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Abstract

This study develops an R&D-based growth model with basic and
applied research to analyze the growth and welfare e¤ects of two patent
instruments (a) the patentability of basic R&D and (b) the division
of pro�t between basic and applied researchers. We �nd that for the
purpose of stimulating basic R&D and economic growth simultane-
ously, increasing the share of pro�t assigned to basic researchers is
more e¤ective than raising the patentability of basic R&D, which
has either a negative e¤ect or an inverted-U e¤ect on technological
progress. Nonetheless, a benevolent patent authority requires both
patent instruments to achieve the socially optimal allocation in the
decentralized economy.
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"Our ambition to build a knowledge-based society and a Eu-
ropean Research Area requires a strong science base and high
quality human capital. Basic research is the answer to both de-
mands. Today�s fundamental research will turn into tomorrow�s
growth, competitiveness and better quality of life. The US has
understood this. The EU is still lagging behind. Ours is a wake-
up call: we need to act now to reverse this situation and �ll the
gap." European Research Commissioner Philippe Busquin.1

1 Introduction

Basic (or fundamental) research is an important part of the innovation process
by expanding the frontier of human knowledge. However, unlike applied re-
search, it may not lead to immediate marketable applications. Therefore,
basic research is often underprovided and has to be funded by the public
sector. Given the importance of basic R&D, the European Research Coun-
cil was o¢cially launched in 2007 as the �rst European funding body to
support and promote fundamental research. An important policy lever for
incentivizing basic research is the patentability of basic R&D. For example,
the European Union directive on biotechnological patents (passed in 1998
and implemented by all of the 27 EU member states by the end of 2006) has
increased the patentability of biotechnological inventions in Europe. This
directive provides that "inventions ... shall be patentable even if they con-
cern a product consisting of or containing biological material or a process
by means of which biological material is produced, processed or used" and
that "biological material which is isolated from its natural environment or
produced by means of a technical process may be the subject of an invention
even if it previously occurred in nature." In other words, biological material
could be patentable in Europe as a result of this directive. As for the US,
in the court case of Diamond vs. Chakrabarty of 1980, the Supreme Court
ruled that genetically modi�ed organisms could be patentable.
Another important example of patentability of basic R&D is the Bayh-

Dole Act or University and Small Business Patent Procedures Act of 1980.

1European Research Commission�s press release "Commission calls for a boost in basic
research." January 15, 2004.
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As a result of this Act, universities in the US are granted the right to patent
and license the results of federal government funded research. In a com-
prehensive review of the Bayh-Dole Act, Mowery et al. (2004) argue that
although this Act is one of the several key factors that contributed to the
signi�cant increase in patenting and licensing of university inventions, many
of the historical contributions from universities to industrial innovation took
place without patenting. Furthermore, when universities patent their inven-
tions, other researchers are restricted from using these basic research outputs
until the patents expire. Therefore, Mowery et al. (2004) conclude that it
is important for universities to recommit to the free �ow of knowledge that
has historically enhanced industrial innovation. However, most OECD coun-
tries currently give universities the right to patent their government-funded
inventions (OECD 2002).
In this study, we develop an R&D-based growth model with basic and

applied research to analyze how the patentability of basic R&D a¤ects eco-
nomic growth and social welfare. On the one hand, we �nd that increas-
ing the patentability of basic R&D increases patented basic inventions that
contribute to economic growth as the conventional argument suggests. On
the other hand, it reduces knowledge spillovers because more basic research
outputs are patented and hence not accessible by other researchers. Given
these opposing e¤ects, we �nd that patentability of basic R&D may have
an inverted-U e¤ect on technological progress.2 The intuition behind this
non-monotonic e¤ect is based on the tradeo¤ between patent protection and
knowledge spillovers. Putting it simply, increasing the patentability of ba-
sic R&D increases patented basic inventions that contribute to economic
growth; however, this policy change also decreases the accumulation of what
we call �pure knowledge,� which is freely available to all researchers. Our
analysis reveals that these two opposite forces interact with each other to
potentially generate a non-monotonic relationship between patent protection
for basic inventions and technological progress. Furthermore, we �nd that
patentability of basic R&D has a monotonically negative e¤ect on economic
growth when knowledge spillovers depend only on pure knowledge (but not
on patented basic inventions). Intuitively, an increase in the patentability of

2Recently, Qian (2007) and Lerner (2009) reported novel empirical evidence that en-
hancing intellectual property rights protection reduces innovation activities when the pro-
tection is already strong. This suggests that the relationship between patent protection
and innovation follows an inverted-U shape. See Furukawa (2010) for a review on theoret-
ical models.
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basic R&D generates a negative e¤ect on the accumulation of pure knowl-
edge as expected and an additional surprising negative crowding-out e¤ect
on basic R&D. This crowding-out e¤ect on basic R&D occurs because raising
the patentability of basic R&D increases the stock of industrially applicable
basic inventions, which in turn improves the incentives for applied R&D by
so much that basic R&D falls. Therefore, patentability of basic R&D may
not be an ideal policy instrument for stimulating basic research.
In addition to the patentability of basic R&D, we also consider a second

related patent instrument that is the division of pro�t between basic and
applied researchers.3 We show that unlike the patentability of basic R&D,
the share of pro�t assigned to basic researchers has a monotonically positive
e¤ect on the equilibrium growth rate. Intuitively, strengthening the bar-
gaining power of basic researchers stimulates basic R&D without sti�ing the
spillover e¤ects of pure knowledge while increasing the patentability of basic
R&D reduces spillovers from pure knowledge. Therefore, strengthening the
bargaining power of basic researchers relative to applied researchers may be
a superior policy instrument in achieving the dual objectives of stimulating
basic R&D and economic growth. However, characterizing the optimal co-
ordination of the two patent instruments, we �nd that a benevolent patent
authority requires both patent instruments to achieve the socially optimal
allocation in the decentralized economy.
Our study relates to the R&D-based growth literature.4 This literature

emphasizes two fundamental factors for endogenous technological progress.
First, the patent institution matters. Without su¢cient patent protection,
investors would have insu¢cient incentives to invest resources in R&D ac-
tivities due to the public nature of knowledge. Another essence is the wide-
spread spillover of knowledge, which plays the critical role as a source of
long-run economic growth. An inevitable tradeo¤ emerges between patent
protection and knowledge spillovers. Patent protection encourages private
incentives for innovation but also limits the wide-spread use of patented in-
ventions. This latter e¤ect weakens knowledge spillovers from pure knowl-

