Multivariate portmanteau test for structural VARMA models with uncorrelated but non-independent error terms

Yacouba Boubacar Mainassara

7. December 2009

Online at http://mpra.ub.uni-muenchen.de/27637/
Multivariate portmanteau test for structural VARMA models with uncorrelated but non-independent error terms

Y. Boubacar Mainassaraa

aUniversité Lille III, EQUIPPE, BP 60 149, 59653 Villeneuve d’Ascq cedex, France.

Abstract

We consider portmanteau tests for testing the adequacy of structural vector autoregressive moving-average (VARMA) models under the assumption that the errors are uncorrelated but not necessarily independent. The structural forms are mainly used in econometrics to introduce instantaneous relationships between economic variables. We first study the joint distribution of the quasi-maximum likelihood estimator (QMLE) and the noise empirical autocovariances. We then derive the asymptotic distribution of residual empirical autocovariances and autocorrelations under weak assumptions on the noise. We deduce the asymptotic distribution of the Ljung-Box (or Box-Pierce) portmanteau statistics in this framework. It is shown that the asymptotic distribution of the portmanteau tests is that of a weighted sum of independent chi-squared random variables, which can be quite different from the usual chi-squared approximation used under independent and identically distributed (iid) assumptions on the noise. Hence we propose a method to adjust the critical values of the portmanteau tests. Monte Carlo experiments illustrate the finite sample performance of the modified portmanteau test.

Key words: Goodness-of-fit test, QMLE/LSE, Box-Pierce and Ljung-Box portmanteau tests, Residual autocorrelation, Structural representation, Weak VARMA models.

\textit{Email address:} mailto:yacouba.bacarmainassara@etu.univ-lille3.fr (Y. Boubacar Mainassara)

\textit{URL:} http://perso.univ-lille3.fr/ yboubacarmai/ (Y. Boubacar Mainassara)
1. Introduction

Consider a d-dimensional stationary process (X_t) satisfying a VARMA(p, q) representation of the form

$$A_0X_t - \sum_{i=1}^{p} A_{0i}X_{t-i} = B_0\epsilon_t - \sum_{i=1}^{q} B_{0i}\epsilon_{t-i}, \quad \forall t \in \mathbb{Z} = \{0, \pm 1, \ldots\}. \quad (1)$$

When $A_0 = B_0 = I_d$, the VARMA(p, q) representation is said to be in reduced form. Otherwise, it is said to be structural. The structural forms are mainly used in econometrics to introduce instantaneous relationships between economic variables. The representation (1) is said to satisfy a weak VARMA(p, q) representation if ϵ_t is a weak white noise, namely a stationary sequence of centered and uncorrelated random variables with a non singular variance Σ_0. It is customary to say that (X_t) is a strong VARMA(p, q) model if (ϵ_t) is an iid sequence of random variables with mean 0 and common variance matrix Σ_0 (i.e. strong white noise). A strong white noise is obviously a weak white noise, because independence entails uncorrelatedness, but the reverse is not true. Between weak and strong VARMA(p, q) representations, one can say that (1) is a semi-strong VARMA(p, q) representation if (ϵ_t) is a stationary martingale difference (i.e. semi-strong white noise).

The structural VARMA(p, q) representation (1) can be rewritten in a standard reduced VARMA(p, q) form if the matrices A_0 and B_0 are non singular. Indeed, premultiplying (1) by A_0^{-1} and introducing the innovation process $e_t = A_0^{-1}B_0\epsilon_t$, with non singular variance $\Sigma_{e0} = A_0^{-1}B_0\Sigma_0B_0' A_0^{-1'}$, we obtain the reduced VARMA representation

$$X_t - \sum_{i=1}^{p} A_{0i}^{-1}A_{0i}X_{t-i} = e_t - \sum_{i=1}^{q} A_{0i}^{-1}B_{0i}B_0^{-1}A_0e_{t-i}. \quad (2)$$

The structural form (1) allows to handle seasonal models, instantaneous economic relationships, VARMA in the so-called echelon form representation, and many other constrained VARMA representations (see Lütkepohl, 2005, chap. 12). The reduced form (2) is more practical from a statistical viewpoint, because it gives the forecasts of each component of (X_t) according to the past values of the set of the components.

The above discussion shows that VARMA representations are not unique, that is, a given process (X_t) can be written in reduced form or in structural
form by premultiplying by any non singular \((d \times d)\) matrix. Of course, in order to ensure the uniqueness of a VARMA representation, constraints are necessary for the identifiability of the \((p + q + 3)d^2\) elements of the matrices involved in the VARMA equation (1). In contrast, the echelon form guarantees uniqueness of the VARMA representation (see also Lütkepohl, 2005). The echelon form is the most widely identified VARMA representation employed in the literature. The identifiability of VARMA processes has been studied in particular by Hannan (1976) who gave several procedures ensuring identifiability.

The validity of the different steps of the traditional methodology of Box and Jenkins, identification, estimation and validation, depends on the noise properties. After identification and estimation of the VARMA processes, the next important step in the VARMA modeling consists in checking if the estimated model fits satisfactorily the data. This adequacy checking step allows to validate or invalidate the choice of the orders \(p\) and \(q\). In VARMA\((p, q)\) models, the choice of \(p\) and \(q\) is particularly important because the number of parameters, \((p + q + 2)d^2\), quickly increases with \(p\) and \(q\), which entails statistical difficulties.

In particular, the selection of too large orders \(p\) and \(q\) has the effect of introducing terms that are not necessarily relevant in the model. Overidentification thus generally leads to a loss of precision in parameter estimation. Conversely, the selection of too small orders \(p\) and \(q\) causes loss of some information, that results in a lack of asymptotic precision for the predictions.

Thus it is important to check the validity of a VARMA\((p, q)\) model, for given orders \(p\) and \(q\). This paper is devoted to the problem of the validation step of VARMA representations of multivariate processes. Based on the residual empirical autocorrelations, Box and Pierce (1970) (BP hereafter) derived a goodness-of-fit test, the portmanteau test, for univariate strong ARMA models. Ljung and Box (1978) (LB hereafter) proposed a modified portmanteau test which is nowadays one of the most popular diagnostic checking tool in ARMA modeling of time series. The multivariate version of the BP portmanteau statistic was introduced by Chitturi (1974). We use the portmanteau tests considered by Chitturi (1974) and Hosking (1980) for checking the overall significance of the residual autocorrelations of a VARMA\((p, q)\) model (see also Chitturi (1976), Hosking (1981a,b), Li and McLeod (1981), Ahn (1988). Hosking (1981a) gave several equivalent forms of this statistic. Arbues (2008) proposed an extended portmanteau test for VARMA models with mixing nonlinear constraints.
The works on the multivariate version of the portmanteau statistic are generally performed under the assumption that the errors ϵ_t are independent. This independence assumption is often considered too restrictive by practitioners. It precludes conditional heteroscedasticity and/or other forms of nonlinearity (see Francq and Zakoïan, 2005, for a review on weak univariate ARMA models). Relaxing this independence assumption allows to cover linear representations of general nonlinear processes and to extend the range of application of the VARMA models.

The asymptotic theory of weak ARMA model validation is mainly limited to the univariate framework (see Francq, Roy and Zakoïan, 2005, hereafter FRZ). In the multivariate analysis, a notable exception is Francq and Raïssi (2007) who study portmanteau tests for weak VAR models. We will generalize this result to VARMA models. This extension raises difficult problems. First, non-trivial constraints on the parameters must be imposed for identifiability of the parameters (see Reinsel, 1997, Lütkepohl, 2005). Secondly, the implementation of standard estimation methods (for instance the Gaussian quasi-maximum likelihood estimation) is not obvious because this requires a constrained high-dimensional optimization (see also Lütkepohl, 2005). These technical difficulties certainly explain why VAR models are much more used than VARMA in applied works.

Recently Boubacar Mainassara and Francq (2010) (hereafter BMF) study the consistency and the asymptotic normality of the QMLE for a weak VARMA model. The QMLE is obtained by maximizing a function that would be the logarithm of the likelihood function if the process was Gaussian, but is not equal to it when the process (ϵ_t) is not iid Gaussian. The function that is maximized is often called quasi-likelihood. The QMLE can also be viewed as a nonlinear least squared estimator (LSE). Dufour and Pelletier (2005) and Boubacar Mainassara (in a working paper, 2010) study the choice of the orders p and q of weak VARMA models using information criteria. Chabot-Hallé and Duchesne (2008) study the asymptotic distribution of LSE and portmanteau test for semi-strong VAR. The main goal of the present paper is to complete the available results concerning the statistical analysis of weak VARMA models by considering the adequacy problem under general error terms. We proceed to study the behaviour of the goodness-of-fit portmanteau tests when the ϵ_t are not independent. It is shown that the standard portmanteau tests can be quite misleading in the framework of non-independent errors. Consequently, a modified version of these tests is proposed.
The paper is organized as follows. Section 2 presents the parametrization and assumptions used in the sequel. In Section 3, we recall the results on the QMLE asymptotic distribution obtained by BMF when \((\epsilon_t)\) satisfies mild mixing assumptions. Section 4 is devoted to the derivation of the joint distribution of the QMLE and the noise empirical autocovariances. In Section 5, we derive the asymptotic distribution of residual empirical autocovariances and autocorrelations under weak assumptions on the noise. In Section 6, it is shown how the standard Ljung–Box (or Box–Pierce) portmanteau tests must be adapted in the case of VARMA models with nonindependent innovations. Numerical experiments are presented in Section 7 and we provide a conclusion in Section 8. The proofs of the main results are collected in the appendix.

2. Parametrization and assumptions

Let \([A_{00}, \ldots, A_{0p}, B_{00}, \ldots, B_{0q}]\) be the \(d \times (p + q + 2)d\) matrix of VAR and MA coefficients involved in the VARMA equation (1). The matrix \(\Sigma_0\) is considered as a nuisance parameter. The parameter of interest is denoted \(\theta_0\), where \(\theta_0\) belongs to the parameter space \(\Theta \subset \mathbb{R}^{k_0}\), and \(k_0\) is the number of unknown parameters, which is typically much smaller than \((p + q + 3)d^2\). The matrices \(A_{00}, \ldots, A_{0p}, B_{00}, \ldots, B_{0q}\) involved in (1) and \(\Sigma_0\) are specified by \(\theta_0\). More precisely, we write \(A_{0i} = A_i(\theta_0)\) and \(B_{0j} = B_j(\theta_0)\) for \(i = 0, \ldots, p\) and \(j = 0, \ldots, q\), and \(\Sigma_0 = \Sigma(\theta_0)\). To ensure the consistence and the asymptotic normality of the QMLE, we assume that the parametrization satisfies the following smoothness conditions.

