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Abstract: The asymptotic distribution of a vector of autocorrelations of

squared residuals is derived for a wide class of asymmetric GARCH models.

Portmanteau adequacy tests are deduced. These results are obtained under

moment assumptions on the iid process, but fat tails are allowed for the ob-

served process, which is particularly relevant for series of financial returns.

A Monte Carlo experiment and an illustration to financial series are also pre-

sented.

Keywords: ARCH models, Leverage effect, Portmanteau test, Goodness-of-
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1 Introduction

There exists a huge number of extensions to the initial autoregressive conditional het-

eroscedastic (ARCH) model introduced by Engle (1982) (see Bollerslev (2009) for an

impressive list of more than one hundred of these models, and Francq and Zakoı̈an (2010)

for a recent book on the ARCH models). The univariate ARCH-type models are generally

written in the multiplicative form

ǫt = σtηt,

where the sequence (ηt) is independent and identically distributed (iid), ηt being inde-

pendent to the σ-field Ft−1 generated by {ǫu, u < t}, and the so-called volatility σt is

positive and measurable with respect to Ft−1. The different ARCH specifications differ

by the parametrization of the volatility σt = σ (θ0; ǫu, u < t). The GARCH model intro-

duced by Bollerslev (1986) is the leading specification, but it has the important drawback

of being insensible to the sign of the past returns. Black (1976) first noted that the signs

of the returns are relevant because past negative returns tend to have more impact on the

current volatility than past positive returns of the same magnitude. This stylized fact,

known as the leverage effect, is present in many financial series. A large class of models

allowing for the leverage effect is the asymmetric power GARCH model of order (p, q)
(denoted as APARCH(p, q)) of Ding, Granger, and Engle (1993), defined by

{

ǫt = σtηt

σδ
t = ω0 +

∑q
i=1

{

α0i+(ǫ+
t−i)

δ + α0i−(−ǫ−t−i)
δ
}

+
∑p

j=1 β0jσ
δ
t−j

(1)

where δ is a positive constant and, using the notation x+ = max(x, 0), x− = min(x, 0),
the parameter θ0 = (ω0, α01+, . . . , α0q+, α01−, . . . , α0q−, β01, . . . , β0p)

′ satisfies the pos-

itivity constraints θ0 ∈ (0,∞) × [0,∞)2q+p. This formulation contains the standard



GARCH and also two widely used asymmetric models: the GJR model of Glosten, Ja-

ganathan, and Runkle (1993) for δ = 2 and the Threshold ARCH (TARCH) model of

Rabemananjara and Zakoı̈an (1993) for δ = 1.

Since the seminal works of Box and Pierce (1970), Ljung and Box (1978) and McLeod

(1978), portmanteau tests have been important tools in time series analysis, in particular

for testing the adequacy of an estimated ARMA(p, q) model (see Section 9.4 in Brockwell

and Davis (1991), and Li (2004) for an entire book devoted to the portmanteau tests).

Under the null assumption that a model with iid innovations ηt is appropriate for the

data at hand, the autocorrelations of the residuals η̂t should be close to zero, which is

the theoretical value of the autocorrelations of ηt. The standard portmanteau tests thus

consist in rejecting the adequacy of the model for large values of some quadratic form of

the residual autocorrelations.

In the GARCH framework, the portmanteau tests based on residual autocorrelations

are irrelevant because the process η̂t = ǫt/σ̂t is always a white noise (and even a mar-

tingale difference) even when the volatility is misspecified, i.e. when ǫt = σ∗
t ηt with

σ∗
t 6= σt. Li and Mak (1994) and Ling and Li (1997) proposed and studied a portman-

teau test based on the autocovariances of the squared residuals. Their results apply to a

large class of heteroscedastic time series, but they assume conditional normality and finite

fourth-order moments for the observations. These assumptions are often considered as too

strong for the financial series, which typically exhibit heavy tailed marginal distributions.

Berkes, Horváth, and Kokoszka (2003) developed an asymptotic theory of portmanteau

tests allowing for heavy tails in the standard GARCH framework (see also Theorem 8.2

in Francq & Zakoı̈an, 2010).

