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Abstract

This paper addresses the question why agricultural productivity is so low in poor

countries. World Census of Agriculture reveals that agricultural production is of much

smaller scale in developing countries. I construct a two-sector OLG model where agri-

cultural production is carried out by heterogeneous farmers. At the farm level, optimal

scale and productivity is tied to the farmer’s idiosyncratic skill, which can grow over

time as a result of optimal investment. At the aggregate, self-selection determines

the average skill of farmers and hence the measured agricultural productivity. The

calibrated model can explain almost all of the differences in agricultural productivity

between the 80th and 20th percentile countries in the sample. Endogenously generated

farm size distributions are close to the actual ones as well.

JEL Classification: O11, O13, O41

Keywords: Income differences, agricultural productivity, skill investment, farm size

distribution.

1 Introduction

The agricultural sector in poor countries appears disproportionately unproductive, yet em-

ploys most of the labor force1. Low living standards are driven by both high labor share and

∗I thank B.Ravikumar for continuous encouragement and guidance. All errors are my own.
†Department of Economics, University of Iowa. Email: wenbiao-cai@uiowa.edu.
1See Gollin et al. [2004, 2007], Caselli [2005], Restuccia et al. [2008]
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low labor productivity in the traditional sector. A counterfactual calculation will illustrate

this point succinctly. If all countries would have the U.S. agricultural productivity, and

maintain their own labor allocation and nonagricultural productivity, cross-country income

differences would almost disappear2. Hence the key question is why productivity is so low

in the agricultural sector of poor countries.

This paper addresses this question by focusing on the scale of production in the farming

sector, which exhibits vast variation across countries, as I will document later. Farming

in poor countries are shown to be of much smaller scale compared to rich countries. I

incorporate this feature into a model, in which optimal scale is determined by the skill of

farmers using a span-of-control framework of Lucas [1978]. In poor countries, the average

farmer possesses low skill as a result of self-selection and suboptimal investment in skill

growth. As a result, the agricultural sector operates in small scale and has low measured

labor productivity.

I take advantage of the recently available World Census of Agriculture (WCA [1990,2000])

published by the Food and Agriculture Organization (FAO) of the United Nations. FAO

compiles national agriculture censuses and presents summary statistics in a common format.

The data are internationally comparable and cover a large set of countries in different phases

of development. From the data, I construct the distribution of farms in different size cate-

gories for a sample of 40 countries. The main findings are: (1) Mean holding size3 positively

and strongly correlates with income level. Figure 1 (left panel) plots mean farm size (log)

against income per worker (log) in 1996. Mean farm size ranges from below 1 hectare in the

poorest countries to above 1000 hectares in the richest countries; (2) Agricultural production

in low income countries concentrates disproportionately on very small farms. Figure 1 (right

panel) plots the (average) farm size distributions of two sets of countries (rich and poor)4.

In Uganda, for example, 73% of the farms operate with less than 5 hectares of land. In

contrast, 50% of the farms in the U.S. exceed 50 hectares in size.

Using data from U.S. census of agriculture, I find larger farmers to be markedly more

productive, relative to the smaller ones. In terms of output per worker, it is not uncommon

2Even if all countries have the U.S. relative productivity (agriculture/nonagriculture) and maintain their
own labor allocation and nonagricultural productivity, would shrink income differences to a factor of 6, from
a factor of 32, between the 90th and 10th percentile countries.

3 In WCA, a holding is defined as “an economic unit of agricultural production under single management
comprising all livestock kept and all land used wholly or partly for agricultural production purposes, without
regard to title, legal form, or size”

4Rich countries: U.S, Canada, Australia, Norway, Switzerland. Poor countries: Uganda, Burkina Faso,
Ivory Coast, Pakistan, Sri Lanka.
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Figure 1: Scale of Production in Agriculture Across Income Levels

to observe a 16-fold gap between a 2000+-acre farm and a 50-acre farm in 2007, as illustrated

in Figure 2. In value added terms, the productivity differences are even more pronounced -

by a factor of 30 between the maximum and minimum scale5. These productivity differences

appear robust in earlier censuses (92, 97 and 02) as well. While WCA does not report farm

productivity by size category, international evidences are available from studies of individual

countries6. These studies all point to a positive correlation between farm size and labor

productivity7. Given increasing labor productivity with size, differences in the composition

of farms clearly map into differences in measured labor productivity in the agricultural

sector. Quantitatively, in Appendix 5.2 I show that differences in the composition of farms

can account for around 1/3 of the observed variation in agricultural productivity for a sample

of 40 countries.

In essence agricultural productivity is viewed to be determined by two things: how pro-

ductive the economy is overall and how productive the individuals self-selecting into the

agricultural sector are. In this paper, the former is exogenous and inferred from data. The

latter, however, is determined endogenously through two channels: occupation choice and

skill investment. In the model, individuals are heterogenous in their “farming skill”, which

is intended to capture their idiosyncratic productivity in the agricultural sector8. Farmers

5Substantial differences remain when productivity is measured residually. Computed Solow residual
ranges from 3 to 5 times higher in the largest farms, relative to the smallest ones.

6See Fan and Chan-Kang [2005] for a set of asian countries; Byiringiroa and Reardon [1996] for Rwanda
7There is a large literature debating the relation between farm size and land productivity. See Feder

[1985] and reference therein
8Assuncao and Ghatakb [2003] also introduce a notion of farming skill, and analyze how this unobserved

characteristic of farmers affects the measured correlation between farm size and land productivity in a partial
equilibrium.
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Figure 2: Productivity by Size of Farm

act as price takers and retain residual profit. Outside the agricultural sector, wage work is

available, which does not reward their farming skill. I deviate from the otherwise standard

Lucas’ span-of-control framwork by allowing skill accumulation in a dynamic environment.

