rt] is still a
vector containing observed variables plut the monetary policy tool and is of dimension
((l + 1) � 1), bjt are m � m coefficient matrices for j = 1; : : : ; p and t = 1; : : : ; T , and
vt � N(0;
t) with 
t a m �m full covariance matrix for each t = 1; : : : ; T , with m =
k + l + 1.

Each of the i = 1; :::; n original observed series xit is linked to the factors, the other
observed variables z0t, and the monetary policy tool rt through a factor analysis regres-
sion with autocorrelated errors and stochastic volatility of the form

xit = ~�
f

i ft +
~�
z

i zt +
~�
r

i rt + uit (3a)

uit = �i1uit�1 + :::+ �iquit�q + "it (3b)

where ~�
f

is (n � k), ~�
z

is (n � l), and ~�
r

is (n � 1), and "it � N(0; exp (hit)). The
errors "it are assumed to be uncorrelated with the factors at all leads and lags and
mutually uncorrelated at all leads and lags, namely E("itft) = 0 and E("it"jt) = 0 for all
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i; j = 1; : : : ; n and t; s = 1; : : : ; T , i 6= j and t 6= s. In order to work with a model with
uncorrelated errors, we need to transform equation (3) into

xt = �
fft + �

zzt + �
rrt + � (L) xt + "t (4)

where  (L) = diag (�1(L); :::; �n(L)), �i(L) = �i1L + :::+ �iqL
q, �j = (In �  (L)) ~�

j
for

j = f; z; r, and finally "t � N(0; Ht) with H = diag(exp (h1t) ; : : : ; exp (hnt)) where the
individual log-volatilities evolve as a driftless random walk of the form

hit = hit�1 + �
h
t

with �ht � N(0; �h). The main TVP-FAVAR model consists of eqs (2) and (4) and for
simplicity I will refer to them as the ‘FAVAR’ and ‘factor model’ equations, respectively.
In order to complete the model specification, it is necessary to characterize all model
parameters and their dynamics.

Eq. (2) is a VAR system on the factors and the observabled variables z0t and rt with
drifting coefficients and stochastic volatility. Based on the recent literature on efficiently
parametrizing large covariance matrices, Primiceri (2005), Cogley and Sargent (2005)
and Canova and Gambetti (2009) use a decomposition of the (FA)VAR error covariance
matrix of the form

At
tA
0

t = �t�
0

t (5)

or equivalently

t = A

�1
t �t�

0

t(A
0
�1
t ) (6)

where �t = diag(�1;t; : : : ; �k+1;t) and At is a unit lower triangular matrix with ones on
the main diagonal

At =

2
6664

1 0 : : : 0

a21;t 1
. . .

...
...

. . .
. . . 0

am1;t : : : am(m�1);t 1

3
7775 (7)

Stacking all the parameters of eq. (2) in the vectors Bt =
�
vec (b1t)

0 ; : : : ; vec (bpt)
0
�
0

,

log �t = (log �
0

1t; : : : ; log �
0

mt)
0 and �t = (a

0

j1;t; : : : ; a
0

j(j�1);t)
0 for j = 1; : : : ;m, I follow the

standard convention and assume that the set of drifting parameters Bt; �t and log �t
follow random walks augmented with the flexible mixture innovation specification of
Giordani and Kohn (2008). For each time period, the innovations of the random walk
evolution of the parameters are defined as a mixture of two normal components (see
Koop et al., 2009), and take the following form

Bt = Bt�1 + J
B
t �

B
t

�t = �t�1 + J
�
t �

�
t

log �t = log �t�1 + J
�
t �

�
t

(8)

where ��t � N(0; Q�) are innovation vectors independent with each other, as well as
ut and vt, while Q� are innovation covariance matrices associated with each of the
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parameter vectors Bt; �t; log �t, where for brevity define �t 2 fBt; �t; log �tg. Some
correlation can be allowed between the disturbance terms appearing in (8), which could
permit modeling more complex dynamics. However, this flexibility comes at the cost of
the proliferation of the parameters that need to be estimated, and the assumption made
here is that all error components appearing in eqs (2) and (4) are uncorrelated with
each other.

The random variables J�t can only take two values, one and zero, at each time perior
t making the state errors a mixture of a Normal component with covariance Q� and a
second component which places all probability point mass at zero. As it is explained in
section 3, the variables J�t are assigned with a prior distribution and are subsequently
updated from the data likelihood. That way the mixture innovation specification is
flexible as it allows the information in the data to determine either one of the two
extreme specifications of constant parameters (iff J�t = 0 8 t = 1; : : : ; T ) and of time-
varying parameters (iff J�t = 1 8 t = 1; : : : ; T ). In between those two extremes, i.e. when
J�t = 1 for only some t, lie several specifications which can be interpreted as if only a
few breaks occur over the sample. This flexible mixture innovation specification might
be necessary when no prior opinion about the amount of variation in the parameters
is available, and when marginal likelihoods are hard to obtain (as it is the case with
time-varying parameters models). For instance, Sims and Zha (2006) using a Markov-
switching VAR find evidence for time variation only on the covariance matrix of their
VAR and not on the mean equation coefficients Bt. Finally, notice that the TVP-FAVAR
model nests also the TVP-VAR model of Primiceri (2005), by simply setting the number
of factors, k, equal to zero. Therefore, a large class of models - ranging from small
(V)ARs with constant parameters to their time-varying parameters counterparts using
hundreds of variables - can be examined using the single specification in this paper.

Estimation

The latent factors can be treated as unobserved parameters and estimated along the
other model parameters in one step, using Markov Chain Monte Carlo (MCMC). This
approach is plausible since we can write the model in state-space form with the fac-
tors being the unknown state vector, so that standard filtering algorithms can be used
(Carter and Kohn, 1994). However, this approach is computationally demanding, since
already in this model expensive MCMC simulation methods have to be used to estimate
the time-varying parameters in eq. (8). Furthermore, there are additional identification
issues arising with likelihood-based estimation. For example, in the constant parame-
ters dynamic factor model setting, Bernanke, Boivin and Eliasz (2005) use a triangular
identification restriction in the upper k � k block of the loadings matrix3, and argue

3This identification restriction is similar to the one that is met in cointegration analysis, i.e. the upper
block is the identity matrix. This has the implication that the first series in the dataset loads exclusively on
the first factor with coefficient 1, the second series loads exclusively on the second factor with coefficient
1 and so on. Hence the ordering of the variables in xt plays a significant role as it alters the likelihood
function, a serious problem that has been noted in the cointegration literature (Strachan, 2003). Un-
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that the Bayesian (and likelihood-based in general) estimation produces factors that
do not capture information about real-activity and prices. In the time-varying setting,
the identification problem is even more accented and will inevitably lead to impulse
responses which are hardly in accordance with economic theory. Following Stock and
Watson (2005) I apply a conceptually and computationally simple two-step estimation
method. The factors are approximated using standard principal components, and then
the model parameters are estimated conditional on these estimates of the factors. In
this case we have to estimate independently n univariate regressions in (4) and a time-
varying parameters VAR in the factors and observables in (2).