Our main aim in this paper is to extend the asymptotic theory developed by the above-

mentioned authors to the wide class of the APARCH models (1). To obtain our results

under weak assumptions, we exploit the recent results obtained by Hamadeh and Zakoı̈an

(2011) on the estimation of this class of models.

2 Asymptotic distribution for quadratic forms of autoco-

variances of squared residuals

Let the parameter space Θ ⊂ (0,∞) × [0,∞)2q+p. For all θ= (θ1, . . . , θ2q+p+1)
′=

(ω, α1+, . . . , αq+, α1−, . . . , αq−, β1, . . . , βp)
′, and for given initial values ǫ0, . . . , ǫ1−q, σ̃0 ≥

0, . . . , σ̃1−p ≥ 0, we defined recursively on t ≥ 1

σ̃δ
t (θ) = ω +

q
∑

i=1

{

αi+(ǫ+
t−i)

δ + αi−(−ǫ−t−i)
δ
}

+

p
∑

j=1

βjσ̃
δ
t−j(θ).

For ARCH-type models, the gaussian quasi-maximum likelihood estimator (QMLE) is

the usual estimation procedure. Based on observations (ǫ1, . . . , ǫn) of Model (1), this

estimator is solution of

θ̂n = arg min
θ∈Θ

n−1

n
∑

t=1

ℓ̃t(θ), ℓ̃t(θ) =
ǫ2
t

σ̃2
t

+ ln σ̃2
t . (2)



Hamadeh and Zakoı̈an (2011) showed the consistency and asymptotic normality of the

QMLE under the assumption:

Assumption A: θ0 belongs to the interior of the compact set Θ; Eη2
t = 1 and κη =

Eη4
t < ∞; P [ηt > 0] ∈ (0, 1) and the support of ηt has cardinality > 2; the top-

Lyapounov exponent associated to Model (1) is strictly negative1; ∀θ ∈ Θ,
∑p

j=1 βj <

1; if p > 0, Bθ0
(z)= 1 −∑p

j=1 β0jz
j has no common root with Aθ0+(z)=

∑q
i=1 α0i+zi

and Aθ0−(z)=
∑q

i=1 α0i−zi; Aθ0+(1) + Aθ0−(1) 6= 0 and α0q,+ + α0q,− + β0p 6= 0.

For technical reasons, we will need to slightly reinforce the assumption on the distri-

bution of ηt as follows:

Assumption B: ηt takes more than 3 positive values and more than 3 negative values.

The autocovariances of the squared residuals are defined by

r̂h =
1

n

n
∑

t=|h|+1

(η̂2
t − 1)(η̂2

t−|h| − 1), η̂2
t =

ǫ2
t

σ̂2
t

where |h| < n and σ̂t = σ̃t(θ̂n). For any fixed integer m, 1 ≤ m < n, consider the

statistic r̂m = (r̂1, . . . , r̂m)′ . Let κ̂η and Ĵ be weakly consistent estimators of κη and J .

For instance, one can take

κ̂η =
1

n

n
∑

t=1

ǫ4
t

σ̃4
t (θ̂n)

, Ĵ =
4

δ4

1

n

n
∑

t=1

1

σ̃2δ
t (θ̂n)

∂σ̃δ
t (θ̂n)

∂θ

∂σ̃δ
t (θ̂n)

∂θ′
.

In the previous expression the derivatives can be recursively computed on t > 0 by

∂σ̃δ
t (θ)

∂θ
= ct(θ) +

p
∑

j=1

βj

∂σ̃δ
t−j(θ)

∂θ
, (3)

with the additional initial values ∂σ̃2
t (θ)/∂θ = 0 for t = 0, . . . , 1 − p, and

c′t(θ) =
(

1, (ǫ+
t−1)

δ, · · · , (ǫ+
t−q)

δ, (−ǫ−t−1)
δ, · · · , (−ǫ−t−q)

δ, β1, · · · , βp

)

. (4)

Define also the m × (2q + p + 1) matrix Ĉm whose element (h, k), for 1 ≤ h ≤ m and

1 ≤ k ≤ 2q + p + 1, is given by

Ĉm(h, k) = −2

δ

1

n

n
∑

t=h+1

(η̂2
t−h − 1)

1

σ̃δ
t (θ̂n)

∂σ̃δ
t (θ̂n)

∂θk

.

