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Abstract

This paper studies survival measures in credit risk models. Survival measure, which
was first introduced by Schönbucher [12] in the framework of defaultable LMM, has the
advantage of eliminating default indicator variable directly from the expectation by ab-
sorbing it into Randon-Nikodym density process. Survival measure approach was further
extended by Collin-Duresne [4] to avoid calculating a troublesome jump in IBPR reduced-
form model. This paper considers survival measure in ”HBPR” model, i.e. default time is
characterized by Cox construction, and studies the relevant drift changes and martingale
representations. This paper also takes advantage of survival measure to solve the looping
default problem in interacting intensity model with stochastic intensities. Guaranteed debt
is priced under this model, as an application of survival measure and interacting intensity
model. Detailed numerical analysis is performed in this paper to study influence of stochas-
tic pre-default intensities and contagion on value of a two firms’ bilateral guaranteed debt
portfolio.
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1 Introduction

As well known, the methodology for modeling default risk can be split into two main ap-
proaches, the structural approach and reduced form approach. Structural model treats the
default time as first passage time of firm value process over a default barrier. This approach is
intuitive in the way that it models default as endogenous event that is determined by the struc-
ture of balance sheet of the company. Nonetheless, many significant drawbacks of structural
approach constrict the application of this model. Firstly, the firm value process and default
barrier can hardly be observed, that is only partial information is available in the market, for
the reason that firm asset is not tradeable and structure of balance sheet is complex to iden-
tify. Moreover, first passage time characterization of default time of a continuous process over
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default barrier implies that default time is predictable time, leading to unnatural features such
as null spreads for short maturities.

Reduced form approach, on the other hand, lies on the assumption that default time is a
totally inaccessible time. There are mainly two categories of reduced form models, ”Intensity
Based Pricing Rule” (IBPR) and ”Hazard Based Pricing Rule” (HBPR), termed by Jean-
blanc [7]. In IBPR model, see Duffie [5], default time is a stopping time of the whole market
filtration. The model is based on the existence of an ”intensity rate process”: a non-negative
process satisfying a compensation property. The main problem in this methodology is that the
pricing rule leads to a non tractable formula, involving computations complex to handle. HBPR
model, see Lando [9], is based on the computation of the ”Hazard process” and lies on the as-
sumption of decomposing market information into two filtration: a reference filtration expanded
by information of default-free assets and a filtration expanded by the progressive knowledge of
credit event. The decomposition of market information in HBPR model concludes a pricing
formula much more convenient to use. However, it depends on the assumption of the existence
of decomposition of all available information into ”default-free information” and ”default event
information”, as well as some technical requirements about the hazard process, see Bielecki [3]
for detailed discussion.

Survival measure is first introduced by Schönbucher [12] in a so called LIBOR Market
Model with Default Risk (”defaultable LMM” for short), where defaultable effective forward
rates in discrete tenor are modeled in the way similar to default free LIBOR Market Model.
Survival measure performs the role to eliminate default indicator in expectation when pricing
credit derivatives, just like the effect reduced form model has by replacing survival indicator
variable with negative exponential of integrating intensity process or hazard process. Survival
measure is motivated by the attempt to eliminate default indicator variable in expectation of
defautable LMM without using intensity models. This idea is extended by Collin-Duresne [4] to
a general formula which avoids the problem of calculating a non-tractable discounted expected
jump term in IBPR reduced-form model. Further application of survival measure approach is
explored by Leung [8] to overcome the difficulty solving looping default problem in interacting
intensity model, which is an intuitive and direct approach of characterizing default contagion.
However, default intensities are assumed to be constant parameters in Leung [8]’s work. This
paper considers survival measure in ”HBPR” model, i.e. default time is characterized by Cox
construction, and studies the relevant drift changes and martingale representations. Based on
these analysis, interacting intensity model is extended to allow stochastic default intensities
which are driven by Brownian motions.

Guaranty, as one of the three major means of mitigation in commercial banks, has both
the effect of mitigation and contagion. If the guarantee does default before maturity, but
the guarantor does not, even after he takes over the guarantee’s obligation, then less loss
would incurred for commercial banks. On the other hand, the guarantor would increase its
own probability of default by taking over guarantee’s obligation, which is the side-effect of his
participation in a guaranty relationship. Mitigation has the effect of reducing total loss whilst
contagion induces higher probability of large loss. Therefore, a natural question would be to
exactly evaluate both of these two effects so as to tell whether banks should use guaranty to
mitigate in those particular loans. Li and Bao [11] establishes a framework for analysis of
mitigation and contagion effect of guaranteed debt where contagion is modeled by interacting
intensities with constant parameters. Analytical solutions are attained through the approach
of survival measure. A term Conditional Odds Ratio is defined to set up a criterion for gauging
the difference between mitigation effect and contagion risk in a pair of guaranteed debt. This
paper extends Li and Bao [11]’s work to allow stochastic default intensities which are driven by
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Brownian motions..

The remaining sections are organized as follows. IBPR and HBPR are briefly introduced in
Section 2. Section 3 considers extensions of IBPR and HBPR via survival measure changes. Two
alternative measure changes are compared and summarized in this section. Section 4 explores
the applications of survival measure approach in interacting intensity model with stochastic
default intensities. Mitigation and contagion effect in guaranteed debt is priced in Section
5, as an application of survival measure approach and interacting intensity model. Section 6
performs a series of numerical experiments to analyze impact of contagion and stochastic pre-
default intensities on value of a two firms’ bilateral guaranteed debt portfolio. This paper is
concluded in Section 7.

2 Reduced Form Models

This section presents the ”Intensity Based Pricing Rule” and ”Hazard Based Pricing Rule”,
the two main approaches in reduced form modeling. In intensity based framework, default time
τ is a stopping time in a given filtration G, which represents the full information of market. The
default indicator process Ht is defined as the G-adapted increasing càdlàg process 1{τ≤t}, which
is obviously a G -submartingale thus assures the existence of unique G-predictable increasing
process ΛG

t , called the compensator of Ht, such that the following process

Mt = Ht − ΛG
t (2.1)

is a G-martingale. As the default indicator process Ht vanishes after default, ΛG
t have to be

constant after default so as to ensure that Mt is martingale. This means ΛG
t = ΛG

t∧τ . In the
light of definition of totally inaccessible time, it is not hard to check that ΛG

t is continuous if and
only if τ is a G-totally inaccessible stopping time. Derivative of ΛG

t with respect to Lebesgue
measure is denoted by λG

t , if exists, such that

ΛG
t =

∫ t

0

λG
s ds, ∀t ≥ 0

.

λG
t is called the intensity rate process of τ and vanishes after default.

Duffie [5] proposes the pricing formula in IBPR for defaultable contingent claim (X, Dt),
with survival contingent claim X ∈ GT and cumulative dividend process Dt being Gt predictable.
IBPR pricing formula is expressed as

St = EQ

[

∫

]t,T ]

exp

{

−
∫ s

t

rudu

}

1{τ>s}dDs + exp

{

−
∫ T

t

rudu

}

X1{τ>T}

∣

∣

∣

∣

∣

Gt

]

= 1{τ>t} ·
{

Vt − EQ

[

exp

{

−
∫ τ

t

rudu

}

∆Vτ

∣

∣

∣

∣

Gt

]}

(2.2)

where the expectation is computed under martingale measure Q, which is assumed to exist,
and pre-default value Vt is defined as

Vt = EQ

[

∫

]t,T ]

exp

{

−
∫ s

t

[

ru + λG
u

]

du

}

dDs + exp

{

−
∫ T

t

[

ru + λG
u

]

du

}

X

∣

∣

∣

∣

∣

Gt

]

(2.3)

Detailed proof of formulas (2.2) and (2.3) are referred to Duffie [5].

The main difficulty of IBPR pricing formula (2.2) is the computation of the jump of pre-
default process Vt at default time τ . Generally, Vt is in no way to be continuous but in some
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special cases. For example, if market filtration Gt can be decomposed as Gt = Fc
t ∨ FI

t , with
Fc

t being continuous sub-filtration and (X, Dt) being independent from FI
t conditional on Fc

t .

In hazard based framework, the default time τ is still a stopping time in market filtration
G, but with additional assumption that Gt is decomposed as Gt = Ft∨Ht, with F = {Ft, t > 0}
being default-free filtration that is expanded by information from default-free assets, and H =
{Ht, t > 0} being default filtration expanded by the progressive knowledge of credit event, i.e.
Ht = σ ({Hs}s≤t). τ is assumed not to be F-stopping time. Thus, it is reasonable to define the
following conditional default probability

Ft = Q{τ ≤ t|Ft}
which is assumed to satisfy Ft < 1,∀t > 0.