Posteriors of the time-varying parameters are not analytically available, however the
conditional posteriors are readily available and the Gibbs sampler can be used for that
purpose. The parameters in the factor equation are sampled using standard arguments
for linear regression models (Koop, 2003), with the modification that the log-volatilities
hit are sampled using the algorithm of Kim, Shephard and Chib (1998). Conditional on
the value of J�t the state equations (8) have conditionally normal errors and the Kalman
filter can be used to estimate the time-varying parameters �t. The only modification
needed to the Kalman filter algorithm is that when J�t = 0 then the covariance matrix
of the state innovations is J�tQ� = 0, while when J�t = 1 the covariance matrix be-
comes J�tQ� = Q�. Furthermore, conditional on each draw of the parameters �t, the
covariances of the states, Q�, can be sampled using again standard formulas. In fact,
these formulas are the same as in the previous TVP-VAR works of Cogley and Sargent
(2005), Primiceri (2005) and Koop, Leon-Gonzales and Strachan (2009). The indica-
tors J�t are sampled using the algorithm of Gerlach, Carter and Kohn (2000). This is
an efficient approach to modelling dynamic mixtures given that J�t can be generated
without conditioning on the states �t. More computational details are provided in the
working paper version of this paper; see also the review paper by Koop and Korobilis
(2010) and the associated MATLAB page to estimate the models reported in this paper:
http://perso.uclouvain.be/dimitrios.korompilis/code.html.

Priors

The dimension of the model and the presence of time-varying parameters calls for some
shrinkage in the model. For instance, given that the VAR autoregressive parameters
Bt follow a random walk which can easily lead to explosive draws, Cogley and Sar-
gent (2001, 2005) use ‘reflective barriers’ in those parameters. More specifically, they
provide a simple accept/reject algorithm, where MCMC draws of Bt are retained only
when the roots of the associated VAR polynomial lie outside the unit circle. However,
as Koop and Potter (2008) prove, this generalization of the simple algorithm to retain
stationary draws in VAR models is very inneficient in TVP-VAR models with more than

fortunately, when using factor models, Bayesian statisticians and econometricians rely heavily on such
identification restrictions and, to my knowledge, there is no formal examination of their implications
(other than a quick reference to this problem in the review paper of Lopes and West, 2004).
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three variables (as well as mathematically wrong, see their Appendix A). In my simula-
tions with the 6 variable TVP-FAVARs, almost 100% of the draws were rejected. Thus, a
valid alternative way to provide shrinkage is to use the prior. Primiceri (2005) uses an
informative prior based on a training sample which is quite tightly parametrized. The
mixture innovation specification, specified in equations (8), has the potential to pro-
vide some shrinkage by reducing the parameter space towards a model with constant
parameters, but this might not be enough to guarantee a parsimonious specification.
I use an Empirical Bayes prior which is very popular in the standard VAR setting, i.e.
the Minnesota prior. This prior has the property that own lags of each variable take a
larger weight, while higher order lags and lags on other variables are discounted more
becoming a-priori less important. The reader is referred to Doan, Litterman and Sims
(1986) for more information.

In particular, I specify the prior densities on the unrestricted (non-zero) parameters

in the factor model equation to be
h
�fi ; �

z
i ; �

r
i

i
� N (01�m; 10Im), i (L) � N (01�q; 10Iq)

and hi0 � N (0; 4), ��1h � Gamma (0:01; 0:01) for each variable i = 1; :::; n. For the pa-
rameters of the FAVAR equation I set B0 � N (B; V ), �0 � N (0; 4I), log �0 � N (0; 4I),
Q�1B � W (0:005� (dim (B) + 1)� V ; (dim (B) + 1)), Q�1� � W (0:01� (dim (�) + 1)� I;
(dim (�) + 1)), andQ�1� � W (0:0001� (dim (�) + 1)� I; (dim (�) + 1)), where dim (B) =
m � m � p, dim (�) = m (m� 1) =2 and dim (�) = m. Here B is set to 0.9 on the co-
efficient of the first own lag of each dependent variable and 0 elsewhere, and V is a
diagonal prior covariance matrix with diagonal elements defined from a Minnesota-type
specification of the form

V ij =

(
1
c2

for parameters on own lags
0:001s2i
c2s2

j

for parameters on variable j 6= i
, for lag c = 1; :::; p (9)

where s2i is the residual variance from the p-lag univariate autoregression for dependent
variable i, and i = 1; :::;m, j = 1; :::;mp.

The ’nonstandard’ parameters in this model are the ones related to the mixture in-
novation extension. The 0=1 variables J�t are assumed to come from a Bernoulli distri-
bution, p(J�t = 1) = �� = 1 � p(J�t = 0), for � 2 fBt; �t; log �tg. The probabilities ��
control the transition of the index J�t between the two possible states (1:break - 0:no
break), and an addtional hierarchical prior is introduced in order to update them from
the information in the data. A Beta prior of the form �� � Beta(� 0; � 1) is placed on this
hyper-parameter, which controls the prior belief about the number of breaks through
the choice of � 0 and � 1. I set these hyperparameters to be (� 0; � 1) = (1; 1), which is an
uninformative and uniform choice, with E(��) = 0:5 and std(��) �= 0:29. Note that for
simplicity, and in the absence of prior information, � 0 and � 1 are the same for all three
drifting parameters defined in Eq. (8).
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VAR representation and impulse response functions

It is easy to show that the time-varying FAVAR model admits a standard VAR represen-
tation with drifting parameters. First note that Equations (2) and (4) can be rewritten
as

gt = �yt + � (L) gt +Wt�
g
t (10)

yt = Bt (L) yt + A
�1
t �t�

y
t (11)

where g0t = [x0t; z
0

t; rt], y
0

t = [f 0t ; z
0

t; rt], Wt = diag(exp (h1t) =2; : : : ; exp (hnt) =2; 01�l+1)
such that WtW

0

t = [Ht; 0
0

1�l+1]
0, Bt (L) = b1tL + : : : + bptL

p, (�gt ; �
y
t ) are iid structural

disturbances coming from a Normal distribution with zero mean and unit variance,

� =

�
�f �z;r

0(l+1)�k Il+1

�
with �z;r = [�z; �r], and � (L) =

h
 (L)0 ; 00(l+1)�n

i
0

. Replacing

(11) into (10) we solve for the vector moving average (VMA) form of the model which
is

gt = ~� (L)
�1 � eBt (L)�1A�1t �t�yt + ~� (L)

�1Wt�
g
t = �t (L) �t (12a)

where eBt (L) = I �Bt (L), ~� (L) = I � � (L), and �t is a N (0; 1) innovation vector.