Theorem 2.1 Under Assumptions A and B,

nr̂
′
mD̂−1

r̂m
L→ χ2

m,

with D̂ = (κ̂η − 1)2Im − (κ̂η − 1)ĈmĴ−1Ĉ ′
m.

The adequacy of the APARCH(p, q) model (1) is then rejected at the asymptotic level α
when

{

nr̂
′
mD̂−1

r̂m > χ2
m(1 − α)

}

. (5)

1This condition is necessary and sufficient for the existence of a strictly stationary solution to (1). The

reader is referred to Appendix A in Hamadeh and Zakoı̈an (2011) for a precise definition of that top-

Lyapounov exponent.



3 Monte Carlo results

We simulated N = 1, 000 independent replications of an APARCH(1,1) for several pow-

ers δ, with parameters ω0 = 0.04, α01+ = 0.02, α01− = 0.13, β01 = 0.85, and ηt dis-

tributed as a Student with ν = 9 degrees of freedom, standardized in such a way that the

variance be equal to 1. These parameters are close to those obtained when a TARCH(1,1)

model (i.e. an APARCH(1,1) with δ = 1) or a GJR(1,1) model (i.e. an APARCH(1,1)

with δ = 2) is fitted to daily stock indices (such as those considered in the next section).

The length of the simulations is n = 4, 000, which is also a current value for daily re-

turns. Table 1 displays the empirical sizes of the portmanteau tests at the nominal level

α = 5%. If the actual level coincides with the nominal level, the empirical size over

the N = 1, 000 independent replications should belong to the interval [3.6%, 6.4%] with

probability 95%, and to the interval [3.2%, 6.9%] with probability 99%. Table 1 indicates

that the error of first kind is well controlled (most of the rejection frequencies of the left

array, and those of the line δ = 2 in the right array, are within the 99% significant limits).

In term of power performance, the portmanteau tests are more disappointing since they

fail to detect alternatives of the form δ > 2 when the null is δ = 2 (see the right array in

Table 1). Other Monte Carlo experiments, not reported here, reveal that the portmanteau

tests are much more powerful to detect wrong values of the order (p, q).

Table 1: For the portmanteau tests (3), relative frequencies (in %) of rejection of an

APARCH(1,1) model for several values of δ, when the DGP follows the same model

(left array) and when the DGP is an APARCH(1,1) with δ = 2 (right array). The nominal

level is 5% and the number of replications is N = 1, 000.

Empirical size

δ m

2 4 6 8 10 12

0.5 4.2 4.9 5.5 5.3 6.5 6.2

1 4.9 4.9 5.7 6.0 5.2 4.8

1.5 5.3 6.5 7.6 7.6 7.6 7.5

2 5.8 5.9 6.3 6.6 6.8 5.1

2.5 4.9 4.9 4.9 5.1 5.4 4.7

3 3.6 4.4 4.0 5.0 5.5 5.4

Empirical power (when δ 6= 2)

δ m

2 4 6 8 10 12

0.5 44.9 65.1 75.7 80.8 82.3 82.0

1 18.8 26.6 32.6 35.5 38.9 40.4

1.5 7.3 11.0 13.4 13.8 15.0 15.7

2 5.8 5.9 6.3 6.6 6.8 5.1

2.5 4.2 3.9 3.7 4.2 4.2 4.4

3 2.7 2.3 2.7 3.0 3.0 3.8

4 Checking the adequacy of APARCH models for stock

market returns

We consider daily returns of eight major world stock indices: CAC (Paris), DAX (Frank-

furt, FTSE (London), Nikkei (Tokyo), OMX (Copenhagen), SP500 (New York), SPTSX



(Toronto), and SPTSX (Shanghai). The observations cover the period from January, 2

1990 to November, 6 2010 (except for the OMX, SPTSX and SSE whose first observa-

tions are posterior to 1990). Table 2 shows that the TARCH(0, 5) and GJR(0, 5) models

are generally rejected, whereas the TARCH(1,1) and GJR(1, 1) are only occasionally re-

jected.