Given Ft, define hazard process Γt as

Γt = −ln(1 − Ft)

Under the assumption of Ft being continuous and monotonically increasing, it can be shown
that

Mt = Ht − Γt∧τ

is G-martingale. Uniqueness of Doob-Meyer decomposition of Ht asserts that Γt is compensator
of Ht with respect to filtration G, that is, Γt = ΛF

t . However, this equality does not hold when
the assumption of Ft’s continuity and monotonicity is not true.

Based on the assumption of Ft being continuous and monotonically increasing, Lando [9]
proposes a pricing formula under HBPR which is similar with formulas (2.2) and (2.3), but
involves no jump of any processes. Assume Γt is absolutely continuous with respect to Lebesgue
measure, and have derivative γt. Then Bielecki [3] proves λF

t = γt, and

St = EQ

[

∫

]t,T ]

exp

{

−
∫ s

t

rudu

}

1{τ>s}dDs + exp

{

−
∫ T

t

rudu

}

X1{τ>T}

∣

∣

∣

∣

∣

Gt

]

= 1{τ>t} · EQ

[

∫

]t,T ]

exp

{

−
∫ s

t

[

ru + λF
u

]

du

}

dDs + exp

{

−
∫ T

t

[

ru + λF
u

]

du

}

X

∣

∣

∣

∣

∣

Ft

]

(2.4)

Apart from the difficulty of computing jump of pre-default value process in IBPR, pricing
formulas (2.2), (2.3) and (2.4) in reduced form models are similar to the pricing formula of
default-free contingent claims, with default-free interest rate rt replaced by r̃t = rt + λG

t or
r̂t = rt + λF

t in IBPR and HBPR, respectively. One can model r̃t or r̂t using short interest
rate models, such as CIR and JCIR, and price credit derivatives explicitly or numerically, with
parameters calibrated from credit market and interest rate market. This is one of the major
differences of reduced form model with structural model.

3 Extensions via Measure Changes

Application of IBPR pricing formulas (2.2) and (2.3) is restricted by the necessity of comput-
ing jump of Vt. Collin-Dufresne [4] proposes a so called general framework where an inequivalent
measure change is performed and jump component is removed from IBPR formula. The result
of Collin-Dufresne [4] is summarized in the following theorem.

Theorem 1. Assume the compensator ΛG
t of Ht with respect to G and its derivative λG

t exist.
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Define a probability measure change by

dP̄

dQ

∣

∣

∣

∣

Gt

= Lt|Gt
= 1{τ>t}e

ΛG

t

∣

∣

∣

Gt

(3.5)

Then price of defaultable contingent claim (X, Dt) is uniquely determined by

St = EQ

[

∫

]t,T ]

exp

{

−
∫ s

t

rudu

}

1{τ>s}dDs + exp

{

−
∫ T

t

rudu

}

X1{τ>T}

∣

∣

∣

∣

∣

Gt

]

= 1{τ>t} · EP̄

[

∫

]t,T ]

exp

{

−
∫ s

t

[

ru + λG
u

]

du

}

dDs + exp

{

−
∫ T

t

[

ru + λG
u

]

du

}

X

∣

∣

∣

∣

∣

Ḡt

]

(3.6)

where expectation EP̄ is performed under the new probability P̄, with respect to the new
filtration Ḡ, which is defined as the augmentation of original filtration G by the null sets of the
probability measure P̄.

Proof of this theorem is straightforward. One can first represent St as

St = 1{τ>t} · EQ

[

∫

]t,T ]

exp

{

−
∫ s

t

[ru + λG
u ]du

}

LsdDs + exp

{

−
∫ T

t

[ru + λG
u ]du

}

XLT

∣

∣

∣

∣

∣

Gt

]

= 1{τ>t} · EQ

[

∫

]t,T ]

exp

{

−
∫ s

t

[ru + λG
u ]du

}

dDsLT + exp

{

−
∫ T

t

[ru + λG
u ]du

}

XLT

∣

∣

∣

∣

∣

Gt

]

Then the proof is a simple application of Bayesian formula in the situation of absolutely con-
tinuous change of probability measure. This Bayesian formula is referred to Appendix A.

Pricing formula (3.6) is similar to HBPR formula (2.4) in the way that it mimics default-
free pricing rule with slight difference of changing risk-free rate rt to risk-adjusted rate r̃t =
rt +λG

t . However, formula (3.6) is significantly different from HBPR formula (2.4) by replacing
martingale measure Q with an inequivalent measure P̄ which is absolutely continuous with
respect to Q, with the filtration G changed into Ḡ accordingly. The measure P̄ is called CGH
Survival Measure for the reason that its quality concentrates on the event of survive until
maturity. That is,

P̄ {A} = EQ

{

1A ·
(

dP̄

dQ

∣

∣

∣

∣

GT

)}

= EQ
{

1A · 1{τ>T}e
ΛG

T

}

= 0, ∀A ⊂ {τ ≤ T}

and

P̄ {τ > T} = EQ

{

1{τ>T} ·
(

dP̄

dQ

∣

∣

∣

∣

GT

)}

= EQ
{

1{τ>T} · 1{τ>T}e
ΛG

T

}

= 1

Ḡ is constructed as augmentation of original filtration G by the null sets of the probability
measure P̄ means that Ḡ is obtained by adding to the original filtration the knowledge that
default will not occur before the maturity date of the security under consideration. Other than
using martingale property of compensated martingale Mt = Ht − Λt∧τ in IBPR and HBPR to
eliminate survival indicator 1{τ>T} from pricing formula, survival measure approach in Collin-
Dufresne [4] absorbs default indicator 1{τ>T} into Randon-Nikodym density process directly,
and eliminate it through measure change.

Schönbucher [12] proposes a survival measure approach in the framework of LIBOR market
model with default risk, paralleling with the famous LIBOR Market Model (LMM) in interest
rate market. Motivation of using survival measure in his paper is based on the direct effect of
absorbing default indicator into Randon-Nikodym density process when measure is changed.
Parallelism of reduced form model with short interest rate model is extended by Schönbucher
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[12] to LIBOR Market Model, where effective (simply compounded) forward rate is fundamental
model quantities, other than short (continuously compounded) interest rate. Schönbucher [12]
treats defaultable effective forward rate as fundamental quantity in defaultable LMM, where
intensity rate and short rate is not modeled. Therefore, reduced form approach can not be
applied to attain pricing formula in this framework, making survival measure approach as
suitable alternative.

Survival measure in Schönbucher’s model is defined as
dP̄T

dQ

∣

∣

∣

∣

Gt

= Zt|Gt
= 1{τ>t} ·

B̄(t, T )

B(t)B̄(0, T )

∣

∣

∣

∣

Gt

(3.7)

where B̄(t, T ) is denoted as pre-default value of defaultable zero coupon bond, which is
fundamental model quantity in Schönbucher’s model as well, and B(t) = Bt is bank account.
It is not hard to check that P̄T is also a survival measure, meaning

P̄T {A} = 0, ∀A ⊂ {τ ≤ T} and P̄T {τ > T} = 1

Using Bayesian formula for absolutely continuous measure change in Appendix A, one can
easily attain the following pricing formula in Schönbucher’s defaultable LMM.

St = EQ

[

∫

]t,T ]

BtB
−1
s 1{τ>s}dDs + BtB

−1
T X1{τ>T}

∣

∣

∣

∣

∣

Gt

]

= BtB̄(0, T )EQ

[

∫

]t,T ]

B̄−1(s, T )ZsdDs + XZT

∣

∣

∣

∣

∣

Gt

]

= BtB̄(0, T )EQ

[

∫

]t,T ]

B̄−1(s, T )ZT dDs + XZT

∣

∣

∣

∣

∣

Gt

]

= 1{τ>t} · B̄(t, T )EP̄T

[

∫

]t,T ]

B̄−1(s, T )dDs + X

∣

∣

∣

∣

∣

G̃t

]

(3.8)

where expectation EP̄T is performed under the new probability measure P̄T , with respect to
the new filtration G̃, which is defined as the augmentation of original filtration G by the null
sets of the probability measure P̄T .