3This pro�t-division rule can be interpreted as the outcome of a bargaining game, in
which the relative bargaining power of the basic and applied researchers is in�uenced by
the relative strength of patent protection on the basic and applied inventions. Therefore,
it is not unrealistic to treat the pro�t-division rule as a patent policy lever.

4See Romer (1990), Segerstrom et al. (1990), Grossman and Helpman (1991) and
Aghion and Howitt (1992) for seminal studies and also Jones (2005) for a comprehensive
review of this literature.
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edge. Although patent protection and knowledge spillovers are fundamental
for long-run technological progress, there hasn�t been much analysis on their
tradeo¤ in the context of an R&D-based growth model. We �ll this gap in
the literature by explicitly analyzing this tradeo¤ in an endogenous growth
model with basic and applied R&D.
Our study also relates to the literature on optimal patent design for which

Nordhaus (1969) provides the seminal analysis on optimal patent length.
Scotchmer (2004) provides a comprehensive review on the subsequent de-
velopments in this patent-design literature. While studies in this literature
are mostly based on a partial-equilibrium framework, our study follows more
closely a related macroeconomic literature by providing a dynamic general-
equilibrium (DGE) analysis on patent policy. In the macroeconomic litera-
ture on patent policy, the seminal DGE analysis on optimal patent length is
Judd (1985), who shows that the optimal patent length can be in�nite. Sub-
sequent studies by Horowitz and Lai (1996), Kwan and Lai (2003), Iwaisako
and Futagami (2003) and Futagami and Iwaisako (2007) show that the op-
timal patent length is �nite in the Romer model. While these studies focus
on patent length, other studies analyze the growth and welfare e¤ects of
other patent instruments in R&D-based growth models. See, for example,
Cozzi (2001) and Cozzi and Spinesi (2006) on intellectual appropriability, Li
(2001) on patent breadth, O�Donoghue and Zweimuller (2004) on forward
patent protection and patentability requirement, Furukawa (2007, 2010) and
Horii and Iwaisako (2007) on patent protection against imitation, and Chu
(2009) on blocking patents. The present paper complements these studies
by analyzing the optimal coordination of multiple patent instruments, which
is often neglected in this literature, in an R&D-based growth model with
multiple research sectors.5

The rest of this study is organized as follows. Section 2 sets up the model.
Section 3 analyzes the e¤ects of patent policies on economic growth and social
welfare. The �nal section concludes.

5See also Chu (2010) for a quantitative analysis on uniform versus sector-speci�c opti-
mal patent breadth in a two-sector quality-ladder growth model.
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2 An R&D-based growth model with basic

and applied R&D

In this section, we extend the seminal R&D-based growth model in Romer
(1990) and Rivera-Batiz and Romer (1991) by introducing two types of inno-
vative activities, basic R&D and applied R&D.6 To model the patentability of
basic R&D, we assume that some basic research outputs are patentable while
others are not. The probability that a basic research output is patentable cap-
tures the degree of patentability of basic R&D. A basic invention that is not
patented becomes pure knowledge, which is freely available to all researchers.
A patented basic invention is eventually matched with an applied invention
subject to a stochastic process. After this match occurs, the matched inven-
tions generate monopolistic pro�ts, and the pro�ts are shared between the
basic and applied researchers subject to a pro�t-division rule. For simplicity,
we assume that patent length is in�nite as in the seminal Romer model.

2.1 The basic setup

Consider a continuous-time model, in which there is an in�nitely lived rep-
resentative household. As in Aghion and Howitt (1996), the household in-
elastically supplies L units of unskilled labor and H units of skilled labor
at each date t. Unskilled and skilled labors are used for manufacturing and
R&D respectively. The household is endowed with a standard log utility
function U =

R
1

0
e��t lnCtdt; where � > 0 is the discount rate and Ct is the

consumption of �nal goods at date t: Final goods are used for consumption
only. Given Ct as the numeraire, standard dynamic optimization yields the

familiar Euler equation given by
:

Ct=Ct = rt��, where rt is the interest rate.
Consumption goods are produced by a standard CES (constant elasticity of
substitution) aggregator over a continuum of patented intermediate goods

6See Aghion and Howitt (1996) for a seminal growth model with basic and applied R&D.
Our model is also related to Michelacci (2003), who explicitly distinguishes between R&D
and entrepreneurship as two types of innovative activities in a quality-ladder setting. See
also Akiyama (2009) and Cozzi and Galli (2009a). However, these studies do not consider
the patentability of basic R&D or the knowledge spillovers of pure knowledge.
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Xt(i) distributed on [0; Nt].

Ct =

�Z Nt

0

Xt(i)
"�1
" di

� "
"�1

, (1)

where Nt is the number of intermediate goods (or industries) and " > 1 is the
elasticity of substitution. Consumption goods �rms are perfectly competitive.
Each variety of intermediate goods is monopolistically manufactured by

a monopolistic producer who holds the patents on the manufacturing tech-
nology for intermediate goods i: Each unit of intermediate goods is produced
with one unit of unskilled labor; therefore, the marginal cost is equal to
the wage rate of unskilled labor wut . The monopolistic price for patented
intermediate goods i is equal to ["= ("� 1)]wut . From pro�t maximization
of consumption goods �rms, the conditional demand and pro�t functions of
intermediate goods are as follows.