From this empirical study and the simulation experiments made in the previous sec-

tion, we draw the conclusion that the portmanteau tests based on squared TARCH(p, q)
residuals constitute valuable tools to detect a misspecification of the order (p, q), but are

not able to distinguish certain models with different parameters δ. In particular they do not

seem to be able to make the difference between TARCH and GJR models. This is not very

surprising because these two models are close and lead to similar volatility processes (see

Section 10.6 in Francq and Zakoı̈an (2010)). Moreover, Hamadeh and Zakoı̈an (2011)

showed that the likelihood of an APARCH model can be virtually identical at different

values of the parameter δ.

5 Proofs

For all θ ∈ Θ, let σ̃δ
t (θ) be the strictly stationary and non-anticipative solution of

σδ
t (θ) = ω +

q
∑

i=1

{

αi+(ǫ+
t−i)

δ + αi−(−ǫ−t−i)
δ
}

+

p
∑

j=1

βjσ
δ
t−j(θ).

Note that σδ
t (θ) and σ̃δ

t (θ) differ because of the initial values, and note that σδ
t = σδ

t (θ0).
Introduce also the matrix

J =
4

δ4
E

(

1

σ2δ
0 (θ0)

∂σδ
0(θ0)

∂θ

∂σδ
0(θ0)

∂θ′

)

.

Write a
c
= b when a = b + c. We denote by K a generic positive constant and by ρ a

generic constant of the interval (0, 1). The results of Hamadeh and Zakoı̈an (2011) which

will be needed for the proof of Theorem 2.1 are collected in the following lemma.

Lemma 5.1 (Hamadeh & Zakoı̈an, 2011) Under Assumption A,

E|ǫ0|2s < ∞, E sup
θ∈Θ

∥

∥σ2s
0 (θ)

∥

∥ < ∞, E sup
θ∈Θ

∥

∥σ̃2s
0 (θ)

∥

∥ < ∞ (6)

for some s ∈ (0, 1);

sup
θ∈Θ

∥

∥σ2
t (θ) − σ̃2

t (θ)
∥

∥ ≤ Kρt sup
θ∈Θ

max
{

σ2
t (θ), σ̃

2
t (θ)

}

, (7)

where K ≥ 0 is measurable with respect to {ǫu, u < 0} and ρ ∈ (0, 1); for all τ ≥ 1

E

∥

∥

∥

∥

sup
θ∈Θ

1

σδ
t (θ)

∂σδ
t (θ)

∂θ

∥

∥

∥

∥

τ

< ∞, E

∥

∥

∥

∥

sup
θ∈Θ

1

σδ
0(θ)

∂2σδ
0(θ)

∂θ∂θ′

∥

∥

∥

∥

τ

< ∞, (8)



Table 2: For daily returns of stock market indices, p-values of portmanteau tests based on m

squared residual autocovariances for the adequacy of the TARCH and GJR models of different

orders.

m

1 2 3 4 5 6 7 8 9 10 11 12

Portmanteau tests for adequacy of the TARCH(0, 5)
CAC 0.880 0.348 0.170 0.017 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DAX 0.203 0.188 0.291 0.128 0.140 0.177 0.182 0.243 0.256 0.303 0.266 0.326

FTSE 0.468 0.125 0.015 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Nikkei 0.332 0.199 0.343 0.190 0.063 0.003 0.000 0.000 0.000 0.000 0.000 0.000

OMX 0.004 0.014 0.034 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SP500 0.319 0.094 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SPTSX 0.907 0.606 0.801 0.650 0.26 0.034 0.000 0.000 0.000 0.000 0.000 0.000

SSE 0.743 0.870 0.935 0.947 0.974 0.941 0.858 0.683 0.745 0.605 0.179 0.167

Portmanteau tests for adequacy of the GJR(0, 5)
CAC 0.159 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DAX 0.047 0.011 0.012 0.005 0.004 0.007 0.01 0.017 0.023 0.035 0.035 0.052