One interesting property of Schönbucher’s survival measure is that it can be represented as
conditional forward probability measure on the survival event {τ > T}. That is,

P̄T {A} =
EQ

[

1A · dP̄T

dQ

]

EQ

[

dP̄T

dQ

] =
EQ

[

1A · 1{τ>T}
1

B(T )B̄(0,T )

]

EQ

[

1{τ>T}
1

B(T )B̄(0,T )

]

=
EQ

[

1A · 1{τ>T}
1

B(T )B(0,T )

]

EQ

[

1{τ>T}
1

B(T )B(0,T )

] =
EQ

[

1A1{τ>T} · dPT

dQ

]

EQ

[

1{τ>T} · dPT

dQ

] = PT {A| τ > T}

where forward measure PT is defined by

dPT

dQ

∣

∣

∣

∣

Gt

=
B(t, T )

B(t)B(0, T )

with B(t, T ) being the value of default-free zero coupon bond. Survival measure P̄ can not
be represented as conditional forward probability measure, because the third equality in the
above equation does not hold if Randon-Nikodym density is replaced by dP̄

dQ
.
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The fundamental problem one has to consider when operating measure changes is the semi-
martingale representation of original martingale under the new measure. The consequence of
absolutely continuous measure change on martingale property is given in Appendix A as Gir-
sanov’s Theorem. Girsanov’s Theorem in Appendix A shows that m̄t = mt −

∫ t

0
1

Ls−
d〈L,m〉s

and m̃t = mt −
∫ t

0
1

Zs−
d〈Z, m〉s are (P̄, Ḡ)-martingale and (P̄T , G̃)-martingale, respectively.

However, computing quadratic covariation processes 〈L,m〉t and 〈Z, m〉t is not so simple for an
arbitrary martingale mt. As indicated in Bielecki [3], non-negative martingale Lt can be repre-
sented as Itô’s integral with respect to the fundamental martingale Mt defined in equation (2.1),
i.e. dLt = −Lt−dMt. Therefore, 〈L,m〉t can be simplified and m̄t can be represented as mt

plus quadratic covariation 〈M, m〉t. Thus m̄t can be better understood under new measure P̄.
The results are given in the following theorem, whose proof are referred to Collin-Dufresne [4].

Theorem 2. Suppose the survival measure P̄ defined in equation (3.5) exists, and mt is an
arbitrary (Q, G)-martingale. Then the process defined by

m̄t = mt −
∫ t

0

1

Ls−
d〈L,m〉s = mt + 〈M, m〉t (3.9)

is a martingale with respect to (P̄, Ḡ). In particular,

(i) If the process mt does not jump at the default time τ , i.e. ∆mτ = 0, then mt itself is
(P̄, Ḡ)-martingale as well.

(ii) The default intensity λG
t and the default indicator process Ht are both equal to zero

almost surely under P̄ on the interval [0, T ].

Interpretation of (i) in Theorem 2 is straightforward. ∆mτ = 0 implies that the original
martingale mt is ”independent” from default time. Default of reference entity does not have
sudden impact on dynamics of mt. Then martingale property of mt under the new measure
P̄, which concentrates all quality on the event of survival until maturity, remains unchanged.
Similarly, because P̄ put all weight on survival event, default intensity and default indicator
process are reasonably to vanish under this measure.

In particular, if mt is a (Q, G) Brownian motion, then mt is still continuous martingale under
(P̄, Ḡ). It is obvious that deterministic quadratic variation remains the same under absolutely
continuous probability measure change. Therefore, quadratic variation of mt is still 〈m〉t = t

under (P̄, Ḡ). Lévy’s characterization of Brownian motion shows that mt is still Brownian
motion under (P̄, Ḡ).

In general, P̄ does not coincide with P̄T . Particularly, consider the situation when jump of
pre-default value process Vt vanishes in IBPR. Then one can easily attain the following equation
from formulas (2.2) and (2.3).

dP̄T

dQ

∣

∣

∣

∣

Gt

= 1{τ>t} ·
B̄(t, T )

B(t)B̄(0, T )

∣

∣

∣

∣

Gt

= 1{τ>t} · eΛG

t

EQ
[

B−1
T e−ΛG

T |Gt

]

EQ

[

B−1
T e−ΛG

T

]

∣

∣

∣

∣

∣

∣

Gt

Therefore, P̄ coincides with P̄T if and only if B−1
T e−ΛG

T = Constant, which does not holds
in generic environment. Because of the good qualities P̄ has in Theorem 2, this paper will only
consider applications of CGH survival measure approach in interacting intensity model with
stochastic intensities and in guaranteed debt pricing problem.

CGH survival measure is defined in the framework of IBPR because G-adapted process ΛG
t

is just compensator of Ht, without any specification under any (default-free) sub-filtration.
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Survival measure used in next section is supposed to be defined as, for example

dP̄i

dQ

∣

∣

∣

∣

Gt

= 1{τi>t} · eΛi,F̄i

t

∣

∣

∣

∣

Gt

(3.10)

where Λi,F̄i

t is F̄i-adapted hazard process defined in HBPR framework. Reference filtration F̄i

is the smallest sub-filtration of G satisfying G = F̄i ∨ Hi. Usually, F̄i is designed to be union
of default-free filtration F and default filtration of some other firms, say H−i =

∨

j 6=i Hj , where

Hj is default filtration of firm j. Moreover, Λi,F̄i

t is assumed to be purely F-adapted once H−i

information is given.
In fact, the survival measure in HBPR as defined in equation (3.10) is special case of

CGH survival measure if hazard process Λi,F̄i

t is assumed to be martingale hazard process, i.e.

Hi
t − Λi,F̄i

t∧τi
is G-martingale. Thus the above results of CGH survival measure can be applied

to HBPR survival measure. The above assumption is supposed to always hold in subsequent
sections.

4 Interacting Intensity Model

This section considers the application of our survival measure under HBPR framework in
interacting intensity model. Interacting intensity model or contagion model, introduced
by Jarrow et al. [6] is the only default dependence model that can explicitly characterize con-
tagion among reference firms, comparing to the popular copula model, see Bao et al. [1] and
Bao et al. [2] for example. The model is built upon the fundamental single-name reduced-form
model, via constructing direct interacting effect among default intensities of reference firms.
For instance, the model with two reference firms, say firm A and firm B, can be expressed as

{

λA
t

.
= a0

t + a1
t · 1{τB≤t}

λB
t

.
= b0

t + b1
t · 1{τA≤t}

(4.11)

where τA and τB are default times of firm A and firm B, with stochastic hazard processes
λA

t and λB
t , respectively. As indicated at the end of last section, λA

t and λB
t are supposed

to be stochastic hazard process in HBPR framework, i.e. λA
t is G−A = F ∨ HB-adapted, λB

t

is G−B = F ∨ HA-adapted. Furthermore, τA and τB are characterized by the following Cox
construction

τi = inf

{

t > 0

∣

∣

∣

∣

∫ t

0

λi
sds ≥ Ei

}

, i = A,B (4.12)

given realization of G−i
∞ . EA and EB are independent unit mean exponential variables,

i.e., Exp(1)-random variable. Intensities ak
t and bk

t , k = 0, 1 are assumed to be F-adapted
non-negative processes.

Interacting intensity model with stochastic intensities (4.11-4.12) can characterize default
contagion among firms while allowing default intensities to be F-stochastic, i.e. driven by
default free information. Specifically, firm A has default hazard rate λA

t = a0
t before the default

of any firm. The intensity of A will immediately jump to a higher level λA
t = a0

t + a1
t upon

the occurrence of B’s default, thus direct contagion of firm B’s default information to firm A is
characterized. Contagion from firm A to firm B can be explained in the same way.

The major problem of interacting intensity model is computing unconditional joint and
marginal default probabilities, facing the so called Looping Default Problem as main obstacle.
Pricing formula of HBPR reduced form model, as presented in section 2, implies that marginal
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default probability can be attained once hazard rate is given as inputs. However, hazard
rates in (4.11) are still determined by default status of another firm, whose hazard rate is
recursively determined by the former firm. This looping dependence while computing joint and
marginal default probabilities is hard to deal with. Three alternative approaches are proposed in
literatures, total hazard approach in Yu [14] and Yu [15], Markov chain approach in Leung [10]
and Walker [13], CGH survival measure approach in Leung [8]. CGH survival measure is
originally proposed by Collin-Dufresene [4] to extend IBPR, whose essence of absorbing default
indicator into Randon-Nikodym density process is further applied by Leung [8] to tackle looping
default problem in interacting intensity model where default indicator is explicitly present.
However, only constant parameters a0, a1, b0, b1 are considered in Leung [8]. This paper extends
interacting tensity model to allow stochastic intensities while still remains tractable. Girsanov’s
theorem relating to CGH survival measure presented in Section 3 can be used for our HBPR
survival measure so as to attain analytical solutions.