Xt(i) =

�
"� 1

"

�
Ct
wutNt

� Xt, �t(i) =
Ct
"Nt

� �t. (2)

An industrial monopolist i holds the patents on the manufacturing technology
of product i and produces Xt(i) = Xt units of intermediate goods earning
pro�t �t(i) = �t at each date t. The value of being the monopolist in
industry i is Vt(i) =

R
1

t
e�(R��Rt)��d� � Vt, where R� =

R �
0
rsds is the

cumulative interest rates up to date � .

2.2 Patented basic inventions and pure knowledge

The economy grows endogenously due to two forms of technological progress.
The �rst growth engine is the accumulation of patented inventions. As
mentioned above, an industrial monopolist i holds the two patents of well-
matched basic and applied inventions. A basic invention is a preliminary
idea, which cannot bear any pro�t by itself but may establish the basis for
a future invention that generates pro�ts by introducing a new variety of in-
termediate goods. We call such a pro�table invention an applied invention.
When an applied invention is developed on a patented basic invention that
previously has not been matched, a new industry is introduced into the in-
termediate goods market by the industrial monopolist holding the patents of
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basic and applied inventions. This process of patented inventions continu-
ously occurs and contributes towards the variety Nt of intermediate goods in
(1). The productivity of consumption goods �rms thus increases over time.
The second engine of technological progress is the accumulation of �pure

knowledge.� We introduce pure knowledge into the model as a by-product of
basic research activity in the following manner. With our consideration on
the patentability of basic R&D, some basic inventions are randomly chosen
to be patentable by the patent institution while others are not patentable.
Formally, each newly developed basic invention is patentable with probability
�. An unpatented basic invention contributes to pure knowledge that is freely
available to all researchers, consequently having a knowledge spillover e¤ect
on R&D activity as in the knowledge-driven growth model of Romer (1990)
and Rivera-Batiz and Romer (1991). Here we assume that applied inventions
must be derived from patented basic inventions because any applied invention
that is derived from public pure knowledge is not patentable.
Current research productivity depends on both patented basic inventions

and pure knowledge. Denote by Kt the cumulative number of unpatented
basic inventions that have been accumulated as of date t: This Kt repre-
sents the stock of pure knowledge in the economy at date t. In this setting,
we intend to di¤erentiate between pure knowledge and patented inventions
in their external spillover e¤ects. To do so, we assume that the knowledge
spillover e¤ect is a function of the stocks of pure knowledge and patented in-
ventions, but these two inputs are not perfectly substitutable.7 Furthermore,
we consider two special cases in which the spillover e¤ect depends only on
either pure knowledge or patented basic inventions.

7It is useful to consider an alternative but related interpretation on �. If we think
of � as a technological parameter instead of a policy instrument, � could be interpreted
as the share of basic inventions that are industrially applicable. These basic inventions
are naturally granted a patent. The remaining share 1 � � of basic inventions is pure
research output, such as a mathematical theorem. Under this interpretation, it is natural
that applied inventions are developed only on patented (i.e., industrially applicable) basic
inventions and that the stocks of pure knowledge and patented inventions are not perfectly
substitutable. Also, we can relate this interpretation to the patentability of basic R&D.
Increasing the patentability of basic R&D signi�cantly encourages patenting of university
inventions (Mowery et al. 2004), resulting into an increase in the share of industrially
applicable basic inventions. Therefore, increasing the patentability of basic R&D can also
be captured by an increase in � under this alternative interpretation.
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2.3 Basic and applied R&D

As mentioned above, the economy grows as the two factors of technological
progress, Nt and Kt, accumulate. The two factors increase as basic inven-
tions are developed and then industrially applied. In this section, we explain
how inventions are made and applied to industries and how inventions in-
crease pure knowledge of the economy. There are in�nitely many potential
researchers. Potential researchers can make both basic and applied inven-
tions. Denote by Bt the cumulative number (stock) of total basic inventions.
The stock of basic inventions Bt increases due to basic research activity by
researchers. The accumulation of Bt gradually increases the two growth fac-
tors, Nt and Kt, through the three stages of research to be described below.

2.3.1 Stage I (Patented basic inventions and pure knowledge)

When a potential researcher invests b=S (Kt; Bt �Kt) units of skilled labor
in basic research, she can develop a basic invention j without any risk of
failure. In this setting, the spillover function S(:) captures the extent to
which the stocks of pure knowledge Kt and patented basic inventions Bt�Kt

a¤ect research productivity through knowledge spillovers. We adopt a simple
Cobb-Douglas functional form for the spillover function S (Kt; Bt �Kt) =
K 
t (Bt �Kt)

1� ,8 where  2 [0; 1] is a factor share parameter that controls
how pure knowledge Kt a¤ects the magnitude of knowledge spillovers.  2
f0; 1g captures the special cases in which the spillover e¤ect depends only on
either patented basic inventions Bt �Kt or pure knowledge Kt.
Each newly developed basic invention is judged as patentable with prob-

ability � 2 (0; 1), and basic inventions that are not patented become pure

knowledge. Thus, at date t, �
:

Bt units of patentable basic inventions and

(1 � �)
:

Bt units of pure knowledge are introduced. We can describe the
evolution of pure knowledge as

:

Kt = (1� �)
:

Bt. (3)

Denote Zt as the market value of a basic invention that is patentable. Free

8It is useful to note that our results are robust to generalizing the spillover function to
a CES form. For simplicity, we focus on the Cobb-Douglas spillover function in this study.