A1: The functions \(\theta \mapsto A_i(\theta)\) \(i = 0, \ldots, p\), \(\theta \mapsto B_j(\theta)\) \(j = 0, \ldots, q\) and \(\theta \mapsto \Sigma(\theta)\) admit continuous third order derivatives for all \(\theta \in \Theta\).

For simplicity, we now write \(A_i, B_j\) and \(\Sigma\) instead of \(A_i(\theta), B_j(\theta)\) and \(\Sigma(\theta)\). Let \(A_0(z) = A_0 - \sum_{i=1}^p A_i z^i\) and \(B_0(z) = B_0 - \sum_{i=1}^q B_i z^i\). We assume that \(\Theta\) corresponds to stable and invertible representations, namely

A2: for all \(\theta \in \Theta\), we have \(\det A_0(z) \det B_0(z) \neq 0\) for all \(|z| \leq 1\).

To ensure the strong consistency of the QMLE, a compactness assumption is required.

A3: We have \(\theta_0 \in \Theta\), where \(\Theta\) is compact.
The structural VARMA model (1) can be written more compactly as

\[A_{\theta_0}(L)X_t = B_{\theta_0}(L)\epsilon_t \quad \text{where} \quad A_{\theta_0}(L) = A_{00} - \sum_{i=1}^{p} A_{0i}L^i, \quad B_{\theta_0}(L) = B_{00} - \sum_{i=1}^{q} B_{0i}L^i \]

(3)

and where \(L \) is the backward operator.

A4: The process \((\epsilon_t) \) is stationary and ergodic.

Note that A4 is entailed by the uncorrelated innovations, but not by the iid innovations. In view of (3), \(X_t = A_{\theta_0}^{-1}(L)B_{\theta_0}(L)\epsilon_t \) and \(\epsilon_t = B_{\theta_0}^{-1}(L)A_{\theta_0}(L)X_t \), \((\epsilon_t) \) can be replaced by \((X_t) \) in A4. In the structural VARMA model (1), the assumption A2 does not guarantee the identifiability of the parameter. Thus, we make the following global assumption for all \(\theta \in \Theta \).

A5: For all \(\theta \in \Theta \) such that \(\theta \neq \theta_0 \), either the transfer functions \(A_{\theta}^{-1}B_{\theta}B_{\theta}^{-1}(z)A_{\theta}(z) \neq A_{00}^{-1}B_{00}B_{\theta_0}^{-1}(z)A_{\theta_0}(z) \) for some \(z \in \mathbb{C} \), or \(A_{0}^{-1}B_{0}\Sigma Z_{0}^{-1} \neq A_{00}^{-1}B_{00}\Sigma Z_{00}^{-1} \).

In the reduced VARMA representation (2), note that, the last condition in A5 can be dropped, but may be important for structural VARMA forms. In particular, A5 is satisfied when we impose: \(A_0 = B_0 = I_d \), A2, the common left divisors of \(A_{\theta}(L) \) and \(B_{\theta}(L) \) are unimodular (i.e. with nonzero constant determinant), and the matrix \([A_p : B_q] \) is of full rank. For the asymptotic normality of the QMLE, additional assumptions are required. It is necessary to assume that \(\theta_0 \) is not on the boundary of the parameter space \(\Theta \).

A6: We have \(\theta_0 \in \hat{\Theta} \), where \(\hat{\Theta} \) denotes the interior of \(\Theta \).

We now introduce, as in Francq and Zakoïan (1998) (hereafter FZ) the strong mixing coefficients of a stationary process \(Z = (Z_t) \) denoted by

\[\alpha_Z(h) = \sup_{A \in \sigma(Z_u, u \leq t), B \in \sigma(X_u, u \geq t+h)} |P(A \cap B) - P(A)P(B)|, \]

measuring the temporal dependence of the process \(Z \). Denoting by \(\|Z\| \) the Euclidean norm of \(Z \).

A7: We have \(E\|\epsilon_t\|^{4+2\nu} < \infty \) and \(\sum_{k=0}^{\infty} \{\alpha_t(k)\}^{\frac{1}{2\nu}} < \infty \) for some \(\nu > 0 \).

Note that assumption A7 does not require independence of the noise, nor the fact that it is a martingale difference.
3. Quasi-maximum likelihood estimation

For all $\theta \in \Theta$, let $A_0 = A_0(\theta), \ldots, A_p = A_p(\theta), B_0 = B_0(\theta), \ldots, B_q = B_q(\theta)$ and $\Sigma = \Sigma(\theta)$. Note that from A2, the matrices A_0 and B_0 are invertible. Thus, the structural representation (1) can be rewritten as the reduced VARMA representation (2). For the sake of simplicity, we omit the notation θ in all quantities taken at the true value θ_0. For all $\theta \in \Theta$, the assumption on the MA polynomial (from A2) implies that there exists a sequence of constants matrices $(C_i(\theta))$ such that $\sum_{i=1}^{\infty} \|C_i(\theta)\| < \infty$ and

$$e_t(\theta) = X_t - \sum_{i=1}^{\infty} C_i(\theta)X_{t-i}. \quad (4)$$

Given a realization X_1, X_2, \ldots, X_n satisfying the VARMA representation (1), the variable $e_t(\theta)$ can be approximated, for $0 < t \leq n$, by $\tilde{e}_t(\theta)$ defined recursively by

$$\tilde{e}_t(\theta) = X_t - \sum_{i=1}^{p} A_0^{-1}A_iX_{t-i} + \sum_{i=1}^{q} A_0^{-1}B_iB_0^{-1}A_0\tilde{e}_{t-i}(\theta),$$

where the unknown initial values are set to zero: $\tilde{e}_0(\theta) = \cdots = \tilde{e}_{1-q}(\theta) = X_0 = \cdots = X_{1-p} = 0$. The Gaussian quasi-likelihood is given by

$$\tilde{L}_n(\theta, \Sigma_e) = \prod_{t=1}^{n} \frac{1}{(2\pi)^{d/2}\sqrt{\text{det } \Sigma_e}} \exp \left\{ -\frac{1}{2} \frac{(\tilde{e}_t(\theta)\Sigma_e^{-1}\tilde{e}_t(\theta))}{\Sigma_e} \right\}, \quad \Sigma_e = A_0^{-1}B_0\Sigma B_0' A_0^{-1}.$$

A QMLE of (θ, Σ_e) is a measurable solution $(\hat{\theta}_n, \hat{\Sigma}_e)$ of

$$(\hat{\theta}_n, \hat{\Sigma}_e) = \operatorname{arg min}_{\theta, \Sigma_e} \left\{ \log(\text{det } \Sigma_e) + \frac{1}{n} \sum_{t=1}^{n} \tilde{e}_t(\theta)\Sigma_e^{-1}\tilde{e}_t(\theta) \right\}.$$

We use the matrix M_{θ_0} of the coefficients of the reduced form (2), where

$$M_{\theta_0} = [A_{00}^{-1}A_{01} : \cdots : A_{00}^{-1}A_{0p} : A_{00}^{-1}B_{01}B_{00}^{-1}A_{00} : \cdots : A_{00}^{-1}B_{0q}B_{00}^{-1}A_{00}].$$

Now, we need a local identifiability assumption which completes A5 and specifies how this matrix depends on the parameter θ_0. We denote by $A \otimes B$ the Kronecker product of two matrices A and B, and by $\text{vec}(A)$ the vector obtained by stacking the columns of A. Let \hat{M}_{θ_0} be the matrix $\partial \text{vec}(M_{\theta_0})/\partial \theta^t$ evaluated at θ_0.

7
A8: The matrix \dot{M}_{θ_0} is of full rank k_0.

Under the following additional assumption, BMF showed the consistency and the asymptotic normality of the QMLE of a weak VARMA model (see Theorem 1 in BMF). One of the most popular estimation procedures is that of the least squares estimation. For the processes of the form (2), under A1-A8, it can be shown (see e.g. Theorem 2 in BMF), that the LSE of θ coincides with the QMLE. Then under the assumptions A1-A8, BMF showed that $\theta_n \to \theta_0$ a.s. as $n \to \infty$ and $\sqrt{n}(\theta_n - \theta_0)$ is asymptotically normal with mean 0 and covariance matrix $\Sigma_{\theta_n} := J^{-1}I J^{-1}$, where $J = J(\theta_0, \Sigma_{\theta_0})$ and $I = I(\theta_0, \Sigma_{\theta_0})$, with

$$J(\theta, \Sigma_e) = \lim_{n \to \infty} \frac{-2}{n} \frac{\partial^2}{\partial \theta \partial \theta^t} \log \tilde{L}_n(\theta, \Sigma_e) \quad a.s.$$

and

$$I(\theta, \Sigma_e) = \lim_{n \to \infty} \text{Var} \frac{2}{\sqrt{n}} \frac{\partial}{\partial \theta} \log \tilde{L}_n(\theta, \Sigma_e).$$

In the standard strong VARMA case, i.e. when A4 is replaced by the assumption that (ϵ_t) is an iid sequence, we have $I = 2J$, so that $\Sigma_{\theta_n} = 2J^{-1}$.