This modification serves three purposes. First, it allows calibrating the model to the ob-

served farm size distribution in the U.S, and hence provides reasonable identification of the

underlying distribution of idiosyncratic skill types. Second, the model with skill accumula-

tion is consistent with another cross-section data in the U.S. farming sector - older operators

operate larger, more productive farms than their younger peers. Table 5 in Appendix shows

the evolution of productivity over operator’s life cycle is nontrivial. Lastly, this paper stresses

the importance of skills, as opposed to distortions, in understanding agricultural productiv-

ity differences9. In particular, I explore how economic forces affect the accumulative process

and hence the agricultural productivity in equilibrium.

The central question of interest is whether the model can quantitatively explain the

observed cross-country variation in labor allocation, agricultural productivity and scale of

production. I first calibrate the model to the U.S. economy. Then I ask the model to

make quantitative predictions for each country in the sample by varying two country-specific

variables: aggregate efficiency and land endowment. The model is able to pick-up almost

all of the differences in agricultural productivity, and 80% of the differences in agricultural

employment between the 80th percentile and 20th percentile countries. Moreover, the model

not only captures the differences in mean farm size across countries, but also generates farm

size distributions that are remarkably close to the actual ones for a large set of countries,

9The importance of human capital in understanding aggregate productivity differences have been empha-
sized in Lucas [1988], Manuelli and Seshadri [2005], Erosa et al. [2010], among others
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which is rather surprising given its simple structure.

This paper is related to a large literature that studies cross country income differences,

eg., Klenow and Rodriguez-Clare [1997], Prescott [1998], Hall and Jones [1999]. Recent de-

velopment in the literature stresses the role played by the agricultural sector in under-

standing aggregate income differences. Within the level accounting framework, ignoring the

dual structure of the economy either results in substantial bias in computed efficiency as in

Cordoba and Ripoll [2005] and Chanda and Dalgaard [2008], or disguises the potential gains

from eliminating misallocations between sectors, as in Vollrath [2009]. Other studies explore

the effects of various distortions on agricultural and aggregate productivity within a general

equilibrium framework. Restuccia et al. [2008] argue that distortions in intermediate inputs

are quantitatively important for understanding cross country differences in agricultural and

aggregate productivity. Adamopoulos [2006] documents large differences in transportation

costs across countries, and show that theses differences can account for a sizeable share of in-

come differences. Using a unique micro level data set, Gollin and Rogerson [2010] investigate

the role of transportation cost in economic development in Uganda. Unlike these studies,

this paper focuses on idiosyncratic productivity of individuals, and how it affects aggre-

gate productivity through self-selection. In this respect, it is similar to Waugh and Lagakos

[2009]. The authors argue that agricultural productivity is low in poor countries because

of poor specialization. However, this paper focuses on differences in the scale of production

in the agricultural sector, and uses farm size distribution to discipline the underlying skill

distribution. After completing the paper, a recent study by Restuccia and Adamopoulos

[2009] was brought to my attention. Both papers focus on farm size heterogeneity across

countries and use a version of Lucas’ span-of-control model to endogenously generate a size

distribution. However, this paper highlights the role of skill accumulation in explaining cross

country variation in farm size distribution and agricultural productivity, which is abstracted

from in their paper.

The remaining of the paper is organized as follows. In section 2, I describe the model.

In section 3, I calibrate the model and discuss the results. Section 4 presents the conclusion.

2 Model

2.1 Environment

Each period a continuum of mass one individuals are born, and live for T periods. Individ-

uals of the same cohort constitute a household, with all decisions made by a hypothetical
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household head. When born, individuals within a household draw independently their skill

type, z, from a known, time invariant distribution G(z). The instantaneous utility function

of a household is given by

U(ca, cn) = η · log(ca − ā) + (1− η) · log(cn)

where (ca, cn) denote, respectively, agricultural consumption and nonagricultural consump-

tion at the household level. η dictates the relative taste towards two consumption goods. ā

can be interpreted as subsistence consumption level. ā > 0 implies an income elasticity of

agricultural consumption less than unity. Each member is endowed with one unit of physical

time. Households equally own the stock of land L̄. There is no growth in the population nor

lifetime uncertainty.

2.2 Household Decision

In this economy, there are two occupations. Each member can either work as a worker or a

farm operator. All workers, regardless of skill type, earn the same wage rate. A farm operator

combines her skill (z), labor (ha) and land (ℓ) to produce agricultural output according to

Ya = A · z1−γ
(

hα
a · ℓ1−α

)γ

where A represents the efficiency level. There are competitive rental markets for Labor and

land at prices w and q, and output are sold at price p. All prices are expressed relative to

the price of nonagricultural output. The residual profit, or return to skill, π(z) is retained

by the farm operator. It is simple to show

π(z) = z · (1− γ) · (P ·A)
1

1−γ

(

γ
(α

w

)α
(

1− α

q

)1−α
)

γ

1−γ

Although the initial realization is drawn exogenously, skill can subsequently grow through

investment according to the following technology

zt+1 = zt + zt · s
θ
t

where st is the fraction of physical time devoted to skill augmentation. Note that this

technology assumes time as the sole input. This is done for several reasons. First, it allows
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for closed-form solutions and clearer expositions. Second, data on time allocations of farm

operators are available to discipline relevant parameters. Lastly, data on resources investment

by farm operators in skill accumulation are limited, if available at all.

The household head chooses for each member an occupation, which by assumption can

not change over time. Then the household head chooses sequences of skill investment and

consumption to solve

max :

T
∑

t=1

βtu(cat, cnt)

s.t :
T
∑

t=1

ptcat + cnt
∏t

τ=1Rτ

≤ Y

where Rτ denotes the interest rate in period τ = 1, 2, ..., T , and Y represents the maximized

discounted income of the household. The following lemmas establish some results that

characterize the stationary equilibrium, where all prices are constant.