9



entry guarantees the following no-arbitrage condition in equilibrium.

�Zt =
bwst

S (Kt; Bt �Kt)
, (4)

where wst denotes the wage rate of skilled labor at date t.

2.3.2 Stage II (Basic inventions waiting for applied inventions)

Basic inventions that are patentable at date t, with size �
:

Bt; immediately
go to a waiting pool of patented inventions, where patented basic inventions
(that have not been industrially applied) await for applied inventions. Denote
Wt as the pool of patented basic inventions waiting for industrial applications.

The in�ow to the waiting pool is �
:

Bt, and the out�ow is the number of

applied inventions
:

N t that are recently matched with basic inventions in the
waiting pool. Then, we have

:

W t = �
:

Bt �
:

N t. (5)

2.3.3 Stage III (Basic inventions becoming industrially applied)

We now turn to applied research activities. Applied researchers make applied
inventions that can be matched with basic inventions in the waiting pool.
As a result of a successful match, a new industry is introduced into the
intermediate goods sector increasing Nt. When an applied researcher invests
�ta=S (Kt; Bt �Kt) units of skilled labor in matching with basic invention
j, she can develop an applied invention that is well matched with the basic
invention with probability �t. At the aggregate level, it holds that

:

N t = �tWt. (6)

In other words, a fraction �t of the waiting basic inventions Wt becomes
industrially applied at date t.
Once basic and applied inventions are matched, the patent holders of

these inventions can earn and share the �nal market value Vt. This value
Vt is shared between the patent holders of basic and applied inventions ac-
cording to a pro�t-division rule s 2 (0; 1). The basic invention takes sVt and
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the applied invention takes (1� s)Vt. Then, we can describe the free-entry
condition to applied R&D as

(1� s)Vt =
awst

S (Kt; Bt �Kt)
. (7)

Recall that the patent holder of a basic invention takes sVt, earning a net
value sVt � Zt. Therefore, the market value Zt of a patented basic invention
satis�es the following no-arbitrage condition.

rtZt =
:

Zt + �t (sVt � Zt) . (8)

The �nal value of an invention Vt (i.e., the value of a pair of matched basic
and applied inventions) follows the familiar Bellman equation.

rtVt = �t +
:

V t. (9)

Through the above three stages, basic and applied R&D governs techno-
logical progress and economic growth. There are two roles of basic inventions
in technological progress. One is the role to increase the stock of pure knowl-
edge Kt in the �rst stage. The other is the role to increase the number
of industrially applicable basic inventions Wt and eventually the variety of
intermediate goods Nt. These two roles interact with each other to drive
technological progress and economic growth.

2.4 Market equilibrium

The stock of total basic inventions Bt can be divided into three parts as
follows.

Bt = Kt +Wt +Nt. (10)

This equation states that the stock of basic inventions Bt is divided into pure
knowledge Kt, patented basic inventions Wt that have not been industrially
applied, and patented basic inventions Nt that have been industrially ap-
plied. We now close the model by considering the labor market equilibrium
conditions.

L = NtXt (11)
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for unskilled labor, and

1 = HA;t +HB;t =
a
:

N t

S (Kt; Bt �Kt)
+

b
:

Bt

S (Kt; Bt �Kt)
(12)

for skilled labor. Here we normalize the total supply of skilled labor to unity.
The left-hand side of (12) is the total supply of skilled labor and the right-
hand side is the total demand for skilled labor from applied research and
basic research, respectively.
From (2)�(12), we can completely characterize the equilibrium dynamics

of our model. Before proceeding, we de�ne a balanced growth path in our
model. On the balanced growth path, variables for cumulative inventions
Bt, Kt, Nt, and Wt grow at a constant rate g

�, which we call the equilibrium
growth rate of technology, and the balanced growth rate of consumption is
equal to _Ct=Ct = g�c = g�=(" � 1). Taking into account the laws of motion
(3), (5) and (6), we have the following steady-state ratios K=B = 1 � �,
N=B = ���=(��+g�) andW=B = �g�=(��+g�) on the balanced-growth path.
Using these ratios and (12), the equilibrium growth rate of technology is

g� =

:

Bt

Bt

= (1� �) (�)1� 
�
H�

B

b

�
, (13)

where H�

B 2 (0; 1) is the equilibrium amount of high-skill labor allocated to
basic R&D. Similarly, the equilibrium arrival rate �� of applied inventions is

�� =
_Nt

Wt

=
S (Kt; Bt �Kt) =Bt

Wt=Bt

�
H�

A

a

�
=

�
1� �

�

� �
�� + g�

g�

��
H�

A

a

�
,

(14)
where H�

A is the equilibrium amount of high-skill labor allocated to applied
R&D.
Equating (4) and (7) yields a no-arbitrage condition between basic and

applied R&D given by (1� s)Vt=a = �Zt=b. Imposing the balanced-growth
condition on (8) yields Zt = sVt�

�=(�� + r� � g�z), where r
� = �+ g�c from the

Euler equation and g�z = g�c � g� from (2). Combining these two conditions
yields

b

a

�
1� s

s

�
1

�
=

��

�� + �+ g�
. (15)

This condition along with 1 = H�

A +H�

B, (13) and (14) solves the model. In
the following analysis, we restrict attention to the feasible region of � given
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by � 2 (�L; 1), where �L � (b=a) (1� s) =s. Given �� > 0 and g� > 0, the
right hand side of (15) is less than one. Therefore, � > �L must hold in
order for the left-hand side of (15) to be also less than one. Then we have
the following theorem. A formal proof is relegated to Appendix A.