4. Joint distribution of $\hat{\theta}_n$ and the noise empirical autocovariances

Let $\hat{\epsilon}_t = \hat{\epsilon}_t(\hat{\theta}_n)$ be the quasi-maximum likelihood residuals when $p > 0$ or $q > 0$, and let $\hat{\epsilon}_t = \epsilon_t = X_t$ when $p = q = 0$. When $p + q \neq 0$, we have $\hat{\epsilon}_t = 0$ for $t \leq 0$ and $t > n$ and

$$\hat{\epsilon}_t = X_t - \sum_{i=1}^p A_0^{-1}(\hat{\theta}_n)A_i(\hat{\theta}_n)\hat{X}_{t-i} + \sum_{i=1}^q A_0^{-1}(\hat{\theta}_n)B_i(\hat{\theta}_n)B_0^{-1}(\hat{\theta}_n)A_0(\hat{\theta}_n)\hat{\epsilon}_{t-i},$$

for $t = 1, \ldots, n$, with $\hat{X}_t = 0$ for $t \leq 0$ and $\hat{X}_t = X_t$ for $t \geq 1$. We denote by

$$\gamma(h) = \frac{1}{n} \sum_{t=h+1}^n \epsilon_t \epsilon_{t-h}^t \quad \text{and} \quad \hat{\Gamma}_\epsilon(h) = \frac{1}{n} \sum_{t=h+1}^n \hat{\epsilon}_t \hat{\epsilon}_{t-h}^t$$

the white noise "empirical" autocovariances and residual autocovariances. It should be noted that $\gamma(h)$ is not a statistic (unless if $p = q = 0$) because it depends on the unobserved innovations ϵ_t. For a fixed integer $m \geq 1$, let

$$\gamma_m = (\{\text{vec}\gamma(1)\}', \ldots, \{\text{vec}\gamma(m)\}')', \quad \hat{\Gamma}_m = \left(\{\text{vec}\hat{\Gamma}_\epsilon(1)\}', \ldots, \{\text{vec}\hat{\Gamma}_\epsilon(m)\}'\right)'$$
and
\[
\Gamma(\ell, \ell') = \sum_{h=-\infty}^{\infty} E \left\{ e_{t-\ell} \otimes e_t \right\} \left\{ e_{t-h-\ell'} \otimes e_{t-h} \right\}', \quad \text{for } (\ell, \ell') \neq (0, 0).
\]

For the univariate ARMA model, FRZ have showed that \(\sum_{h=-\infty}^{\infty} |E \eta \eta'| < +\infty\) (see Lemma A.1), which in turn implies the existence of \(\Gamma(\ell, \ell')\). We can generalize this result for the VARMA models. Then we obtain \(\sum_{h=-\infty}^{\infty} \left\| E \left\{ e_{t-\ell} \otimes e_t \right\} \left\{ e_{t-h-\ell} \otimes e_{t-h} \right\}' \right\| < +\infty\). The proof is similar to the univariate case.

We are now able to state the following Theorem, which is an extension of a result given in FRZ.

Theorem 4.1. Assume that \(p > 0\) or \(q > 0\). Under Assumptions A1–A8, as \(n \to \infty\), \(\sqrt{n} (\gamma_m, \hat{\theta}_n - \theta_0)' \Rightarrow \mathcal{N}(0, \Xi)\) where
\[
\Xi = \begin{pmatrix}
\Sigma_{\gamma_m} & \Sigma_{\gamma_m, \hat{\theta}_n} \\
\Sigma'_{\gamma_m, \hat{\theta}_n} & \Sigma_{\hat{\theta}_n}
\end{pmatrix},
\]

with \(\Sigma_{\gamma_m} = \{\Gamma(\ell, \ell')\}_{1 \leq \ell, \ell' \leq m}\), \(\Sigma'_{\gamma_m, \hat{\theta}_n} = \text{Cov}(\sqrt{n}J^{-1}Y_n, \sqrt{n}\gamma_m)\) and \(\Sigma_{\hat{\theta}_n} = \lim_{n \to \infty} \text{Var}(\sqrt{n}J^{-1}Y_n) = J^{-1}JJ^{-1}\) and \(Y_n\) is given by (15) in the proof of this Theorem. The matrices \(I\) and \(J\) are defined in Section 3.

Remark 4.1. FRZ considered the univariate case \(d = 1\). In their paper, they used the LSE and they obtained that
\[
\Sigma_{\gamma_m} = \sum_{h=-\infty}^{+\infty} \{E(e_{t-\ell}e_{t-\ell}e_{t-\ell-h}e_{t-h})\}_{1 \leq \ell, \ell' \leq m}
\]

and denoted it by \(\Gamma_{m,m}' = \{\Gamma(\ell, \ell')\}_{1 \leq \ell, \ell' \leq m}\). They introduce the vectors \(\lambda_i = (-\phi_{i-1}, \ldots, -\phi_{i-p}, \varphi_{i-1}, \ldots, \varphi_{i-q})' \in \mathbb{R}^{p+q}\), with the convention \(\phi_{i} = \varphi_{i} = 0\) when \(i < 0\) and where \(\phi_{i}^h\) and \(\varphi_{i}^h\) denote the coefficients defined by
\[
A^{-1}_h(z) = \sum_{h=0}^{\infty} \phi_{h}^* z^h, \quad B^{-1}_h(z) = \sum_{h=0}^{\infty} \varphi_{h}^* z^h, \quad |z| \leq 1 \quad \text{for} \quad h \geq 0.
\]

They also introduce the \((p + q) \times m\) matrices \(\Lambda_m = (\lambda_1, \ldots, \lambda_m)\). Using the QMLE, their result gives
\[
\Sigma_{\hat{\theta}_n} = (\Lambda_\infty \Lambda_\infty')^{-1} \sigma^{-4}_e \Lambda_\infty \Gamma_{\infty, \infty} \Lambda_\infty' (\Lambda_\infty \Lambda_\infty')^{-1}
\]
where \(\sigma_e^2 \) is the variance of the univariate process \(e_t \). Using the fact that

\[
\frac{\partial e_t(\theta_0)}{\partial \theta} = \sum_{i \geq 1} \lambda_i e_{t-i}(\theta_0),
\]

we also have

\[
\Sigma_{\gamma_m, \theta_n}' = -\sigma_e^{-2} (\Lambda_{\infty} \Lambda_{\infty}')^{-1} \Lambda_{\infty} \Gamma_{\infty, m},
\]

which are the expressions given in Theorem 1 of FRZ.

5. Asymptotic distribution of residual empirical autocovariances and autocorrelations

Denoting the diagonal matrices by

\[
S_e = \text{Diag} (\sigma_e(1), \ldots, \sigma_e(d)) \quad \text{and} \quad \hat{S}_e = \text{Diag} (\hat{\sigma}_e(1), \ldots, \hat{\sigma}_e(d)),
\]

where \(\sigma^2_e(i) \) is the variance of the \(i \)-th coordinate of \(e_t \) and \(\hat{\sigma}_e(i) \) is its sample estimate \((\text{i.e. } \sigma_e(i) = \sqrt{\hat{\sigma}_e^2(i)} \text{ and } \hat{\sigma}_e(i) = \sqrt{n^{-1} \sum_{t=1}^n \hat{\sigma}_e^2(i)}).\) The theoretical and sample autocovariances at lag \(\ell \) are respectively defined by \(R_e(\ell) = S_e^{-1} \Gamma_e(\ell) S_e^{-1} \) and \(\hat{R}_e(\ell) = \hat{S}_e^{-1} \Gamma_e(\ell) \hat{S}_e^{-1} \), with \(\Gamma_e(\ell) := E e_t e_{t-\ell} = 0 \) for all \(\ell \neq 0 \). Consider the vector of the first \(m \) sample autocovariances

\[
\hat{\rho}_m = \left(\{ \text{vec} \hat{R}_e(1) \}' , \ldots , \{ \text{vec} \hat{R}_e(m) \}' \right)'.
\]

The following Theorem gives the limiting distribution of the residual autocovariances and autocorrelations.

Theorem 5.1. Under the none Assumptions as in Theorem 4.1,

\[
\sqrt{n} \hat{\Gamma}_m \Rightarrow N \left(0, \Sigma_{\Gamma_m} \right) \quad \text{and} \quad \sqrt{n} \hat{\rho}_m \Rightarrow N \left(0, \Sigma_{\hat{\rho}_m} \right)
\]

where

\[
\Sigma_{\Gamma_m} = \Sigma_{\gamma_m} + \Phi_m \Sigma_{\theta_n, \gamma_m} \Phi_m' + \Phi_m \Sigma_{\theta_n, \gamma_m} + \Sigma_{\theta_n, \gamma_m} \Phi_m',
\]

\[
\Sigma_{\hat{\rho}_m} = \left\{ I_m \otimes (S_e \otimes S_e)^{-1} \right\} \Sigma_{\Gamma_m} \left\{ I_m \otimes (S_e \otimes S_e)^{-1} \right\}'
\]

and \(\Phi_m \) is given by (18) in the proof of this Theorem.

Chabot-Hallé and Duchesne (2008) obtained a similar result under a difference martingale assumption on the noises.
\textbf{Remark 5.1.} Considered the univariate case $d = 1$, as in FRZ. We obtain

$$
\Phi_{m} = E \left\{ \begin{pmatrix} e_{t-1} \\ \vdots \\ e_{t-m} \end{pmatrix} \otimes \frac{\partial e_{t}^{i}(\theta_{0})}{\partial \theta} \right\} = \sum_{i \geq 1} E \left\{ \begin{pmatrix} e_{t-1} \\ \vdots \\ e_{t-m} \end{pmatrix} \begin{pmatrix} \lambda_{i} \\ \vdots \\ \lambda_{i} \end{pmatrix} \right\} = \sigma_{e}^{2} \Lambda_{m}^{\prime}.
$$

Using this notation and in view of Remark 4.1, Theorem 5.1 gives

$$
\Sigma_{\Gamma_{m}} = \Gamma_{m,m} + \Lambda_{m}^{\prime} \left(\Lambda_{\infty} \Lambda_{\infty}^{\prime} \right)^{-1} \Lambda_{\infty} \Gamma_{\infty,\infty} \Lambda_{\infty}^{\prime} \left(\Lambda_{\infty} \Lambda_{\infty}^{\prime} \right)^{-1} \Lambda_{m} - \Lambda_{m}^{\prime} \left(\Lambda_{\infty} \Lambda_{\infty}^{\prime} \right)^{-1} \Lambda_{\infty} \Gamma_{m,\infty} \Lambda_{\infty}^{\prime} \left(\Lambda_{\infty} \Lambda_{\infty}^{\prime} \right)^{-1} \Lambda_{m},
$$

and $\Sigma_{\hat{\theta}_{m}} = \sigma_{e}^{-4} \Sigma_{\Gamma_{m}}$. This last is the result given in Theorem 2 of FRZ.