Lemma 1 Workers don’t spend time accumulating skills.

This follows naturally from the assumption that all workers earn the same wage rate w

regardless of skill type. Thus it is not optimal for a worker to invest in skill accumulation.

Discounted lifetime income of a worker is simply Yw =
∑T

t=1w · R1−t. In contrast, since

residual profit is strictly increasing in skill input, concavity ensures skill investment profitable

for all farm operators. The following lemma characterizes the optimal investment profile of

farm operators.

Lemma 2 Optimal time investment is independent of initial skill type

The proof is given in Appendix. The lemma implies a common slope of skill profile for all

farm operators, and the level is determined by the initial draw. It is convenient to define

variable xt as follows

xt =







1, t = 1

xt−1 · (1 + sθt−1), t = 2, ..., T

{xt}
T
t=1 summarize the level of skill at time t relative to when born for an operator. Clearly,

{xt} is independent of type. This allows a simple expression of lifetime discounted income
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of a type z farm operator

Yf(z) = π(z) ·

T
∑

t=1

xt · (1− st) · R
1−t

Note that Yf(z) is linear and strictly increasing in skill type z. Recall that discounted lifetime

income of a worker (Yw) is independent of skill type z. This leads to Lemma 3.

Lemma 3 There exists a cut-off level of skill type, z̄, such that household members with

skill type z < z̄ become workers, and household members with skill type z ≥ z̄ become farm

operators.

The most able members will operator farms and utilize their skills. The less able members

will supply inelastically one unit of labor to the market, and forgo their endowed skills.

The marginal operator, whose skill type is z̄, is indifferent between two occupations. The

maximized discounted income of the household is

Y = G(z̄) · Yw +

∫

z̄

Yf(z)dG(z) + q · L̄/T ·

T
∑

t=1

R1−t

2.3 Nonagriculture Firm’s Optimization

There is a representative firm that produces nonagricultural output with a linear technology

Yn = A · Hn. Two remarks are in order. First, efficiency parameter A augments both

agricultural and nonagricultural production, and hence is sector neutral. This technology

parameter is intended to capture factors impacting all economic activities within an economy.

Second, Hn denotes labor hours and does not embed skills. The representative firm solves

max
{Hn}

A ·Hn − w ·Hn

2.4 Equilibrium

A stationary competitive equilibrium is a collection of prices (w, p, q, R), consumption and in-

vestment (cat, cnt, st)
T
t=1, factor demand ha(z), ℓ(z), Hn such that: (1) given prices, (cat, cnt, st)

T

t=1

solve household income maximization problem; (2) given prices, ha(z), ℓ(z) solve farm oper-

ator’s profit maximization problem, and Hn solve nonagricultural firm’s profit maximization

problem; (3) Prices are competitive; (4) All markets clear.
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To solve the model, I begin by solving for prices (p, q). Equation (1) below states that

the type z̄ household member must be indifferent between working and operating a farm.

Equation (2) below states the land market clearing condition.

π(z̄) ·
T
∑

t=1

xt · (1− st) · R
1−t =

T
∑

t=1

w · R1−t (1)

∫

z̄

ℓ(z)dG(z) ·

T
∑

t=1

xt · (1− st) = L̄ (2)

Dividing (1) by (2) yields an expression of the rental price of land

q =

[

∑T

t=1 xt · (1− st)
∑T

t=1 xt · (1− st) · R1−t

]

·





γ · (1− α) ·
(

∑T

t=1w · R1−t
)

(1− γ) · L̄



 ·

∫

z̄
zdG(z)

z̄
(3)

Substituting (3) into (1) yields the relative price of agricultural good

p =

[

∑T

t=1w · R1−t

z̄ · (1− γ) ·
∑T

t=1 xt · (1− st) · R1−t

]1−γ

·

(

γ
(α

w

)α
(

1− α

q

)1−α
)−γ

·
1

A
(4)

Note the relative price of agricultural good is strictly decreasing in the cut-off type z̄ and

aggregate TFP. Solving for optimal consumption bundles and aggregating over generations

yields the aggregate demand of two consumption goods

Ca =
T
∑

t=1

cat =

[

T
∑

t=1

(βR)t−1

]

·

[

Y − p · ā
∑T

t=1R
1−t

∑T

t=1 β
t−1

]

·
η

p
+ T · ā (5)

Cn =

T
∑

t=1

cnt =

[

T
∑

t=1

(βR)t−1

]

·

[

Y − p · ā
∑T

t=1 R
1−t

∑T

t=1 β
t−1

]

· (1− η) (6)

Detailed derivations are given in appendix.

In each household, the measure of workers is G(z̄). Given constant prices, the division of

labor does not change across cohorts. Hence the total measure of worker is simply T ·G(z̄).

The measure of workers demanded in agricultural production is Ha =
[

∑T

t=1 xt(1− st)
]

·
∫

z̄
ha(z)dG(z). Imposing labor market clearing, the measure of workers in the nonagricultural

sector is Hn = T · G(z̄) − Ha. The output in the nonagricultural sector is Yn = A · Hn. In

the agricultural sector, aggregating production over farmers yields aggregate production
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Ya =
[

∑T

t=1 xt(1− st)
]

·
∫

z̄
ya(z)dG(z). Good markets clearing conditions requires Ca =

Ya, Cn = Yn. By Walras’law, loan market clears as well.