FTSE 0.043 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Nikkei 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

OMX 0.446 0.118 0.134 0.001 0.001 0.001 0.003 0.000 0.000 0.000 0.000 0.000

SP500 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SPTSX 0.011 0.004 0.008 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SSE 0.647 0.359 0.363 0.284 0.254 0.336 0.38 0.386 0.484 0.458 0.161 0.181

Portmanteau tests for adequacy of the TARCH(1, 1)
CAC 0.846 0.007 0.015 0.033 0.059 0.059 0.086 0.112 0.160 0.131 0.178 0.235

DAX 0.402 0.595 0.410 0.563 0.474 0.602 0.704 0.793 0.846 0.899 0.933 0.952

FTSE 0.462 0.731 0.514 0.675 0.703 0.688 0.731 0.367 0.324 0.160 0.001 0.002

Nikkei 0.015 0.040 0.031 0.061 0.039 0.068 0.037 0.020 0.023 0.027 0.042 0.062

OMX 0.481 0.526 0.705 0.778 0.411 0.530 0.641 0.607 0.700 0.720 0.569 0.533

SP500 0.013 0.038 0.082 0.110 0.125 0.186 0.223 0.246 0.328 0.081 0.109 0.150

SPTSX 0.143 0.282 0.469 0.514 0.567 0.121 0.102 0.153 0.216 0.134 0.177 0.235

SSE 0.342 0.503 0.096 0.065 0.086 0.143 0.213 0.257 0.336 0.294 0.294 0.339

Portmanteau tests for adequacy of the GJR(1, 1)
CAC 0.151 0.185 0.333 0.424 0.555 0.610 0.716 0.790 0.849 0.839 0.891 0.920

DAX 0.121 0.293 0.482 0.651 0.749 0.839 0.907 0.944 0.970 0.980 0.990 0.991

FTSE 0.191 0.380 0.504 0.624 0.759 0.815 0.890 0.765 0.378 0.327 0.031 0.044

Nikkei 0.003 0.005 0.013 0.024 0.046 0.059 0.085 0.129 0.183 0.241 0.221 0.217

OMX 0.937 0.988 0.864 0.825 0.731 0.826 0.866 0.893 0.892 0.932 0.894 0.907

SP500 0.007 0.024 0.035 0.071 0.125 0.139 0.204 0.279 0.351 0.362 0.439 0.428

SPTSX 0.043 0.073 0.132 0.229 0.341 0.178 0.198 0.269 0.337 0.353 0.436 0.481

SSE 0.758 0.935 0.858 0.787 0.862 0.909 0.946 0.970 0.957 0.972 0.975 0.984



and there exists a neighborhood V(θ0) of θ0 such that

E

∣

∣

∣

∣

∣

sup
θ∈V (θ0)

σδ
0(θ0)

σδ
0(θ)

∣

∣

∣

∣

∣

τ

< ∞; (9)

J is invertible and

√
n(θ̂n − θ0)

oP (1)
= J−1 1√

n

n
∑

t=1

(η2
t − 1)

1

σ2
t

∂σ2
t (θ0)

∂θ
(10)

Proof of Theorem 2.1

Introduce the vector rm = (r1, . . . , rm)′ where

rh = n−1

n
∑

t=h+1

stst−h, with st = η2
t − 1 and 0 < h < n.

Let st(θ) (respectively s̃t(θ)) be the random variable obtained by replacing ηt by ηt(θ) =
ǫt/σt(θ) (respectively η̃t(θ) = ǫt/σ̃t(θ)) in st. Let rh(θ) (respectively r̃h(θ)) be obtained

by replacing ηt by ηt(θ) (respectively η̃t(θ)) in rh. The vectors rm(θ) = (r1(θ), . . . , rm(θ))′

and r̃m(θ) = (r̃1(θ), . . . , r̃m(θ))′ are such that rm = rm(θ0) and r̂m = r̃m(θ̂n).
We first study the asymptotic impact of the unknown initial values on the statistic r̂m.