\textbf{Remark 5.2.} In the standard strong VARMA case, \textit{i.e.} when A4 is replaced by the assumption that (ϵ_{t}) is an iid sequence, we have $\Sigma_{\gamma_{m}} = I_{m} \otimes \Sigma_{e_{0}} \otimes \Sigma_{e_{0}}$, $\Sigma_{\hat{\theta}_{n}} = 2J^{-1}$ (because $I = 2J$) and

$$
\Sigma_{\hat{\theta}_{n},\gamma_{m}} = -2E \left\{ \begin{pmatrix} e_{t-1} \\ \vdots \\ e_{t-m} \end{pmatrix} \otimes \begin{pmatrix} \epsilon_{t}^{i} \Sigma_{e_{0}}^{-1} \frac{\partial e_{t}^{i}(\theta_{0})}{\partial \theta^{j}} \end{pmatrix} J^{-1} \right\} = -E \left\{ \begin{pmatrix} e_{t-1} \\ \vdots \\ e_{t-m} \end{pmatrix} \otimes \frac{\partial e_{t}^{i}(\theta_{0})}{\partial \theta^{j}} \right\} (2J^{-1}) = -\Phi_{m} \Sigma_{\hat{\theta}_{n}}.
$$

Thus $\Sigma_{\Gamma_{m}} = I_{m} \otimes \Sigma_{e_{0}} \otimes \Sigma_{e_{0}} - \Phi_{m} \Sigma_{\hat{\theta}_{n}} \Phi_{m}^{\prime}$, that the result obtained by Hosking (1981b), Chabot-Hallé and Duchesne (2008).

6. \textbf{Limiting distribution of the portmanteau statistics}

Box and Pierce (1970) (BP hereafter) derived a goodness-of-fit test, the portmanteau test, for univariate strong ARMA models. Ljung and Box (1978) (LB hereafter) proposed a modified portmanteau test which is nowadays one of the most popular diagnostic checking tools in ARMA modeling of time series. The multivariate version of the BP portmanteau statistic
was introduced by Chitturi (1974). Hosking (1981a) gave several equivalent forms of this statistic. Basic forms are

\[
Q_m = n \sum_{h=1}^{m} \text{Tr} \left(\hat{\Gamma}_e(h) \hat{\Gamma}_e^{-1}(0) \hat{\Gamma}_e(h) \hat{\Gamma}_e^{-1}(0) \right)
\]

\[
= n \sum_{h=1}^{m} \text{vec} \left(\hat{\Gamma}_e(h) \right)' \left(\hat{\Gamma}_e^{-1}(0) \otimes I_d \right) \text{vec} \left(\hat{\Gamma}_e^{-1}(0) \hat{\Gamma}_e(h) \right)
\]

\[
= n \sum_{h=1}^{m} \text{vec} \left(\hat{\Gamma}_e(h) \right)' \left(\hat{\Gamma}_e^{-1}(0) \otimes \hat{\Gamma}_e^{-1}(0) \right) \text{vec} \left(\hat{\Gamma}_e(h) \right)
\]

\[
= n \sum_{h=1}^{m} \text{vec} \left(\hat{\Gamma}_e(h) \right)' \left(\hat{\Gamma}_e^{-1}(0) \otimes \hat{\Gamma}_e^{-1}(0) \right) \dot{\text{vec}} \left(\hat{\Gamma}_e(h) \right)
\]

\[
= n \hat{\Gamma}'_m \left(I_m \otimes \left\{ \hat{\Gamma}_e^{-1}(0) \otimes \hat{\Gamma}_e^{-1}(0) \right\} \right) \dot{\hat{\Gamma}}_m
\]

\[
= n \hat{\rho}'_m \left(I_m \otimes \left\{ \hat{\Gamma}_e(0) \hat{\Gamma}_e^{-1}(0) \otimes \hat{\Gamma}_e(0) \hat{\Gamma}_e^{-1}(0) \right\} \otimes \left\{ \hat{\Gamma}_e(0) \hat{\Gamma}_e^{-1}(0) \otimes \hat{\Gamma}_e(0) \hat{\Gamma}_e^{-1}(0) \right\} \right) \dot{\hat{\rho}}_m
\]

Where the equalities is obtained from the elementary identities \(\text{vec}(AB) = (I \otimes A) \text{vec} B \), \((A \otimes B)(C \otimes D) = AC \otimes BD \) and \(\text{Tr}(ABC) = \text{vec}(A')' (C' \otimes I) \text{vec} B \). As for the univariate LB portmanteau statistic, Hosking (1980) defined the modified portmanteau statistic

\[
\hat{Q}_m = n^2 \sum_{h=1}^{m} (n - h)^{-1} \text{Tr} \left(\hat{\Gamma}_e(h) \hat{\Gamma}_e^{-1}(0) \hat{\Gamma}_e(h) \hat{\Gamma}_e^{-1}(0) \right)
\]

These portmanteau statistics are generally used to test the null hypothesis

\[H_0 : \text{ (} X_t \text{) satisfies a VARMA}(p,q) \text{ representation} \]

against the alternative

\[H_1 : \text{ (} X_t \text{) does not admit a VARMA representation or admits a VARMA}(P,Q) \text{ representation with } P > p \text{ or } Q > q. \]

These portmanteau tests are very useful tools for checking the overall significance of the residual autocorrelations. Under the assumption that the data generating process (DGP) follows a strong VARMA\((p,q)\) model, the
asymptotic distribution of the statistics Q_m and \tilde{Q}_m is generally approximated by the $\chi^2_{d^2m-k_0}$ distribution ($d^2m > k_0$). When the innovations are gaussian, Hosking (1980) found that the finite-sample distribution of \tilde{Q}_m is more nearly to $\chi^2_{d^2(m-(p+q))}$ than that of Q_m. From Theorem 5.1 we deduce the following result, in the case of weak VARMA(p, q) models, which gives the exact asymptotic distribution of the standard portmanteau statistics Q_m. We will see that the distribution may be very different from the $\chi^2_{d^2m-k_0}$ in the case of strong VARMA(p, q) models.

Theorem 6.1. Under Assumptions in Theorem 5.1, the statistics Q_m and \tilde{Q}_m converge in distribution, as $n \to \infty$, to

$$Z_m(\xi_m) = \sum_{i=1}^{d^2m} \xi_i d^2m Z_i^2$$

where $\xi_m = (\xi_{1,d^2m}, \ldots, \xi_{d^2m,d^2m})'$ is the vector of the eigenvalues of the matrix

$$\Omega_m = \left(I_m \otimes \Sigma_e^{-1/2} \otimes \Sigma_e^{-1/2} \right) \Sigma_{I_m} \left(I_m \otimes \Sigma_e^{-1/2} \otimes \Sigma_e^{-1/2} \right),$$

and Z_1, \ldots, Z_{d^2m} are independent $N(0, 1)$ variables.

Françq and Raisi (2007) considered the sub-class of a weak vector autoregressive (VAR). They obtained a similar result and showed that the $\chi^2_{d^2(m-p)}$ approximation is no longer valid in the weak VAR(p) cases. Considering the univariate ARMA case, $d = 1$, we retrieve exactly the result given in Theorem 3 of FRZ.

It is seen in Theorem 6.1, that the asymptotic distribution of the BP and LB portmanteau tests depends on the nuisance parameters involving in Σ_e, the matrix Φ_m and the elements of the matrix Ξ. We need a consistent estimator of the above unknown matrices. The matrix Σ_e can be consistently estimated by its sample estimate $\hat{\Sigma}_e = \hat{\Gamma}_e(0)$. The matrix Φ_m can be easily estimated by its empirical counterpart

$$\hat{\Phi}_m = \frac{1}{n} \sum_{t=1}^{n} \left\{ (\hat{e}_{t-1}', \ldots, \hat{e}_{t-m}')' \otimes \frac{\partial e_t(\theta_0)}{\partial \theta} \right\}_{\theta_0 = \hat{\theta}_n}.$$

In the econometric literature the nonparametric kernel estimator, also called heteroskedastic autocorrelation consistent (HAC) estimator (see Newey and West, 1987, or Andrews, 1991), is widely used to estimate covariance matrices.
of the form Ξ. Interpreting $(2\pi)^{-1}\Xi$ as the spectral density of the stationary process (γ_t) evaluated at frequency 0 (see Brockwell and Davis, 1991, p. 459), an alternative method consists in using a parametric AR estimate of the spectral density of $\gamma_t = (\gamma_{t+1}, \gamma_{t+2})'$, where $\gamma_{t+1} = (\epsilon_{t+1}, \ldots, \epsilon_{t+m})'$ and $\gamma_{t+2} = -2J^{-1}(\partial\epsilon_t'(\theta_0)/\partial\theta)\Sigma^{-1}\epsilon_t(\theta_0)$. This approach, which has been studied by Berk (1974) (see also den Hann and Levin, 1997), rests on the expression

$$\Xi = \Phi^{-1}(1)\Sigma_u \Phi^{-1}(1)$$

when (γ_t) satisfies an AR(\infty) representation of the form

$$\Phi(L)\gamma_t := \gamma_t + \sum_{i=1}^{\infty} \Phi_i \gamma_{t-i} = u_t,$$

where u_t is a weak white noise with variance matrix Σ_u. Since γ_t is not observable, let $\hat{\gamma}_t$ be the vector obtained by replacing θ_0 by $\hat{\theta}_n$ in γ_t. Let $\Phi_r(z) = I_{k_0+d^2m} + \sum_{i=1}^{r-1} \hat{\Phi}_{r,i}z^i$, where $\hat{\Phi}_{r,1}, \ldots, \hat{\Phi}_{r,r}$ denote the coefficients of the LS regression of $\hat{\gamma}_t$ on $\hat{\gamma}_{t-1}, \ldots, \hat{\gamma}_{t-r}$. Let $\hat{u}_{r,t}$ be the residuals of this regression, and let $\hat{\Sigma}_u$ be the empirical variance of $\hat{u}_{r,1}, \ldots, \hat{u}_{r,n}$.

We are now able to state the following Theorem, which is an extension of a result given in FRZ.

