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Introduction 

The success of the forecast model of Istanbul Stock Exchange (ISE) market 

indices has received great attention in the past decade.  The reason being that, any 

efficient forecasting of the index value would provide the investors with profitable 

returns. However, the main complication in prediction is the volatility in the time 

series. There are several reasons that one may want to model and forecast volatility: 

for instance to analyze the risk of holding an asset or the value of an option. Forecast 

confidence intervals may found to be time-varying, so that more accurate intervals 

can be obtained by modeling the variance of the errors. More efficient estimators 

can be obtained if heteroskedasticity in the errors is handled properly. It has been 

rather difficult to decide which model to use in order to make an efficient 

forecasting.  The choice of data and the selected period can affect the selection of an 

appropriate model. 

Most of the models arising from the econometric approach are in discrete 

time. Particularly GARCH models and their extensions have received some attention 

as appropriate models to capture certain empirical facts of the empirical volatility 

process [6]. Nelson [10] and Duan [5] attempted to capture the characteristic of 

financial returns data by diffusion approximations to the discrete time. 

Klüppelberg [7] adopted the idea of a single noise process and suggested a 

new continuous time GARCH (COGARCH) model, which captures all the stylised 

facts as the discrete time GARCH does. As the noise process, any Lévy processes 
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are possible, its increments replacing the innovations in the discrete time GARCH 

model. COGARCH based on a single background driving Lévy process, is different 

from, though related to, other continuous time stochastic volatility models that have 

been proposed. It generalises the essential features of the discrete time GARCH 

process in a direct way. 

Here, we demonstrate the applicability of COGARCH model for modeling 

the time-varying volatility of the ISE100. Maller et. al. [8] have recently 

demonstrated how to apply this kind of methodology to describe the volatility of the 

Australian stock market, using it to analyse ten years of daily data, mostly equally 

spaced in time for the ASX200 index. Also, Müller et. al. [9] in 2009 analysed the 

volatility of stock markets using COGARCH. 

 

1. Methodology 

On the discrete modeling part, the best candidate model will be found by 

considering AIC and BIC values after stationarising the return data. Then usual tests 

will be carried out to check if the model is covariance stationary, whether it obeys 

the negativity constraints, and whether the arch effect in the residuals is eliminated. 

For continuous modeling, the parameters from the discrete model will be 

used for continuous GARCH model (COGARCH). Then simulations will be carried 

out for both of the models and comparisons will be made. 

Due to Nelson [10] and others, classical diffusion limits have been used in a 

natural way to suggest continuous time limits of discrete time processes, including 

for the GARCH models. Nelson's model of COGARCH model has two different 

Brownian motions which are independent of each other. 

   , 0≥t      (1)     

, 0≥t      (2) 

where B
(1)

 and B
(2)

 are independent Brownian motions, and 0>β , 0≥η , and 

0≥φ  are constants. 

In Klüppelberg et. al. [7], COGARCH model is a direct analogue of the 

discrete time GARCH, based on a single background driving Lévy process, and 

generalises the essential features of the discrete time GARCH process in a natural 

way. 
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The COGARCH process 0)( ≥ttG  is defined in terms of its stochastic 

differential dG , such that 

   t≥0       (3) 

,  0>t     (4) 

where 0>β , 0≥η , and 0≥φ  are constants. 

 is the quadratic variation process of L  which is defined as  

         (5) 

where  for 0≥t . 

The process G  ‘jumps’ at the same time as L does, and has jump sizes 

  0≥t               (6) 

Klüppelberg [6] shows the identity as 

                      0≥t       (7) 

Deriving a recursive and deterministic approximation for the volatilities at the jump 

times we get 

                                       (8) 

since sσ  is latent and ∆Ls is usually not observable, hence using Euler 

approximation for the integral we get 

                   (9) 

               (10) 

therefore for the volatility estimation we end up with

              (11) 
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The bivariate process 0),( ≥ttt Gσ  is Markovian. If 0

2 )( ≥ttσ  is the stationary version 

of the process with
22

0 ∞= σσ , then 
0)( ≥ttG  is a process with stationary increments 

[7, Corrolary 3.1]. 