In the standard Lucas’ span-of-control model, threshold skill level is independent of

TFP. In this model, however, threshold level increases with TFP. This highlights the main

mechanism through which the model is able to reconcile high labor share and low labor

productivity in agriculture of low income countries. Low TFP transforms into low wage

payment, and hence renders farming more lucrative for even low skill household members,

because the price of agriculture output rises more than proportionately to offset the decline

in TFP. Employment in agriculture increases, yet average skill, and hence productivity,

decreases. To see this, consider two economies with two efficiency levels Ar, Ap. In addition

assume that Ar = g ·Ap with g > 1. The former can be interpreted as a typical rich country,

and the latter a poor one. Holding land endowment fixed, the model predicts a lower

skill threshold and a higher interest rate in the poor country. For a simple proof, assume

the threshold level of skill and interest rate are the same. From equation (3), it is straight

forward to see that qr = g ·qp. Given this, equation (4) implies pr = pp. These two conditions,

together with equation (5), further implies Yr = g · Yp, i.e., aggregate income is proportional

to aggregate TFP. Aggregate production of agricultural good is also proportional to TFP.

However, with nonhomothetic preferences, demand of agricultural consumption drops by

less than a factor of g in the poor economy, as suggested by equation (5). Excess demand

pushes up the price of agricultural consumption, and reduces the threshold level of skill.

This implies a higher labor share and lower productivity in the agricultural sector. Influx of

labor into the agricultural sector also reduces the supply of nonagricultural good and bids

up the equilibrium interest rate.

3 Calibration and Results

In this section, I parameterize the model. Model period is 10-years. Individuals are born at

the age of 25 and live for 5 periods. Assuming an annual discount rate of 0.96, I set β = 0.9610.

TFP for the U.S is normalized to be 1. Parameters in the agricultural production function

are directly inferred from agriculture value added data of the U.S. (see Appendix 5.3). Over

the period 1980-1999, the average share of output accruing to operators is 20%. I thus set

γ = 1 − 0.2 = 0.8. This parameter is critical to the quantitative implications of the model,

and deserves some discussions here. This paper is certainly not the first one to estimate

the span-of-control parameter, though most studies either assume a one-sector framework or
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focus on the nonagricultural part of the economy. For studying the effects of size-dependent

policies on aggregate output, Guner et al. [2008] estimate the span-of-control parameter to

be 0.8 for the aggregate economy. A similar value is used in Restuccia and Rogerson [2008]

for studying the effects of idiosyncratic distortions at the plant level on aggregate output.

For the manufacturing sector alone, Atkeson and Kehoe [2005] obtain an estimate of 0.85. A

value of 0.8 for the agricultural sector appears roughly in line with these estimates10. Over

the same period, return to land and labor are almost identical, which suggests α = 0.5 is a

consistent value.

I restrict the skill type distribution to be lognormal with mean µ and standard deviation

σ. This leaves 5 parameters (ā, η, L̄, µ, σ, θ) to be chosen simultaneously to match moments of

the U.S. economy. From World Development Indicator, agriculture employs 2% of the labor

force. I also target a long run agricultural employment share of 0.5%. This corresponds

to the asymptotic agricultural employment share when the subsistence consumption share

of income is effectively zero. To discipline θ, I turn to data on time allocations of farm

operators. Census of Agriculture reports the number of days off the farm for operators in 5

different age groups: 25-34, 35-44, 45-54, 55-64, 65+. From there I compute the total working

days, as well as the fraction supplied by operators in different age groups (see Appendix 5.4).

Within the model, this statistic corresponds to 1−si∑T
i=1

1−si
because operators of generation i

spend (1 − si) fraction of their time in farm production. I choose θ to reproduce the share

of operators aged 35-44. However, the implied shares of other operators are close to data

as well11. The model is also asked to reproduce the observed size distribution of farms in

the U.S.. Figure 3 plots the calibrated size distribution against data. By construction, the

model generated size distribution matches the data well. In addition, as depicted in Figure 4

in Appendix, the model also implies a land size distribution that fits the data very well, even

though it is not targeted. The model also generates a distribution of hired labor over size

classes that is reasonably close to the data 12. Parameter values are summarized in Table 6

in Appendix.

10Restuccia and Adamopoulos [2009] use a smaller value γ = 0.6, but they do not include hired labor in
their production function.

11See Table 7 in Appendix
12See Figure 5 in appendix. Hired labor is inferred using expenditure data assuming homogenous wage

rate across farms of different sizes.
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3.1 Quantitative Experiment

In this section I assess the model’s ability to quantitatively explain cross-country variations

in agricultural productivity. Data on sectoral productivity, sectoral labor shares and land

endowment are from Restuccia et al. (2008). The size distributions of farms are constructed

from the World Census of Agriculture (round 1990, 2000) published by Food and Agricul-

ture Organization of the United Nations. These two data sets, however, are not directly

comparable because of time period differences. The data in Restuccia et al. (2008) pertain

to the year 1985. World Census of Agriculture is a collection of national agriculture censuses

conducted independently in each member country - possibly at different points of time (see

Table 10 for country specific census years). In principle, this study should be restricted to

countries where the agriculture census was conducted in 1985. As a first pass, however,

I merge these two data sets to obtain a sample of 40 countries with two defenses. First,

census of agriculture is conducted every 5 years in most countries, if at all available. It

is thus rather costly to obtain completely synchronized data set as detailed as the present

one. Second, even though census year in the sample ranges from 1980 to 2000. Most of the

countries indeed have their censuses conducted around 1990. The quantitative implications

of the model remain reasonable provided the composition of farms do not undergo drastic

changes over 5 years.

I test the model’s predictive ability by varying two country specific variables: the level of

TFP (A) and land endowment (L̄). All countries are otherwise identical. In particular, they

all face the same ex-ante distribution of skill types. Country specific Ai and L̄i are inferred

as follows

Ai =
ynlni

ynlnus

, L̄i =
LERi

LERus

· L̄us

where ynlni is the Nonagricultural GDP per worker of country i, and LERi is the Land-

employment ratio of country i. Both are directly available from Restuccia et al.(2008).