Theorem 6.2. In addition to the assumptions of Theorem 6.1, assume that the process (γ_t) admits an AR(\infty) representation (7) in which the roots of $\det \Phi(z) = 0$ are outside the unit disk, $\|\Phi_i\| = o(i^{-2})$, and $\Sigma_u = \text{Var}(u_t)$ is non-singular. Moreover we assume that $E\|\epsilon_t\|^{8+4\nu} < \infty$ and $\sum_{k=0}^{\infty} \{\alpha_{X_r}(k)\nu/(2+\nu) < \infty$ for some $\nu > 0$, where $\{\alpha_{X_r}(k)\}$ denotes the sequence of the strong mixing coefficients of the process $(X_{1t}', \epsilon_{1t}')'$. Then, the spectral estimator of Ξ

$$\hat{\Xi}^{SP} := \hat{\Phi}_r^{-1}(1)\hat{\Sigma}_u \hat{\Phi}_r^{-1}(1) \to \Xi$$

in probability when $r = r(n) \to \infty$ and $r^2/n \to 0$ as $n \to \infty$.

Let $\hat{\Omega}_m$ be the matrix obtained by replacing Ξ by $\hat{\Xi}$ and Σ_u by $\hat{\Sigma}_u$ in Ω_m. Denote by $\hat{\xi}_m = (\hat{\xi}_{1,m}, \ldots, \hat{\xi}_{d^2m,d^2m})'$ the vector of the eigenvalues of $\hat{\Omega}_m$. At the asymptotic level α, the LB test (resp. the BP test) consists in rejecting the adequacy of the weak VARMA(p,q) model when

$$\tilde{Q}_m > S_m(1-\alpha) \quad \text{(resp. } Q_m > S_m(1-\alpha))$$

where $S_m(1-\alpha)$ is such that $P\left\{Z_m(\hat{\xi}_m) > S_m(1-\alpha)\right\} = \alpha$.

14
7. Numerical illustrations

In this section, we present the models we simulate and give the steps to implement the modified version of the portmanteau test. By means of Monte Carlo experiments, we investigate the finite sample properties of the test introduced in this paper.

7.1. Simulating models

To generate the strong and the weak VARMA models, we consider the following bivariate VARMA(1,1) model in echelon form

\[
\begin{pmatrix}
X_{1,t} \\
X_{2,t}
\end{pmatrix} = \begin{pmatrix}
0 & 0 \\
0 & a_1(2,2)
\end{pmatrix} \begin{pmatrix}
X_{1,t-1} \\
X_{2,t-1}
\end{pmatrix} + \begin{pmatrix}
\epsilon_{1,t} \\
\epsilon_{2,t}
\end{pmatrix} - \begin{pmatrix}
0 & 0 \\
b_1(2,1) & b_1(2,2)
\end{pmatrix} \begin{pmatrix}
\epsilon_{1,t-1} \\
\epsilon_{2,t-1}
\end{pmatrix},
\]

where \((a_1(2,2), b_1(2,1), b_1(2,2)) = (0.950, -0.313, 0.250)\) and \(\epsilon_t = (\epsilon_{1,t}, \epsilon_{2,t})'\) follows a strong or weak white noise.

7.2. Implementation of the goodness-of-fit portmanteau tests

Let \(X_1, \ldots, X_n\), be observations of a \(d\)-multivariate process. For testing the adequacy of a weak VARMA\((p,q)\) model, we implement the modified version of the portmanteau test, using the following steps:

1. Compute the estimates \(\hat{A}_1, \ldots, \hat{A}_p, \hat{B}_1, \ldots, \hat{B}_q\) by QMLE.
2. Compute the QMLE residuals \(\hat{\epsilon}_t = \hat{\epsilon}_t(\hat{\theta}_n)\) when \(p > 0\) or \(q > 0\), and let \(\hat{\epsilon}_t = e_t = X_t\) when \(p = q = 0\). When \(p + q \neq 0\), we have \(\hat{\epsilon}_t = 0\) for \(t \leq 0\) and \(t > n\) and

\[
\hat{\epsilon}_t = X_t - \sum_{i=1}^p A_0^{-1}(\hat{\theta}_n)A_i(\hat{\theta}_n)\hat{X}_{t-i} + \sum_{i=1}^q A_0^{-1}(\hat{\theta}_n)B_i(\hat{\theta}_n)B_0^{-1}(\hat{\theta}_n)A_0(\hat{\theta}_n)\hat{\epsilon}_{t-i},
\]

for \(t = 1, \ldots, n\), with \(\hat{X}_t = 0\) for \(t \leq 0\) and \(\hat{X}_t = X_t\) for \(t \geq 1\).
3. Compute the residual autocovariances \(\hat{\Gamma}_e(0) = \hat{\Sigma}_e\) and \(\hat{\Gamma}_e(h)\) for \(h = 1, \ldots, m\) and \(\hat{\Gamma}_m = \left\{\hat{\Gamma}_e(1)\right\}', \ldots, \left\{\hat{\Gamma}_e(m)\right\}'\).
4. Compute the matrix \(\hat{J} = 2n^{-1}\sum_{t=1}^n (\partial \hat{\epsilon}_t / \partial \theta) \Sigma^{-1}_e (\partial \hat{\epsilon}_t / \partial \theta)'\).
5. Compute $\hat{\Upsilon}_t = \left(\hat{\Upsilon}'_{1,t}, \hat{\Upsilon}'_{2,t}\right)'$, where $\hat{\Upsilon}_{1,t} = (\frac{\partial e_t^{t-1}}{\partial \theta} \Omega^{-1} e_t)$ and $\hat{\Upsilon}_{2,t} = -2 J^{-1} \left(\frac{\partial e_t^{t-1}}{\partial \theta} \Omega^{-1} e_t\right)$.

6. Fit the VAR(r) model

$$\hat{\Phi}_r(L) \hat{\Upsilon}_t := \left(I_{d \times m} + \sum_{i=1}^{r} \hat{\Phi}_{r,i}(L) \right) \hat{\Upsilon}_t = \hat{u}_{r,t}. $$

The VAR order r can be fixed in a strong VARMA case or selected by AIC/BIC information criteria in a weak VARMA case.

7. Use the spectral estimator

$$\hat{\Xi}^{SP} := \hat{\Phi}_r^{-1}(1) \hat{\Sigma}_u, \hat{\Phi}_r^{-1}(1) = \left(\frac{\Sigma_{\theta n}}{\Sigma_{\theta m, \gamma m}}, \frac{\Sigma_{\theta n}}{\Sigma_{\theta m, \gamma m}} \right), \hat{\Sigma}_u = \frac{1}{n} \sum_{t=1}^{n} \hat{u}_{r,t} \hat{u}_{r,t}' $$

defined in Theorem 6.2.

8. Define the estimator

$$\hat{\Phi}_m = \frac{1}{n} \sum_{t=1}^{n} \left\{ (\epsilon_{t-1}^{t-1}, \ldots, \epsilon_{t-m}^{t-1})' \otimes \frac{\partial e_t(\theta_0)}{\partial \theta} \right\}_{\theta_0=\theta_n}. $$

9. Define the estimators

$$\hat{\Sigma}_e = \hat{\Sigma}_m + \hat{\Phi}_m \hat{\Sigma}_0 \hat{\Phi}_m' + \hat{\Phi}_m \hat{\Sigma}_0 \gamma_m \hat{\Phi}_m + \hat{\Sigma}_0 \gamma_m \hat{\Phi}_m$$

$$\hat{\Sigma}_e = \left\{ I_m \otimes \left(\hat{\Sigma}_e^{-1} \otimes \hat{\Sigma}_e^{-1} \right) \right\} \hat{\Sigma}_e = \left\{ I_m \otimes \left(\hat{\Sigma}_e^{-1} \otimes \hat{\Sigma}_e^{-1} \right) \right\}. $$

10. Compute the eigenvalues $\hat{\gamma}_m = (\hat{\gamma}_1, \ldots, \hat{\gamma}_m)'$ of the matrix

$$\hat{\Omega}_m = \left(I_m \otimes \hat{\Sigma}_e^{-1/2} \otimes \hat{\Sigma}_e^{-1/2} \right) \hat{\Sigma}_e \left(I_m \otimes \hat{\Sigma}_e^{-1/2} \otimes \hat{\Sigma}_e^{-1/2} \right). $$

11. Compute the portmanteau statistics

$$Q_m = n \hat{\rho}_m \left(I_m \otimes \left\{ \hat{R}_e^{-1}(0) \otimes \hat{R}_e^{-1}(0) \right\} \right) \hat{\rho}_m $$

and

$$\hat{Q}_m = n^2 \sum_{h=1}^{m} \frac{1}{n-h} \text{Tr} \left(\hat{\Gamma}_e(h) \hat{R}_e^{-1}(0) \hat{\Gamma}_e(h) \hat{R}_e^{-1}(0) \right). $$
12. Evaluate the p-values

\[P \left\{ Z_m(\hat{\xi}_m) > Q_m \right\} \quad \text{and} \quad P \left\{ Z_m(\hat{\xi}_m) > \tilde{Q}_m \right\}, \quad Z_m(\hat{\xi}_m) = \sum_{i=1}^{d_m} \hat{\xi}_{i,d_m} Z_i^2, \]

using the Imhof algorithm (1961). The BP test (resp. the LB test) rejects the adequacy of the weak VARMA(p, q) model when the first (resp. the second) p-value is less than the asymptotic level α.

7.3. Empirical size

In this paper, we only present the results of the modified and standard versions of the LB test. The results concerning the BP test are not presented here, because they are very close to those of the LB test. The numerical illustrations of this section are made with the softwares R (see http://cran.r-project.org/) and FORTRAN (to compute the p-values using the Imhof algorithm, 1961).

For the nominal level $\alpha = 5\%$, the empirical size over the $N = 1,000$ independent replications should vary between the significant limits 3.6% and 6.4% with probability 95%. When the relative rejection frequencies are outside the significant limits, they are displayed in bold type in Tables 1, 2, 3 and 4.