Identification of monetary policy shocks I follow Bernanke and Blinder (1992) in
setting the Federal funds rate as a means to proxy short-run monetary policy decisions
by the Fed.The Federal funds rate is sorted last in the FAVAR equation (11), and mon-
etary policy is identified in a recursive manner. First, the reduced form model (11) is
estimated and then a lower-triangular identification restriction has to be imposed. This
procedure is equivalent to estimating a recursive model (see Lütkepohl, 2005), and im-
plies that the other variables in the VAR respond to monetary policy with one lag (i.e.
at least after one quarter).

However, as Bernanke, Boivin and Eliasz (2005) note, there is no need to impose
the same assumption to the idiosyncratic components of the information variables. In
particular, identification of the monetary policy shocks is implemented using two disct-
inct methods that impose block lower-triangular restrictions, that is the lower-triangular
restriction described above but in ‘blocks’ of variables.

The first identification scheme is that of Bernanke, Boivin and Eliasz (2005) (hence-
forth BBE). The first block includes all the slow-moving variables (like real activity mea-
sures), the second block consists of the monetary policy tool (the Federal funds rate)
and, finally, in the third block fast-moving variables (like asset prices) are included. The
assumption made is that the slow-moving variables are not allowed to respond contem-
poraneously to monetary policy shocks. However, there is also last block, of fast-moving
financial variables, which responds instantly to monetary policy shocks since financial
markets are more sensitive to ‘news’ than the rest of the economy. The interested reader
should consult Bernanke, Boivin and Eliasz (2005) for exact econometric details under-
lying this approach. I will call these factors, ‘BBE factors’ for short.

Following Belviso and Milani (2006), the second identification scheme is based on
extracting the latent factors on blocks of statistical releases of the observed data. I define
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5 factors to correspond to 5 major economic fundamentals, which are i) real activity
factor; ii) money factor; iii) intrerest rate factor; iv) price factor; and v) expectations
factor. Each factor is extracted only from a specific data release. For example series
included in the Fed data releases ‘GDP and components’ and the ‘Employment situation’
are used to extract the activity factor. Short and long-term interest rates are used to
extract the interest rate factor. PPI, CPI and their components, as well as PCE and GDP
deflator series are used in the price factor, and so on. Appendix A provides more details
on the grouping of variables. The reader should bear in mind that this form of extracting
factors immediately provides restrictions on the loadings matrix. For example, GDP
deflator is only allowed to load on the 4th (the ‘price’) factor, but not on the other ones.
This is equivalent to setting all elements - but the fourth - of the row parameter vector
�fGDPDEFL to zero. I will call the factors produced from this method, ‘block factors’ for
brevity.

In this nonlinear setting impulse responses can be estimated using simulation meth-
ods (see Koop, Pesaran and Potter, 1996), which is a computationally demanding task.
Instead of this approach, I follow the standard convention in the literature (see for in-
stance Primiceri, 2005) and I apply a sequential estimation procedure, where first the
parameters are estimated from the reduced-form model and then the structural shocks
are recovered conditional on each time period t.

III Empirical Results

In this section I focus on describing briefly the large dataset and then characterizing the
two estimates of the principal components. I then present evidence on the evolution
of the parameters in the FAVAR equation, and conclude with the task of assesing the
price puzzle, and measuring monetary policy in general, through time-varying impulse
response functions coming from 4 different specifications.

Data and Principal Component estimates

The data-set consists of quarterly observations on 143 U.S. macroeconomic time series
spanning the period from 1959:Q1 to 2007:Q3. The series were downloaded from the
St. Louis Fed FRED database and a complete description is given in the data appendix.
The whole dataset is quite standard for this type of application, and includes among
others data releases such as personal income and outlays, GDP and components, assets
and liabilities of commercial banks in the United States, productivity and costs mea-
sures, exchange rates and selected interest rates. All series are seasonally adjusted,
where this is applicable, and transformed to be approximately stationary. All data se-
ries which are used to extract factors are demeaned and standardized. More details are
provided in the appendix.

The two methods for identifying the factors described in the previous Section (BBE
and block factors) are based on extracting principal components. Nevertheless, they
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produce estimates of the factors which have some economic interpretation compared
to unrestricted principal components. In order to understand the differences between
extracting factors as either fast/slow moving, or according to blocks of data releases, it
is intersting to understand which economic concepts are captured by them. Figures 1
and 2 plot the first 3 BBE factors and the 5 block factors, respectively. The series used
are described in the next section, and the data appendix. Each of the factors produced
from both identification methods is plotted along with only one of the 143 observable
series; this is the series that it approximates (graphically) most closely. For instance, in
the first graph of figure 1 the first BBE factor captures most of the movements in GDP,
even though all 143 series load on this factor. This is a known characteristic of principal
components: the first principal component of a ‘Stock-and-Watson type’ dataset (i.e.
using hundreds of macro variables) captures real activity; see the discussion in Stock
and Watson (2002, section 3.3.2) and references therein. The second BBE factor is also
an activity factor since it follows very close the movements in employment in manufac-
turing. Similarly the third BBE factor captures a large fraction of the movement in M1.
There is no need to actually test how close is each factor to a specific series. Since the
loadings matrix is unrestricted, all series load in each and every factor.