Application of HBPR survival measure approach in interacting intensity model (4.11-4.12)
is expressed in the following lemma.

Lemma 1. For interacting intensity model with stochastic intensities (4.11-4.12), define the
following two survival measures

dQA

dQ

∣

∣

∣

∣

Gt

= 1{τA>t} · exp

{
∫ t

0

λA
s ds

}

, ∀t ≤ T (4.13)

and
dQB

dQ

∣

∣

∣

∣

Gt

= 1{τB>t} · exp

{
∫ t

0

λB
s ds

}

, ∀t ≤ T (4.14)

then stochastic hazard processes λA
t and λB

t can be simplified under the two survival measures
as

{

λB
t = b0

t ∼ QA − a.s.

λA
t = a0

t ∼ QB − a.s.
and

{

λB
t = 0 ∼ QB − a.s.

λA
t = 0 ∼ QA − a.s.

(4.15)

Moreover, if ak
t and bk

t , k = 0, 1 are assumed to be F-adapted non-negative Itô diffusion
processes, and F is assumed to be expanded by Brownian motion Wt, then distributions of ak

t

and bk
t , k = 0, 1 under (Qi, F), i = A,B, are the same as under (Q, F). .

Proof: Equations (4.15) are straightforward because QA and QB are survival measures. Be-
cause our HBPR survival measure is compatible with CGH survival measure, as indicated at
the end of last section, results in Theorem 2 concludes proof of equations (4.15).

Results in Section 3 asserts that any Q Brownian motion is still Brownian motion under
survival measures QA and QB . Because a0

t is Ft = FW
t -measurable, it can be represented as

some measurable functional of Brownian motion Wt, i.e. a0
t = ft ({Ws}s≤t). Because Wt is

still Brownian motion under QB and functional relationship a0
t = ft ({Ws}s≤t) does not change

under measure changes, a0
t has the same distribution under QB as Q. Similarly, one can prove

that distributions of a1
t , b0

t and b1
t remains the same under survival measure changes.

5 Applications in Guaranteed Debt

This section considers the problem of pricing contagion and mitigation effect in guaranteed
debt, as application of our HBPR survival measure approach and interacting intensity model
with stochastic intensities. Two firms are considered here, denoted as firm A and firm B. By
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saying the two firms form a guaranty relationship we mean that A promises to take over the loss
given default (LGD) of B upon the default of B, and B promises to do the same for A during the
life time of this guaranty provision. Assume the bond of two firms has maturity T and of unit
face value. Once default, they have recovery rates of RA and RB , or loss given default LGDA

and LGDB respectively. In our model, mitigation effect is modeled in the payoff function of the
firms, while contagion is modeled using interacting intensity model with stochastic intensities.
To extract mitigation and contagion effects from the bond values, we need to consider two cases,
with and without guaranty relationship, respectively. The two cases are assumed to have the
same recovery rates and maturity.

Firstly, consider the case without guaranty. Default times are denoted by τ̄A and τ̄B , with
stochastic hazard procsses λ̄A

t and λ̄B
t , which are both F adapted non-negative processes. To

compare the difference between debt portfolios with and without guaranty, λ̄A
t and λ̄B

t are
designed as

λ̄A
t = a0

t λ̄B
t = b0

t (5.16)

Default times τ̄A and τ̄B are characterized by the following Cox construction

τ̄i = inf

{

t > 0

∣

∣

∣

∣

∫ t

0

λ̄i
sds ≥ Ēi

}

i = A,B (5.17)

given realization of F∞. ĒA and ĒB are independent unit mean exponential variables, i.e.,
Exp(1)-random variable. Moreover, ĒA and ĒB are assumed to be independent from EA and
EB in equations (4.12).

Payoffs of the two firms are
{

H̄A
T = 1{τ̄A>T} + 1{τ̄A≤T} · RA

H̄B
T = 1{τ̄B>T} + 1{τ̄B≤T} · RB

(5.18)

Therefore, in the event of no firm default, the two firm portfolio’s total payoff is 2, while
in the event of both default the porfolio recover (RA + RB). When only one firm defaults, the
total payoff is either (1 + RA) (if A defaults) or (1 + RB) (if B defaults).

In the presence of two-way guaranty, i.e. firm A provides guaranty for firm B and firm B
does the same for firm A, mitigation effect can be represented in the following payoff function

{

HA
T = 1{τA>T} + 1{τA≤T}

[

1{τB>T} + 1{τB≤T}RA

]

HB
T = 1{τB>T} + 1{τB≤T}

[

1{τA>T} + 1{τA≤T}RB

] (5.19)

For this case, payoff is still the same in the event of no default and both default, while in
the event of only one default no virtual loss is incurred for the portfolio, which is contributed to
the mitigation of guaranty. However, the survival firm will be burdened with more obligation
after his counterparty defaults, thus with higher PD. Even in the events where two cases have
same payoff, the relevant probabilities are not ensured to be the same. Therefore, to explicitly
tell the difference of two cases, joint probabilities of default/survival must be derived first.

Lemma 2. In the case of no guaranty, joint probabilities can be evaluated as:


















Q{τ̄A > T, τ̄B > T} = ΛAB
T

Q{τ̄A > T, τ̄B ≤ T} = ΛAB
T · ΛB

T

Q{τ̄A ≤ T, τ̄B > T} = ΛAB
T · ΛA

T

Q{τ̄A ≤ T, τ̄B ≤ T} = 1 − ΛAB
T

[

1 + ΛA
T + ΛB

T

]

(5.20)
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with


















ΛAB
T

.
= EQ

[

exp
{

−
∫ T

0
[a0

s + b0
s]ds

}]

ΛAB
T · ΛA

T
.
= EQ

[

exp
{

−
∫ T

0
b0
sds

}

− exp
{

−
∫ T

0
[a0

s + b0
s]ds

}]

ΛAB
T · ΛB

T
.
= EQ

[

exp
{

−
∫ T

0
a0

sds
}

− exp
{

−
∫ T

0
[a0

s + b0
s]ds

}]

(5.21)

Proof: The above joint probabilities can be easily checked because of Cox construction of τ̄A

and τ̄B and independence of ĒA and ĒB .

Theorem 3. Suppose default times τA and τB are modeled as interacting intensity model with
stochastic intensities (4.11-4.12), and ai

t, bi
t, i = 0, 1, are assumed to be F-adapted non-negative

Itô diffusion processes, which are obviously continuous G-semimartingales. Particularly, inter-
acting components a1

t and b1
t are designed as

{

a1
t = ηB · b0

t

b1
t = ηA · a0

t

(5.22)

Then joint probabilities of τA and τB can be expressed as



















Q{τA > T, τB > T} = ΛAB
T

Q{τA ≤ T, τB > T} = ΛAB
T · ΓA

T

Q{τA > T, τB ≤ T} = ΛAB
T · ΓB

T

Q{τA ≤ T, τB ≤ T} = 1 − ΛAB
T

[

1 + ΓA
T + ΓB

T

]

(5.23)

with






ΛAB
T · ΓA

T
.
= 1

1−ηA
EQ

[

exp
{

−
∫ T

0

[

b0
s + ηA · a0

s

]

ds
}

− exp
{

−
∫ T

0

[

a0
s + b0

s

]

ds
}]

ΛAB
T · ΓB

T
.
= 1

1−ηB
EQ

[

exp
{

−
∫ T

0

[

a0
s + ηB · b0

s

]

ds
}

− exp
{

−
∫ T

0

[

a0
s + b0

s

]

ds
}] (5.24)

for ηA 6= 1 and ηB 6= 1. When ηA = 1 and ηB = 1, we have






ΛAB
T · ΓA

T
.
= EQ

[

∫ T

0
a0

sds · exp
{

−
∫ T

0

[

a0
s + b0

s

]

ds
}]

ΛAB
T · ΓB

T
.
= EQ

[

∫ T

0
b0
sds · exp

{

−
∫ T

0

[

a0
s + b0

s

]

ds
}] (5.25)

which can be seen as limits of ΛAB
T · ΓA

T and ΛAB
T · ΓB

T in equation (5.24) as ηA → 1 and
ηB → 1.