7.3.1. Strong VARMA model case

We first consider the strong VARMA case. To generate this model, we assume that in (8) the innovation process (ϵ_t) is defined by

\[
\begin{pmatrix}
\epsilon_{1,t} \\
\epsilon_{2,t}
\end{pmatrix} \sim \text{IID } \mathcal{N}(0, I_2).
\]

(9)

We simulated $N = 1,000$ independent trajectories of size $n = 100$, $n = 500$ and $n = 2,000$ of Model (8) with the strong gaussian noise (9). For each of these N replications we estimated the coefficients $(a_1(2, 2), b_1(2, 1), b_1(2, 2))$, using the Gaussian maximum likelihood estimation method, and we applied portmanteau tests to the residuals for different values of m, where m is the number of autocorrelations used in the portmanteau test statistic. For the standard LB test, the model is therefore rejected when the statistic \tilde{Q}_m is greater than $\chi^2_{(4m-3)}(0.95)$. This corresponds to a nominal asymptotic level $\alpha = 5\%$ in the standard case. We know that the asymptotic level of
the standard LB test is indeed $\alpha = 5\%$ when $(a_1(2, 2), b_1(2, 1), b_1(2, 2)) = (0, 0, 0)$. Note however that, even when the noise is strong, the asymptotic level is not exactly $\alpha = 5\%$ when $(a_1(2, 2), b_1(2, 1), b_1(2, 2)) \neq (0, 0, 0)$.

For the modified LB test, the model is rejected when the statistic \tilde{Q}_m is greater than $S_m(0.95)$ i.e. when the p-value ($P\{Z_m(\xi_m) > \tilde{Q}_m\}$) is less than the asymptotic level $\alpha = 0.05$. Let A and B be the (2×2)-matrices with non zero elements $a_1(2, 2)$, $b_1(2, 1)$ and $b_1(2, 2)$. When the roots of $\det(I_2 - Az) \det(I_2 - Bz) = 0$ are near the unit disk, the asymptotic distribution of \tilde{Q}_m is likely to be far from its $\chi^2_{(4m-3)}$ approximation. Table 1 displays the relative rejection frequencies of the null hypothesis H_0 that the DGP follows a VARMA(1, 1), over the $N = 1,000$ independent replications. As expected the observed relative rejection frequency of the standard LB test is very far from the nominal $\alpha = 5\%$ when the number m of autocorrelations used in the LB statistic is small. This is in accordance with the results in the literature on the standard VARMA models. In particular, Hosking (1980) showed that the statistic \tilde{Q}_m has approximately the chi-squared distribution $\chi^2_{(m-(p+q))}$ without any identifiability constraint. The theory that the $\chi^2_{(4m-3)}$ approximation is better for larger m is confirmed. We draw the conclusion that, even in the strong VARMA case, the modified version is preferable to the standard one, when the number m of autocorrelations used is small.

Table 1: Empirical size (in %) of the standard and modified versions of the LB test in the case of the strong VARMA(1, 1) model (8)-(9).

<table>
<thead>
<tr>
<th></th>
<th>$m = 1$</th>
<th>$m = 2$</th>
<th>$m = 3$</th>
<th>$m = 4$</th>
<th>$m = 6$</th>
<th>$m = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length n</td>
<td>100</td>
<td>500</td>
<td>2,000</td>
<td>100</td>
<td>500</td>
<td>2,000</td>
</tr>
<tr>
<td>modified</td>
<td>5.5</td>
<td>5.6</td>
<td>4.0</td>
<td>3.7</td>
<td>4.4</td>
<td>4.8</td>
</tr>
<tr>
<td>LB</td>
<td>16.2</td>
<td>16.3</td>
<td>15.5</td>
<td>8.2</td>
<td>8.0</td>
<td>7.7</td>
</tr>
<tr>
<td>standard</td>
<td>5.5</td>
<td>6.0</td>
<td>6.2</td>
<td>5.1</td>
<td>5.9</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>3.9</td>
<td>4.4</td>
<td>2.3</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>6.8</td>
<td>4.2</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.3.2. Weak VARMA model case

The GARCH(p, q) models constitute important examples of weak white noises in the univariate case. These models have numerous extensions to the
multivariate framework (see Bauwens, Laurent and Rombouts (2006) for a review). Jeantheau (1998) has proposed a simple extension of the multivariate GARCH\((p, q)\) with conditional constant correlation. In this model, the process \((\epsilon_t)\) verifies the following relation:
\[
\epsilon_t = H_t \eta_t \quad \text{where} \quad \{\eta_t = (\eta_{1,t}, \ldots, \eta_{d,t})\}_t
\]
is an iid centered process with \(\text{Var} \{\eta_{i,t}\} = 1\) and \(H_t\) is a diagonal matrix whose elements \(h_{ii,t}\) verify
\[
\begin{pmatrix}
 h_{11,t}^2 \\
 \vdots \\
 h_{dd,t}^2
\end{pmatrix} =
\begin{pmatrix}
 c_1 \\
 \vdots \\
 c_d
\end{pmatrix} + \sum_{i=1}^{q} A_i \begin{pmatrix}
 \epsilon_{1,t-i}^2 \\
 \vdots \\
 \epsilon_{d,t-i}^2
\end{pmatrix} + \sum_{j=1}^{p} B_j \begin{pmatrix}
 h_{11,t-j}^2 \\
 \vdots \\
 h_{dd,t-j}^2
\end{pmatrix}.
\]
The elements of the matrices \(A_i\) and \(B_j\), as well as the vector \(c_i\), are supposed to be positive. In addition, suppose that the stationarity conditions hold. For simplicity, we consider the following bivariate ARCH(1) (i.e. a bivariate GARCH\((p, q)\) model with \(p = 0, q = 1\)) model
\[
\begin{pmatrix}
 \epsilon_{1,t} \\
 \epsilon_{2,t}
\end{pmatrix} =
\begin{pmatrix}
 h_{11,t}^2 & 0 \\
 0 & h_{22,t}^2
\end{pmatrix} \begin{pmatrix}
 \eta_{1,t} \\
 \eta_{2,t}
\end{pmatrix}
\]
(10)
where
\[
\begin{pmatrix}
 h_{11,t}^2 \\
 h_{22,t}^2
\end{pmatrix} =
\begin{pmatrix}
 c_1 \\
 c_2
\end{pmatrix} + \begin{pmatrix}
 a_{11} & 0 \\
 a_{21} & a_{22}
\end{pmatrix} \begin{pmatrix}
 \epsilon_{1,t-1}^2 \\
 \epsilon_{2,t-1}^2
\end{pmatrix}.
\]
We now repeat the same experiment on different weak VARMA\((1, 1)\) models. For the estimation of the coefficients, we used the quasi-maximum likelihood estimation method and we applied portmanteau tests to the residuals for different values of \(m\). We first assume that in (8) the innovation process \((\epsilon_t)\) is an ARCH(1) model defined in equation (10) with \(c_1 = 0.3, c_2 = 0.2, a_{11} = 0.45, a_{21} = 0.4\) and \(a_{22} = 0.25\). In two other sets of experiments, we assume that in (8) the innovation process \((\epsilon_t)\) is defined by
\[
\begin{pmatrix}
 \epsilon_{1,t} \\
 \epsilon_{2,t}
\end{pmatrix} =
\begin{pmatrix}
 \eta_{1,t}\eta_{2,t-1}\eta_{1,t-2} \\
 \eta_{2,t}\eta_{1,t-1}\eta_{2,t-2}
\end{pmatrix}, \quad \text{with} \quad \begin{pmatrix}
 \eta_{1,t} \\
 \eta_{2,t}
\end{pmatrix} \sim \text{IID} N(0, I_2),
\]
(11)
and then by
\[
\begin{pmatrix}
 \epsilon_{1,t} \\
 \epsilon_{2,t}
\end{pmatrix} =
\begin{pmatrix}
 \eta_{1,t}(\lvert \eta_{1,t-1} \rvert + 1)^{-1} \\
 \eta_{2,t}(\lvert \eta_{2,t-1} \rvert + 1)^{-1}
\end{pmatrix}, \quad \text{with} \quad \begin{pmatrix}
 \eta_{1,t} \\
 \eta_{2,t}
\end{pmatrix} \sim \text{IID} N(0, I_2).
\]
(12)
These noises are direct extensions of the weak noises defined by Romano and Thombs (1996) in the univariate case.

As expected, Tables 2 and 3 show that the standard LB test poorly performs to assess the adequacy of these weak VARMA(1, 1) models. In view of the observed relative rejection frequency, the standard LB test rejects very often the true VARMA(1, 1) and all the relative rejection frequencies are definitely outside the significant limits. By contrast, the error of first kind is well controlled by the modified version of the LB test. We draw the conclusion that, for these particular weak VARMA models, the modified version is clearly preferable to the standard one. In contrast, Table 4 shows that the error of first kind is well controlled by all the tests in this particular weak VARMA model, except for the standard LB test when \(m = 1 \). The modified version is also slightly preferable to the standard one.

Table 2: Empirical size (in \%) of the standard and modified versions of the LB test in the case of the weak VARMA(1, 1) model (8)-(10).

<table>
<thead>
<tr>
<th>Length (n)</th>
<th>(m = 1)</th>
<th>(m = 2)</th>
<th>(m = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>modified LB</td>
<td>6.9</td>
<td>8.5</td>
<td>7.4</td>
</tr>
<tr>
<td>standard LB</td>
<td>38.5</td>
<td>39.7</td>
<td>43.1</td>
</tr>
</tbody>
</table>

7.4. Empirical power

In this part, we simulated \(N = 1,000 \) independent trajectories of size \(n = 500, n = 1,000 \) and \(n = 5,000 \) of a weak VARMA(2, 2) defined by

\[
\begin{pmatrix}
X_{1,t} \\
X_{2,t}
\end{pmatrix} = \begin{pmatrix}
0 & 0 \\
0 & 0.225
\end{pmatrix} \begin{pmatrix}
X_{1,t-1} \\
X_{2,t-1}
\end{pmatrix} + \begin{pmatrix}
0 & 0 \\
0 & 0.100
\end{pmatrix} \begin{pmatrix}
X_{1,t-2} \\
X_{2,t-2}
\end{pmatrix} + \begin{pmatrix}
\epsilon_{1,t} \\
\epsilon_{2,t}
\end{pmatrix} - \begin{pmatrix}
0 & 0 \\
-0.313 & 0.250
\end{pmatrix} \begin{pmatrix}
\epsilon_{1,t-1} \\
\epsilon_{2,t-1}
\end{pmatrix} - \begin{pmatrix}
0 & 0 \\
-0.140 & -0.160
\end{pmatrix} \begin{pmatrix}
\epsilon_{1,t-2} \\
\epsilon_{2,t-2}
\end{pmatrix},
\]

(13)
where the innovation process \((\epsilon_t)\) is given by (11).