We have st(θ)st−h(θ) − s̃t(θ)s̃t−h(θ) = at + bt with at = {st(θ) − s̃t(θ)} st−h(θ) and

bt = s̃t(θ) {st−h(θ) − s̃t−h(θ)}. Using (7) and infθ∈Θ σ̃2
t ≥ infθ∈Θ ω2/δ > 0, we have

|at| ≤ Kρtǫ2
t (ǫ

2
t−h + 1) sup

θ∈Θ
max

{

σ2
t (θ), σ̃

2
t (θ)

}

.

The cr and Hölder inequalities, together with (6), entail that for sufficiently small s∗ ∈
(0, 1),

E

∣

∣

∣

∣

∣

1√
n

n
∑

t=1

sup
θ∈Θ

|at|
∣

∣

∣

∣

∣

s∗

≤ Kn−s∗/2

n
∑

t=1

ρts∗ → 0

as n → ∞. It follows that n−1/2
∑n

t=1 supθ∈Θ |at| = oP (1). The same convergence holds

for bt and for the derivatives of at and bt. We then obtain

√
n ‖rm − r̃m(θ0)‖ = oP (1), sup

θ∈Θ

∥

∥

∥

∥

∂rm(θ)

∂θ′
− ∂r̃m(θ)

∂θ′

∥

∥

∥

∥

= oP (1). (11)

We now show that the asymptotic distribution of
√

nr̂m is a function of the joint

asymptotic distribution of
√

nrm and of the QMLE. Using (11), a Taylor expansion of

rm(·) around θ̂n and θ0 shows that

√
nr̂m =

√
nr̃m(θ0) +

∂r̃m(θ∗)

∂θ′
√

n(θ̂n − θ0)

oP (1)
=

√
nrm +

∂rm(θ∗)

∂θ′
√

n(θ̂n − θ0)



for some θ∗ between θ̂n and θ0. In view of (9), there exists a neighborhood V(θ0) of θ0

such that

sup
θ∈V(θ0)

E

∣

∣

∣

∣

∂2st(θ)st−h(θ)

∂θi∂θj

∣

∣

∣

∣

< ∞ for all i, j ∈ {1, . . . , 2q + p + 1}.

Using these inequalities, (8) and the assumption Eη4
t < ∞, the ergodic theorem, the

strong consistency of the QMLE, and a second Taylor expansion, we obtain

∂rm(θ∗)

∂θ′
oP (1)
=

∂rm(θ0)

∂θ′
→ Cm :=







c′1
...

c′m






,

where

ch = E

{

st−h
∂st(θ0)

∂θ

}

= −E

{

st−h
1

σ2
t (θ0)

∂σ2
t (θ0)

∂θ

}

.

For the next to last equality, we use the fact that E {st∂st−h(θ0)/∂θ} = 0. It follows that

√
nr̂m

oP (1)
=

√
nrm + Cm

√
n(θ̂n − θ0). (12)

We now derive the asymptotic distribution of
√

n(rm, θ̂n − θ0). Note that rm
oP (1)
=

n−1
∑n

t=1 stst−1:t−m where st−1:t−m = (st−1, . . . , st−m)′. In view of (10), the central

limit theorem applied to the martingale difference

{(

st
1

σ2
t

∂σ2
t (θ0)

∂θ′
, sts

′
t−1:t−m

)′

; σ (ηu, u ≤ t)

}

shows that

√
n

(

θ̂n − θ0

rm

)

oP (1)
=

1√
n

n
∑

t=1

st

(

J−1 1
σ2

t

∂σ2
t
(θ0)

∂θ

st−1:t−m

)

L→ N
{

0,

(

(κη − 1)J−1 Σθ̂nrm

Σ′
θ̂nrm

(κη − 1)2Im

)}

, (13)

where

Σθ̂nrm
= (κη − 1)J−1E

1

σ2
t

∂σ2
t (θ0)

∂θ
s
′
t−1:t−m = −(κη − 1)J−1C ′

m.

Using together (12) and (13), we obtain

√
nr̂m

L→ N (0, D) , D = (κη − 1)2Im − (κη − 1)CmJ−1C ′
m.