Proof: Define survival measures QA and QB as equations (4.13) and (4.14), then results in
Lemma 1 holds. Change measure from Q to QA, then

Q{τA > T, τB > T} = EQ
[

1{τA>T}1{τB>T}

]

= EQA

[

1{τB>T}exp

{

−
∫ T

0

[a0
s + a1

s1{τB≤s}]ds

}]

= EQA

[

1{τB>T}exp

{

−
∫ T

0

a0
sds

}]

= EQA

[

exp

{

−
∫ T

0

a0
sds

}

EQA
[

1{τB>T}|FT

]

]

= EQA

[

exp

{

−
∫ T

0

[

a0
s + b0

s

]

ds

}]
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= EQ

[

exp

{

−
∫ T

0

[

a0
s + b0

s

]

ds

}]

The last equality holds for the reason that distributions of a0
t and b0

t under new measures
QA is the same as Q.

Using the same survival measure, we get

Q{τA > T, τB ≤ T} = EQ
[

1{τA>T}1{τB≤T}

]

= EQA

[

1{τB≤T}exp

{

−
∫ T

0

[a0
s + a1

s1{τB≤s}]ds

}]

= EQA

[

exp

{

−
∫ T

0

a0
sds

}

EQA

[

1{τB≤T}exp

{

−
∫ T

0

a1
s1{τB≤s}ds

}

|FT

]]

= EQA

[

exp

{

−
∫ T

0

[

a0
s + a1

s

]

ds

}

∫ T

0

exp

{

−
∫ t

0

[

b0
s − a1

s

]

ds

}

b0
t dt

]

= EQA

[

exp

{

−
∫ T

0

[

a0
s + ηB · b0

s

]

ds

}

∫ T

0

exp

{

−
∫ t

0

(1 − ηB) · b0
sds

}

b0
t dt

]

(5.26)

The 4th equality holds for the reason that τB ’s conditional p.d.f. on FT can be easily
attained by its QA−intensity in equation (4.15).

For ηB 6= 1, the above equation can be calculated as

Q{τA > T, τB ≤ T}

=
1

1 − ηB
EQA

[

exp

{

−
∫ T

0

[

a0
s + ηB · b0

s

]

ds

}[

1 − exp

{

−
∫ T

0

(1 − ηB)b0
sds

}]]

=
1

1 − ηB
EQ

[

exp

{

−
∫ T

0

[

a0
s + ηB · b0

s

]

ds

}

− exp

{

−
∫ T

0

[

a0
s + b0

s

]

ds

}]

(5.27)

The last equality is derived because distributions of a0
t , a1

t and b0
t under new measures QA

is the same as Q.

For ηB = 1, equation (5.26) can be simplified as

Q{τA > T, τB ≤ T} = EQ

[

∫ T

0

b0
sds · exp

{

−
∫ T

0

[

a0
s + b0

s

]

ds

}]

It is not so hard to check that this equation can be seen as limit of equation (5.27) as ηB → 1
by L’Hospital’s Rule. Finally, the second formula in (5.23) is similarly derived, and the fourth
one is direct conclusion of the first three formulas.

Notice that ΓA
T = Q{τA≤T,τB>T}

Q{τA>T,τB>T} = Q{τA≤T |τB>T}
Q{τA>T |τB>T} , which is the odds ratio of A’s default

probability versus its survival probability conditional on B’s survival until maturity. Thus,
Conditional Odds Ratio ΓA

T represents the comparative possibility of A’s default to its
survival. ΓB

T , ΛA
T and ΛB

T can be explained as the similar meaning.

Moreover, notice that unlike traditional design of jump that is proportional to a firm’s
own pre-default intensity, such as Leung et al. [10], we assume jump of one firm’s intensity is
proportional to the other firm’s pre-default intensity. This implies that contagion from one firm
to another is represented not only by a sudden jump in its intensity, but also by transferring
defaulted firm’s pre-default intensity to the survival firm. The major advantage of this design is
that explicit formulas for marginal survival probability of τ2 and joint survival probability of τ1
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and τ2 in the situation of stochastic pre-default intensities are available. Through our numerical
analysis we find that we can chose contagion parameter η to effectively reflect the actual level
of contagion based on firms’ credit worthiness and amount of guaranteed debt. Actually, due
to the relative significant sensitivity of portfolio value to contagion parameter η, it is one of the
key parameters to care more about in practical application.

The above results show that although payoffs of the two cases are the same in the events of
no default and both firms default, probabilities of two firm default are not identical. Therefore,
their present values would differentiate from each other when restricted to this extreme bad
circumstance. Meanwhile, our analysis can be released slightly because both payoffs and prob-
abilities are identical for two cases in the event of no default, for the present value difference is
zero in this situation. All in all, we need to compare the two cases in the situation of at least
one default happens.

Denote present value differences of the two cases in the events of only B defaults, only A

defaults and both firms default by V1, V2 and V3 respectively. More specifically, when bank
account Bt is assumed to be deterministic function of time, then











V1 = B−1
T E

{

2 · 1{τA>T,τB≤T} − (1 + RB)1{τ̄A>T,τ̄B≤T}

}

V2 = B−1
T E

{

2 · 1{τA≤T,τB>T} − (1 + RA)1{τ̄A≤T,τ̄B>T}

}

V3 = B−1
T E

{

(RA + RB)[1{τA≤T,τB≤T} − 1{τ̄A≤T,τ̄B≤T}]
}

(5.28)

The following theorem summarizes the above analysis and gives the exact pricing of miti-
gation and contagion effects incurred by the guaranty relationship in the pair of firms.

Theorem 4. Based on the above assumption and analysis, the value V of two-way guaranty is
proportional to the difference of (weighted) conditional odds ratios:

V = (LGDA + LGDB)B−1
T ΛAB

T
{

(

ΓA
T + ΓB

T

)

−
(

Λ̃A
T + Λ̃B

T

)}

(5.29)

where
{

Λ̃A
T = LGDB

LGDA+LGDB
ΛA

T

Λ̃B
T = LGDA

LGDA+LGDB
ΛB

T

are weighted conditional odds ratios by their courterparty’s proportional LGD.

Proof: Firstly, V1 can be evaluated as

V1 = 2B−1
T Q{τA > T, τB ≤ T}

−(1 + RB)B−1
T Q{τ̄A > T, τ̄B ≤ T}

= B−1
T ΛAB

T

[

2 · ΓB
T − (1 + RB)ΛB

T

]

Similarly, we get

V2 = B−1
T ΛAB

T

[

2 · ΓA
T − (1 + RA)ΛA

T

]

and

V3 = (RA + RB)B−1
T ΛAB

T

[(

ΛA
T + ΛB

T

)

−
(

ΓA
T + ΓB

T

)]

Combine them together, we finally derive (5.29).

One direct conclusion of equation (5.29) is that mitigation value is great than contagion risk
value in the guaranteed debt portfolio of two firms if and only if the following is true

(

ΓA
T + ΓB

T

)

>
(

Λ̃A
T + Λ̃B

T

)

(5.30)

The F adapted pre-default intensities a0
t and b0

t can be modeled by affine short rate models
such as CIR and CIR++, which are driven by (Q, F) Brownian motions. Hence, as well known,
the conditional odds ratios can be explicitly evaluated in affine short rate models.
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For instance, suppose a0
t and b0

t are driven by state variables xt and zt which are assumed
to be (F, Q)-affine processes. As an illustration, xt and zt are supposed to be independent CIR
processes, i.e.

{

dxt = kx [θx − xt] dt + σx
√

xtdW x
t

dzt = kz [θz − zt] dt + σz
√

ztdW z
t

, with dW x
t ⊥dW z

t (5.31)

under martingale measure Q. Parameters κx, κz, θx, θz, σx and σz are supposed to satisfy
2kxθx > σ2

x and 2kzθz > σ2
z so that 0 is unattainable for xt and zt. a0

t and b0
t are assumed to

be affine functions of state variable xt and zt, i.e.

{

a0
t = αAxt + βAzt

b0
t = αBxt + βBzt

(5.32)

where αi and βi, i = A,B are non-negative constant parameters. Dependence of a0
t and b0

t

are fully characterized by commonly reliance on two independent CIR factors. The following
lemma gives some results about pricing in CIR model that will be needed in the sequel of this
paper.