For each of these \(N = 1,000\) replications we fitted a VARMA(1, 1) model and perform standard and modified LB test based on \(m = 1, \ldots, 10\) residual autocorrelations. The adequacy of the VARMA(1, 1) model is rejected when the \(p\)-value is less than 5%. For this particular weak VARMA model, we have seen that the actual level of the standard version is generally much greater than the 5% nominal level (see Table 3). As in Hong (1996), we will use the empirical critical values obtained under a weak VARMA(1, 1) model (8)-(11) based on \(N = 1,000\) replications to compare the powers of the two tests on an equal basis. Table 5 displays the relative rejection frequencies of over the \(N = 1,000\) independent replications. In this example, the standard and modified versions of the LB test have very similar powers. Note that, the empirical critical values strongly depend on the type of weak VARMA which is generated under the null hypothesis. Therefore, this method consisting in adjusting the critical values only works for very specific hypotheses.

8. Conclusion

In this paper we derive the asymptotic distribution of residual empirical autocovariances and autocorrelations under weak assumptions on the noise. We establish the asymptotic distribution of the LB (or BP) portmanteau test statistics for structural VARMA models with nonindependent innovations. This asymptotic distribution is quite different from the usual
Table 4: Empirical size (in %) of the standard and modified versions of the LB test in the case of the weak VARMA (1, 1) model (8)-(12).

<table>
<thead>
<tr>
<th>Length n</th>
<th>$m = 1$</th>
<th>$m = 2$</th>
<th>$m = 3$</th>
<th>$m = 4$</th>
<th>$m = 6$</th>
<th>$m = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>modified LB</td>
<td>5.0 5.1 4.3 5.2 5.0 5.0 4.3 5.6 5.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>standard LB</td>
<td>7.7 8.1 6.4 6.6 5.6 6.2 5.3 6.1 5.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length n</td>
<td>$m = 4$</td>
<td>$m = 6$</td>
<td>$m = 10$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>modified LB</td>
<td>4.2 5.6 5.2 3.9 4.4 4.8 3.8 4.1 4.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>standard LB</td>
<td>4.8 6.3 5.5 4.6 4.7 4.9 4.8 4.3 4.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

chi-squared approximation (i.e. $\chi^2_{d^2(m-p-q)}$) used under iid assumptions on the noise. Therefore the modified versions of LB and BP are more difficult to implement because their critical values have to be computed from the data, whereas those of the standard versions are simply given in a χ^2-table.

In Monte Carlo experiments, we demonstrated that the proposed modified portmanteau test statistics have reasonable finite sample performance, at least for the models considered in our study. Under nonindependent errors, it appears that the standard test statistics are generally unreliable, overrejecting severely, while the proposed test statistics offers satisfactory levels in most cases. Even for independent errors, the modified version may be preferable to the standard one, when the number m of autocorrelations is small. Concerning the relative powers of the two versions, we also show that the modified versions of the LB and BP tests have similar powers when the critical values are adjusted. Moreover, the error of first kind is well controlled by the modified versions of the LB and BP tests. We draw the conclusion that the modified versions are preferable to the standard ones for diagnosing multivariate models under nonindependent errors.

22
Table 5: Empirical power (in %) of the standard and modified versions of the LB test in the case of the weak VARMA(2, 2) model (13)-(11), with critical values adjusted to obtain exactly 5% empirical sizes under the null hypothesis of the weak VARMA(1, 1) model (8)-(11).

<table>
<thead>
<tr>
<th>Length n</th>
<th>$m = 1$</th>
<th>$m = 2$</th>
<th>$m = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>modified LB</td>
<td>10.9</td>
<td>96.5</td>
<td>96.8</td>
</tr>
<tr>
<td>standard LB</td>
<td>9.1</td>
<td>99.8</td>
<td>100.0</td>
</tr>
</tbody>
</table>

9. Appendix

Proof of Theorem 4.1. Let $\hat{\ell}_n(\theta, \Sigma_e) = -2n^{-1} \log \hat{L}_n(\theta, \Sigma_e)$. In BMF, it is shown that $\ell_n(\theta, \Sigma_e) = \hat{\ell}_n(\theta, \Sigma_e) + o(1)$ a.s, where

$$
\ell_n(\theta, \Sigma_e) := -\frac{2}{n} \log L_n(\theta, \Sigma_e) = \frac{1}{n} \sum_{i=1}^{n} \{ d \log (2\pi) + \log \det \Sigma_e + e_i(\theta)^{\top} \Sigma_e^{-1} e_i(\theta) \},
$$

and where $(e_i(\theta))$ is given by (4). It is also shown uniformly in $\theta \in \Theta$ that

$$
\frac{\partial \ell_n(\theta, \Sigma_e)}{\partial \theta} = \frac{\partial \hat{\ell}_n(\theta, \Sigma_e)}{\partial \theta} + o(1) \text{ a.s.}
$$

The same equality holds for the second-order derivatives of $\hat{\ell}_n(\theta, \Sigma_e)$. In view of Theorem 1 in BMF and A5, we have almost surely $\hat{\theta}_n \rightarrow \theta_0 \in \Theta$. Thus $\partial \ell_n(\hat{\theta}_n, \Sigma_e)/\partial \theta = 0$ for sufficiently large n, and a standard Taylor expansion of the derivative of $\hat{\ell}_n$ about (θ_0, Σ_{e0}), taken at $(\hat{\theta}_n, \Sigma_e)$, yields

$$
0 = \sqrt{n} \frac{\partial \ell_n(\hat{\theta}_n, \Sigma_e)}{\partial \theta} = \sqrt{n} \frac{\partial \hat{\ell}_n(\theta_0, \Sigma_{e0})}{\partial \theta} + \frac{\partial^2 \ell_n(\theta^*, \Sigma_e^*)}{\partial \theta \partial \theta^*} \sqrt{n} (\hat{\theta}_n - \theta_0)
= \sqrt{n} \frac{\partial \ell_n(\theta_0, \Sigma_{e0})}{\partial \theta} + \frac{\partial^2 \ell_n(\theta_0, \Sigma_{e0})}{\partial \theta \partial \theta^*} \sqrt{n} (\hat{\theta}_n - \theta_0) + o_P(1),
$$

(14)
using arguments given in FZ (proof of Theorem 2), where \(\theta^* \) is between \(\theta_0 \) and \(\hat{\theta}_n \), and \(\Sigma^* \) is between \(\Sigma_{e0} \) and \(\Sigma_e \), with \(\Sigma_e = n^{-1} \sum_{t=1}^n \hat{e}_t(\hat{\theta}_n)\hat{e}_t'(\hat{\theta}_n) \). Thus, by standard arguments, we have from (14):

\[
\sqrt{n} \left(\hat{\theta}_n - \theta_0 \right) = -J^{-1} \frac{\partial \ell_n(\theta_0, \Sigma_{e0})}{\partial \theta} + o_P(1)
\]

where

\[
Y_n = -\frac{1}{n} \sum_{t=1}^{n} \frac{\partial}{\partial \theta} \left\{ \log(2\pi) + \log \det \Sigma_{e0} + e_t'(\theta_0)\Sigma_{e0}^{-1}e_t(\theta_0) \right\}.
\]

(15)

Showing that the initial values are asymptotically negligible, and using well-known results on matrix derivatives (see (5) of Appendix A.13 in Lütkepohl, 2005), we have

\[
Y_n = -\frac{2}{n} \sum_{t=1}^{n} \frac{\partial e_t'(\theta_0)}{\partial \theta} \Sigma_{e0}^{-1}e_t(\theta_0).
\]

Using the elementary relation \(\text{vec}(ABC) = (C' \otimes A) \text{vec}(B) \) (see (4) of Appendix A.12 in Lütkepohl, 2005), we have \(\text{vec}(\gamma(\ell)) = n^{-1} \sum_{t=\ell}^{n+1} e_{\ell-t} \otimes e_t \). It is easily shown that for \(\ell, \ell' \geq 1 \),

\[
\text{Cov}(\sqrt{n} \text{vec}(\gamma(\ell)), \sqrt{n} \text{vec}(\gamma(\ell'))) = \frac{1}{n} \sum_{t=\ell+1}^{n} \sum_{t'=\ell'+1}^{n} E \left\{ e_{t-\ell} \otimes e_t \right\} E \left\{ e_{t'-\ell'} \otimes e_{t'} \right\} \rightarrow \Gamma(\ell, \ell') \quad \text{as} \quad n \rightarrow \infty.
\]

Then, we have

\[
\Sigma_{\gamma m} = \{ \Gamma(\ell, \ell') \}_{1 \leq \ell, \ell' \leq m}
\]

By stationarity of \((e_t) \) and \((Y_t) \), we have

\[
\text{Cov}(\sqrt{n}J^{-1}Y_n, \sqrt{n} \text{vec}(\gamma(\ell)) = -\frac{2}{n} \sum_{t=1}^{n} \sum_{t'=t+1}^{n} J^{-1} \text{Cov} \left(\frac{\partial e_t'(\theta_0)}{\partial \theta} \Sigma_{e0}^{-1}e_t, e_{t-\ell} \otimes e_t \right)
\]

\[
= -\frac{2}{n} \sum_{h=-n+1}^{1} (n-|h|)J^{-1} \text{Cov} \left(\frac{\partial e_t'(\theta_0)}{\partial \theta} \Sigma_{e0}^{-1}e_t, e_{t-h-\ell} \otimes e_{t-h} \right).
\]
By the dominated convergence Theorem, it follows that

\[
\text{Cov}(\sqrt{n}J^{-1}Y_n, \sqrt{n} \text{vec} \gamma(\ell)) \rightarrow - \sum_{h=-\infty}^{+\infty} 2J^{-1} \text{Cov} \left(\frac{\partial \ell'_{t}(\theta)}{\partial \theta} \Sigma_{e_{t+h}} e_{t} \otimes e_{t-h} \right)
\]

\[
= - \sum_{h=-\infty}^{+\infty} 2J^{-1} E \left(\frac{\partial \ell'_{t}(\theta)}{\partial \theta} \Sigma_{e_{t+h}} \{ e_{t-h} \otimes e_{t-h} \} \right).
\]