To assess the quantitative performance of the model, I focus on the following metrics:

agricultural labor share (La), real agricultural output per worker (ryala), real GDP per

worker (rgdp) and mean farm size (mfs). Note that agricultural employment includes both

workers working in the agricultural sector and farm operators. U.S price is used as interna-

tional price when computing aggregate output to make results comparable to the data, which

is PPP adjusted. To facilitate comparison between model predictions and the data, I divide

countries in the sample into quintile by GDP per worker in the data. Productivity in the
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richest quintile (Q.5) is normalized to be 1. The sample consists of 40 countries with good

representation of both developed and developing nations13. The results are summarized in

Table 1.

Quintile rgdp ryala La mfs
Data Model Data Model Data Model Data Model

Q.1 0.13 0.19 0.04 0.04 0.66 0.48 7 16
Q.2 0.30 0.35 0.15 0.12 0.34 0.22 56 43
Q.3 0.52 0.59 0.36 0.37 0.18 0.07 83 107
Q.4 0.85 0.87 0.82 0.48 0.08 0.05 68 69
Q.5 1.00 1.00 1.00 1.00 0.05 0.05 515 381

Table 1: Model vs Data, by Income Quintile

The model does an excellent job explaining productivity differences. In the sample,

the richest (Q.5) countries are about 8 times more productive overall and 25 times more

productivity in agriculture, relative to the poorest countries (Q.1). The model generates

almost the same magnitude of differences. As pointed out in the introduction, agricultural

productivity is viewed to be determined by two forces: overall efficiency and idiosyncratic

productivity of farmers. In the data, aggregate TFP - as inferred from nonagricultural

productivity, differs by at most a factor of 5 between the richest and poorest countries.

Hence, the first force accounts for about 50% of the differences in agricultural productivity.

The differences in idiosyncratic productivity of farmers explain the remaining half. Outside

the two ends of the world income distribution, the model explains the productivity differences

reasonably well - an notable exception is high income countries (Q.4), for which the model

substantially underpredicts their agricultural productivity14.

High employment and low labor productivity in agriculture are jointly driving low income.

It is thus important for the model to be consistent with data in terms of sectoral labor

allocation. For the top quintile countries, the model correctly predicts the employment

share in agriculture. For the bottom quintile countries, the model predicts a 48% agricultural

employment share - about 80% of the actual share. For low income countries (Q.2), the model

also predicts a lower agricultural labor share, compared to the data. This reflects other

forces at work. For example, high price of intermediate inputs, as discussed in Restuccia et

13Burkina Faso, Egypt, India, Sri Lanka, Morocco, Uganda, Dominica, Pakistan, Ivory Coast, Greece,
Hungary, Italy, Tunisia, Switzerland, Portugal, Ecuador, Peru, Netherland, Belgium, Spain, Colombia,
Nicaragua, Ireland, Austria, Germany, France, Denmark, Venezuela, United Kingdom, Finland, Brazil,
Chile, Norway, Sweden, New Zealand, Canada, Uruguay, Argentina, Australia, United States

14Low land endowment and a relatively large elasticity of land are responsible for the counterfactual
prediction
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al. (2008), induces farm operators to substitute labor for modern input. This model also

abstracts from labor market distortions, while in low income countries barriers to sectoral

labor movements are common as evidenced by substantial gap in earnings. One famous

example is the Hukou system in China that imposes institutional restriction on immigration

from rural villages to urban cities. My results show that these distortions are also important

for understanding sectoral labor allocations.

The model also generates increasing mean farm size with income level, as observed in the

data. One important feature of this model is its ability to reproduce not only the mean farm

size, but also the entire farm size distribution across countries. In Appendix I plot the model

predicted farm size distributions along with their empirical counterparts for all countries in

the sample. Even though ex ante all countries face the same skill-type distribution, the ex

post size distribution of farms exhibits substantial variations across levels of income. For a

large set of countries the model generated size distributions are amazingly close to the data,

which I view as a success of the model.

One stylized fact regarding economic development is the declining importance of agricul-

ture in aggregate output - one available measure is agriculture value added as a percentage

of GDP. For the top quintile countries, the model predicts agricultural output to be 10%

of the aggregate output, while in the data it is 3%. For the bottom quintile countries, the

model predicts the value to be 70%, substantially higher than 30% in the data. Hence the

model captures correctly the declining share with income but fails to generate the exact lev-

els. Another testable aspect of the model is its prediction of the relative price of agricultural

output. A central prediction is that the relative price is higher in low income countries.

Using ICP data from the World Bank, I compute the relative price between “agricultural

consumption” and “nonagricultural consumption” for all available countries15. The relative

price in 2005 is around 4 times higher in the 10th percentile country, compared to the 90th

percentile country. Moreover, the model predicts the relative price to be about 2.8 times

higher in the poorest countries, which is roughly in line with the data.

Recall that in the model, countries are different in two dimensions: TFP and land endow-

ment. Which exogenous variable is relatively more important in determining productivity?

To shed light on this question, I perform a series of counterfactual experiments for a hy-

pothetical country that represents the poorest countries in the sample16. Relative to the

15“Agricultural consumption” is defined as food, non-alcoholic beverage, alcoholic beverage and tobacco.
“Nonagricultural consumption” is defined as the rest of individual consumptions plus capital consumption.
A similar calculation is done also in Waugh and Lagakos [2009]

16These countries are Burkina Faso, Uganda, India, Ivory Coast and Pakistan
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U.S, the representative poor country has 4.5 times lower TFP, and 2.1 times smaller land

endowment. To disentangle the relative contribution, I change one exogenous variable at a

time. Table 2 summarizes the results.