Lemma 3. Suppose factor Xt is an (F, Q)-CIR process with parameters (k, θ, σ), i.e.

dXt = k [θ − Xt] dt + σ
√

XtdWt (5.33)

Then for α > 0, αXt is also an (F, Q)-CIR process, with parameters (k, αθ,
√

ασ). Moreover,
pricing formulas of PX(t, T ;α) and NX(t, T ;α) can be represented as

PX(t, T ;α) = E

[

exp

{

−
∫ T

t

αXsds

}∣

∣

∣

∣

∣

Ft

]

= AX(t, T ;α)e−BX(t,T ;α)·αXt (5.34)

where AX(t, T ;α) and BX(t, T ;α) are deterministic functions of t and T , given as






















AX(t, T ;α) =

[

2he(T−t)(k+h)/2

2h + (k + h)
[

e(T−t)h − 1
]

]
2kθ

σ2

BX(t, T ;α) =
2

[

e(T−t)h − 1
]

2h + (k + h)
[

e(T−t)h − 1
]

(5.35)

with h denoted as h =
√

k2 + 2ασ2.

NX(t, T ;α) = E

[

∫ T

t

xsds · exp

{

−
∫ T

t

α · xsds

}∣

∣

∣

∣

∣

Ft

]

= ÃX(t, T, xt;α)PX(t, T ;α) (5.36)

with

ÃX(t, T, Xt;α) = EX(t, T ;α) + FX(t, T ;α)Xt (5.37)

and






















EX(t, T ;α) =
κθ

h2

{

−2κ
[

e(T−t)h − 1
]

+ h(T − t)
[

2κ + (κ + h)
[

e(T−t)h − 1
]]}

2h + (κ + h)
[

e(T−t)h − 1
]

FX(t, T ;α) =
2ασ2

h

[

2he(T−t)h(T − t) − e2(T−t)h + 1
]

(

2h + (κ + h)
[

e(T−t)h − 1
])2 +

2
[

e(T−t)h − 1
]

2h + (κ + h)
[

e(T−t)h − 1
]

(5.38)

.

Proof of AX(t, T ;α) and BX(t, T ;α), which are well known formulas, is standard and is
omitted in this paper. Derivation of EX(t, T ;α) and FX(t, T ;α) is deferred to Appendix B.

Particularly, we denote PX(t, T ) = PX(t, T ; 1), i.e.
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PX(t, T ) = E

[

exp

{

−
∫ T

t

Xsds

}
∣

∣

∣

∣

∣

Ft

]

= AX(t, T )e−BX(t,T )Xt (5.39)

where AX(t, T ) = AX(t, T ; 1), BX(t, T ) = BX(t, T ; 1) and h is simplified as h =
√

κ2 + 2σ2.
For notational convenience, we define the following function of α and β

P (α, β) = E

[

exp

{

−
∫ T

0

[αxs + βzs] ds

}
∣

∣

∣

∣

∣

Ft

]

= Px(0, T ;α) · Pz(0, T ;β) (5.40)

with dependence of P (α, β) on (x0, kx, θx, σx) and (z0, kz, θz, σz) implicitly represented.
Consequently, joint survival probability ΛAB

T and conditional odds ratios Λi
T , Γi

T , i = A,B in
Lemma 2 and Theorem 3 can be represented in the sequel theorem.

Theorem 5. Assume default times τA and τB are modeled as interacting intensity model with
stochastic intensities (4.11,4.12, 5.22), and a0

t , b0
t are assumed to be dependent on (F, Q)-CIR

processes (5.31) as equation (5.32), then the joint survival probability ΛAB
T and conditional odds

ratios Λi
T , Γi

T , i = A,B in Lemma 2 and Theorem 3 can be expressed as































ΛAB
T = P

(

αA + αB , βA + βB
)

ΛA
T =

P
(

αB , βB
)

P (αA + αB , βA + βB)
− 1

ΛB
T =

P
(

αA, βA
)

P (αA + αB , βA + βB)
− 1

(5.41)

and

ΓA
T =















1

1 − ηA

[

P
(

αB + ηA · αA, βB + ηA · βA
)

P (αA + αB , βA + βB)
− 1

]

forηA 6= 1

αAÃx(0, T, x0;α
A + αB) + βAÃz(0, T, x0;α

A + αB) forηA = 1

(5.42)

ΓB
T =















1

1 − ηB

[

P
(

αA + ηB · αB , βA + ηB · βB
)

P (αA + αB , βA + βB)
− 1

]

forηB 6= 1

αBÃx(0, T, x0;α
A + αB) + βBÃz(0, T, x0;α

A + αB) forηB = 1

(5.43)

Proof: Using the notation in equation (5.40), equation (5.41) is straightforward. For ηA 6= 1,
we get

ΛAB
T · ΓA

T =
1

1 − ηA
EQ

[

exp

{

−
∫ T

0

[(

αB + ηA · αA
)

xs +
(

βB + ηA · βA
)

zs

]

ds

}

− ΛAB
T

]

=
1

1 − ηA

[

P
(

αB + ηA · αA, βB + ηA · βA
)

− P
(

αA + αB , βA + βB
)]

Therefore, in the case of ηA 6= 1, conditional odds ratio ΓA
T in the interacting intensity model

can be given as

ΓA
T =

1

1 − ηA

[

P
(

αB + ηA · αA, βB + ηA · βA
)

P (αA + αB , βA + βB)
− 1

]

When ηA = 1, conditional odds ratio ΓA
T can be attained by letting ηA → 1 in the above
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equation. Alternatively, we use Lemma B to calculate ΓA
T for the case of ηA = 1.

ΛAB
T · ΓA

T = EQ

[

∫ T

0

a0
sds · exp

{

−
∫ T

0

[

b0
s + a0

s

]

ds

}]

= EQ

[

∫ T

0

[

αAxs + βAzs

]

ds · exp

{

−
∫ T

0

[(

αA + αB
)

xs +
(

βA + βB
)

zs

]

ds

}]

= αAEQ

[

∫ T

0

xsds · exp

{

−
∫ T

0

(

αA + αB
)

xsds

}]

· EQ

[

exp

{

−
∫ T

0

(

βA + βB
)

zsds

}]

+βAEQ

[

∫ T

0

zsds · exp

{

−
∫ T

0

(

βA + βB
)

zsds

}]

· EQ

[

exp

{

−
∫ T

0

(

αA + αB
)

xsds

}]

=
[

αAÃx(0, T, x0;α
A + αB) + βAÃz(0, T, x0;α

A + αB)
]

P
(

αA + αB , βA + βB
)

Thus the expression of ΓA
T for the case of ηA = 1 is exactly given as equation (5.42).

Expression of ΓB
T can be attained similarly.

Initial values k θ σ

Factor xt 0.03 0.50 0.05 0.50
Factor zt 0.01 0.80 0.02 0.20

Table 1: Parameters of latent CIR factors.

6 Numerical Analysis for Guaranteed Debt Portfolio
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Figure 1: Marginal probabilities of A and B with/without contagion.

This section performs some numerical analysis of the analytical pricing formula of guaranteed
debt portfolio in equation (5.29), especially tests the guaranty effect and contagion risk (loss)
in our interacting intensity model. We adopt a group of parameters with reasonable sense for
two firms with modest credit risk. Parameters of the two latent CIR factors underlying pre-
default intensities are illustrated in Table 1. Parameters αi, βi, i = A,B determine the mutual
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Figure 2: Impact of magnitude of contagion on joint default probabilities.
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Figure 3: Mitigation v.s. Contagion: in the cases of small and modest contagion.

dependence of pre-default intensities a0
t and b0

t . We take αA = βB = 0.2, αB = βA = 0.8
as the benchmark parameters to get a modest five year mean correlation of 0.7922. Because
pre-default intensity b0

t has larger weight on factor xt, which has larger initial value and long
term mean value θ, firm B is pre-assumed to have greater credit risk than firm A. Due to
the common sense of negative relationship of default risk and recovery rate, loss given default
(LGD) of firm B is assumed to be greater than firm A. We take LGDA = 0.6 and LGDB = 0.7
as an illustration. Contagion parameters ηA and ηB characterize the magnitude of contagion
of default risk from firm A to firm B, and vise versa. ηA and ηB represent the units of a0

t and
b0
t as increment to intensities of firm B and firm A upon default of counterparty firm. We take

ηA = ηB = 0.5 as benchmark case, and study influence of various value of η on the guaranteed
debt portfolio.