Figure 2 repeats the same exercise for the factors extracted from blocks of statistical
releases. This time, instead of doing a “guess” of what the nature of each factor might
be (i.e. finding one out of the 143 series which graphically looks closer to that factor),
this figure plots each of the five factors in comparison to a representative series of each
statistical block. Subsequently, the real activity factor is plotted against real GDP, the
money factor against M1, the interest rate factor against the 3-month Treasury bill rate,
the price factor against CPI, and finally the expectations factor against the University of
Michigan index of consumer expectations measure. All these factors fit quite well to the
representative series chosen. However the advantage of using the principal components,
instead of these five original observed series as factors, is that the former are more
robust to measurement errors than the latter. For example GDP is subject to large data
revisions. Additionally, GDP is only an incomplete proxy for what economists define as
real activity. The real activity factor instead is constructed using a diverse set of series
including GDP, employment and housing construction among others. Thus, it is not
surprising that the interest rate factor is extremely close to the 3-month Treasury bill
rate, since interest rates are measured without error.

The number of block factors is given and fixed to five. For the BBE factors comparing
the impulse responses from models using three and five factors gives the same qualita-
tive results. Thus, given that the number of parameters proliferates in a time-varying
setting, I only present results with three BBE factors in order to preserve parsimony. In
the following discussion results are reported from the two models, the TVP-FAVAR with
BBE identification and the TVP-FAVAR with block identification. In the former model,
the vector y0t = [f

0

t ; z
0

t; rt] consists of three BBE factors (f 0t), inflation and unemployment
(z0t), and the Fed funds rate (rt), while in the latter model the vector y0t = [f 0t ; z

0

t; rt]
consists of the five block factors (f 0t) and the Fed funds rate (rt) and (for the shake of
parsimony) no observables are included in z0t. See also the impulse response section
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below.

Testing parameter evolution

Different restricted versions of the TVP-FAVAR can be considered where we can begin
from the FAVAR with constant parameters and allow several (combinations of) para-
meters to drift. Estimating and testing all possible model combinations with marginal
likelihoods is a necessary task, albeit computationally demanding; see Koop and Ko-
robilis (2010) for a discussion. The mixture innovation extension makes this process
much easier by providing posterior probabilities on the time varying nature of each pa-
rameter. That way, the mixture innovation specification can be regarded as a special
form of Bayesian model selection based on the Gibbs sampler (see for example George
and McCulloch, 1997). Roughly speaking, in this latter literature an indicator variable
 is used to select which regression parameter is zero or not, while here the indicator
variable J�t determines which parameter � is time-varying or constant.

Note that we can get probabilities of a break at each point in time, defined as the
average of the posterior draws of J�t . That is, if we have a sequence of S draws from the
posterior density p(J�t jData), then we can easily get the quantity

E(J�t jData) =
1

S

SX

s=1

�
J�t
�
s

(13)

which is a time-varying proportion of models visited that had J�t = 1, where J�t (l) is

the s-th MCMC draw of J�t . Presenting all posterior probabilities of jumps analytically
for each parameter and each time period is not possible. However we can examine
what type of time variation is supported in the FAVAR equation by the data and the
factors by looking at the average probabilities of a break over the whole sample period
t = 1; :::; T . These are simply the posteriors of the probability parameters ��, denoted
p(��jData). Table 1 presents the posterior probabilities of a break for each parameter of
interest � 2 fBt; �t; log �tg in equations (2) and (8). From this table it can be seen that
there is evident time variation in all of the parameters in the FAVAR equation using the
uninformative Beta prior, but the same is true if an informative Beta prior is used which
favours only a few breaks a-priori (results available upon request). Koop, Leon-Gonzales
and Strachan (2009) report similar evidence on their mixture innovation TVP-VAR using
inflation, unemployment and interest rate. This contradicts for instance the results of
Sims and Zha (2006) who find that there is evidence of time variation (in the form of
regime switching) in the volatility but not in the mean of their VAR.

Table 1: Evidence on time variation

Model p (�Bjdata) p (��jdata) p (�log �jdata)

TVP-FAVAR BBE factors 0.982 0.912 0.993
TVP-FAVAR block factors 0.886 0.977 0.948

Note: Entries in this table are the posterior “probability of drift” quantity

p(��jdata) for each time-varying parameter � 2 fBt; �t; log �tg.
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Monetary policy and the Great Moderation

In principle, it is wise to first examine the nonsystematic policy, i.e movements in the
Fed’s funds rate which are attributed to exogenous shocks and not to changes in the
structure of the economy. In order to achieve that, Figures 3 and 4 present the median
posterior estimates of the standard errors coming from the TVP-FAVAR models with BBE
and block factors respectively. These are the square roots of the main-diagonal elements
of the matrices 
t, for all t. High variance of monetary policy shocks is connected with
higher policy mistakes. It is obvious from the last panel (e) of Figures 3 and 4 that
during 1979-1984 the volatility of the shocks in the Federal funds rate is quite high
relative to the rest of the sample. In this period there was a shift of focus from interest
rates (prices) to reserves available to banks (quantities) leading the interest rate to rise
at the most rapid rate in the history of the U.S.

The time-varying standard deviations of the BBE factors and the observables (infla-
tion and unemployment) in Figure 3, and the block factors in Figure 4, reveal patterns
like the Great Inflation and the Monetarist Experiment (peaks of volatility circa 1975
and 1980) due to the oil shocks and the increase of interest rates, respectively. Addi-
tionally, activity factors like the first BBE factor and the first block factor, the variation
in these time-varying standard deviations gets much lower after approximately 1984
compared to the pre-1984 era, indicating the Great Moderation for the US economy.
From these graphs it is visible that there are many similarities but also many differences
between the BBE factors and the block factors TVP-FAVARs. For instance, the third BBE
factor in Figure 3, which was identified as capturing closely the movements in M1, has
similar shock pattern with the second block (“money”) factor in Figure 4. However,
the fourth block factor (prices) in Figure 4 peaks at completely different dates than the
observed GDP deflator inflation in Figure 3. That in turn suggests that this price block
factor captures movements in price volatility which are not contained in GDP deflator
alone.

It should be noted that the information contained in the factors has the implication
that the standard errors in the Fed’s funds rate equation are quite low compared to the
typical trivariate TVP-VARs used in the past. The reader is advised to make comparisons
with, for example, the standard errors in the time-varying VAR’s of Koop, Leon-Gonzales
and Strachan (2009) and Primiceri (2005). Lastly, while detecting the Great Moderation
can be accomplished when using factors, this is not true when a small scale tri-variate
vector autoregression is used. The observation that two out of the three BBE factors as
well as three out the five block factors have a big drop in their standard errors around
1984 is consistent with the fact that the decline in volatility has occurred broadly across
the economy, affecting employment, prices and wages, and consumption.