Exg. variable La ryala mfs
L̄ only 2.5% 1/2 117
A only 24% 1/22 47

Both A and L̄ 53% 1/48 13
Data 70% 1/51 3

Table 2: TFP versus Endowment

If the inferred TFP is maintained at the U.S. level, and land endowment is reduced by

half, equilibrium labor allocation and productivity change minimally, though mean farm

size drops by roughly a half. Differences in endowment alone can’t go far in explaining

agricultural labor share and productivity differences. In contrast, if inferred TFP is reduced

- with land endowment unchanged, there is a massive movement of labor into the agricultural

sector. Moreover, agricultural productivity drops by a factor of 22, and mean farm size drops

further to 47 hectares. TFP thus has a more profound impact on equilibrium allocations.

It is also interesting to note that the decomposition of TFP and land endowment is not

orthogonal. If both TFP and land endowment are reduced, the representative poor country

allocates 53% of the labor force to agriculture. Output per worker drops massively - by a

factor of 48. An average farm is only about one tenth the size of an average farm in the U.S..

3.2 Discussion

A novel and crucial feature of the model is to embed skill accumulation in an otherwise

standard Lucas’ span-of-control model. A similar idea was illustrated in Bhattacharya [2009],

who shows that skill accumulation is critical to quantitatively explain cross-country variation

in firm size distribution and income. While in that paper the main channel of variation

is coming from resources input in skill accumulation, in this model the main mechanism

operators through nonhomothetic preferences. To investigate the quantitative importance of

skill accumulation, I calibrate a version of the model without skill accumulation, and then

assess its quantitative prediction for the representative poor country. The model without

skill fails to generate the observed size distribution of farms in the U.S., although it can

reproduce the first moment. Moreover, given exogenous variables, the model without skill

accumulation in general explains less of the cross-section differences in labor allocation and
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productivity. Details of calibration and results are postponed in Appendix.

As shown in Restuccia et al. [2008], barriers to intermediate inputs have sizeable impact

on labor allocation and productivity. That paper assumes a representative household. Here I

explore how barrier to intermediate inputs affect agricultural productivity in an environment

with idiosyncratic farmers. To do so, I modify the agricultural production technology to

incorporate intermediate input X

Ya = A · z1−γ
(

Xφ · hρ · ℓ1−φ−ρ
)γ

As in Restuccia et al. (2008), one unit of nonagricultural output can be consumed or

converted into intermediate good at the rate of π. There is a linear technology producing

nonagricultural output. For expositional purposes, I suppress skill accumulation to disentan-

gle the effects coming from distortions from those stemming from skill investment. Detailed

calibration and results are given in Appendix. As expected, the model explains more of

the differences in labor allocation and productivity when distortion in intermediate inputs

are included (58% vs. 48% in labor share, 33-fold vs. 28-fold differences in agricultural

productivity). Moreover, high price of intermediate inputs also reduces the mean farm size.

Several remarks on the limitations of the model are in order here. Firstly, land endowment

is approximated by land-employment ratio, and hence abstracts from possible differences

in the quality of land. Moreover, the calibrated share of land in agriculture production

is considerably large, compared to the common values used in the literature17. Secondly,

TFP level is mapped into nonagricultural output per worker. While this approach appears

reasonable for rich countries where minimum resources are devoted to the agricultural sector,

it is deemed less appropriate for poor countries where most of the economic activity takes

place in the traditional sector.

4 Conclusion

In this paper I develop a model that links agricultural productivity to the skills of farm

operators. In poor countries, subsistence need and low wage rate renders farming a better

option for even low skill individuals. As a result of self-selection, a large fraction of the

17Griliches [1964] estimates the share to be around 16% for the U.S., though his estimates are for the
period round 1950. For a cross-section, Hayami and V.W.Ruttan [1970] estimates the share of land to be in
a ball park of 10%. Hansen and Prescott [2002] uses a land share of 30% for the technology in the Malthus
era.
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labor force work in the traditional sector. Moreover, the average farm operator has low

skill and hence low measured labor productivity. The calibrated model can explain most of

the observed differences in agricultural productivity and labor employment. By allow skill

accumulation in an otherwise standard Lucas’ span-of-control framework, the model is able

to capture not only the differences in the mean farm size, but also the variation in the size

distribution across countries.

The agricultural sector characterized in this paper is “poor but efficient”, as articulated in

Schultz [1964]. This contrasts with studies that point to various distortions as explanations

of low agricultural productivity in poor countries. Instead, this paper stresses the importance

of skills in understanding sectoral productivity patterns, and hence provides an alternative

view of the observed cross-country differences in agricultural productivity.
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5 Appendix

5.1 Proofs

Proof of Lemma 1 It is useful to first derive the profit function, where Π(z) = maxh,ℓ py − wh− ql.

Using F.O.C, it is easy to show that

π(z) =π̃ · z

where π̃ = (1− γ) · (P · A)
1

1−γ

(

γ
(α

w

)α
(

1− α

q

)1−α
)

γ

1−γ

Profit function is thus linear in ability z. In a stationary equilibrium, prices are constant

over time. This implies constant profit per unit of skill. Thus farm operator’s problem can

be written as one that maximizes the sum of discounted lifetime skill.

max
st

:

t=T
∑

t=1

R1−t
t · zt · (1− st)

s.t : zt+1 = zt(1 + sθt )

Let λt be the Lagrangian multiplier for period t

L =
T
∑

t=1

R1−t · zt · (1− st)− λt(zt+1 − zt(1 + sθt ))

F.O.Cs are

R1−t = λtθs
θ−1
t (7)

λt = R−t(1− st+1) + λt+1(1− δt + sθt ) (8)