Under the specification of benchmark parameters, we first study the influence of contagion
between the two firms on marginal probabilities of individual firms. Figure 1 presents the
results of marginal probabilities of firm A and firm B. Firm A has smaller pre-default intensity
implies that firm A is less likely to default before firm B. Thus impact of contagion on firm
B (from firm A) is smaller than firm A (from firm B). Five year PD of firm A in the case of
no contagion is 0.1042, with an increase of 0.0119(by 11.44%) by introducing contagion to the
mutual dependence structure of two firms. Firm B has a five year PD of 0.1523 in absence
of contagion, with a small increase 0.0028 (by 1.81%) through contagion from firm A. This
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figure shows an modest impact of contagion on firm A’s marginal PD, while shows a quite small
impact of contagion on firm B’s marginal PD. This primarily results from the fact that firm B
has greater pre-default intensity than firm A, implying that firm B is more possible to default
before firm A and, moreover, transforms a greater amount of intensity to firm A (note that
ηA = ηB = 0.5 for our benchmark case) once firm B actually defaults.
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(a) Marginal prob. with ηA = ηB = 0.5
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(b) Marginal prob. with ηA = ηB = 10
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(c) Marginal prob. with ηA = ηB = 15
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Figure 4: Marginal probabilities of A and B in the cases of large contagion

Subsequently, we study the influence of contagion between the two firms on joint default
probabilities, mainly in the benchmark case and present various comparative cases in the same
figure. Figure 2 reports our results. For the case of no contagion, five year joint PD is 0.0233,
which is greater than 0.0159 = 0.1042 × 0.1523 that is joint PD should no contagion and
pre-default intensities correlation exist. The increase by percentage of 46.54% is solely due to
correlations between a0

t and b0
t , which reflects the fact that stochastic pre-default intensities

accounts for significant part of firms’ default correlation, especially for the circumstance of no
firm has defaulted. This is primarily attributed to our extended interacting intensity model that
includes randomness into pre-default intensities, contrasting to traditional models such as Leung
[8] where pre-default intensities are deterministic functions of time, implying independence
of creditworthiness before any firm defaults. Furthermore, Figure 2 shows that introducing
contagion into the dependence structure with benchmark value of ηA and ηB increases joint PD
from 0.0233 to 0.0380 by a percentage of 62.93%, which would be a 139% increase with respect
to 0.0159. This result gives a preliminary picture showing that default dependence due to
contagion is greater than default dependence resulting from pre-default intensities correlation,
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but still not so convincing because our analysis here depends on choice of parameters ηA and
ηB . Detailed analysis of contagion and pre-intensities correlation would be performed later
in this section to confirm this assertion. Actually, by decreasing ηA and ηB to one half of
benchmark value, we get smaller impact of contagion. Figure 2 shows that for the case of
(0.5EtaA, 0.5EtaB) five year joint PD increases 0.0078, only by a percentage of 33.22%. In
the case of (2EtaA, 2EtaB), five year joint PD increases 0.0267 by the percentage of 114.3%.
Finally, we study the contribution of contagion from firm A and firm B via increasing ηA by
2 times while decreasing ηB by 0.5 times and doing the opposite again. Figure 2 shows that
joint PD curve for the former is entirely below benchmark case, while joint PD curve for the
later is entirely above benchmark case. This result confirms the analysis earlier that greater
pre-default intensity of firm B concludes a larger possibility that firm B will default before firm
A, thus implies larger effect of contagion from firm B. Furthermore, in our model default of
firm B will transform its pre-default intensity to firm A which will increase contagion effect to a
larger extent. Fortunately, ηB is still a free parameter that will dominate transform of absolute
magnitude of intensity from firm B to firm A. By choosing an appropriate value of ηB would
control the intensity transform to a level reflecting actual circumstance.
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Figure 5: Impact large contagion on joint default probabilities.

After checking influence of contagion on marginal PD and joint PD, we now analyze its
impact on the value of guaranteed debt portfolio, that is analyzing mitigation effect of guar-
anty. Formula (5.29) shows that value of guaranteed debt portfolio is proportional to difference
between sum of conditional odds ratios with contagion (Gammas) and sum of weighted con-
ditional odds ratios without contagion (Weighted Lambdas). Positive difference implies that
mitigation value is greater than contagion risk (greater probability of larger loss). Figure 3
presents results of our analysis. For the benchmark case, with small and modest value of con-
tagion parameter, we find the ”Gammas” line is consistently above ”Weighted Lambdas” line,
which implies that value of guaranteed debt portfolio is consistently positive for the five year
period. The ”Difference” line in Figure 3 lies between ”Gammas” line and ”Weighted Lamb-
das” line shows that mitigation benefit is greater than contagion risk in a reasonably distance
when contagion parameters are assumed to be modest as our benchmark case. However, when
contagion parameters increase, impact of contagion on joint default probability of two firms will
increase and offsets mitigation effect of deferring first firm’s loss given default. This assertion
will be detailed analyzed later in this section.
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Beyond the benchmark case, we assume contagion parameter η tend to large value and
analyze the changes of marginal default probabilities, joint default probability and guaranteed
debt portfolio value. We find in the previous analysis that for modest contagion parameter
ηA = ηB = 0.5, mitigation benefit is consistently greater than contagion risk in a reasonable
distance. Nonetheless, some counterparty firms may have larger contagion parameters, for
instance, due to the considerably large guaranteed debt for guarantor that would demand an
immediate large amount of cash to pay off debt subject to default of guarantee. In other
cases, guarantor and guarantee might be related parties such that default of guarantee will
deduce a sudden decrease of guarantor’s credit worthiness which obvious resulting from factors
other than guaranty relationship. We consider three cases here with ηA = ηB =10, 15, 50,
respectively. Figure 4 reports our results of impact on marginal default probabilities. As
indicated before, marginal probabilities of firm A and B in the case of no contagion are 0.1042
and 0.1523 respectively. By increasing contagion parameter to 10, five year marginal PD of
firm A increases 0.08 (by 76.73%), and five year PD of firm B increases 0.0347 (by 22.81%).
For the cases ηA = ηB =15 and 50, firm A’s five year PD increases 0.0908 (by 87.06%) and
0.1142 (by 109.53%), while firm B’s five year PD increases 0.0435 (by 28.55%) and 0.0659 (by
43.30%). Comparing these results to the benchmark case we find that marginal PD’s are subject
to considerably larger increases in the case of greater contagion parameters, especially for firm
A who has a riskier counterparty than itself.

For joint default probability of the two firms subject to large contagion, we present our
results in Figure 5. For the cases of ηA = ηB =10, 15, 50, percentage changes of joint default
probabilities are 491.70%, 575.35% and 771.97% respectively. This confirms the assertion that
contagion has larger impact on joint default probability than marginal default probabilities
especially in the situation of large η’s.

Guaranty has mitigation benefit for bankers in the view of portfolio, by deferring loss given
default of the earlier default firm to the default of second firm or never if the guarantor does
not default before maturity. In presence of large contagion, joint default probability increases
significantly, inducing a larger possibility of loss of both firms LGD’s. If two firms are more likely
to default simultaneously, protection of the first default firm’s LGD is weaker, which not only
fails at mitigating guarantee’s debt, but also increases the survival firm’s credit risk concurring
a default risk that would not exist should absence of guaranty. Therefore, when contagion
parameter is greater than some threshold value, mitigation benefit disappears due to increasing
contagion risk. Figure 6 reports our results on η’s influence on value of guaranteed debt portfolio,
representing in the form of difference between sum of Gammas and sum of weighted Lambdas.
Figure 6(a) shows the result in benchmark case where ηA = ηB = 0.5. In this modest situation
mitigation benefit is significantly greater than contagion risk (potential loss) with a reasonable
distance. When ηA = ηB increases to 10, Figure 6(b) shows that conditional odds ratios
difference decreases significantly to the extent that five year value almost touches zero. When
ηA = ηB = 15 as in Figure 6(c), five year value of odds ratios difference is negative, implying
that contagion risk dominates mitigation benefit in the view of portfolio for a five year period. If
ηA = ηB surges to 50 as Figure 6(d), 2 year value of odds ratios difference is negative, while the
shorter term value only lies above zero by small negligible amount. Therefore, for the situation
of two firms with large contagion, guaranty would have negative impact on debt portfolio.