For that reason, we can use the factor model to examine the estimated time-varying
volatilities not only in the factors, but also in the original observed variables. From
equation (3a) we can recover the implied decomposition of the time varying model
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covariances of the data matrix xt
4. These are defined as

var(xtj�t; Ht;
t) = �
t�
0 +Ht = �

com
t + �indt (14)

where �comt is the covariance due to the common flactuations among the series, and
�indt is the matrix of individual variations in each series. This identity implies that the
variance of variable i takes the form var(xitj�i; Hii;t;
t) = �i
t�

0

i + exp (hit) for i =
1; : : : ; n. The TVP-FAVAR model allows for other statistics to be calculated, like the ratio
of the variance explained by the factor model to the total variance �comit =

�
�comit + �idit

�
,

or the percentage of the variability in series i exaplained by series j, i.e. the quantity

ewij =
�i
t�

0

jPn

k=1 �i
t�
0

k

:

These factor model decompositions of the variance allow us to examine which part of
the Great Moderation is explained by the large set of observed (endogenous) explana-
tory variables and which part is attributed to random (exogenous) shocks. For price
inflation (GDP deflator series: GDPDEFL) in particular, graphs are plotted in panel (a)
of Figure 5 for the part of the conditional variance which is due to exogenous shocks
pertaining to inflation, �idii;t = exp (hit), and the part which is explained by the whole

economy, i.e. the whole set of factors, �comii;t = �i
t�
0

i. Observe that this decomposition
comes from the TVP-FAVAR with block factors, since in the TVP-FAVAR with BBE factors
we treat GDP deflator inflation in the vector of observables zt (and then inflation enters
the factor equation as a simple regressor).

In panel (a) of Figure 5 the reader can see some very interesting features. The peak
in inflation variance during the late 1970s is attributed to a peak in the exogenous
shock exp (hit) and the factors (i.e. the comovements between endogenous variables
in the economy). This result gives an intuition of why previous studies based on small
tri-viriate VARs do not agree on the nature of inflation volatility. The factor model
decomposition indicates that the causes of high volatility in that period are a mixture
of both endogenous and exogenous shocks, with the former preceeding the latter by
one year. In a similar manner we can observe that during the early 1980s the peak
in inflation volatility is mostly attributed to the variation of the factors and less to the
idiosyncratic volatility. If this event is to be attributed to the variation in other vari-
ables in the economy, then theory postulates that these variables should be monetary
policy (interest rate), or the output gap and unemployment (as implied by the Philips
curve). In order to test this assumption, I plot in panels (b)-(d) of Figure 5 the propor-
tion of volatility in inflation as explained by the Federal funds rate, unemployment and
GDP respectively. This is the quantity ewij described above where i = GDPDEFL and

4Basically the formula below applies to ext = xt (In �  (L)) and not xt itself. However to maintain
interpretability, the assumption of autocorrelated errors is dropped in this analysis (and hence  (L) =
0n�n).
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j = FEDFUNDS;GDPC;UNRATE respectively. It is the Fed funds rate which ex-
plains a much larger proportion of inflation, especially during the early 1980s. The con-
tribution of GDP to inflation volatility also increases, but this increase is much smaller as
a percentage and also comes with a lag (i.e. after 1982) due to the effect of high interest
rates on GDP in early 1980s and the double-dip recession of 1980 and 1981-1982.

Finally, the standard forecast error variance decompositions - typical in VAR models
(Lütkepohl, 2005) - can also be implemented in the case of the TVP-FAVAR model for
all 143 series. In particular, in this model these decompositions are also time-varying.
Estimates are not presented here, since these are, on average, similar to the ones re-
ported in previous studies (see for example the non-time-varying estimates in Table I of
Bernanke, Boivin and Eliasz, 2005).

Measuring monetary policy: Comparing different models and differ-

ent time periods

At this point, it is interesting to examine the impulse responses of different time periods
in a data rich environment, and compare those to traditional VAR models (which, as
explained earler, are all restricted versions of the TVP-FAVAR model). Among the vast
number of different specifications nested in the TVP-FAVAR, I will use or compare four
benchmark specifications. These models are:

i VAR: 4 variable VAR on subsamples of data. This model can be obtained if we set
k = JBt = J�t = J�t = 0 for all t. In this case equation (10) is eliminated and we
are estimating only equation (11) on the subsmaples 1960:Q1 - 1975:Q1, 1960:Q1 -
1981:Q3, and 1960:Q1 - 1996:Q1. In this case the dependent variable is y0t = [z

0

t; rt]
where z0t includes inflation, unemployment and inflation expectations, and rt is the
fed funds rate.

ii TVP-VAR: 3 variable TVP-VAR as in Primiceri (2005). The variables in y0t = [z0t; rt]
are inflation, unemployment and fed funds rate.

iii TVP-FAVAR-BBE: TVP-FAVAR with BBE identification. In this model, the vector y0t =
[f 0t ; z

0

t; rt] consists of three BBE factors (f 0t), inflation and unemployment (z0t), and
the fed funds rate (rt). In this case inflation and unemployment are not used in
xt to extract factors, while their impulse responses are immediately available only
through equation (11).

iv TVP-FAVAR-Block: TVP-FAVAR with block identification. In this model, the vector
y0t = [f

0

t ; z
0

t; rt] consists of the five block factors (f 0t) and the fed funds rate (rt). For
the sake of maintaining parsimony, no observables are included in z0t (i.e., using the
notation of Section 2, l = 0). Thus inflation and unemployment measures are only
included in the variable xt, and their impulse responses are identified through the
price and real-activity factors, respectively.
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The dataset has many measures of inflation, unemployment, inflation expectations
and interest rate. When these quantities are included as observables in the vector z0t
(models 1,2 and 3 above), I use the series GDPDEF (Gross Domestic Product: Implicit
Price Deflator), UNRATE (Unemployment Rate: All Workers, 16 Years & Over), INF-
EXP (University of Michigan Inflation Expectations), and FEDFUNDS (Effective Federal
Funds Rate), as proxies for “inflation”, “unemployment”, “inflation expectations” and
“interest rate”, respectively. Since all 4 models can be obtained as special cases of the
TVP-FAVAR model, the priors described in Section 2 are applied to all models in order
to maintain comparability5. Lastly, following the TVP-VAR literature (Primiceri, 2005;
Canova and Gambetti, 2009; Koop, Leon-Gonzales and Strachan, 2009) I set the num-
ber of VAR lags in all models to be p = 2, while the lag length of the idiosyncratic shocks
in the TVP-FAVAR models (see eq. (3b)) is set to q = 2.