From equation(9), if λt+1 is independent of beginning of period skill zt, then (λt) does not

depend on zt. Consequently the equation (8) the optimal time investment st does not depend

on zt as well. To solve the optimal path, I use backward induction. Clearly, it is optimal to

invest no time in the last period, sT = 0, λT = 0, and hence independent of zT−1. Using the

above argument, λT−1 and sT−1 does not depend on zT−1. Repeating this argument implies

that the entire path of investment is independent of initial skill type.
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Proof of Lemma 2 Life time budget constraint can be written as

T
∑

t=1

pcat + cnt
Rt−1

≤ Y

where Y is the discounted lifetime income. The Lagrangian is

L =
∑

βt(ηlog(cat − ā) + (1− η)log(cnt))− λ

[

∑ pcat + cnt
Rt−1

− Y

]

F.O.C yields

βtη

cat − ā
= λ

p

Rt−1
(9)

βt(1− η)

cnt
= λ

1

Rt−1
(10)

(1) divided by (2) yields the intratemporal allocation between two consumption goods as

p(cat − ā)

cnt
=

η

1− η
. (11)

Iterating (1) and (2) one more period yields the usual intertemporal allocations

(ca,t+1 − ā) = βR(cat − ā) (12)

cn,t+1 = βRcnt (13)

Substitute F.O.C into budget constraints we have

T
∑

t=1

p [·(ca1 − ā) · (βR)t−1 + ā] + (βR)t−1 · cn1
Rt−1

= Y

→p · (ca1 − ā) + cn1 =
Y − p · ā

∑T

t=1R
1−t

∑T

t=1 β
t−1

→ca1 = η ·
Y − p · ā

∑T

t=1 R
1−t

∑T

t=1 β
t−1

/p+ ā

cn1 = (1− η) ·
Y − p · ā

∑T

t=1 R
1−t

∑T

t=1 β
t−1
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Aggregate consumption at a point of time is given by

Ca =

T
∑

t=1

cat =

[

T
∑

t=1

(βR)t−1

]

·

[

Y − p · ā
∑T

t=1R
1−t

∑T

t=1 β
t−1

]

·
η

p
+ T · ā

Cn =
T
∑

t=1

cnt =

[

T
∑

t=1

(βR)t−1

]

·

[

Y − p · ā
∑T

t=1 R
1−t

∑T

t=1 β
t−1

]

· (1− η)

5.2 Development Accounting Exercise

To simply the calculation, I assume that all farms in size class [sl, sh] have the same size

(sl+ sh)/2. Let si denote the mean farm size, and µi denote the corresponding share in class

i. In addition, let yi and hi denote, respectively, the output and labor. Using U.S. data, I

estimate the following equations

log ((y/h)i) = b1 + b2 · log(si)

log ((hl)i) = c1 + c2 · log(si)

Note that yi is measured by the total market sales of goods net of government payments,

and hi is measured by the sum of farm operators and hired workers. The methodology in

U.S. agriculture census assumes one farm operator per farm. Let ni note the number of

farms report hired labor, and let hli denote the number of hired labor, the total number of

worker in size class i is simply ni + hli. For 2007, the estimated coefficients are (b1, b2)

= (-0.916,0.548) and the R2 is 93% for the first regression. For the second regression, the

estimated coefficients are (c1, c2) = (1.62, 0.058) and the R2 is 72%. Given size distribution

µi over size class, then aggregate output per worker is computed as

Y =
∑

i

[(b1 + b2 · log(si)) · hi · µi]

hi =
(c1 + c2 · log(si)) · µi + µi

∑

i [(c1 + c2 · log(si)) · µi + µi]

where the second equation gives the distribution of workers over size classes.

To compare against data, I compute the log-variance ratio as var(log(Ymodel))
var(log(Ydata))

. The numer-

ator is the variance of logarithm of agricultural productivity in the model. The denominator

is the variance of logarithm of agricultural productivity in the data. For the current sample,

this ratio is 26.5%.
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5.3 Estimating Return to Scale Parameters in Agriculture

According to the report by USD [1980-1989], Total output(YA), is the summation of crop

production, livestock production and revenues from services and forestry. Total output,

net of government transfers, are fully dissipated into the following factors of production:

intermediate inputs, capital, labor, land and operators. In the data, these components

corresponds to Purchased Inputs (PI), Capital Consumption plus Real Estate and Non Real

Estate Interest (CCI), Compensation to Hired Labor (CHL), Net Rent Received by Non-

operator Landlord (RL) and Net Farm Income (NFI), i.e.,

Y A = PI + CCI + CHL+RL+NFI

Here I implicitly assume that real estate and non real estate interest income are capital

income because structures are typically considered as a component of capital. Net farm

income represents “ entrepreneurial earnings of those individuals who share in the risks of

production and materially participate in the operation of the business”, and thus captures

the return to skills provided by farm operator. For the period 1980-1999, the estimated

income are given in the table blow.

1985 1980-1990 1990-1999 1980-1999
Intermediate 0.47 0.48 0.51 0.49

Capital 0.24 0.24 0.15 0.20
Labor 0.05 0.05 0.07 0.06
Land 0.05 0.04 0.05 0.04

Operator 0.18 0.18 0.23 0.20

Table 3: Factor Shares in U.S. Farming

5.4 Working Days by Age of Farm Operator

From 1992 census of agriculture, I extract the number of days not working on the farm for

farm operators by age (Panel A). To compute the the hours supplied by operator of a certain

age, I assume 250 working days a year. In addition, I use the midpoint of the interval as the

average days off farm. For example, “None” in the table means operators work 250 days a

year. Operators work 200 days if in interval “ 1-99 days”, 150 working days if in interval

“100-199 days”, and 25 working days if in interval “200 days+”. This allows me to compute

the total number of working days a year for operators in any age category. Finally, I compute
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the share of days supplied by operators in age group i (Panel B) as si =
wdi∑I
i=1

wdi
, where wdi

is the number of working days for operators in age group i.