Sum of weighted Lambdas is independent from contagion parameter η, thus negative value
of conditional odds ratios difference results mainly from decrease of sum of Gammas. Actually,
conditional odds ratios of two firms in the presence contagion, i.e. Gammas, plunges significantly
as for the early stage of η tending to large value, especially for the longer 5 year period as show
in Figure 7. This result might sound counterintuitive at the first glance because increasing of



21

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Maturity T

S
um

 o
f (

W
ei

gh
te

d)
 C

on
di

tio
na

l O
dd

s 
R

at
io

es

 

 
Sum of Gammas
Sum of Weighted Lambdas
Diffence of Gammas and Weighted Lanbdas

(a) Marginal prob. with ηA = ηB = 0.5
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(b) Marginal prob. with ηA = ηB = 10
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(c) Marginal prob. with ηA = ηB = 15
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(d) Marginal prob. with ηA = ηB = 50

Figure 6: Mitigation v.s. Contagion: in the cases of large contagion.

contagion parameter would definitely increases marginal default probability, as shown in Figure
4, thus results in increasing of ”odds ratio for default”. However, ΓA

T and ΓB
T are defined as

”conditional odds ratios for default” given survival of the other firm. For instance, ΓA
T is defined

as ΓA
T = Q{τA≤T |τB>T}

Q{τA>T |τB>T} = Q{τA≤T,τB>T}
Q{τA>T,τB>T} . The denominator in second equality is irrelevant with

contagion as shown in equation (5.23). The numerator in this equality is counter value of
joint default probability Q{τA ≤ T, τB ≤ T}, i.e. it equals to 1 − Q{τA ≤ T, τB ≤ T}. Our
previous analysis shows that Q{τA ≤ T, τB ≤ T} increases significantly due to surge of contagion
parameter, thus deducing significant plunge of Q{τA ≤ T, τB > T} resulting the pattern of ΓA

T

with respect to η as in Figure 7. Alternatively, there is a straightforward interpretation of this
phenomenon. Because default of firm A would induce a large possibility of default of firm B,
thus a small chance for firm B to survive. Given the survival of firm B in the circumstance
of large contagion, one would more likely to believe that firm A has not default, meaning that
firm A has small probability of default before maturity.

More specifically, we draw the curve of joint default probability and conditional odds ratio
difference with respect to η in Figure 8 and Figure 9. The pattern is consistent with our previous
analysis about surge of joint default probability and plunge of conditional odds ratio difference
as η tends to large value, as well as the result that firm B’s contagion effect is more significant
than firm A due to their difference of pre-default intensities.

Finally, we perform some experiments for various level of correlation between pre-default in-
tensities ranging from 0 to 1, including the benchmark case. Besides assuming αA = βB = 0.2,
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Figure 7: Impact of contagion on conditional odds ratios: illustration of joint prob. as function
of η.
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Figure 8: Impact of contagion on joint default probability of A and B: illustration of joint prob.
as function of η.

αB = βA = 0.8 as in the benchmark situation, which results in a five year mean correlation coef-
ficient of 0.7922, we consider an alternative situation where αA = βB = 0.1, αB = βA = 0.9 im-
plying a five year mean correlation coefficient 0.4805. Moreover, we include two extreme circum-
stance where pre-default intensities are perfectly correlated, i.e. αA = βB = αB = βA = 0.5,
and are mutually independent with αA = βB = 1, αB = βA = 0. Throughout this experi-
ment, we assume contagion is present as benchmark case. Figure 10 presents our experiments
results. It is obvious from Figure 10(a) that joint PD curves are bounded by the perfectly
correlated case and one of the completely independent case. The five year PD of independent
case is 0.0344, while the value of perfectly correlated case is 0.0400, increasing by percentage
16.28%. The above four pieces of curve in Figure 10(b) represent sum of Gammas, while the
below four pieces of curve represent conditional odds ratio differences for the four situation.
Influence of correlation on sum of Gammas is straightforward from this figure that smaller cor-
relation coefficient implies larger sum. This can be explained similarly as the experiment result
of analyzing impact of large η’s on Gammas. Nonetheless, weighted Lambdas are no longer
independent from correlation coefficient, and this results in a humped pattern of conditional
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Figure 9: Impact of contagion on joint default probability of A and B: illustration of difference
between sums of (weighted) conditional odds ratios as function of η.
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(b) For conditional odds ratios difference.

Figure 10: Impact of correlation between pre-default intensities a0
t and b0

t on joint default
probability and conditional odds ratios difference.

odds ratio difference on pre-default intensities’ correlation. For the independent case, smallest
difference is detected. When increasing correlation from 0 to 0.4805, the difference increases
to a maximum value. When correlation continue growing to 0.7922 and to 1, the difference
decreases accordingly. However, the overall influence on the difference conditional odds ratio is
subtle.

7 Conclusion

This paper studies survival measures in credit risk models. Unlike survival measures in
literature, we consider survival measure in ”HBPR” model, which means that default time is
characterized by Cox construction, and studies the relevant drift changes and martingale rep-
resentations. This paper also takes advantage of survival measure to solve the looping default
problem in interacting intensity model with stochastic intensities. Guaranteed debt is priced
under this model, as an application of survival measure and interacting intensity model. De-
fault intensities are modeled as affine function of CIR state variables, and analytical formula
for value of two-way guaranty for a two firm portfolio is attained. This paper also performs a
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series of numerical experiments to study influence of stochastic pre-default intensities and con-
tagion from interacting intensities model on marginal/joint probabilities and value of two-way
guaranty. Our results show that correlation from pre-default intensities, through commonly de-
pendence of two independent CIR latent variables, accounts for significant part of joint default
probability, especially for the circumstance of no firm has defaulted yet. This is more realistic in
the sense that it considers default dependence other than direct contagion. However, influence
of different level of correlation coefficient on value of two-way guaranty is subtle. Our tests
about contagion parameter show that contagion increases marginal probabilities significantly,
while increases joint default probability in a larger percentage. In the circumstance of modest
contagion parameter, mitigation benefit of guaranty is greater than contagion risk (loss) in a
reasonable distance. As contagion parameter increases, joint default probabilities grows accord-
ingly, and deduces mitigation benefit gradually. When contagion parameter is large enough,
mitigation benefit is completely offset, and even incurs a net loss to guaranteed debt portfolio.
Relatively high sensitivity of our model with respect to contagion parameter η emphasizes the
key role of η for practical application. By carefully estimating η from firm’s data, banks can use
our formula to determine whether a two-way guaranty is appropriate. Estimation and analysis
of factors that affect η will be performed in the subsequent work.

Appendix

A Bayesian Formula and Girsanov’s Theorem

Suppose Zt is a non-negative (G, Q)-martingale. Define an absolutely continuous measure
change through the following Randon-Nikodym density process as

dP

dQ
|Gt

= Zt ≥ 0, ∀t > 0

Then measure changed conditional expectation and semimartingale representation can be
given as

Bayesian Formula: Denote Ḡ = {Ḡt} as augmentation of original filtration G by the null
sets of the probability measure P. Then

EQ [Z∞ · H|Gt] = Zt · EP
[

H|Ḡt

]

, ∀H ∈ G∞

Girsanov’s Theorem: For any (G, Q)-martingale mt, the following defined m̄t is (Ḡ, P)-
martingale

m̄t = mt −
∫ t

0

1

Zs−
d〈Z, m〉s, ∀t ≥ 0

This is equivalent to saying that any (G, Q)-martingale mt can be represented as a (Ḡ, P)-
semimartingale

mt = m̄t +

∫ t

0

1

Zs−
d〈Z, m〉s, ∀t ≥ 0
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B Analytical Solution of Affine Model

Proof of Lemma 3: We need to prove the expression of NX(t, T ;α), i.e. we have to derive
the expression of EX(t, T ;α) and FX(t, T ;α). First, we note that

PX(t, T ;α) = E

[

exp

{

−
∫ T

t

αXsds

}
∣

∣

∣

∣

∣

Ft

]

= AX(t, T ;α)e−BX(t,T ;α)·αXt

Therefore, we have

NX(t, T ;α) = E

[

∫ T

t

Xsds · exp

{

−
∫ T

t

αXsds

}∣

∣

∣

∣

∣

Ft

]

= −∂αPX(t, T ;α)

=

[−∂αAX(t, T ;α)

AX(t, T ;α)
+ [∂α [BX(t, T ;α)]α + BX(t, T ;α)]Xt

]

PX(t, T ;α)

Due to some complex calculation, we attain derivatives of AX(t, T ;α) and BX(t, T ;α) with
respect to α as

∂αAX(t, T ;α)

AX(t, T ;α)
=

κθ

h2

{

2κ
[

e(T−t)h − 1
]

− h(T − t)
[

2κ + (κ + h)
[

e(T−t)h − 1
]]}

2h + (κ + h)
[

e(T−t)h − 1
]

and

∂αBX(t, T ;α) =
2σ2

h

[

2he(T−t)h(T − t) − e2(T−t)h + 1
]

(

2h + (κ + h)
[

e(T−t)h − 1
])2

Put these two equations back into −∂αPX(t, T ;α), we conclude the analytical expression of
NX(t, T ;α) as in equation (5.36).
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