Figures 6 through 9 plot the impulse responses of the 3 common variables in all
models, i.e. inflation unemployment and the interest rate. These variables are plot-
ted for three representative periods, 1975:Q1, 1981:Q3 and 1996:Q1 which were cho-
sen in Primiceri (2005) as representative of the chairmanships of Burns, Volcker and
Greenspan. Responses for any quarter in 2006-2007, which would correspond to the
inclusion of a "Bernanke regime" in the analysis, are not included for two reasons. First,
there does not seem to be differences between responses in 1996 and any of the quar-
ters of 2006 and 2007 in the sample. Second, there are not enough observations for
the Bernanke chairmanship, while these few representative observations are at the end
of the sample and may be prone to the measurement error associated with using data
which, most probably, are going to be revised again in the future.

As expected by economic theory, following a contractionary policy shock, inflation
should decrease. However the criticism over VAR models is that they reproduce what is
called the price puzzle, a positive hump-shaped response of inflation. The four-variable
recursive VAR estimated in subsamples is motivated by the finding of Castelnuovo and
Surico (2010) that if the price puzzle is an artifact of VAR models, then including mea-
sures of inflation and output gap expectations should correct this problem. We can see
from Figures 6 to 9 that the FAVAR model with block factors performs the best in not
introducing positive responses of inflation, especially in the 1970s. The tri-variate TVP-
VAR model introduces the puzzle in the 70s and early 80s, while adding the inflation
expectations variable in the VAR in subsamples vanishes the puzzle only in the 80s. This
finding is consistent with the conjecture that a mispessified VAR will not cover the space
of structural shocks (see Stock and Watson, 2005).

Castelnuovo and Surico (2010) find that zero restrictions are responsible for re-
producing this puzzle, while sign restrictions (Uhlig, 2005) give impulse responses in

5Priors make sense when used only to unrestricted parameters. For instance, we can obtain the
TVP-VAR if we restrict the number of factors to be zero (k = 0), which implies that the parametersh
�
f
i ; �

z
i ; �

r
i

i
; h2i and �i are all zero and no prior is set on them. In that case it is only the priors for

Bt; �t; log �t and Jt which are elicited on a similar way among the TVP-VAR and the TVP-FAVAR specifi-
cations.
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accordance with theory and DSGE models. It is true that the simple VAR responses
can be ‘corrected’ using sign restrictions. The same argument can be generalized to the
TVP-VAR model case. For example, the Canova and Gambetti (2009) TVP-VAR with sign
restrictions does reduce the price puzzle (while the TVP-VAR ‘a-la’ Primiceri (2005) used
here does not). However, given that sign restrictions are hard to justify when using a
VAR with unobserved factors, I use the recursive identification scheme in all models in
order to focus only on the positive effects of adding more variables in a VAR. In that
respect, the (TVP-) FAVAR models are - as expected - superior to the simple VARs.

Another argument in favor of the TVP-FAVAR is that we are able to examine what has
happened at different points in time to all major indicators of the economy. For the sake
of brevity I only plot the results from the TVP-FAVAR with block factors (the results from
the TVP-FAVAR with BBE factors are very similar and say exactly the same story). These
plots say for instance for instance that GDP would have responded more moderately in
1996 in a contractionary shock, compared to 1975 and 1981. M1 in 1981 (the period of
the ‘monetarist experiment’) would actually continue to be negative and decrease even
after 21 quarters ahead, while in 1975 and 1996 it would begin to get back to zero after
approximately 12 quarters. Exchange rates and total investments were affected by the
varying conditions in 1975, 1981 and 1996, as these are measured by the differences
in magnitudes of their responses during these periods. In contrast, short and long term
interest rates (and subsequently loans), and employment and productivity measures
were not altered during the Chairmanships of Burns, Volcker and Greenspan.

IV Conclusions

There is a large literature that examines the evolution of post World War II U.S. mon-
etary policy. During these decades lots of changes have occurred in the U.S. economy,
like the moderation of GDP and inflation volatility dated circa 1984. Many papers try
to shed light in historical events as well as monetary policy over the last 40 years us-
ing small data-sets. One of the main contributions of this paper is the support for the
fact that by using large data-sets we are able to better understand the nature of cor-
relations and comovements between macroeconomic variables. This paper examines
time-varying comovements and decompositions of a large number of variables.

The second contribution of this paper empirical and it relates to the fact that all the
merits of the constant parameters Dynamic Factor Model can be used successfully in a
time-varying setting successfully. Using Bayesian methods in order to preserve parsi-
mony in estimating the time-varying parameters, and standard principal components in
order to avoid identification issues arising when estimating latent factors, we can end
up with a model that provides sensible time-varying impulse response functions for the
whole economy.

Lastly, I show how the time-varying factor model can be used to measure stochastic
volatilities of the factors and the interest rate. Similarly I study decompositions of the
variances of observed variables of interest using the factor decomposition implied by

18



the FAVAR model.
In order to answer more and more involved questions in the future, factor models

can play a significant leading role since their advantages are numerous. At the same
time, the fact that dynamic factor models are atheoretic time series models, can be
tackled if they are combined with DSGE models. For instance, Boivin and Giannoni
(2006a) show that factors can be used in a DSGE setting in order to reduce variable
measurement uncertainty, combining that way the merits of large data-sets with those
of structural economic models.
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Appendix A: Data and Transformations

All series were downloaded from St. Louis’ FRED database and cover the quarters
Q1:1959 to Q3:2007. The series HHSNTN, PMNO, PMDEL, PMNV, MOCMQ, MSONDQ
come from the Global Insights Basic Economics Database, and were kindly provided
by Mark Watson. The series INFEXP comes from the University of Michigan database
(http://www.sca.isr.umich.edu/). All series were seasonally adjusted: either taken ad-
justed from FRED or by applying to the unadjusted series a quarterly X11 filter based
on an AR(4) model (after testing for seasonality). Some series in the database were
observed only on a monthly basis and quarterly values were computed by averaging
the monthly values over the quarter. All variables are transformed to be approximately
stationary. In particular, if zi;t is the original untransformed series, the transformation
codes are (column Tcode below): 1 - no transformation (levels), xi;t = zi;t; 2 - first dif-
ference, xi;t = zi;t � zi;t�1 ; 4 - logarithm, xi;t = log zi;t; 5 - first difference of logarithm,
xi;t = log zi;t� log zi;t�1; 10 - quarter-over-quarter growth rate, xi;t = 400� (zi;t=zi;t�1�1)
(only for the GDP deflator).