We now show that D is invertible. Because the law of η2
t is non degenerated, we have

κη > 1. We thus have to show the invertibility of

(κη − 1)Im − CmJ−1C ′
m = EVV

′, V = s−1:−m + CmJ−1 2

δ

1

σδ
0

∂σδ
0(θ0)

∂θ
.



If this matrix is singular then there exists λ = (λ1, . . . , λm)′ such that λ 6= 0 and

λ′
V = λ′

s−1:−m + µ′ 1

σδ
0

∂σδ
0(θ0)

∂θ
= 0 a.s., (14)

with µ = (2/δ)λ′CmJ−1. Note that µ = (µ1, . . . , µ2q+p+1)
′ 6= 0. Otherwise λ′

s−1:−m = 0
a.s., which implies that there exists j ∈ {1, . . . ,m} such that s−j is measurable with

respect to σ{st, t 6= −j}. This is impossible because the st’s are independent and non

degenerated. Note that ǫ+
t = σtη

+
t and ǫ−t = σtη

−
t . Denoting by Rt any random variable

measurable with respect to σ{ηu, u ≤ t}, and noting that (3)-(4) holds true when σ̃t is

replaced by σt, we have

µ′∂σδ
0(θ0)

∂θ
= µ2σ

δ
−1(η

+
−1)

δ + µq+2σ
δ
−1(−η−

−1)
δ + R−2,

and

σδ
0λ

′
s−1:−m =

(

α01+σδ
−1(η

+
−1)

δ + α01−σδ
−1(−η−

−1)
δ + R−2

) (

λ1η
2
−1 + R−2

)

= λ1σ
δ
−1

{

α01+(η+
−1)

δ+2 + α01−(−η−
−1)

δ+2
}

+ R−2η
2
−1 + R−2.

Thus (14) entails λ1σ
δ
−1

{

α01+(η+
−1)

δ+2 + α01−(−η−
−1)

δ+2
}

+R−2(η
+
−1)

δ +R−2(−η−
−1)

δ +
R−2η

2
−1 + R−2 = 0 a.s., which is equivalent to the two equations

λ1σ
δ
−1α01+(η+

−1)
δ+2 + R−2(η

+
−1)

δ + R−2(η
+
−1)

2 + R−2 = 0 a.s. (15)

and

λ1σ
δ
−1α01−(−η−

−1)
δ+2 + R−2(−η−

−1)
δ + R−2(−η−

−1)
2 + R−2 = 0 a.s. (16)

Note that an equation of the form a|x|δ+2 + b|x|δ + cx2 + d = 0 cannot have more than 3

positive roots or more than 3 negative roots, except if a = b = c = d = 0. By Assumption

B, Equations (15) and (16) thus imply λ1(α01+ + α01−) = 0. Let λ′
2:m = (λ2, . . . , λm)′.

If λ1 = 0 then (14) implies

(

α01+σδ
−1(η

+
−1)

δ + α01−σδ
−1(−η−

−1)
δ
)

λ′
2:ms−2:−m

= µ2σ
δ
−1(η

+
−1)

δ + µq+2σ
δ
−1(−η−

−1)
δ + R−2 a.s.,

which is equivalent to

α01+σδ
−1(η

+
−1)

δλ′
2:ms−2:−m = µ2σ

δ
−1(η

+
−1)

δ + R−2 a.s.,

and a similar equation involving (−η−
−1)

δ. Subtracting the conditional expectation with

respect to σ{ηt, t ≤ −2} in both sides of the previous equation, we obtain

(α01+λ′
2:ms−2:−m − µ2)

{

(η+
−1)

δ − E(η+
−1)

δ
}

= 0 a.s.

which entails α01+ = µ2 = 0. Symmetrically, α01− = 0. For APARCH(p, 1) models, it is

impossible to have α01+ = α01− = 0, because of the assumption Aθ0+(1)+Aθ0−(1) 6= 0.

The invertibility of D is thus shown in this case. In the general case, we show by induction

that (14) entails α01+ + α01− = · · · = α0p+ + α0p− = 0.

It is easy to show that D̂ → D in probability (and even almost surely) as n → ∞ The

conclusion follows ✷
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