2. Data 

We perform the analysis using daily log returns on ISE100 daily closing 

index values. We focus on the time period from 03/01/1994 to 23/06/2010. The data 

were obtained from ISE. 

3. Results And Diagnostics 

The first step into the empirical study is to use graphical tools to detect any 

apparent features of the data. In the case of log return of ISE100 data series; in 

Error! Reference source not found. it is clear that the return data is more like a 

random walk. There is no trend in the log return of ISE100 and it is more like a 

white noise type data series, which suggests that the time series is stationary. The 

stationarity of the data also supported by ACF and PACF graphs. This result will be 

investigated further by the unit root tests. 

3.1 Results Of Unitroot And Stationary Tests 

According to the p-value of ADF test, 2.713e-41, the null hypothesis that 

the data contains a unit root can be rejected. And this is also supported by KPSS test 

result, with the p-vale 0.4386, cannot reject the null hypothesis at any significance 

level that the data is stationary around a constant. 

3.2 Discrete Modeling 

The best candidate model is found to be AR(1)~GARCH(1,1) model. The 

Ljung-Box test with the p-value of 0.025 tells us that there is no autocorrelation in 

the model’s residuals and the candidate model also removes the ARCH effect in the 

residuals given the LM Test’s p-value is 0.1246. 

The model obeys the negativity constraint of a GARCH model that is none 

of the coefficients of the parameters are negative, and it also satisfies the covariance 

stationarity condition as the sum of coefficients is less than 1. All of the coefficients 
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are statistically significant as the t-values are greater than 1.65. All the results show 

that the candidate model AR(1)~GARCH(1,1) is a good model for the log return of 

ISE100 time series. 

            (12) 

  (13) 
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Figure 1: Time series plot of ISE100 index value, Log return of ISE100, ACF and PACF of log return 
Source: Own Study 

Table 1 

Estimated Coefficients of AR(1)~GARCH(1,1) 

                     Value        Std.Error  t value  )Pr( t>  

     C           0.00181322  3.316e-004  5.468  4.814e-008 

     AR(1)     0.05623574  1.590e-002  3.536  4.109e-004 

     A           0.00001319  1.978e-006  6.670  2.896e-011 

   ARCH(1)  0.11436918  7.410e-003  15.435  0.000e+000 

GARCH(1)  0.87281962  7.373e-003  118.385  0.000e+000 

Source: Own Study 
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3.3 Continuous Modeling 
 

Given that the parameters of COGARCH model is equal to the discrete 

GARCH model's parameters as such 

ββ = , δη ln= , δλφ /=                          (14) 

The candidate model's parameters are 

 00001319.0=β , 11436918.0=λ ,  87281962.0=δ              (15) 

The parameters' of COGARCH(1,1) model are 

13603.08781962.0ln ==η  13103.087281962.0/11436918.0 ==φ       (16) 

To start the simulation we use numerical solutions for tdG  and 
2

tdσ  in (6) 

and (11), and we also use a Lévy process driven by compound Poisson process. The 

compression between the volatility of the log return data with the discrete GARCH 

model and COGARCH's volatility, Figure 2, shows that there is a close relation 

between discrete and continuous model and both models mimic the real data’s 

volatility.
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Figure 2: Volatility plots of Log Return Data, continuous GARCH model, and GARCH model 

Source: Own Study 
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Conclusion 
 
             Log return of ISE100 daily closing index value was modeled with the best 

candidate model AR(1)~GARCH(1,1). Then using the parameters from the discrete 

model, continuous model COGARCH(1,1) was applied to the data. Volatility of 

simulated data from discrete and continuous models compared with the real data 

volatility. We showed that the simulated GARCH volatility and COGARCH 

volatility appears to follow the same pattern of jumps. Furthermore, both models 

imitate the real return data’s volatility. 
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Summary 

The objective of this paper is to model the volatility of Istanbul Stock Exchange 

market, ISE100 Index by ARMA and GARCH models and then take a step further 

into the analysis from discrete modeling to continuous modeling. Through applying 

unit root and stationary tests on the log return of the index, we found that log return 

of ISE100 data is stationary. Best candidate model chosen was found to be 

AR(1)~GARCH(1,1) by AIC and BIC criteria. Then using the parameters from the 

discrete model, COGARCH(1,1) was applied as a continuous model. 