Following Bernanke et al. (2005), the fast moving variables are interest rates, stock
returns, exchange rates and commodity prices. The rest of the variables in the dataset
are the slow moving variables (output, employment/unemployment etc). The data table
below has been separated into 5 blocks, referring to the respective block factor when
using the alternative identification scheme (see also Belviso and Milani, 2006).

1. Real Activity Factor

# Mnemonic Tcode Description

1 GDPC 5 Real Gross Domestic Product, 3 Decimal

2 CBI 1 Change in Private Inventories

3 FINSAL 5 Final Sales of Domestic Product

4 FSDP 5 Final Sales to Domestic Purchasers

5 FINSLC96 5 Real Final Sales of Domestic Product, 3 Decimal

6 GGSAVE 1 Gross Government Saving

7 TGDEF 1 Net Government Saving

8 GSAVE 5 Gross Saving

9 FPI 5 Fixed Private Investment

10 PRFI 5 Private Residential Fixed Investment

11 SLINV 5 State & Local Government Gross Investment

12 SLEXPND 5 State & Local Government Current Expenditures

13 EXPGSC96 5 Real Exports of Goods & Services, 3 Decimal

14 IMPGSC96 5 Real Imports of Goods & Services, 3 Decimal

15 CIVA 1 Corporate Inventory Valuation Adjustment

16 CP 5 Corporate Profits After Tax

17 CNCF 5 Corporate Net Cash Flow

18 DIVIDEND 5 Net Corporate Dividends

19 PCE 5 Personal Consumption Expenditures
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20 PCES 5 Personal Consumption Exp.: Services

21 PCEDG 5 Personal Consumption Exp.: Durable Goods

22 PCEND 5 Personal Consumption Exp.: Nondurable Goods

23 INDPRO 5 Industrial Production Index

24 NAPM 1 ISM Manufacturing: PMI Composite Index

25 HOABS 5 Business Sector: Hours of All Persons

26 RCPHBS 5 Business Sector: Real Compensation Per Hour

27 ULCBS 5 Business Sector: Unit Labor Cost

28 COMPNFB 5 Nonfarm Business Sector: Compensation Per Hour

29 HOANBS 5 Nonfarm Business Sector: Hours of All Persons

30 COMPRNFB 5 Nonfarm Bus. Sector: Real Compensation Per Hour

31 ULCNFB 5 Nonfarm Business Sector: Unit Labor Cost

32 UNRATE 1 Unemployment Rate: All Workers, 16 Years & Over

33 UEMPLT5 5 Civilians Unemployed - Less Than 5 Weeks

34 UEMP5TO14 5 Civilian Unemployed for 5-14 Weeks

35 UEMP15OV 5 Civilians Unemployed - 15 Weeks & Over

36 UEMP15T26 5 Civilians Unemployed for 15-26 Weeks

37 UEMP27OV 5 Civilians Unemployed for 27 Weeks and Over

38 NDMANEMP 5 All Employees: Nondurable Goods Manufacturing

39 MANEMP 5 Employees on Nonfarm Payrolls: Manufacturing

40 SRVPRD 5 All Employees: Service-Providing Industries

41 USTPU 5 All Employees: Trade, Transportation & Utilities

42 USWTRADE 5 All Employees: Wholesale Trade

43 USTRADE 5 All Employees: Retail Trade

44 USFIRE 5 All Employees: Financial Activities

45 USEHS 5 All Employees: Education & Health Services

46 USPBS 5 All Employees: Professional & Business Services

47 USINFO 5 All Employees: Information Services

48 USSERV 5 All Employees: Other Services

49 USGOVT 5 All Employees: Government

50 AHECONS 5 Average Hourly Earnings: Construction

51 AHEMAN 5 Average Hourly Earnings: Manufacturing

52 AWOTMAN 1 Average Weekly Hours: Overtime: Manufacturing

53 AWHMAN 1 Average Weekly Hours: Manufacturing

54 HOUST 4 Housing Starts: Total: New Privately Owned Housing Units

Started

55 HOUST1F 4 Privately Owned Housing Starts: 1-Unit Structures

56 PERMIT 4 New Private Housing Units Authorized by Building Permit

2. Money, Credit and Finance Factor

# Mnemonic Tcode Description

57 NONREVSL 5 Total Non-revolving Credit Outstanding

58 USGSEC 5 U.S. Government Securities at All Commercial Banks
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59 OTHSEC 5 Other Securities at All Commercial Banks

60 TOTALSL 5 Total Consumer Credit Outstanding

61 BUSLOANS 5 Commercial and Industrial Loans at All Commercial Banks

62 CONSUMER 5 Consumer (Individual) Loans at All Commercial Banks

63 LOANS 5 Total Loans and Leases at Commercial Banks

64 INVEST 5 Total Investments at All Commercial Banks

65 REALLN 5 Real Estate Loans at All Commercial Banks

66 BOGAMBSL 5 Board of Governors Monetary Base, Adjusted for Changes in

Reserve Req.

67 TRARR 5 Board of Governors Total Reserves, Adjusted for Changes in

Reserve Req.

68 BOGNONBR 5 Non-Borrowed Reserves of Depository Institutions

69 REQRESNS 5 Required Reserves, Not Adjusted for Changes in Reserve Re-

quirements

70 RESBALNS 5 Reserve Balances with Fed. Res. Banks, Not Adj. for

Changes in Res. Req.