Panel A
25-34 35-44 45-54 55-64 65+ Total

None 52,938 104,375 110,380 158,629 249,512 675,834
1-99 days 18,015 29,804 25,428 27,061 19,267 119,575
100-199 days 7,872 14,648 14,308 12,423 6,169 55,420
200 days + 10,028 15,565 14,681 11,082 5,087 56,443
Panel B
Work Days (1000s) 17875 33908 34478 46589 66975
% Days 0.09 0.17 0.17 0.23 0.34

Table 4: Days off Farm by Age of Operator

5.5 Scale and Productivity By Age of Farm Operator

The following table is restricted to farm operators whose primary occupation is farming.

Mean holding size is measured by acreage per farm. Productivity is measured by net cash

income of operators.

Age 25-34 35-44 45-54 55-64 65+
Mean Holding Size 575 857 909 736 542
Net Cash Income 59,839 90,705 91,501 60,249 32,282

Source: 2007 U.S. Census of Agriculture, Vol 1, Chapter 1: Table 63.

Table 5: Scale and Productivity over Life Cycle of Farm Operators
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5.6 Parameter Values

η ā θ L̄ µ σ
0.015 0.221 0.3157 0.7842 -3.1236 4.1693

Table 6: Parameter Values

Age 25-34 35-44 45-54 55-64 65+
Data 0.09 0.17 0.17 0.23 0.34
Model 0.08 0.16 0.21 0.26 0.29

Table 7: Time Share by Age of Operator: Model against Data
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Figure 3: Calibrated Size Distribution
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Figure 4: Implied Distribution of Land
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Figure 5: Implied Distribution of Hired Labor
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5.7 Model Performances

1. Baseline Model Prediction
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Figure 6: Model Prediction Against Data

2. Model without Skill Accumulation

I calibrate (η, ā, µ, σ) to match: current agricultural employment (2%), long run agri-

culture employment (0.5%), Mean farm size (178) and coefficient of variation of farm

size distribution (0.5). I ask the model to predict for a representative poor country

with 4.5 times lower TFP and a 2.1 times smaller land endowment.

3. Model with Intermediate Inputs

I set γ = 0.8, φ = 0.5 and ρ = 0.2. For the U.S, π = 1. I choose (η, ā, µ, σ) to target a

2% current agriculture employment, 0.5% long run agriculture employment, 2% share
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Exg. variable La ryala mfs
L̄ only 3.3% 1/1.6 65
A only 26% 1/16 20

Both A and L̄ 48% 1/28 6
Data 70% 1/51 3

Table 8: TFP versus Endowment (No Skill Accumulation)

of agriculture output of GDP, and the mean farm size. Again I ask the calibrated

model to predict equilibrium allocations for the representative poor country, which has

4.5 times lower TFP, 2.1 times smaller land endowment and 3 times higher relative

price of intermediate inputs.

Exg. variable La ryala mfs
L̄ only 2.4% 1/1.2 88
A only 29% 1/17 18
π only 3.1% 1/1.6 135
A and L̄ 34% 1/20 7
A and π 49% 1/28 12
π and L̄ 3.6% 1/1.9 57

A, π and L̄ 58% 1/33 5
Data 70% 1/51 3

Table 9: TFP versus Endowment (With Intermediate)
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5.8 Model Predicted Farm Size Distribution (Q.1)
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5.9 Model Predicted Farm Size Distribution (Q.2)
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5.10 Model Predicted Farm Size Distribution (Q.3)
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5.11 Model Predicted Farm Size Distribution (Q.4)
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5.12 Model Predicted Farm Size Distribution (Q.5)
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Code rgdpwok MFS (Ha) No. Holding Area (Ha) Census Year
ARG 25715 468.97 378357 177437398 1988
AUS 46436 3,601.68 129540 466561000 1990
AUT 45822 26.42 273210 7217498 1990
BEL 50600 16.06 87180 1400364 1990
BFA 1824 2.79 886638 2472480 1993
BRA 18797 72.76 4859865 353611246 1996
CAN 45304 241.94 280043 67753700 1991
CHE 44152 11.65 108296 1262167 1990
CHL 23244 83.74 316492 26502363 1997
CIV 4966 3.89 1117667 4351663 2001
COL 12178 23.28 1547846 36033713 1988
DEU 42708 32.84 566900 18617900 1990
DNK 45147 34.14 81267 2774127 1989
DOM 12508 2.34 9026 21146 1995
ECU 12664 14.66 842882 12355831 1999
EGY 12670 0.95 3475502 3297281 1990
ESP 39033 18.79 2284944 42939208 1989
FIN 39611 61.88 199385 12338439 1990
FRA 45152 28.42 1006120 28595799 1988
GBR 40620 70.21 244205 17144777 1993
GRC 31329 4.50 802400 3609000 1995
HUN 21554 6.67 966916 6448000 1993
IND 9903 1.69 97155000 164562000 1985
IRL 47977 26.04 170578 4441755 1991
ITA 51060 7.51 3023344 22702356 1990
LKA 7699 0.81 1787370 1449342 2002
MAR 11987 5.84 1496349 8732223 1996
NIC 5697 31.34 199549 6254514 2001
NLD 45940 16.99 127367 2163472 1989
NOR 50275 9.97 99382 991077 1989
NZL 37566 223.43 70000 15640348 2000
PAK 6995 3.80 5071112 19252672 1990
PER 10240 20.15 1756141 35381809 1994
PRT 30086 6.74 594418 4005594 1989
SWE 40125 93.87 81410 7641890 1999
TUN 17753 11.58 471000 5455300 1994
UGA 1763 2.16 1704721 3683288 1991
URY 20772 288.31 54816 15803763 1990
USA 57259 186.95 2087759 390311617 1987
VEN 19905 60.02 500979 30071192 1997

Table 10: Summary Statistics of WCA
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