Theorem 1 If � is su¢ciently small, the economy converges to a unique
balanced growth path that is locally stable. On the balanced growth path, the
equilibrium growth rate g� of technology is positive and determined by the
following condition.

(1� �) (�)1� =b� g�

�+ g�
=

� (1� s) g�

�sg� + � (1� s) b=a
. (16)

Equation (16) is a quadratic equation for which the solution is quite
complicated.9 Therefore, we will analyze (16) in the next section. However,
it is useful to �rst consider a limiting case of g� given by � approaching zero.

lim
�!0

g� = (1� �) (�)1� 
�s
b

�
. (17)

This special case previews our results that the growth rate g� is a strictly
increasing function in the share s of pro�t assigned to basic R&D and a
potentially inverted-U function in patentability �.10 From the above expres-
sion, it may seem that the non-monotonic e¤ect of � on g� is entirely built-in
through the spillover function because lim�!0H

�

B = s is independent of �.
However, this is not true in the general case of � > 0. In the case of � > 0,
patentability � has both positive and negative e¤ects on the equilibrium allo-
cation of H�

B(s; �). The positive e¤ect of � onH
�

B arises from the direct e¤ect
of raising the patentability of basic inventions that increases the incentives
for basic R&D. The negative e¤ect of � on H�

B arises from an indirect e¤ect
of patentability � that increases applied R&D by so much that it crowds out
basic R&D through the resource constraint on skilled labor. Intuitively, there
is a positive e¤ect of � on applied R&D H�

A because a larger � increases the

9See Appendix A for an explicit solution of g�.
10To be more precise, lim�!0 g

� is an inverted-U function within the feasible range of
� if and only if 0 <  < 1� �L. If  � 1� �L, then lim�!0 g

� would be a monotonically
decreasing function in � 2 (�L; 1). If  = 0, then lim�!0 g

� would be a monotonically
increasing function in �.
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waiting pool of industrially applicable basic inventions. For a given arrival
rate of applied inventions, a larger waiting pool requires more applied R&D,
which in turn crowds out basic R&D. When the discount rate � approaches
zero, this negative crowding-out e¤ect and the positive incentive e¤ect can-
cel each other. When � is strictly positive, it is the interaction between
these general-equilibrium e¤ects and the spillover function that drives our
results in the next section. Finally, H�

B(s; �) continues to be a monotonically
increasing function in s when � > 0.

3 E¤ects of patent instruments

In the previous section, we have developed an R&D-based growth model with
basic and applied research as well as characterizing the dynamic behavior of
the model (Theorem 1). In this section, we investigate how the patentability
of basic R&D and the division of pro�t between basic and applied researchers
a¤ect economic growth.
Patentability � of basic R&D has four e¤ects on technological progress.

First, it increases patented basic inventions by raising the probability that
a basic invention is patentable. Second, increasing patentability � reduces
knowledge spillovers from pure knowledge. Finally, increasing patentability
� has the positive incentive e¤ect and the negative crowding-out e¤ect on
basic R&D H�

B as described in the previous section. The following proposi-
tion is our �rst key result, which demonstrates that the e¤ect of raising the
patentability � of basic R&D on the equilibrium growth rate g� is generally
non-monotonic except when  is either su¢ciently large or equal to zero.
When  is su¢ciently large, g� is monotonically decreasing in �. In the un-
likely case that the spillover function is independent of pure knowledge (i.e.,
 = 0), g� is monotonically increasing in �.

Proposition 1 If  � 1 � �L, then g� is monotonically decreasing in �
for � 2 (�L; 1). If 0 <  � s � (1 � s)b=a,11 then g� is �rstly increas-
ing and eventually decreasing in the patentability � of basic R&D; therefore,
the relationship between g� and � is non-monotonic. If  = 0, then g� is
monotonically increasing in �.

11It is useful to note that  � s � (1 � s)b=a can be re-expressed as  � s(1 � �L),
which is a su¢cient condition for  < 1� �L given s 2 (0; 1).
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Proof. In (16), the left-hand side (LHS) is decreasing in g while the right-
hand side (RHS) is increasing in g. Furthermore, RHS is increasing in �.
Therefore, if LHS is weakly decreasing in �, then the equilibrium growth
rate g� must be decreasing in �. The necessary and su¢cient condition for
RHS to be weakly decreasing in � is  � 1��. In other words, if  � 1��L,
then g� is monotonically decreasing in � for � 2 (�L; 1). Taking the total
di¤erentials with respect to g� and � in (16) yields

dg�

d�
=

[g�� [�=(1��)]1� =b]=[�2(g�+�)]+s(1�s)(g�)2=[s�g�+�(1�s)b=a]2

�(1�s)2b=[a(s�g�+�(1�s)b=a)2]+[�=�+(1=��1) =b]=(g�+�)2
.

As �! �L = (b=a) (1� s) =s, g� ! (1� s) [(a=b)s=(1�s)�1] =a. Therefore,

lim
�!�L

dg�

d�
=

[s�(1�s)b=a� ][�=(1��)]1� =[b�2(g�+�)]+s(1�s)(g�)2=[s�g�+�(1�s)b=a]2

�(1�s)2b=[a(s�g�+�(1�s)b=a)2]+[�=�+(1=��1) =b]=(g�+�)2 > 0,

in which the inequality holds if  � s � (1 � s)b=a. Furthermore, we know
that so long as  > 0, lim�!1 dg

�=d� < 0. Therefore, g� must be a non-
monotonic function in � if 0 <  � s � (1 � s)b=a. Finally, if  = 0, then
dg�=d� > 0.