Then we have

\[
\Sigma'_{\gamma_{m}, \theta_n} = -2J^{-1} \sum_{h=-\infty}^{+\infty} E \left(\frac{\partial \ell'_{t}(\theta)}{\partial \theta} \Sigma_{e_{t+h}} \bigg\{ \begin{pmatrix} e_{t-1-h} \\ \vdots \\ e_{t-m-h} \end{pmatrix} \otimes e_{t-h} \right) \right)^\prime.
\]

Applying the central limit Theorem (CLT) for mixing processes (see Hern-dorf, 1984) we directly obtain

\[
\lim_{n \to \infty} \text{Var}(\sqrt{n}J^{-1}Y_n) = J^{-1} I J^{-1} = \Sigma_{\theta_n}
\]

which gives the asymptotic covariance matrix of Theorem 4.1. It is clear that the existence of these matrices is ensured by the Davydov (1968) inequality. The proof is then complete. \qed

Proof of Theorem 5.1. Recall that

\[
e_{t}(\theta) = X_t - \sum_{i=1}^{\infty} C_i(\theta) X_{t-i} = B_\theta^{-1}(L) A_\theta(L) X_t
\]

where \(A_\theta(L) = I_d - \sum_{i=1}^{p} A_i L^i \) and \(B_\theta(L) = I_d - \sum_{i=1}^{q} B_i L^i \) with \(A_i = A_0^{-1} A_i \) and \(B_i = A_0^{-1} B_i A_0^{-1} A_0 \). For \(\ell = 1, \ldots, p \) and \(\ell' = 1, \ldots, q \), let \(A_\ell = (a_{ij,\ell}) \) and \(B_{\ell'} = (b_{ij,\ell'}) \). We define the matrices \(A_{ij,h}^* \) and \(B_{ij,h}^* \) by

\[
B_\theta^{-1}(z) E_{ij} = \sum_{h=0}^{\infty} A_{ij,h}^* z^h, \quad B_\theta^{-1}(z) E_{ij} B_\theta^{-1}(z) A_\theta(z) = \sum_{h=0}^{\infty} B_{ij,h}^* z^h, \quad |z| \leq 1
\]

for \(h \geq 0 \), where \(E_{ij} = \partial A_\ell / \partial a_{ij,\ell} = \partial B_{\ell'} / \partial b_{ij,\ell'} \) is the \(d \times d \) matrix with 1 at position \((i,j)\) and 0 elsewhere. Take \(A_{ij,h}^* = B_{ij,h}^* = 0 \) when \(h < 0 \). For
any $a_{i,j,\ell}$ and $b_{i,j,\ell'}$, we respectively write the multivariate residual derivatives

\[
\frac{\partial e_t}{\partial a_{i,j,\ell}} = - B_{i,j}^{-1}(L) E_{i,j} X_{t-h,\ell} = - \sum_{h=0}^{\infty} A_{i,j,h}^* X_{t-h,\ell} \tag{16}
\]

and

\[
\frac{\partial e_t}{\partial b_{i,j,\ell'}} = B_{i,j}^{-1}(L) E_{i,j} B_{j,\ell'}^{-1}(L) A_{j,\ell'}(L) X_{t-h,\ell'} = \sum_{h=0}^{\infty} B_{i,j,h}^* X_{t-h,\ell'} \tag{17}
\]

On the other hand, considering $\hat{\Gamma}(h)$ and $\gamma(h)$ as values of the same function at the points $\hat{\theta}_n$ and θ_0, a Taylor expansion about θ_0 gives

\[
\text{vec} \hat{\Gamma}_e(h) = \text{vec} \gamma(h) + \frac{1}{n} \sum_{t=h+1}^{n} \left\{ e_{t-h}(\theta) \otimes \frac{\partial e_t(\theta)}{\partial \theta'} \right\} + \frac{\partial e_{t-h}(\theta)}{\partial \theta'} \otimes e_t(\theta) \right\} \bigg|_{\theta=\theta_0^*} (\hat{\theta}_n - \theta_0) + O_P(1/n)
\]

\[
= \text{vec} \gamma(h) + E \left(e_{t-h}(\theta_0) \otimes \frac{\partial e_t(\theta_0)}{\partial \theta'} \right) (\hat{\theta}_n - \theta_0) + O_P(1/n),
\]

where θ_0^* is between $\hat{\theta}_n$ and θ_0. The last equality follows from the consistency of $\hat{\theta}_n$ and the fact that $(\partial e_{t-h}/\partial \theta')(\theta_0)$ is not correlated with e_t when $h \geq 0$. Then for $h = 1, \ldots, m$,

\[
\hat{\Gamma}_m := \left(\{ \text{vec} \hat{\Gamma}_e(1) \}^', \ldots, \{ \text{vec} \hat{\Gamma}_e(m) \}^' \right)^' = \gamma_m + \Phi_m (\hat{\theta}_n - \theta_0) + O_P(1/n),
\]

where

\[
\Phi_m = E \left\{ \left(\begin{array}{c} e_{t-1} \\ \vdots \\ e_{t-m} \end{array} \right) \otimes \frac{\partial e_t(\theta_0)}{\partial \theta'} \right\} \right. \tag{18}
\]

In Φ_m, one can express $(\partial e_t/\partial \theta')(\theta_0)$ in terms of the multivariate derivatives (16) and (17). From Theorem 4.1, we have obtained the asymptotic joint distribution of γ_m and $\theta_n - \theta_0$, which shows that the asymptotic distribution of $\sqrt{n} \hat{\Gamma}_m$, is normal, with mean zero and covariance matrix

\[
\lim_{n \to \infty} \text{Var}(\sqrt{n} \hat{\Gamma}_m) = \lim_{n \to \infty} \text{Var}(\sqrt{n} \gamma_m) + \Phi_m \lim_{n \to \infty} \text{Var}(\sqrt{n}(\hat{\theta}_n - \theta_0)) \Phi_m'
\]

\[
+ \Phi_m \lim_{n \to \infty} \text{Cov}(\sqrt{n}(\hat{\theta}_n - \theta_0), \sqrt{n} \gamma_m)
\]

\[
+ \lim_{n \to \infty} \text{Cov}(\sqrt{n} \gamma_m, \sqrt{n}(\hat{\theta}_n - \theta_0)) \Phi_m'
\]

\[
= \Sigma_\gamma + \Phi_m \Sigma_{\hat{\theta}_n} \Phi_m' + \Phi_m \Sigma_{\hat{\theta}_n, \gamma_m} + \Sigma_{\hat{\theta}_n, \gamma_m} \Phi_m'.
\]
From a Taylor expansion about θ_0 of $\text{vec} \hat{\Gamma}_e(0)$ we have, $\text{vec} \hat{\Gamma}_e(0) = \text{vec} \gamma(0) + O_P(n^{-1/2})$. Moreover, $\sqrt{n}(\text{vec} \gamma(0) - E \text{vec} \gamma(0)) = O_P(1)$ by the CLT for mixing processes. Thus $\sqrt{n}(\hat{S}_e \otimes \hat{S}_e - \hat{S}_e \otimes \hat{S}_e) = O_P(1)$ and, using (5) and the ergodic Theorem, we obtain

$$n \left\{ \text{vec}(\hat{S}_e^{-1} \hat{\Gamma}_e(h) \hat{S}_e^{-1}) - \text{vec}(S_e^{-1} \hat{\Gamma}_e(h) S_e^{-1}) \right\}$$

$$= n \left\{ (\hat{S}^{-1}_e \otimes \hat{S}_e^{-1}) \text{vec} \hat{\Gamma}_e(h) - (S_e^{-1} \otimes S_e^{-1}) \text{vec} \hat{\Gamma}_e(h) \right\}$$

$$= n \left\{ (\hat{S}_e \otimes \hat{S}_e)^{-1} \text{vec} \hat{\Gamma}_e(h) - (S_e \otimes S_e)^{-1} \text{vec} \hat{\Gamma}_e(h) \right\}$$

$$= (\hat{S}_e \otimes \hat{S}_e)^{-1} \sqrt{n}(S_e \otimes S_e - \hat{S}_e \otimes \hat{S}_e)(S_e \otimes S_e)^{-1} \sqrt{n} \text{vec} \hat{\Gamma}_e(h)$$

$$= O_P(1).$$

In the previous equalities, we also use $\text{vec}(ABC) = (C' \otimes A) \text{vec}(B)$ and $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$ when A and B are invertible. It follows that

$$\hat{\rho}_m = \left(\left\{ \text{vec} \hat{R}_e(1) \right\}', \ldots, \left\{ \text{vec} \hat{R}_e(m) \right\}' \right)'$$

$$= \left(\left\{ (\hat{S}_e \otimes \hat{S}_e)^{-1} \text{vec} \hat{\Gamma}_e(1) \right\}', \ldots, \left\{ (\hat{S}_e \otimes \hat{S}_e)^{-1} \text{vec} \hat{\Gamma}_e(m) \right\}' \right)'$$

$$= \left\{ I_m \otimes (\hat{S}_e \otimes \hat{S}_e)^{-1} \right\} \hat{\Gamma}_m = \left\{ I_m \otimes (S_e \otimes S_e)^{-1} \right\} \hat{\Gamma}_m + O_P(n^{-1}).$$

We now obtain (6) from (5). Hence, we have

$$\text{Var}(\sqrt{n}\hat{\rho}_m) = \left\{ I_m \otimes (S_e \otimes S_e)^{-1} \right\} \Sigma_{\hat{\Gamma}_m} \left\{ I_m \otimes (S_e \otimes S_e)^{-1} \right\}.$$

This completes the proof. \(\square\)

Proof of Theorem 6.2. The proof is similar to that given by Francq, Roy and Zakoïan (2003) for Theorem 5.2. \(\square\)

Acknowledgements

The author gratefully acknowledges the quick and careful reading of the manuscript by the two anonymous referees. Their detailed comments led to greatly improve the presentation.
References