71 BORROW 5 Total Borrowings of Depository Institutions from the Federal

Reserve

72 M1SL 5 M1 Money Stock

73 CURRSL 5 Currency Component of M1

74 DEMDEPSL 5 Demand Deposits at Commercial Banks

75 TCDSL 5 Total Checkable Deposits

76 TVCKSSL 5 Travelers Checks Outstanding

77 M2SL 5 M2 Money Stock

78 M2OWN 5 M2 Own Rate

79 M2MSL 5 M2 Minus Small Time Deposits

80 M2MOWN 5 M2 Minus Own Rate

81 MZMSL 5 MZM Money Stock

82 EXCRESNS 5 Excess Reserves of Depository Institutions

83 NFORBRES 1 Net Free or Borrowed Reserves of Depository Institutions

84 SVSTCBSL 5 Savings and Small Time Deposits at Commercial Banks

85 SVSTSL 5 Savings and Small Time Deposits - Total

86 SVGCBSL 5 Savings Deposits at Commercial Banks

87 SVGTI 5 Savings Deposits at Thrift Institutions

88 SAVINGSL 5 Savings Deposits - Total

89 STDCBSL 5 Small Time Deposits at Commercial Banks

90 STDTI 5 Small Time Deposits at Thrift Institutions

91 STDSL 5 Small Time Deposits - Total

92 USGVDDNS 5 U.S. Government Demand Deposits and Note Balances - To-

tal

93 USGDCB 5 U.S. Government Demand Deposits at Commercial Banks

94 CURRCIR 5 Currency in Circulation
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3. Interest Rate Factor
# Mnemonic Tcode Description

95 TB3MS 1 3-Month Treasury Bill: Secondary Market Rate

96 TB6MS 1 6-Month Treasury Bill: Secondary Market Rate

97 GS1 1 1-Year Treasury Constant Maturity Rate

98 GS3 1 3-Year Treasury Constant Maturity Rate

99 GS5 1 5-Year Treasury Constant Maturity Rate

100 GS10 1 10-Year Treasury Constant Maturity Rate

101 MPRIME 1 Bank Prime Loan Rate

102 AAA 1 Moody’s Seasoned AAA Corporate Bond Yield

103 BAA 1 Moody’s Seasoned BAA Corporate Bond Yield

104 EXSZUS 5 Switzerland / U.S. Foreign Exchange Rate

105 EXJPUS 5 Japan / U.S. Foreign Exchange Rate

106 EXUSUK 5 U.S. / U.K Foreign Exchange Rate

107 EXCAUS 5 Canada / U.S. Foreign Exchange Rate

4. Price Factor

# Mnemonic Tcode Description

108 GDPDEF 10 Gross Domestic Product: Implicit Price Deflator

109 GDPCTPI 5 Gross Domestic Product: Chain-type Price Index

110 PCECTPI 5 Personal Consumption Expenditures: Chain-type Price In-

dex

111 PPIACO 5 Producer Price Index: All Commodities

112 PPICRM 5 Producer Price Index: Crude Materials for Further Proc.

113 PPIFCF 5 Producer Price Index: Finished Consumer Foods

114 PPIFCG 5 Producer Price Index: Finished Consumer Goods

115 PFCGEF 5 Producer Price Index: Finished Consumer Goods Excl.

Foods

116 PPIFGS 5 Producer Price Index: Finished Goods

117 PPICPE 5 Producer Price Index Finished Goods: Capital Equipment

118 PPIENG 5 Producer Price Index: Fuels & Related Products & Power

119 PPIIDC 5 Producer Price Index: Industrial Commodities

120 PPIITM 5 Producer Price Index: Intermediate Materials

121 CPIAUCSL 5 Consumer Price Index For All Urban Consumers: All Items

122 CPIUFDSL 5 Consumer Price Index for All Urban Consumers: Food

123 CPIENGSL 5 Consumer Price Index for All Urban Consumers: Energy

124 CPILEGSL 5 Consumer Price Index for All Urban Consumers: All Items

Less Energy

125 CPIULFSL 5 Consumer Price Index for All Urban Consumers: All Items

Less Food

126 OILPRICE 5 Spot Oil Price: West Texas Intermediate
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5. Expectations Factor

# Mnemonic Tcode Description

127 INFEXP 1 U. Of Mich. Inflation Expectations

128 HHSNTN 1 U. Of Mich. Index Of Consumer Expectations

129 PMNO 1 NAPM New Orders Index

130 PMDEL 1 NAPM Vendor Deliveries Index

131 PMNV 1 NAPM Inventories Index

132 MOCMQ 5 New Orders (Net) - Consumer Goods & Materials

133 MSONDQ 5 New Orders, Nondefense Capital Goods

134 sTB3MS 1 TB3MS - FEDFUNDS

135 sTB6MS 1 TB6MS - FEDFUNDS

136 sGS1 1 GS1 - FEDFUNDS

137 sGS3 1 GS3 - FEDFUNDS

138 sGS5 1 GS5 - FEDFUNDS

139 sGS10 1 GS10 - FEDFUNDS

140 sMPRIME 1 MPRIME - FEDFUNDS

141 sAAA 1 AAA - FEDFUNDS

142 sBAA 1 BAA - FEDFUNDS

Monetary policy

# Mnemonic Tcode Description

143 FEDFUNDS 1 Effective Federal Funds Rate
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Appendix B: Figures

Figure 1: Graphs of BBE factors compared to some key macroeconomic series.
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Figure 2: Graphs of block factors compared to representative series in each block.
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Figure 3: Time-varying standard deviations of errors in the TVP-FAVAR with BBE iden-
tification of the factors.
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Figure 4: Time-varying standard deviations of errors in the TVP-FAVAR with block fac-
tors.
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Figure 5: Time-varying parameters factor model decomposition of the variance of infla-
tion. Panel (a) shows the variance of the common component �comit , and the idiosyn-
cratic/individual component �indit , for i=GDP deflator inflation. Panels (b), (c) and (d)
show the percentage of the variance in inflation explained by the Federal funds rate,
unemployment rate and GDP, respectively.
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Figure 6: Impulse responses (10-th, 50-th and 90-th percentiles) of inflation, umploy-
ment and interest rate from the VAR model with Inflation expectations, estimated on 3
subsamples ending in 1975:Q1, 1981:Q3 and 1996:Q1, respectively.
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Figure 7: Impulse responses (10-th, 50-th and 90-th percentiles) of inflation, umploy-
ment and interest rate from the TVP-VAR model.
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Figure 8: Impulse responses (10-th, 50-th and 90-th percentiles) of inflation, umploy-
ment and interest rate from the TVP-FAVAR model with BBE factors.
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Figure 9: Impulse responses (10-th, 50-th and 90-th percentiles) of inflation, umploy-
ment and interest rate from the TVP-FAVAR model with block factors.
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Figure 10: Posterior medians of impulse responses for selected indicators of the US
economy for the periods 1975:Q1, 1981:Q3 and 1996:Q1.
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