In addition to the analytical result in Proposition 1, we have also con-
ducted a large number of numerical simulations, and the only non-linear
con�guration that we �nd is an inverted U. These results explain the pros
and cons of increasing the patentability of basic R&D. As mentioned above,
increasing the patentability of basic research has the following e¤ects on g�.
First, it increases the probability that a basic invention is patentable. As
a result, the size of the waiting pool Wt increases leading to a larger num-

ber of matched invention pairs Nt. It can be shown that
@
@�

�
Wt

Bt

�
> 0 and

@
@�

�
Nt
Bt

�
> 0 hold on the balanced growth path.12 This positive e¤ect of

patentability � on technological progress is re�ected in the upward sloping
part of the inverted U unless  is su¢ciently large. If  � 1 � �L, then
the equilibrium growth rate is monotonically decreasing in � because the re-
maining positive incentive e¤ect of � is dominated by its negative e¤ects on
pure knowledge spillovers and the crowding out of basic R&D.
A negative e¤ect of � on g� emerges from the externality of pure knowl-

edge. Raising the patentability of basic inventions reduces the accumulation

12See Appendix A for the derivations.
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of pure knowledge. Recall that the cumulative stock of pure knowledge Kt

has a spillover e¤ect on research productivity. Therefore, the degree of knowl-
edge spillovers from pure knowledge decreases with �. It can be shown that
@
@�

�
Kt
Bt

�
< 0 holds on the balanced growth path. Because the knowledge

spillover e¤ect is a fundamental source of long-run growth (see for example
Romer (1990) and Rivera-Batiz and Romer (1991)), the decrease in knowl-
edge spillovers slows down economic growth. This negative e¤ect of � on
economic growth is re�ected in the downward sloping part of the inverted U
unless  is equal to zero. When  = 0, the equilibrium growth rate becomes
monotonically increasing in � because the remaining negative crowding-out
e¤ect of � is dominated by its positive e¤ects on patented basic inventions
and the incentives for basic R&D.
Next we consider the pro�t-division rule s as an alternative patent instru-

ment. The pro�t-division rule s controls the capital gain that is received by
basic researchers, sVt�Zt, whereas the patentability parameter � a¤ects the
initial expected return on basic research, �Zt. We may interpret an increase
in s as a strengthening of patent protection for basic R&D relative to that
of applied R&D.13

Proposition 2 The relationship between the pro�t share s of basic R&D and
the technology growth rate g� is monotonically positive.

Proof. Recall that the LHS of (16) is decreasing in g while the RHS is in-
creasing in g. Furthermore, RHS is decreasing in s and LHS is independent
of s. Therefore, the equilibrium growth rate g� must be increasing in s.

Proposition 2 shows that the growth rate is an increasing function in
the pro�t share s of basic research. Intuitively, the growth rate of Bt is
determined by basic R&D H�

B, which in turn is strictly increasing in s. Fur-
thermore, on the balanced-growth path, the growth rate of Nt is equal to
the growth rate of Bt. Although increasing s reduces the equilibrium arrival
rate �� of applied inventions, this reduction in �� does not a¤ect the growth
rate but only the steady-state ratio of N=B, which has a level e¤ect on so-
cial welfare as shown in the next section. Therefore, strengthening patent

13See also Cozzi and Galli (2009b) for an interesting analysis of pro�t division between
basic and applied R&D on wage inequality and human-capital accumulation in a quality-
ladder model.
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protection for basic R&D relative to applied R&D results in a faster growth
rate. Because s < 1, there does not exist an interior growth-maximizing
pro�t-division rule.
The drastically di¤erent growth e¤ects of the two patent instruments

arise for the following reasons. Strengthening patent protection for basic
R&D via the pro�t-division rule stimulates basic R&D without sti�ing the
spillover e¤ects of pure knowledge. However, increasing the patentability of
basic R&D eventually decreases basic research due to a crowding-out e¤ect
on skilled labor and also reduces the spillover e¤ect from pure knowledge.

3.1 Optimal coordination of patent instruments

Propositions 1 and 2 reveal that the two patent instruments, the patentabil-
ity � of basic R&D and the pro�t-division rule s, are useful policy levers for
controlling the equilibrium growth rate in the decentralized economy. In this
section, we demonstrate that the steady-state welfare-maximizing allocation
can be achieved in the decentralized economy only if both patent instruments
are present. Therefore, although the pro�t-division rule may be more e¤ec-
tive than the patentability of basic R&D in stimulating basic research and
technological progress simultaneously, a benevolent patent authority requires
both patent instruments in achieving the socially optimal allocation.
Consider a social planner�s problem as follows.14

max
�;HA;HB

U =

Z
1

0

e��t lnCtdt

subject to the resource constraint HA+HB = 1, the laws of motion (3), (5),
and (6) along with _N = aHA=S (Kt; Bt �Kt) and _B = bHB=S (Kt; Bt �Kt).
Imposing symmetry of Xt(i) on (1) yields

Ct =

�Z Nt

0

Xt(i)
"�1
" di

� "
"�1

= (Nt)
"
"�1Xt. (18)

The resource constraint for unskilled labor implies Xt = L=Nt, where L is

the total supply of unskilled labor. Therefore, (18) becomes Ct = (Nt)
1
"�1L.

14In the case of a social planner, it is more appropriate to view 1� � as the fraction of
basic inventions B that the planner chooses as pure knowledge K.
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Taking log yields lnCt = ("� 1)
�1 lnNt + lnL, and the utility of households

on the balanced-growth path becomes

U =
1

�("� 1)

�
lnN0 +

g

�

�
, (19)

where the exogenous L has been dropped. The equilibrium growth rate of
technology in (13) and the equilibrium arrival rate of applied inventions in
(14) hold along the balanced growth path for both the decentralized and
centralized economies. Using (13) and (14), we can re-express N=B as15

N

B
=
(�)1� (1� �) 

g

�
HA

a

�
=
b

a

�
HA

HB

�
� �.

Substituting N=B and g into the utility of households (19) yields

U =
1

�("� 1)

�
ln

�
b

a
B0

�
+ ln

�
HA

HB

�
+
(1� �) (�)1� 

�

�
HB

b

��
, (20)

where B0 is the initial number of basic inventions. The resource constraint
for high-skill labor implies HA = 1 � HB, and N=B � � implies HB �
b=(b+ a�).16

Simple optimization yields the socially optimal ��� given by

��� = 1�  , (21)

where 1�  > �L is assumed. The socially optimal H
��

B is characterized by
the following equation.

HB(1�HB) =
b�

( ) (1�  )1� 
.

This quadratic equation has two solutions. Deriving the second-order condi-
tion, one can easily show that the larger solution is the locally optimal H��

B

given by

H��

B =
1

2

 

1 +

s

1�
4b�

( ) (1�  )1� 

!

. (22)

15It is useful to recall the following steady state ratios (a) K=B = 1 � �, (b) N=B =
���=(�� + g�), and (c) W=B = �g�=(�� + g�).
16When this constraint is violated, the arrival rate � of applied inventions becomes

negative.
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To ensure that this interior optimum is achievable, we naturally assume that

H��

B > b=(b+ a���),

which must hold given a su¢ciently small �. This parameter restriction
simply implies that at HB = H��

B , N=B < ���. To ensure that the locally
optimal H��

B is also the global optimum, we impose the following condition.17

U jHB=H��

B
> U jHB=b=(b+a���).

Finally, by (13), the market equilibrium H�

B in the decentralized economy
can be expressed as

H�

B(s; �) =

 
b

(1� �) (�)1� 

!

g�(s; �), (23)

where the equilibrium growth rate g� satis�es (16). Comparing the optimal
H��

B and the equilibrium H�

B, we can show the following proposition.

Proposition 3 If  < 1 � �L, then the patent authority can achieve the
steady-state welfare-maximizing allocation in the decentralized economy by
using the two patent instruments f�; sg. To do so, the patentability parameter
� is set to its optimal level ��� = 1�  , and the pro�t-division rule s is set
to an intermediate value s�� within the feasible range of s.

Proof. First, set � to the optimal level ��� = 1 �  as in (21). Then, we
show that there exists a feasible value of s = s�� that equates the equilibrium
H�

B to the optimal H
��

B . By (22), the optimal H
��

B 2 (0; 1) is independent of
s while the equilibrium H�

B is strictly increasing in s by Proposition 2. As
s ! 1, it can be shown by using (16) and (23) that H�

B ! 1. Therefore, it
su¢ces to show that as s approaches its lower bound given by b= (b+ a���)
(from ��� > �L), H

�

B approaches a value that is below the optimal H��

B .
As s ! b=(b + a���), it can be shown by using (16) and (23) that H�

B !
b=(b+ a���), which is less than H��

B .

17It can be shown that this equality must hold given a su¢ciently small a.
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4 Conclusion

In this study, we have developed an R&D-based growth model with ba-
sic and applied research to analyze the growth and welfare e¤ects of two
patent instruments (a) the patentability of basic R&D and (b) the divi-
sion of pro�t between basic and applied researchers. We �nd that the
patentability of basic R&D has either a monotonically negative e¤ect or an
inverted-U e¤ect on technological progress. Therefore, although increasing
the patentability of basic R&D may have contributed to economic growth
since the 1980�s with continual technological progress on biotechnology and
information technology, the inverted-U relationship suggests that further in-
creasing the patentability of basic R&D might eventually depress economic
growth. As Mowery et al. (2004) argue, increasing the patentability of basic
R&D makes basic research discoveries less available to researchers result-
ing into a reduction in knowledge spillovers. Furthermore, we �nd that the
equilibrium growth rate is monotonically increasing in the share of pro�t as-
signed to basic researchers. Therefore, strengthening the bargaining power
of basic researchers relative to applied researchers may be a superior policy
lever for achieving the dual objectives of stimulating basic R&D and eco-
nomic growth. Nonetheless, for a benevolent patent authority, both patent
instruments are needed for achieving the socially optimal allocation in the
decentralized economy.
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Appendix A: Proof of Theorem 1

By using the pro�t function in (2) and the free-entry and non-arbitrage
conditions in (4), (7), (8), and (9), and by de�ning ct � Ct=("NtVt), kt �
Kt=Bt, nt � Nt=Bt and ut � Wt=Bt, we obtain

�t

�
as�

b (1� s)
� 1

�
= ct. (24)

Claim 1 Note that � > (b=a)(1� s)=s must hold in order for �t > 0, which
gives rise to the lower bound of � given by �L � (b=a)(1� s)=s.

Since �t = _Nt=Wt by (5),

_Nt

Nt

=
b (1� s)

as�� b (1� s)

utct
nt
. (25)

By using the Euler equation,

_Ct
Ct
�
_Vt
Vt
= ct � � (26)

is also derived. From (3),

_Kt

Kt

= (1� �)
1

kt

:

Bt

Bt

. (27)

From (6),
:

W t

Wt

=
�

ut

:

Bt

Bt

�
nt
ut

_Nt

Nt

. (28)

From (2), (7), (12), and (25), noting the de�nition of the spillover function
S(:),

:

Bt

Bt

=
k t (1� kt)

1� 

b
�

a (1� s) ctut
as�� b (1� s)

. (29)

From (2), (7), and (11), the skill premium is given by

wst
wut

=
(1� s)L

a ("� 1)
k t (1� kt)

1� 1

ctnt
. (30)
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From (24)�(29), the equilibrium dynamical system of our model is given
by

_ct
ct
= ct � ��

_Nt

Nt

, (31)

_kt
kt
=

�
1� �

kt
� 1

� _Bt

Bt

, (32)

_nt
nt
=

b (1� s)

as�� b (1� s)

utct
nt

�
_Bt

Bt

, (33)

and
_ut
ut
=

�
�

ut
� 1

� :

Bt

Bt

�
b (1� s)

as�� b (1� s)
ct, (34)

in which
:

Bt=Bt satis�es (29).
Firstly, steady states of the system are identi�ed in what follows. In a

balanced growth path (BGP), all variables grow at constant rates; speci�-

cally, in our model, _Kt=Kt =
:

Bt=Bt =
:

W t=Wt = _Nt=Nt = _Ct=Ct � _Vt=Vt
holds. Denote by g� the steady-state growth rate of variables Bt; Kt; Nt;
and Wt:

18 Denote the values of (ct; kt; nt; ut) along a BGP by (c
�; k�; n�; u�):

The trivial BGP is excluded by assuming g� > 0; which implies

k� = 1� �, (35)

in which the use has been made of
:

Kt=Kt =
:

Bt=Bt with (27). Noting
:

W t=Wt =
:

Bt=Bt with (28), g
� > 0 also implies

n� = �� u�. (36)

By _Ct=Ct � Vt=Vt = _Nt=Nt, equations (25) and (26) imply

u� =
as�� b (1� s)

b (1� s)

�
1�

�

c�

�
n�. (37)

Cancelling out n� from (36) and (37),

u� = �

�
as�� b (1� s)

b (1� s)

�
1�

�

c�

�� �
1 +

as�� b (1� s)

b (1� s)

�
1�

�

c�

���1
, (38)

18From (1) and (11),
_Ct
Ct
= 1

"�1
g�, which implies

_Vt
Vt
=
�

1

"�1
� 1
�
g�.
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and

n� = �

�
1 +

as�� b (1� s)

b (1� s)

�
1�

�

c�

���1
. (39a)

By _Nt=Nt = _Bt=Bt with (25) and (29),

(k�) (1� k�)1� 

b
=

b (1� s) u�

as�� b (1� s)

�
c�

n�
+
a

b
c�
�
. (40)

Cancelling out c�; k�; and u� from (40), with (35)�(39a) and g� = c� � �
by (26),

(1� �) (�)1� =b� g�

�+ g�
=

� (1� s) g�

�sg� + � (1� s) b=a
.

Because the left-hand side is a strictly decreasing function in g� and the
right-hand side is a strictly increasing function in g�, a unique positive BGP
growth rate g� exists. Because g� > 0 holds, c� > � holds (1 � �=c� > 0).
This ensures the feasible values of the fractions n� and u�: n� 2 (0; 1) and
u� 2 (0; 1) hold by (38) and (39a). The fraction of pure knowledge k� also
satis�es k� 2 (0; 1) by (35).
In what follows, the saddle-path stability of the dynamical system for

(ct; kt; nt; ut) ; (31)�(34), is proved. From (32) and (35), since
_Bt
Bt
> 0 by the

assumption, _kt > 0 holds for all kt < k� and _kt < 0 holds for all kt > k�:
Thus, for any small � > 0; there exists a su¢ciently large T < 1 such
that kt 2 (k

� � �; k� + �) holds for all t � T: Due to the continuity of the
system, it would su¢ce to analyze the stability of the 3�3 dynamical system
omitting _kt where k0 = k�:We consider this abbreviated system omitting _kt:
Using (35)�(40), the log-linearized version of this abbreviated system with
(ĉt; n̂t; ût) =

�
ln ct

c�
; ln nt

n�
; ln ut

u�

�
has the following coe¢cient matrix, M :19

M =

0

@
� g� �g�

g� + � �g� g� + �

�� b(1�s)
as��b(1�s)

g�+�
g�

� b(1�s)(g�+�)
as��b(1�s)

0 �as�g�+b(1�s)�
as��b(1�s)

� � b(1�s)
as��b(1�s)

g�+�
g�

1

A

19We can formally prove that the coe¢cient matrx for the original 4 � 4 linearized
system (including _kt) has the three same eigenvalues as those of the coe¢cient matrix for
the abbreviated 3�3 linearized system (omitting _kt with kt = k�). We can also show that
the remaining one eigenvalue is a multiple root that is equal to �g�; which is negative.
Therefore, since kt is a non-jumpable variable, it su¢ces to verify only the stability of the
abbreviated 3� 3 system in our model.
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where � = a�
b

g�(g�+�)
as�

b(1�s)
g�+�

: We can show that the determinant of M is always

positive.20 The trace of M is negative if � � as�g�+b(1�s)�
as��b(1�s)

< 0 (a su¢cient

condition). This inequality can be re-expressed as g� > �(1� 2�L=�), where
�L � (b=a) (1� s) =s. Solving the quadratic equation in (16) yields

g� =
1

2

0

@�� +

s

�2 + 4

�
1� �

�

� 
(1� s)

�

a

1

A ,

where � � � (1� s) [1+ b=(a�)]� (1� �) (�)1� s=b is a composite parame-
ter. Using this expression, we �nd that g� > �(1�2�L=�) can be re-expressed
as

s (1� �) (�)1� 

(2� s) b
> �(1� 2�L=�).

When this inequality holds, the eigenvalues of M , denoted by �1; �2; and
�3, satisfy �1�2�3 > 0 and �1 + �2 + �3 < 0. This implies that M has two
negative and one positive eigenvalues, which proves the saddle-path stability
of the system.

Claim 2 If � is su¢ciently small (or � < 2�L), then the dynamical system
is locally saddle-path stable.

20Note that the determinant of M is equal to

b (1� s) �
�
� (g� + �) + (g�)2 + 2�g�

�
+ as�(g�)2 (g� + �+ �) :
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